Proof of Theorem axlowdimlem16
| Step | Hyp | Ref | Expression | 
|---|
| 1 |  | elfz1eq 13576 | . . . . . 6
⊢ (𝐼 ∈ (2...2) → 𝐼 = 2) | 
| 2 |  | 3z 12652 | . . . . . . . 8
⊢ 3 ∈
ℤ | 
| 3 |  | ax-1cn 11214 | . . . . . . . . 9
⊢ 1 ∈
ℂ | 
| 4 | 3 | sqcli 14221 | . . . . . . . 8
⊢
(1↑2) ∈ ℂ | 
| 5 |  | fveq2 6905 | . . . . . . . . . . . 12
⊢ (𝑖 = 3 → (𝑃‘𝑖) = (𝑃‘3)) | 
| 6 |  | axlowdimlem16.1 | . . . . . . . . . . . . 13
⊢ 𝑃 = ({〈3, -1〉} ∪
(((1...𝑁) ∖ {3})
× {0})) | 
| 7 | 6 | axlowdimlem8 28965 | . . . . . . . . . . . 12
⊢ (𝑃‘3) = -1 | 
| 8 | 5, 7 | eqtrdi 2792 | . . . . . . . . . . 11
⊢ (𝑖 = 3 → (𝑃‘𝑖) = -1) | 
| 9 | 8 | oveq1d 7447 | . . . . . . . . . 10
⊢ (𝑖 = 3 → ((𝑃‘𝑖)↑2) = (-1↑2)) | 
| 10 |  | sqneg 14157 | . . . . . . . . . . 11
⊢ (1 ∈
ℂ → (-1↑2) = (1↑2)) | 
| 11 | 3, 10 | ax-mp 5 | . . . . . . . . . 10
⊢
(-1↑2) = (1↑2) | 
| 12 | 9, 11 | eqtrdi 2792 | . . . . . . . . 9
⊢ (𝑖 = 3 → ((𝑃‘𝑖)↑2) = (1↑2)) | 
| 13 | 12 | fsum1 15784 | . . . . . . . 8
⊢ ((3
∈ ℤ ∧ (1↑2) ∈ ℂ) → Σ𝑖 ∈ (3...3)((𝑃‘𝑖)↑2) = (1↑2)) | 
| 14 | 2, 4, 13 | mp2an 692 | . . . . . . 7
⊢
Σ𝑖 ∈
(3...3)((𝑃‘𝑖)↑2) =
(1↑2) | 
| 15 |  | df-3 12331 | . . . . . . . . . . 11
⊢ 3 = (2 +
1) | 
| 16 |  | oveq1 7439 | . . . . . . . . . . 11
⊢ (𝐼 = 2 → (𝐼 + 1) = (2 + 1)) | 
| 17 | 15, 16 | eqtr4id 2795 | . . . . . . . . . 10
⊢ (𝐼 = 2 → 3 = (𝐼 + 1)) | 
| 18 | 17, 17 | oveq12d 7450 | . . . . . . . . 9
⊢ (𝐼 = 2 → (3...3) = ((𝐼 + 1)...(𝐼 + 1))) | 
| 19 | 18 | sumeq1d 15737 | . . . . . . . 8
⊢ (𝐼 = 2 → Σ𝑖 ∈ (3...3)((𝑄‘𝑖)↑2) = Σ𝑖 ∈ ((𝐼 + 1)...(𝐼 + 1))((𝑄‘𝑖)↑2)) | 
| 20 | 16, 15 | eqtr4di 2794 | . . . . . . . . . 10
⊢ (𝐼 = 2 → (𝐼 + 1) = 3) | 
| 21 | 20, 2 | eqeltrdi 2848 | . . . . . . . . 9
⊢ (𝐼 = 2 → (𝐼 + 1) ∈ ℤ) | 
| 22 |  | fveq2 6905 | . . . . . . . . . . . 12
⊢ (𝑖 = (𝐼 + 1) → (𝑄‘𝑖) = (𝑄‘(𝐼 + 1))) | 
| 23 |  | axlowdimlem16.2 | . . . . . . . . . . . . 13
⊢ 𝑄 = ({〈(𝐼 + 1), 1〉} ∪ (((1...𝑁) ∖ {(𝐼 + 1)}) × {0})) | 
| 24 | 23 | axlowdimlem11 28968 | . . . . . . . . . . . 12
⊢ (𝑄‘(𝐼 + 1)) = 1 | 
| 25 | 22, 24 | eqtrdi 2792 | . . . . . . . . . . 11
⊢ (𝑖 = (𝐼 + 1) → (𝑄‘𝑖) = 1) | 
| 26 | 25 | oveq1d 7447 | . . . . . . . . . 10
⊢ (𝑖 = (𝐼 + 1) → ((𝑄‘𝑖)↑2) = (1↑2)) | 
| 27 | 26 | fsum1 15784 | . . . . . . . . 9
⊢ (((𝐼 + 1) ∈ ℤ ∧
(1↑2) ∈ ℂ) → Σ𝑖 ∈ ((𝐼 + 1)...(𝐼 + 1))((𝑄‘𝑖)↑2) = (1↑2)) | 
| 28 | 21, 4, 27 | sylancl 586 | . . . . . . . 8
⊢ (𝐼 = 2 → Σ𝑖 ∈ ((𝐼 + 1)...(𝐼 + 1))((𝑄‘𝑖)↑2) = (1↑2)) | 
| 29 | 19, 28 | eqtrd 2776 | . . . . . . 7
⊢ (𝐼 = 2 → Σ𝑖 ∈ (3...3)((𝑄‘𝑖)↑2) = (1↑2)) | 
| 30 | 14, 29 | eqtr4id 2795 | . . . . . 6
⊢ (𝐼 = 2 → Σ𝑖 ∈ (3...3)((𝑃‘𝑖)↑2) = Σ𝑖 ∈ (3...3)((𝑄‘𝑖)↑2)) | 
| 31 | 1, 30 | syl 17 | . . . . 5
⊢ (𝐼 ∈ (2...2) →
Σ𝑖 ∈
(3...3)((𝑃‘𝑖)↑2) = Σ𝑖 ∈ (3...3)((𝑄‘𝑖)↑2)) | 
| 32 | 31 | a1i 11 | . . . 4
⊢ (𝑁 = 3 → (𝐼 ∈ (2...2) → Σ𝑖 ∈ (3...3)((𝑃‘𝑖)↑2) = Σ𝑖 ∈ (3...3)((𝑄‘𝑖)↑2))) | 
| 33 |  | oveq1 7439 | . . . . . . 7
⊢ (𝑁 = 3 → (𝑁 − 1) = (3 −
1)) | 
| 34 |  | 3m1e2 12395 | . . . . . . 7
⊢ (3
− 1) = 2 | 
| 35 | 33, 34 | eqtrdi 2792 | . . . . . 6
⊢ (𝑁 = 3 → (𝑁 − 1) = 2) | 
| 36 | 35 | oveq2d 7448 | . . . . 5
⊢ (𝑁 = 3 → (2...(𝑁 − 1)) =
(2...2)) | 
| 37 | 36 | eleq2d 2826 | . . . 4
⊢ (𝑁 = 3 → (𝐼 ∈ (2...(𝑁 − 1)) ↔ 𝐼 ∈ (2...2))) | 
| 38 |  | oveq2 7440 | . . . . . 6
⊢ (𝑁 = 3 → (3...𝑁) = (3...3)) | 
| 39 | 38 | sumeq1d 15737 | . . . . 5
⊢ (𝑁 = 3 → Σ𝑖 ∈ (3...𝑁)((𝑃‘𝑖)↑2) = Σ𝑖 ∈ (3...3)((𝑃‘𝑖)↑2)) | 
| 40 | 38 | sumeq1d 15737 | . . . . 5
⊢ (𝑁 = 3 → Σ𝑖 ∈ (3...𝑁)((𝑄‘𝑖)↑2) = Σ𝑖 ∈ (3...3)((𝑄‘𝑖)↑2)) | 
| 41 | 39, 40 | eqeq12d 2752 | . . . 4
⊢ (𝑁 = 3 → (Σ𝑖 ∈ (3...𝑁)((𝑃‘𝑖)↑2) = Σ𝑖 ∈ (3...𝑁)((𝑄‘𝑖)↑2) ↔ Σ𝑖 ∈ (3...3)((𝑃‘𝑖)↑2) = Σ𝑖 ∈ (3...3)((𝑄‘𝑖)↑2))) | 
| 42 | 32, 37, 41 | 3imtr4d 294 | . . 3
⊢ (𝑁 = 3 → (𝐼 ∈ (2...(𝑁 − 1)) → Σ𝑖 ∈ (3...𝑁)((𝑃‘𝑖)↑2) = Σ𝑖 ∈ (3...𝑁)((𝑄‘𝑖)↑2))) | 
| 43 | 42 | adantld 490 | . 2
⊢ (𝑁 = 3 → ((𝑁 ∈ (ℤ≥‘3)
∧ 𝐼 ∈ (2...(𝑁 − 1))) →
Σ𝑖 ∈ (3...𝑁)((𝑃‘𝑖)↑2) = Σ𝑖 ∈ (3...𝑁)((𝑄‘𝑖)↑2))) | 
| 44 |  | simprl 770 | . . . 4
⊢ ((𝑁 ≠ 3 ∧ (𝑁 ∈ (ℤ≥‘3)
∧ 𝐼 ∈ (2...(𝑁 − 1)))) → 𝑁 ∈
(ℤ≥‘3)) | 
| 45 |  | eluzle 12892 | . . . . . . 7
⊢ (𝑁 ∈
(ℤ≥‘3) → 3 ≤ 𝑁) | 
| 46 | 45 | adantl 481 | . . . . . 6
⊢ ((𝑁 ≠ 3 ∧ 𝑁 ∈ (ℤ≥‘3))
→ 3 ≤ 𝑁) | 
| 47 |  | simpl 482 | . . . . . 6
⊢ ((𝑁 ≠ 3 ∧ 𝑁 ∈ (ℤ≥‘3))
→ 𝑁 ≠
3) | 
| 48 |  | 3re 12347 | . . . . . . 7
⊢ 3 ∈
ℝ | 
| 49 |  | eluzelre 12890 | . . . . . . . 8
⊢ (𝑁 ∈
(ℤ≥‘3) → 𝑁 ∈ ℝ) | 
| 50 | 49 | adantl 481 | . . . . . . 7
⊢ ((𝑁 ≠ 3 ∧ 𝑁 ∈ (ℤ≥‘3))
→ 𝑁 ∈
ℝ) | 
| 51 |  | ltlen 11363 | . . . . . . 7
⊢ ((3
∈ ℝ ∧ 𝑁
∈ ℝ) → (3 < 𝑁 ↔ (3 ≤ 𝑁 ∧ 𝑁 ≠ 3))) | 
| 52 | 48, 50, 51 | sylancr 587 | . . . . . 6
⊢ ((𝑁 ≠ 3 ∧ 𝑁 ∈ (ℤ≥‘3))
→ (3 < 𝑁 ↔ (3
≤ 𝑁 ∧ 𝑁 ≠ 3))) | 
| 53 | 46, 47, 52 | mpbir2and 713 | . . . . 5
⊢ ((𝑁 ≠ 3 ∧ 𝑁 ∈ (ℤ≥‘3))
→ 3 < 𝑁) | 
| 54 | 53 | adantrr 717 | . . . 4
⊢ ((𝑁 ≠ 3 ∧ (𝑁 ∈ (ℤ≥‘3)
∧ 𝐼 ∈ (2...(𝑁 − 1)))) → 3 <
𝑁) | 
| 55 |  | simprr 772 | . . . 4
⊢ ((𝑁 ≠ 3 ∧ (𝑁 ∈ (ℤ≥‘3)
∧ 𝐼 ∈ (2...(𝑁 − 1)))) → 𝐼 ∈ (2...(𝑁 − 1))) | 
| 56 |  | fzssp1 13608 | . . . . . . . . . . . . 13
⊢
(2...(𝑁 − 1))
⊆ (2...((𝑁 − 1)
+ 1)) | 
| 57 |  | simp3 1138 | . . . . . . . . . . . . 13
⊢ ((𝑁 ∈
(ℤ≥‘3) ∧ 3 < 𝑁 ∧ 𝐼 ∈ (2...(𝑁 − 1))) → 𝐼 ∈ (2...(𝑁 − 1))) | 
| 58 | 56, 57 | sselid 3980 | . . . . . . . . . . . 12
⊢ ((𝑁 ∈
(ℤ≥‘3) ∧ 3 < 𝑁 ∧ 𝐼 ∈ (2...(𝑁 − 1))) → 𝐼 ∈ (2...((𝑁 − 1) + 1))) | 
| 59 |  | eluzelz 12889 | . . . . . . . . . . . . . . . 16
⊢ (𝑁 ∈
(ℤ≥‘3) → 𝑁 ∈ ℤ) | 
| 60 | 59 | 3ad2ant1 1133 | . . . . . . . . . . . . . . 15
⊢ ((𝑁 ∈
(ℤ≥‘3) ∧ 3 < 𝑁 ∧ 𝐼 ∈ (2...(𝑁 − 1))) → 𝑁 ∈ ℤ) | 
| 61 | 60 | zcnd 12725 | . . . . . . . . . . . . . 14
⊢ ((𝑁 ∈
(ℤ≥‘3) ∧ 3 < 𝑁 ∧ 𝐼 ∈ (2...(𝑁 − 1))) → 𝑁 ∈ ℂ) | 
| 62 |  | npcan 11518 | . . . . . . . . . . . . . 14
⊢ ((𝑁 ∈ ℂ ∧ 1 ∈
ℂ) → ((𝑁 −
1) + 1) = 𝑁) | 
| 63 | 61, 3, 62 | sylancl 586 | . . . . . . . . . . . . 13
⊢ ((𝑁 ∈
(ℤ≥‘3) ∧ 3 < 𝑁 ∧ 𝐼 ∈ (2...(𝑁 − 1))) → ((𝑁 − 1) + 1) = 𝑁) | 
| 64 | 63 | oveq2d 7448 | . . . . . . . . . . . 12
⊢ ((𝑁 ∈
(ℤ≥‘3) ∧ 3 < 𝑁 ∧ 𝐼 ∈ (2...(𝑁 − 1))) → (2...((𝑁 − 1) + 1)) = (2...𝑁)) | 
| 65 | 58, 64 | eleqtrd 2842 | . . . . . . . . . . 11
⊢ ((𝑁 ∈
(ℤ≥‘3) ∧ 3 < 𝑁 ∧ 𝐼 ∈ (2...(𝑁 − 1))) → 𝐼 ∈ (2...𝑁)) | 
| 66 |  | elfzelz 13565 | . . . . . . . . . . 11
⊢ (𝐼 ∈ (2...𝑁) → 𝐼 ∈ ℤ) | 
| 67 | 65, 66 | syl 17 | . . . . . . . . . 10
⊢ ((𝑁 ∈
(ℤ≥‘3) ∧ 3 < 𝑁 ∧ 𝐼 ∈ (2...(𝑁 − 1))) → 𝐼 ∈ ℤ) | 
| 68 | 67 | zred 12724 | . . . . . . . . 9
⊢ ((𝑁 ∈
(ℤ≥‘3) ∧ 3 < 𝑁 ∧ 𝐼 ∈ (2...(𝑁 − 1))) → 𝐼 ∈ ℝ) | 
| 69 | 68 | ltp1d 12199 | . . . . . . . 8
⊢ ((𝑁 ∈
(ℤ≥‘3) ∧ 3 < 𝑁 ∧ 𝐼 ∈ (2...(𝑁 − 1))) → 𝐼 < (𝐼 + 1)) | 
| 70 |  | fzdisj 13592 | . . . . . . . 8
⊢ (𝐼 < (𝐼 + 1) → ((2...𝐼) ∩ ((𝐼 + 1)...𝑁)) = ∅) | 
| 71 | 69, 70 | syl 17 | . . . . . . 7
⊢ ((𝑁 ∈
(ℤ≥‘3) ∧ 3 < 𝑁 ∧ 𝐼 ∈ (2...(𝑁 − 1))) → ((2...𝐼) ∩ ((𝐼 + 1)...𝑁)) = ∅) | 
| 72 |  | fzsplit 13591 | . . . . . . . 8
⊢ (𝐼 ∈ (2...𝑁) → (2...𝑁) = ((2...𝐼) ∪ ((𝐼 + 1)...𝑁))) | 
| 73 | 65, 72 | syl 17 | . . . . . . 7
⊢ ((𝑁 ∈
(ℤ≥‘3) ∧ 3 < 𝑁 ∧ 𝐼 ∈ (2...(𝑁 − 1))) → (2...𝑁) = ((2...𝐼) ∪ ((𝐼 + 1)...𝑁))) | 
| 74 |  | fzfid 14015 | . . . . . . 7
⊢ ((𝑁 ∈
(ℤ≥‘3) ∧ 3 < 𝑁 ∧ 𝐼 ∈ (2...(𝑁 − 1))) → (2...𝑁) ∈ Fin) | 
| 75 |  | eluzge3nn 12933 | . . . . . . . . . . 11
⊢ (𝑁 ∈
(ℤ≥‘3) → 𝑁 ∈ ℕ) | 
| 76 |  | 2eluzge1 12937 | . . . . . . . . . . . . 13
⊢ 2 ∈
(ℤ≥‘1) | 
| 77 |  | fzss1 13604 | . . . . . . . . . . . . 13
⊢ (2 ∈
(ℤ≥‘1) → (2...(𝑁 − 1)) ⊆ (1...(𝑁 − 1))) | 
| 78 | 76, 77 | ax-mp 5 | . . . . . . . . . . . 12
⊢
(2...(𝑁 − 1))
⊆ (1...(𝑁 −
1)) | 
| 79 | 78 | sseli 3978 | . . . . . . . . . . 11
⊢ (𝐼 ∈ (2...(𝑁 − 1)) → 𝐼 ∈ (1...(𝑁 − 1))) | 
| 80 | 23 | axlowdimlem10 28967 | . . . . . . . . . . 11
⊢ ((𝑁 ∈ ℕ ∧ 𝐼 ∈ (1...(𝑁 − 1))) → 𝑄 ∈ (𝔼‘𝑁)) | 
| 81 | 75, 79, 80 | syl2an 596 | . . . . . . . . . 10
⊢ ((𝑁 ∈
(ℤ≥‘3) ∧ 𝐼 ∈ (2...(𝑁 − 1))) → 𝑄 ∈ (𝔼‘𝑁)) | 
| 82 |  | fzss1 13604 | . . . . . . . . . . . 12
⊢ (2 ∈
(ℤ≥‘1) → (2...𝑁) ⊆ (1...𝑁)) | 
| 83 | 76, 82 | ax-mp 5 | . . . . . . . . . . 11
⊢
(2...𝑁) ⊆
(1...𝑁) | 
| 84 | 83 | sseli 3978 | . . . . . . . . . 10
⊢ (𝑖 ∈ (2...𝑁) → 𝑖 ∈ (1...𝑁)) | 
| 85 |  | fveecn 28918 | . . . . . . . . . 10
⊢ ((𝑄 ∈ (𝔼‘𝑁) ∧ 𝑖 ∈ (1...𝑁)) → (𝑄‘𝑖) ∈ ℂ) | 
| 86 | 81, 84, 85 | syl2an 596 | . . . . . . . . 9
⊢ (((𝑁 ∈
(ℤ≥‘3) ∧ 𝐼 ∈ (2...(𝑁 − 1))) ∧ 𝑖 ∈ (2...𝑁)) → (𝑄‘𝑖) ∈ ℂ) | 
| 87 | 86 | sqcld 14185 | . . . . . . . 8
⊢ (((𝑁 ∈
(ℤ≥‘3) ∧ 𝐼 ∈ (2...(𝑁 − 1))) ∧ 𝑖 ∈ (2...𝑁)) → ((𝑄‘𝑖)↑2) ∈ ℂ) | 
| 88 | 87 | 3adantl2 1167 | . . . . . . 7
⊢ (((𝑁 ∈
(ℤ≥‘3) ∧ 3 < 𝑁 ∧ 𝐼 ∈ (2...(𝑁 − 1))) ∧ 𝑖 ∈ (2...𝑁)) → ((𝑄‘𝑖)↑2) ∈ ℂ) | 
| 89 | 71, 73, 74, 88 | fsumsplit 15778 | . . . . . 6
⊢ ((𝑁 ∈
(ℤ≥‘3) ∧ 3 < 𝑁 ∧ 𝐼 ∈ (2...(𝑁 − 1))) → Σ𝑖 ∈ (2...𝑁)((𝑄‘𝑖)↑2) = (Σ𝑖 ∈ (2...𝐼)((𝑄‘𝑖)↑2) + Σ𝑖 ∈ ((𝐼 + 1)...𝑁)((𝑄‘𝑖)↑2))) | 
| 90 |  | elfzelz 13565 | . . . . . . . . . . . . . . . . . . 19
⊢ (𝐼 ∈ (2...(𝑁 − 1)) → 𝐼 ∈ ℤ) | 
| 91 | 90 | zred 12724 | . . . . . . . . . . . . . . . . . 18
⊢ (𝐼 ∈ (2...(𝑁 − 1)) → 𝐼 ∈ ℝ) | 
| 92 | 91 | 3ad2ant3 1135 | . . . . . . . . . . . . . . . . 17
⊢ ((𝑁 ∈
(ℤ≥‘3) ∧ 3 < 𝑁 ∧ 𝐼 ∈ (2...(𝑁 − 1))) → 𝐼 ∈ ℝ) | 
| 93 | 49 | 3ad2ant1 1133 | . . . . . . . . . . . . . . . . 17
⊢ ((𝑁 ∈
(ℤ≥‘3) ∧ 3 < 𝑁 ∧ 𝐼 ∈ (2...(𝑁 − 1))) → 𝑁 ∈ ℝ) | 
| 94 |  | peano2rem 11577 | . . . . . . . . . . . . . . . . . . 19
⊢ (𝑁 ∈ ℝ → (𝑁 − 1) ∈
ℝ) | 
| 95 | 93, 94 | syl 17 | . . . . . . . . . . . . . . . . . 18
⊢ ((𝑁 ∈
(ℤ≥‘3) ∧ 3 < 𝑁 ∧ 𝐼 ∈ (2...(𝑁 − 1))) → (𝑁 − 1) ∈ ℝ) | 
| 96 |  | elfzle2 13569 | . . . . . . . . . . . . . . . . . . 19
⊢ (𝐼 ∈ (2...(𝑁 − 1)) → 𝐼 ≤ (𝑁 − 1)) | 
| 97 | 96 | 3ad2ant3 1135 | . . . . . . . . . . . . . . . . . 18
⊢ ((𝑁 ∈
(ℤ≥‘3) ∧ 3 < 𝑁 ∧ 𝐼 ∈ (2...(𝑁 − 1))) → 𝐼 ≤ (𝑁 − 1)) | 
| 98 | 93 | ltm1d 12201 | . . . . . . . . . . . . . . . . . 18
⊢ ((𝑁 ∈
(ℤ≥‘3) ∧ 3 < 𝑁 ∧ 𝐼 ∈ (2...(𝑁 − 1))) → (𝑁 − 1) < 𝑁) | 
| 99 | 92, 95, 93, 97, 98 | lelttrd 11420 | . . . . . . . . . . . . . . . . 17
⊢ ((𝑁 ∈
(ℤ≥‘3) ∧ 3 < 𝑁 ∧ 𝐼 ∈ (2...(𝑁 − 1))) → 𝐼 < 𝑁) | 
| 100 | 92, 93, 99 | ltled 11410 | . . . . . . . . . . . . . . . 16
⊢ ((𝑁 ∈
(ℤ≥‘3) ∧ 3 < 𝑁 ∧ 𝐼 ∈ (2...(𝑁 − 1))) → 𝐼 ≤ 𝑁) | 
| 101 | 90 | 3ad2ant3 1135 | . . . . . . . . . . . . . . . . 17
⊢ ((𝑁 ∈
(ℤ≥‘3) ∧ 3 < 𝑁 ∧ 𝐼 ∈ (2...(𝑁 − 1))) → 𝐼 ∈ ℤ) | 
| 102 |  | eluz 12893 | . . . . . . . . . . . . . . . . 17
⊢ ((𝐼 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑁 ∈
(ℤ≥‘𝐼) ↔ 𝐼 ≤ 𝑁)) | 
| 103 | 101, 60, 102 | syl2anc 584 | . . . . . . . . . . . . . . . 16
⊢ ((𝑁 ∈
(ℤ≥‘3) ∧ 3 < 𝑁 ∧ 𝐼 ∈ (2...(𝑁 − 1))) → (𝑁 ∈ (ℤ≥‘𝐼) ↔ 𝐼 ≤ 𝑁)) | 
| 104 | 100, 103 | mpbird 257 | . . . . . . . . . . . . . . 15
⊢ ((𝑁 ∈
(ℤ≥‘3) ∧ 3 < 𝑁 ∧ 𝐼 ∈ (2...(𝑁 − 1))) → 𝑁 ∈ (ℤ≥‘𝐼)) | 
| 105 |  | fzss2 13605 | . . . . . . . . . . . . . . 15
⊢ (𝑁 ∈
(ℤ≥‘𝐼) → (1...𝐼) ⊆ (1...𝑁)) | 
| 106 | 104, 105 | syl 17 | . . . . . . . . . . . . . 14
⊢ ((𝑁 ∈
(ℤ≥‘3) ∧ 3 < 𝑁 ∧ 𝐼 ∈ (2...(𝑁 − 1))) → (1...𝐼) ⊆ (1...𝑁)) | 
| 107 | 106 | sseld 3981 | . . . . . . . . . . . . 13
⊢ ((𝑁 ∈
(ℤ≥‘3) ∧ 3 < 𝑁 ∧ 𝐼 ∈ (2...(𝑁 − 1))) → (𝑖 ∈ (1...𝐼) → 𝑖 ∈ (1...𝑁))) | 
| 108 |  | fzss1 13604 | . . . . . . . . . . . . . . 15
⊢ (2 ∈
(ℤ≥‘1) → (2...𝐼) ⊆ (1...𝐼)) | 
| 109 | 76, 108 | ax-mp 5 | . . . . . . . . . . . . . 14
⊢
(2...𝐼) ⊆
(1...𝐼) | 
| 110 | 109 | sseli 3978 | . . . . . . . . . . . . 13
⊢ (𝑖 ∈ (2...𝐼) → 𝑖 ∈ (1...𝐼)) | 
| 111 | 107, 110 | impel 505 | . . . . . . . . . . . 12
⊢ (((𝑁 ∈
(ℤ≥‘3) ∧ 3 < 𝑁 ∧ 𝐼 ∈ (2...(𝑁 − 1))) ∧ 𝑖 ∈ (2...𝐼)) → 𝑖 ∈ (1...𝑁)) | 
| 112 |  | elfzelz 13565 | . . . . . . . . . . . . . . 15
⊢ (𝑖 ∈ (2...𝐼) → 𝑖 ∈ ℤ) | 
| 113 | 112 | zred 12724 | . . . . . . . . . . . . . 14
⊢ (𝑖 ∈ (2...𝐼) → 𝑖 ∈ ℝ) | 
| 114 | 113 | adantl 481 | . . . . . . . . . . . . 13
⊢ (((𝑁 ∈
(ℤ≥‘3) ∧ 3 < 𝑁 ∧ 𝐼 ∈ (2...(𝑁 − 1))) ∧ 𝑖 ∈ (2...𝐼)) → 𝑖 ∈ ℝ) | 
| 115 | 92 | adantr 480 | . . . . . . . . . . . . . 14
⊢ (((𝑁 ∈
(ℤ≥‘3) ∧ 3 < 𝑁 ∧ 𝐼 ∈ (2...(𝑁 − 1))) ∧ 𝑖 ∈ (2...𝐼)) → 𝐼 ∈ ℝ) | 
| 116 |  | peano2re 11435 | . . . . . . . . . . . . . . . . 17
⊢ (𝐼 ∈ ℝ → (𝐼 + 1) ∈
ℝ) | 
| 117 | 91, 116 | syl 17 | . . . . . . . . . . . . . . . 16
⊢ (𝐼 ∈ (2...(𝑁 − 1)) → (𝐼 + 1) ∈ ℝ) | 
| 118 | 117 | 3ad2ant3 1135 | . . . . . . . . . . . . . . 15
⊢ ((𝑁 ∈
(ℤ≥‘3) ∧ 3 < 𝑁 ∧ 𝐼 ∈ (2...(𝑁 − 1))) → (𝐼 + 1) ∈ ℝ) | 
| 119 | 118 | adantr 480 | . . . . . . . . . . . . . 14
⊢ (((𝑁 ∈
(ℤ≥‘3) ∧ 3 < 𝑁 ∧ 𝐼 ∈ (2...(𝑁 − 1))) ∧ 𝑖 ∈ (2...𝐼)) → (𝐼 + 1) ∈ ℝ) | 
| 120 |  | elfzle2 13569 | . . . . . . . . . . . . . . 15
⊢ (𝑖 ∈ (2...𝐼) → 𝑖 ≤ 𝐼) | 
| 121 | 120 | adantl 481 | . . . . . . . . . . . . . 14
⊢ (((𝑁 ∈
(ℤ≥‘3) ∧ 3 < 𝑁 ∧ 𝐼 ∈ (2...(𝑁 − 1))) ∧ 𝑖 ∈ (2...𝐼)) → 𝑖 ≤ 𝐼) | 
| 122 | 115 | ltp1d 12199 | . . . . . . . . . . . . . 14
⊢ (((𝑁 ∈
(ℤ≥‘3) ∧ 3 < 𝑁 ∧ 𝐼 ∈ (2...(𝑁 − 1))) ∧ 𝑖 ∈ (2...𝐼)) → 𝐼 < (𝐼 + 1)) | 
| 123 | 114, 115,
119, 121, 122 | lelttrd 11420 | . . . . . . . . . . . . 13
⊢ (((𝑁 ∈
(ℤ≥‘3) ∧ 3 < 𝑁 ∧ 𝐼 ∈ (2...(𝑁 − 1))) ∧ 𝑖 ∈ (2...𝐼)) → 𝑖 < (𝐼 + 1)) | 
| 124 | 114, 123 | ltned 11398 | . . . . . . . . . . . 12
⊢ (((𝑁 ∈
(ℤ≥‘3) ∧ 3 < 𝑁 ∧ 𝐼 ∈ (2...(𝑁 − 1))) ∧ 𝑖 ∈ (2...𝐼)) → 𝑖 ≠ (𝐼 + 1)) | 
| 125 | 23 | axlowdimlem12 28969 | . . . . . . . . . . . 12
⊢ ((𝑖 ∈ (1...𝑁) ∧ 𝑖 ≠ (𝐼 + 1)) → (𝑄‘𝑖) = 0) | 
| 126 | 111, 124,
125 | syl2anc 584 | . . . . . . . . . . 11
⊢ (((𝑁 ∈
(ℤ≥‘3) ∧ 3 < 𝑁 ∧ 𝐼 ∈ (2...(𝑁 − 1))) ∧ 𝑖 ∈ (2...𝐼)) → (𝑄‘𝑖) = 0) | 
| 127 | 126 | sq0id 14234 | . . . . . . . . . 10
⊢ (((𝑁 ∈
(ℤ≥‘3) ∧ 3 < 𝑁 ∧ 𝐼 ∈ (2...(𝑁 − 1))) ∧ 𝑖 ∈ (2...𝐼)) → ((𝑄‘𝑖)↑2) = 0) | 
| 128 | 127 | sumeq2dv 15739 | . . . . . . . . 9
⊢ ((𝑁 ∈
(ℤ≥‘3) ∧ 3 < 𝑁 ∧ 𝐼 ∈ (2...(𝑁 − 1))) → Σ𝑖 ∈ (2...𝐼)((𝑄‘𝑖)↑2) = Σ𝑖 ∈ (2...𝐼)0) | 
| 129 |  | fzfi 14014 | . . . . . . . . . . 11
⊢
(2...𝐼) ∈
Fin | 
| 130 | 129 | olci 866 | . . . . . . . . . 10
⊢
((2...𝐼) ⊆
(ℤ≥‘1) ∨ (2...𝐼) ∈ Fin) | 
| 131 |  | sumz 15759 | . . . . . . . . . 10
⊢
(((2...𝐼) ⊆
(ℤ≥‘1) ∨ (2...𝐼) ∈ Fin) → Σ𝑖 ∈ (2...𝐼)0 = 0) | 
| 132 | 130, 131 | ax-mp 5 | . . . . . . . . 9
⊢
Σ𝑖 ∈
(2...𝐼)0 =
0 | 
| 133 | 128, 132 | eqtrdi 2792 | . . . . . . . 8
⊢ ((𝑁 ∈
(ℤ≥‘3) ∧ 3 < 𝑁 ∧ 𝐼 ∈ (2...(𝑁 − 1))) → Σ𝑖 ∈ (2...𝐼)((𝑄‘𝑖)↑2) = 0) | 
| 134 | 101 | peano2zd 12727 | . . . . . . . . . . 11
⊢ ((𝑁 ∈
(ℤ≥‘3) ∧ 3 < 𝑁 ∧ 𝐼 ∈ (2...(𝑁 − 1))) → (𝐼 + 1) ∈ ℤ) | 
| 135 |  | sq1 14235 | . . . . . . . . . . . . 13
⊢
(1↑2) = 1 | 
| 136 | 26, 135 | eqtrdi 2792 | . . . . . . . . . . . 12
⊢ (𝑖 = (𝐼 + 1) → ((𝑄‘𝑖)↑2) = 1) | 
| 137 | 136 | fsum1 15784 | . . . . . . . . . . 11
⊢ (((𝐼 + 1) ∈ ℤ ∧ 1
∈ ℂ) → Σ𝑖 ∈ ((𝐼 + 1)...(𝐼 + 1))((𝑄‘𝑖)↑2) = 1) | 
| 138 | 134, 3, 137 | sylancl 586 | . . . . . . . . . 10
⊢ ((𝑁 ∈
(ℤ≥‘3) ∧ 3 < 𝑁 ∧ 𝐼 ∈ (2...(𝑁 − 1))) → Σ𝑖 ∈ ((𝐼 + 1)...(𝐼 + 1))((𝑄‘𝑖)↑2) = 1) | 
| 139 |  | oveq2 7440 | . . . . . . . . . . . 12
⊢ ((𝐼 + 1) = 𝑁 → ((𝐼 + 1)...(𝐼 + 1)) = ((𝐼 + 1)...𝑁)) | 
| 140 | 139 | sumeq1d 15737 | . . . . . . . . . . 11
⊢ ((𝐼 + 1) = 𝑁 → Σ𝑖 ∈ ((𝐼 + 1)...(𝐼 + 1))((𝑄‘𝑖)↑2) = Σ𝑖 ∈ ((𝐼 + 1)...𝑁)((𝑄‘𝑖)↑2)) | 
| 141 | 140 | eqeq1d 2738 | . . . . . . . . . 10
⊢ ((𝐼 + 1) = 𝑁 → (Σ𝑖 ∈ ((𝐼 + 1)...(𝐼 + 1))((𝑄‘𝑖)↑2) = 1 ↔ Σ𝑖 ∈ ((𝐼 + 1)...𝑁)((𝑄‘𝑖)↑2) = 1)) | 
| 142 | 138, 141 | imbitrid 244 | . . . . . . . . 9
⊢ ((𝐼 + 1) = 𝑁 → ((𝑁 ∈ (ℤ≥‘3)
∧ 3 < 𝑁 ∧ 𝐼 ∈ (2...(𝑁 − 1))) → Σ𝑖 ∈ ((𝐼 + 1)...𝑁)((𝑄‘𝑖)↑2) = 1)) | 
| 143 | 101 | adantl 481 | . . . . . . . . . . . . . . . 16
⊢ (((𝐼 + 1) ≠ 𝑁 ∧ (𝑁 ∈ (ℤ≥‘3)
∧ 3 < 𝑁 ∧ 𝐼 ∈ (2...(𝑁 − 1)))) → 𝐼 ∈ ℤ) | 
| 144 | 143 | zred 12724 | . . . . . . . . . . . . . . 15
⊢ (((𝐼 + 1) ≠ 𝑁 ∧ (𝑁 ∈ (ℤ≥‘3)
∧ 3 < 𝑁 ∧ 𝐼 ∈ (2...(𝑁 − 1)))) → 𝐼 ∈ ℝ) | 
| 145 | 60 | adantl 481 | . . . . . . . . . . . . . . . . 17
⊢ (((𝐼 + 1) ≠ 𝑁 ∧ (𝑁 ∈ (ℤ≥‘3)
∧ 3 < 𝑁 ∧ 𝐼 ∈ (2...(𝑁 − 1)))) → 𝑁 ∈ ℤ) | 
| 146 | 145 | zred 12724 | . . . . . . . . . . . . . . . 16
⊢ (((𝐼 + 1) ≠ 𝑁 ∧ (𝑁 ∈ (ℤ≥‘3)
∧ 3 < 𝑁 ∧ 𝐼 ∈ (2...(𝑁 − 1)))) → 𝑁 ∈ ℝ) | 
| 147 | 146, 94 | syl 17 | . . . . . . . . . . . . . . 15
⊢ (((𝐼 + 1) ≠ 𝑁 ∧ (𝑁 ∈ (ℤ≥‘3)
∧ 3 < 𝑁 ∧ 𝐼 ∈ (2...(𝑁 − 1)))) → (𝑁 − 1) ∈ ℝ) | 
| 148 | 97 | adantl 481 | . . . . . . . . . . . . . . 15
⊢ (((𝐼 + 1) ≠ 𝑁 ∧ (𝑁 ∈ (ℤ≥‘3)
∧ 3 < 𝑁 ∧ 𝐼 ∈ (2...(𝑁 − 1)))) → 𝐼 ≤ (𝑁 − 1)) | 
| 149 | 146 | ltm1d 12201 | . . . . . . . . . . . . . . 15
⊢ (((𝐼 + 1) ≠ 𝑁 ∧ (𝑁 ∈ (ℤ≥‘3)
∧ 3 < 𝑁 ∧ 𝐼 ∈ (2...(𝑁 − 1)))) → (𝑁 − 1) < 𝑁) | 
| 150 | 144, 147,
146, 148, 149 | lelttrd 11420 | . . . . . . . . . . . . . 14
⊢ (((𝐼 + 1) ≠ 𝑁 ∧ (𝑁 ∈ (ℤ≥‘3)
∧ 3 < 𝑁 ∧ 𝐼 ∈ (2...(𝑁 − 1)))) → 𝐼 < 𝑁) | 
| 151 |  | 1red 11263 | . . . . . . . . . . . . . . . . . . 19
⊢ (𝐼 ∈ (2...(𝑁 − 1)) → 1 ∈
ℝ) | 
| 152 |  | 2re 12341 | . . . . . . . . . . . . . . . . . . . 20
⊢ 2 ∈
ℝ | 
| 153 | 152 | a1i 11 | . . . . . . . . . . . . . . . . . . 19
⊢ (𝐼 ∈ (2...(𝑁 − 1)) → 2 ∈
ℝ) | 
| 154 |  | 1le2 12476 | . . . . . . . . . . . . . . . . . . . 20
⊢ 1 ≤
2 | 
| 155 | 154 | a1i 11 | . . . . . . . . . . . . . . . . . . 19
⊢ (𝐼 ∈ (2...(𝑁 − 1)) → 1 ≤
2) | 
| 156 |  | elfzle1 13568 | . . . . . . . . . . . . . . . . . . 19
⊢ (𝐼 ∈ (2...(𝑁 − 1)) → 2 ≤ 𝐼) | 
| 157 | 151, 153,
91, 155, 156 | letrd 11419 | . . . . . . . . . . . . . . . . . 18
⊢ (𝐼 ∈ (2...(𝑁 − 1)) → 1 ≤ 𝐼) | 
| 158 | 157 | 3ad2ant3 1135 | . . . . . . . . . . . . . . . . 17
⊢ ((𝑁 ∈
(ℤ≥‘3) ∧ 3 < 𝑁 ∧ 𝐼 ∈ (2...(𝑁 − 1))) → 1 ≤ 𝐼) | 
| 159 | 158 | adantl 481 | . . . . . . . . . . . . . . . 16
⊢ (((𝐼 + 1) ≠ 𝑁 ∧ (𝑁 ∈ (ℤ≥‘3)
∧ 3 < 𝑁 ∧ 𝐼 ∈ (2...(𝑁 − 1)))) → 1 ≤ 𝐼) | 
| 160 |  | elnnz1 12645 | . . . . . . . . . . . . . . . 16
⊢ (𝐼 ∈ ℕ ↔ (𝐼 ∈ ℤ ∧ 1 ≤
𝐼)) | 
| 161 | 143, 159,
160 | sylanbrc 583 | . . . . . . . . . . . . . . 15
⊢ (((𝐼 + 1) ≠ 𝑁 ∧ (𝑁 ∈ (ℤ≥‘3)
∧ 3 < 𝑁 ∧ 𝐼 ∈ (2...(𝑁 − 1)))) → 𝐼 ∈ ℕ) | 
| 162 | 75 | 3ad2ant1 1133 | . . . . . . . . . . . . . . . 16
⊢ ((𝑁 ∈
(ℤ≥‘3) ∧ 3 < 𝑁 ∧ 𝐼 ∈ (2...(𝑁 − 1))) → 𝑁 ∈ ℕ) | 
| 163 | 162 | adantl 481 | . . . . . . . . . . . . . . 15
⊢ (((𝐼 + 1) ≠ 𝑁 ∧ (𝑁 ∈ (ℤ≥‘3)
∧ 3 < 𝑁 ∧ 𝐼 ∈ (2...(𝑁 − 1)))) → 𝑁 ∈ ℕ) | 
| 164 |  | nnltp1le 12676 | . . . . . . . . . . . . . . 15
⊢ ((𝐼 ∈ ℕ ∧ 𝑁 ∈ ℕ) → (𝐼 < 𝑁 ↔ (𝐼 + 1) ≤ 𝑁)) | 
| 165 | 161, 163,
164 | syl2anc 584 | . . . . . . . . . . . . . 14
⊢ (((𝐼 + 1) ≠ 𝑁 ∧ (𝑁 ∈ (ℤ≥‘3)
∧ 3 < 𝑁 ∧ 𝐼 ∈ (2...(𝑁 − 1)))) → (𝐼 < 𝑁 ↔ (𝐼 + 1) ≤ 𝑁)) | 
| 166 | 150, 165 | mpbid 232 | . . . . . . . . . . . . 13
⊢ (((𝐼 + 1) ≠ 𝑁 ∧ (𝑁 ∈ (ℤ≥‘3)
∧ 3 < 𝑁 ∧ 𝐼 ∈ (2...(𝑁 − 1)))) → (𝐼 + 1) ≤ 𝑁) | 
| 167 |  | eluz 12893 | . . . . . . . . . . . . . 14
⊢ (((𝐼 + 1) ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑁 ∈
(ℤ≥‘(𝐼 + 1)) ↔ (𝐼 + 1) ≤ 𝑁)) | 
| 168 | 134, 145,
167 | syl2an2 686 | . . . . . . . . . . . . 13
⊢ (((𝐼 + 1) ≠ 𝑁 ∧ (𝑁 ∈ (ℤ≥‘3)
∧ 3 < 𝑁 ∧ 𝐼 ∈ (2...(𝑁 − 1)))) → (𝑁 ∈ (ℤ≥‘(𝐼 + 1)) ↔ (𝐼 + 1) ≤ 𝑁)) | 
| 169 | 166, 168 | mpbird 257 | . . . . . . . . . . . 12
⊢ (((𝐼 + 1) ≠ 𝑁 ∧ (𝑁 ∈ (ℤ≥‘3)
∧ 3 < 𝑁 ∧ 𝐼 ∈ (2...(𝑁 − 1)))) → 𝑁 ∈ (ℤ≥‘(𝐼 + 1))) | 
| 170 |  | simpr1 1194 | . . . . . . . . . . . . . . . 16
⊢ (((𝐼 + 1) ≠ 𝑁 ∧ (𝑁 ∈ (ℤ≥‘3)
∧ 3 < 𝑁 ∧ 𝐼 ∈ (2...(𝑁 − 1)))) → 𝑁 ∈
(ℤ≥‘3)) | 
| 171 |  | simpr3 1196 | . . . . . . . . . . . . . . . 16
⊢ (((𝐼 + 1) ≠ 𝑁 ∧ (𝑁 ∈ (ℤ≥‘3)
∧ 3 < 𝑁 ∧ 𝐼 ∈ (2...(𝑁 − 1)))) → 𝐼 ∈ (2...(𝑁 − 1))) | 
| 172 | 170, 171,
81 | syl2anc 584 | . . . . . . . . . . . . . . 15
⊢ (((𝐼 + 1) ≠ 𝑁 ∧ (𝑁 ∈ (ℤ≥‘3)
∧ 3 < 𝑁 ∧ 𝐼 ∈ (2...(𝑁 − 1)))) → 𝑄 ∈ (𝔼‘𝑁)) | 
| 173 | 172 | adantr 480 | . . . . . . . . . . . . . 14
⊢ ((((𝐼 + 1) ≠ 𝑁 ∧ (𝑁 ∈ (ℤ≥‘3)
∧ 3 < 𝑁 ∧ 𝐼 ∈ (2...(𝑁 − 1)))) ∧ 𝑖 ∈ ((𝐼 + 1)...𝑁)) → 𝑄 ∈ (𝔼‘𝑁)) | 
| 174 | 161 | peano2nnd 12284 | . . . . . . . . . . . . . . . . 17
⊢ (((𝐼 + 1) ≠ 𝑁 ∧ (𝑁 ∈ (ℤ≥‘3)
∧ 3 < 𝑁 ∧ 𝐼 ∈ (2...(𝑁 − 1)))) → (𝐼 + 1) ∈ ℕ) | 
| 175 |  | nnuz 12922 | . . . . . . . . . . . . . . . . 17
⊢ ℕ =
(ℤ≥‘1) | 
| 176 | 174, 175 | eleqtrdi 2850 | . . . . . . . . . . . . . . . 16
⊢ (((𝐼 + 1) ≠ 𝑁 ∧ (𝑁 ∈ (ℤ≥‘3)
∧ 3 < 𝑁 ∧ 𝐼 ∈ (2...(𝑁 − 1)))) → (𝐼 + 1) ∈
(ℤ≥‘1)) | 
| 177 |  | fzss1 13604 | . . . . . . . . . . . . . . . 16
⊢ ((𝐼 + 1) ∈
(ℤ≥‘1) → ((𝐼 + 1)...𝑁) ⊆ (1...𝑁)) | 
| 178 | 176, 177 | syl 17 | . . . . . . . . . . . . . . 15
⊢ (((𝐼 + 1) ≠ 𝑁 ∧ (𝑁 ∈ (ℤ≥‘3)
∧ 3 < 𝑁 ∧ 𝐼 ∈ (2...(𝑁 − 1)))) → ((𝐼 + 1)...𝑁) ⊆ (1...𝑁)) | 
| 179 | 178 | sselda 3982 | . . . . . . . . . . . . . 14
⊢ ((((𝐼 + 1) ≠ 𝑁 ∧ (𝑁 ∈ (ℤ≥‘3)
∧ 3 < 𝑁 ∧ 𝐼 ∈ (2...(𝑁 − 1)))) ∧ 𝑖 ∈ ((𝐼 + 1)...𝑁)) → 𝑖 ∈ (1...𝑁)) | 
| 180 | 173, 179,
85 | syl2anc 584 | . . . . . . . . . . . . 13
⊢ ((((𝐼 + 1) ≠ 𝑁 ∧ (𝑁 ∈ (ℤ≥‘3)
∧ 3 < 𝑁 ∧ 𝐼 ∈ (2...(𝑁 − 1)))) ∧ 𝑖 ∈ ((𝐼 + 1)...𝑁)) → (𝑄‘𝑖) ∈ ℂ) | 
| 181 | 180 | sqcld 14185 | . . . . . . . . . . . 12
⊢ ((((𝐼 + 1) ≠ 𝑁 ∧ (𝑁 ∈ (ℤ≥‘3)
∧ 3 < 𝑁 ∧ 𝐼 ∈ (2...(𝑁 − 1)))) ∧ 𝑖 ∈ ((𝐼 + 1)...𝑁)) → ((𝑄‘𝑖)↑2) ∈ ℂ) | 
| 182 | 22 | oveq1d 7447 | . . . . . . . . . . . . 13
⊢ (𝑖 = (𝐼 + 1) → ((𝑄‘𝑖)↑2) = ((𝑄‘(𝐼 + 1))↑2)) | 
| 183 | 24 | oveq1i 7442 | . . . . . . . . . . . . . 14
⊢ ((𝑄‘(𝐼 + 1))↑2) = (1↑2) | 
| 184 | 183, 135 | eqtri 2764 | . . . . . . . . . . . . 13
⊢ ((𝑄‘(𝐼 + 1))↑2) = 1 | 
| 185 | 182, 184 | eqtrdi 2792 | . . . . . . . . . . . 12
⊢ (𝑖 = (𝐼 + 1) → ((𝑄‘𝑖)↑2) = 1) | 
| 186 | 169, 181,
185 | fsum1p 15790 | . . . . . . . . . . 11
⊢ (((𝐼 + 1) ≠ 𝑁 ∧ (𝑁 ∈ (ℤ≥‘3)
∧ 3 < 𝑁 ∧ 𝐼 ∈ (2...(𝑁 − 1)))) → Σ𝑖 ∈ ((𝐼 + 1)...𝑁)((𝑄‘𝑖)↑2) = (1 + Σ𝑖 ∈ (((𝐼 + 1) + 1)...𝑁)((𝑄‘𝑖)↑2))) | 
| 187 | 174 | peano2nnd 12284 | . . . . . . . . . . . . . . . . . . . 20
⊢ (((𝐼 + 1) ≠ 𝑁 ∧ (𝑁 ∈ (ℤ≥‘3)
∧ 3 < 𝑁 ∧ 𝐼 ∈ (2...(𝑁 − 1)))) → ((𝐼 + 1) + 1) ∈ ℕ) | 
| 188 | 187, 175 | eleqtrdi 2850 | . . . . . . . . . . . . . . . . . . 19
⊢ (((𝐼 + 1) ≠ 𝑁 ∧ (𝑁 ∈ (ℤ≥‘3)
∧ 3 < 𝑁 ∧ 𝐼 ∈ (2...(𝑁 − 1)))) → ((𝐼 + 1) + 1) ∈
(ℤ≥‘1)) | 
| 189 |  | fzss1 13604 | . . . . . . . . . . . . . . . . . . 19
⊢ (((𝐼 + 1) + 1) ∈
(ℤ≥‘1) → (((𝐼 + 1) + 1)...𝑁) ⊆ (1...𝑁)) | 
| 190 | 188, 189 | syl 17 | . . . . . . . . . . . . . . . . . 18
⊢ (((𝐼 + 1) ≠ 𝑁 ∧ (𝑁 ∈ (ℤ≥‘3)
∧ 3 < 𝑁 ∧ 𝐼 ∈ (2...(𝑁 − 1)))) → (((𝐼 + 1) + 1)...𝑁) ⊆ (1...𝑁)) | 
| 191 | 190 | sselda 3982 | . . . . . . . . . . . . . . . . 17
⊢ ((((𝐼 + 1) ≠ 𝑁 ∧ (𝑁 ∈ (ℤ≥‘3)
∧ 3 < 𝑁 ∧ 𝐼 ∈ (2...(𝑁 − 1)))) ∧ 𝑖 ∈ (((𝐼 + 1) + 1)...𝑁)) → 𝑖 ∈ (1...𝑁)) | 
| 192 | 144, 116 | syl 17 | . . . . . . . . . . . . . . . . . . 19
⊢ (((𝐼 + 1) ≠ 𝑁 ∧ (𝑁 ∈ (ℤ≥‘3)
∧ 3 < 𝑁 ∧ 𝐼 ∈ (2...(𝑁 − 1)))) → (𝐼 + 1) ∈ ℝ) | 
| 193 | 192 | adantr 480 | . . . . . . . . . . . . . . . . . 18
⊢ ((((𝐼 + 1) ≠ 𝑁 ∧ (𝑁 ∈ (ℤ≥‘3)
∧ 3 < 𝑁 ∧ 𝐼 ∈ (2...(𝑁 − 1)))) ∧ 𝑖 ∈ (((𝐼 + 1) + 1)...𝑁)) → (𝐼 + 1) ∈ ℝ) | 
| 194 |  | peano2re 11435 | . . . . . . . . . . . . . . . . . . . 20
⊢ ((𝐼 + 1) ∈ ℝ →
((𝐼 + 1) + 1) ∈
ℝ) | 
| 195 | 193, 194 | syl 17 | . . . . . . . . . . . . . . . . . . 19
⊢ ((((𝐼 + 1) ≠ 𝑁 ∧ (𝑁 ∈ (ℤ≥‘3)
∧ 3 < 𝑁 ∧ 𝐼 ∈ (2...(𝑁 − 1)))) ∧ 𝑖 ∈ (((𝐼 + 1) + 1)...𝑁)) → ((𝐼 + 1) + 1) ∈ ℝ) | 
| 196 |  | elfzelz 13565 | . . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑖 ∈ (((𝐼 + 1) + 1)...𝑁) → 𝑖 ∈ ℤ) | 
| 197 | 196 | zred 12724 | . . . . . . . . . . . . . . . . . . . 20
⊢ (𝑖 ∈ (((𝐼 + 1) + 1)...𝑁) → 𝑖 ∈ ℝ) | 
| 198 | 197 | adantl 481 | . . . . . . . . . . . . . . . . . . 19
⊢ ((((𝐼 + 1) ≠ 𝑁 ∧ (𝑁 ∈ (ℤ≥‘3)
∧ 3 < 𝑁 ∧ 𝐼 ∈ (2...(𝑁 − 1)))) ∧ 𝑖 ∈ (((𝐼 + 1) + 1)...𝑁)) → 𝑖 ∈ ℝ) | 
| 199 | 193 | ltp1d 12199 | . . . . . . . . . . . . . . . . . . 19
⊢ ((((𝐼 + 1) ≠ 𝑁 ∧ (𝑁 ∈ (ℤ≥‘3)
∧ 3 < 𝑁 ∧ 𝐼 ∈ (2...(𝑁 − 1)))) ∧ 𝑖 ∈ (((𝐼 + 1) + 1)...𝑁)) → (𝐼 + 1) < ((𝐼 + 1) + 1)) | 
| 200 |  | elfzle1 13568 | . . . . . . . . . . . . . . . . . . . 20
⊢ (𝑖 ∈ (((𝐼 + 1) + 1)...𝑁) → ((𝐼 + 1) + 1) ≤ 𝑖) | 
| 201 | 200 | adantl 481 | . . . . . . . . . . . . . . . . . . 19
⊢ ((((𝐼 + 1) ≠ 𝑁 ∧ (𝑁 ∈ (ℤ≥‘3)
∧ 3 < 𝑁 ∧ 𝐼 ∈ (2...(𝑁 − 1)))) ∧ 𝑖 ∈ (((𝐼 + 1) + 1)...𝑁)) → ((𝐼 + 1) + 1) ≤ 𝑖) | 
| 202 | 193, 195,
198, 199, 201 | ltletrd 11422 | . . . . . . . . . . . . . . . . . 18
⊢ ((((𝐼 + 1) ≠ 𝑁 ∧ (𝑁 ∈ (ℤ≥‘3)
∧ 3 < 𝑁 ∧ 𝐼 ∈ (2...(𝑁 − 1)))) ∧ 𝑖 ∈ (((𝐼 + 1) + 1)...𝑁)) → (𝐼 + 1) < 𝑖) | 
| 203 | 193, 202 | gtned 11397 | . . . . . . . . . . . . . . . . 17
⊢ ((((𝐼 + 1) ≠ 𝑁 ∧ (𝑁 ∈ (ℤ≥‘3)
∧ 3 < 𝑁 ∧ 𝐼 ∈ (2...(𝑁 − 1)))) ∧ 𝑖 ∈ (((𝐼 + 1) + 1)...𝑁)) → 𝑖 ≠ (𝐼 + 1)) | 
| 204 | 191, 203,
125 | syl2anc 584 | . . . . . . . . . . . . . . . 16
⊢ ((((𝐼 + 1) ≠ 𝑁 ∧ (𝑁 ∈ (ℤ≥‘3)
∧ 3 < 𝑁 ∧ 𝐼 ∈ (2...(𝑁 − 1)))) ∧ 𝑖 ∈ (((𝐼 + 1) + 1)...𝑁)) → (𝑄‘𝑖) = 0) | 
| 205 | 204 | sq0id 14234 | . . . . . . . . . . . . . . 15
⊢ ((((𝐼 + 1) ≠ 𝑁 ∧ (𝑁 ∈ (ℤ≥‘3)
∧ 3 < 𝑁 ∧ 𝐼 ∈ (2...(𝑁 − 1)))) ∧ 𝑖 ∈ (((𝐼 + 1) + 1)...𝑁)) → ((𝑄‘𝑖)↑2) = 0) | 
| 206 | 205 | sumeq2dv 15739 | . . . . . . . . . . . . . 14
⊢ (((𝐼 + 1) ≠ 𝑁 ∧ (𝑁 ∈ (ℤ≥‘3)
∧ 3 < 𝑁 ∧ 𝐼 ∈ (2...(𝑁 − 1)))) → Σ𝑖 ∈ (((𝐼 + 1) + 1)...𝑁)((𝑄‘𝑖)↑2) = Σ𝑖 ∈ (((𝐼 + 1) + 1)...𝑁)0) | 
| 207 |  | fzfi 14014 | . . . . . . . . . . . . . . . 16
⊢ (((𝐼 + 1) + 1)...𝑁) ∈ Fin | 
| 208 | 207 | olci 866 | . . . . . . . . . . . . . . 15
⊢ ((((𝐼 + 1) + 1)...𝑁) ⊆ (ℤ≥‘1)
∨ (((𝐼 + 1) + 1)...𝑁) ∈ Fin) | 
| 209 |  | sumz 15759 | . . . . . . . . . . . . . . 15
⊢
(((((𝐼 + 1) +
1)...𝑁) ⊆
(ℤ≥‘1) ∨ (((𝐼 + 1) + 1)...𝑁) ∈ Fin) → Σ𝑖 ∈ (((𝐼 + 1) + 1)...𝑁)0 = 0) | 
| 210 | 208, 209 | ax-mp 5 | . . . . . . . . . . . . . 14
⊢
Σ𝑖 ∈
(((𝐼 + 1) + 1)...𝑁)0 = 0 | 
| 211 | 206, 210 | eqtrdi 2792 | . . . . . . . . . . . . 13
⊢ (((𝐼 + 1) ≠ 𝑁 ∧ (𝑁 ∈ (ℤ≥‘3)
∧ 3 < 𝑁 ∧ 𝐼 ∈ (2...(𝑁 − 1)))) → Σ𝑖 ∈ (((𝐼 + 1) + 1)...𝑁)((𝑄‘𝑖)↑2) = 0) | 
| 212 | 211 | oveq2d 7448 | . . . . . . . . . . . 12
⊢ (((𝐼 + 1) ≠ 𝑁 ∧ (𝑁 ∈ (ℤ≥‘3)
∧ 3 < 𝑁 ∧ 𝐼 ∈ (2...(𝑁 − 1)))) → (1 + Σ𝑖 ∈ (((𝐼 + 1) + 1)...𝑁)((𝑄‘𝑖)↑2)) = (1 + 0)) | 
| 213 |  | 1p0e1 12391 | . . . . . . . . . . . 12
⊢ (1 + 0) =
1 | 
| 214 | 212, 213 | eqtrdi 2792 | . . . . . . . . . . 11
⊢ (((𝐼 + 1) ≠ 𝑁 ∧ (𝑁 ∈ (ℤ≥‘3)
∧ 3 < 𝑁 ∧ 𝐼 ∈ (2...(𝑁 − 1)))) → (1 + Σ𝑖 ∈ (((𝐼 + 1) + 1)...𝑁)((𝑄‘𝑖)↑2)) = 1) | 
| 215 | 186, 214 | eqtrd 2776 | . . . . . . . . . 10
⊢ (((𝐼 + 1) ≠ 𝑁 ∧ (𝑁 ∈ (ℤ≥‘3)
∧ 3 < 𝑁 ∧ 𝐼 ∈ (2...(𝑁 − 1)))) → Σ𝑖 ∈ ((𝐼 + 1)...𝑁)((𝑄‘𝑖)↑2) = 1) | 
| 216 | 215 | ex 412 | . . . . . . . . 9
⊢ ((𝐼 + 1) ≠ 𝑁 → ((𝑁 ∈ (ℤ≥‘3)
∧ 3 < 𝑁 ∧ 𝐼 ∈ (2...(𝑁 − 1))) → Σ𝑖 ∈ ((𝐼 + 1)...𝑁)((𝑄‘𝑖)↑2) = 1)) | 
| 217 | 142, 216 | pm2.61ine 3024 | . . . . . . . 8
⊢ ((𝑁 ∈
(ℤ≥‘3) ∧ 3 < 𝑁 ∧ 𝐼 ∈ (2...(𝑁 − 1))) → Σ𝑖 ∈ ((𝐼 + 1)...𝑁)((𝑄‘𝑖)↑2) = 1) | 
| 218 | 133, 217 | oveq12d 7450 | . . . . . . 7
⊢ ((𝑁 ∈
(ℤ≥‘3) ∧ 3 < 𝑁 ∧ 𝐼 ∈ (2...(𝑁 − 1))) → (Σ𝑖 ∈ (2...𝐼)((𝑄‘𝑖)↑2) + Σ𝑖 ∈ ((𝐼 + 1)...𝑁)((𝑄‘𝑖)↑2)) = (0 + 1)) | 
| 219 |  | 0p1e1 12389 | . . . . . . 7
⊢ (0 + 1) =
1 | 
| 220 | 218, 219 | eqtrdi 2792 | . . . . . 6
⊢ ((𝑁 ∈
(ℤ≥‘3) ∧ 3 < 𝑁 ∧ 𝐼 ∈ (2...(𝑁 − 1))) → (Σ𝑖 ∈ (2...𝐼)((𝑄‘𝑖)↑2) + Σ𝑖 ∈ ((𝐼 + 1)...𝑁)((𝑄‘𝑖)↑2)) = 1) | 
| 221 | 89, 220 | eqtrd 2776 | . . . . 5
⊢ ((𝑁 ∈
(ℤ≥‘3) ∧ 3 < 𝑁 ∧ 𝐼 ∈ (2...(𝑁 − 1))) → Σ𝑖 ∈ (2...𝑁)((𝑄‘𝑖)↑2) = 1) | 
| 222 |  | simp1 1136 | . . . . . . . 8
⊢ ((𝑁 ∈
(ℤ≥‘3) ∧ 3 < 𝑁 ∧ 𝐼 ∈ (2...(𝑁 − 1))) → 𝑁 ∈
(ℤ≥‘3)) | 
| 223 |  | 2lt3 12439 | . . . . . . . . . 10
⊢ 2 <
3 | 
| 224 | 152, 48, 223 | ltleii 11385 | . . . . . . . . 9
⊢ 2 ≤
3 | 
| 225 |  | 2z 12651 | . . . . . . . . . 10
⊢ 2 ∈
ℤ | 
| 226 | 225 | eluz1i 12887 | . . . . . . . . 9
⊢ (3 ∈
(ℤ≥‘2) ↔ (3 ∈ ℤ ∧ 2 ≤
3)) | 
| 227 | 2, 224, 226 | mpbir2an 711 | . . . . . . . 8
⊢ 3 ∈
(ℤ≥‘2) | 
| 228 |  | uztrn 12897 | . . . . . . . 8
⊢ ((𝑁 ∈
(ℤ≥‘3) ∧ 3 ∈
(ℤ≥‘2)) → 𝑁 ∈
(ℤ≥‘2)) | 
| 229 | 222, 227,
228 | sylancl 586 | . . . . . . 7
⊢ ((𝑁 ∈
(ℤ≥‘3) ∧ 3 < 𝑁 ∧ 𝐼 ∈ (2...(𝑁 − 1))) → 𝑁 ∈
(ℤ≥‘2)) | 
| 230 |  | fveq2 6905 | . . . . . . . 8
⊢ (𝑖 = 2 → (𝑄‘𝑖) = (𝑄‘2)) | 
| 231 | 230 | oveq1d 7447 | . . . . . . 7
⊢ (𝑖 = 2 → ((𝑄‘𝑖)↑2) = ((𝑄‘2)↑2)) | 
| 232 | 229, 88, 231 | fsum1p 15790 | . . . . . 6
⊢ ((𝑁 ∈
(ℤ≥‘3) ∧ 3 < 𝑁 ∧ 𝐼 ∈ (2...(𝑁 − 1))) → Σ𝑖 ∈ (2...𝑁)((𝑄‘𝑖)↑2) = (((𝑄‘2)↑2) + Σ𝑖 ∈ ((2 + 1)...𝑁)((𝑄‘𝑖)↑2))) | 
| 233 | 59 | adantr 480 | . . . . . . . . . . . . . . 15
⊢ ((𝑁 ∈
(ℤ≥‘3) ∧ 3 < 𝑁) → 𝑁 ∈ ℤ) | 
| 234 | 233 | zred 12724 | . . . . . . . . . . . . . 14
⊢ ((𝑁 ∈
(ℤ≥‘3) ∧ 3 < 𝑁) → 𝑁 ∈ ℝ) | 
| 235 |  | lttr 11338 | . . . . . . . . . . . . . . . . . 18
⊢ ((2
∈ ℝ ∧ 3 ∈ ℝ ∧ 𝑁 ∈ ℝ) → ((2 < 3 ∧ 3
< 𝑁) → 2 < 𝑁)) | 
| 236 | 152, 48, 235 | mp3an12 1452 | . . . . . . . . . . . . . . . . 17
⊢ (𝑁 ∈ ℝ → ((2 <
3 ∧ 3 < 𝑁) → 2
< 𝑁)) | 
| 237 | 223, 236 | mpani 696 | . . . . . . . . . . . . . . . 16
⊢ (𝑁 ∈ ℝ → (3 <
𝑁 → 2 < 𝑁)) | 
| 238 | 49, 237 | syl 17 | . . . . . . . . . . . . . . 15
⊢ (𝑁 ∈
(ℤ≥‘3) → (3 < 𝑁 → 2 < 𝑁)) | 
| 239 | 238 | imp 406 | . . . . . . . . . . . . . 14
⊢ ((𝑁 ∈
(ℤ≥‘3) ∧ 3 < 𝑁) → 2 < 𝑁) | 
| 240 |  | ltle 11350 | . . . . . . . . . . . . . . 15
⊢ ((2
∈ ℝ ∧ 𝑁
∈ ℝ) → (2 < 𝑁 → 2 ≤ 𝑁)) | 
| 241 | 152, 240 | mpan 690 | . . . . . . . . . . . . . 14
⊢ (𝑁 ∈ ℝ → (2 <
𝑁 → 2 ≤ 𝑁)) | 
| 242 | 234, 239,
241 | sylc 65 | . . . . . . . . . . . . 13
⊢ ((𝑁 ∈
(ℤ≥‘3) ∧ 3 < 𝑁) → 2 ≤ 𝑁) | 
| 243 | 242, 154 | jctil 519 | . . . . . . . . . . . 12
⊢ ((𝑁 ∈
(ℤ≥‘3) ∧ 3 < 𝑁) → (1 ≤ 2 ∧ 2 ≤ 𝑁)) | 
| 244 |  | 1z 12649 | . . . . . . . . . . . . 13
⊢ 1 ∈
ℤ | 
| 245 |  | elfz 13554 | . . . . . . . . . . . . 13
⊢ ((2
∈ ℤ ∧ 1 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (2 ∈ (1...𝑁) ↔ (1 ≤ 2 ∧ 2 ≤
𝑁))) | 
| 246 | 225, 244,
233, 245 | mp3an12i 1466 | . . . . . . . . . . . 12
⊢ ((𝑁 ∈
(ℤ≥‘3) ∧ 3 < 𝑁) → (2 ∈ (1...𝑁) ↔ (1 ≤ 2 ∧ 2 ≤ 𝑁))) | 
| 247 | 243, 246 | mpbird 257 | . . . . . . . . . . 11
⊢ ((𝑁 ∈
(ℤ≥‘3) ∧ 3 < 𝑁) → 2 ∈ (1...𝑁)) | 
| 248 | 247 | 3adant3 1132 | . . . . . . . . . 10
⊢ ((𝑁 ∈
(ℤ≥‘3) ∧ 3 < 𝑁 ∧ 𝐼 ∈ (2...(𝑁 − 1))) → 2 ∈ (1...𝑁)) | 
| 249 | 91 | ltp1d 12199 | . . . . . . . . . . . . . 14
⊢ (𝐼 ∈ (2...(𝑁 − 1)) → 𝐼 < (𝐼 + 1)) | 
| 250 | 153, 91, 117, 156, 249 | lelttrd 11420 | . . . . . . . . . . . . 13
⊢ (𝐼 ∈ (2...(𝑁 − 1)) → 2 < (𝐼 + 1)) | 
| 251 | 250 | 3ad2ant3 1135 | . . . . . . . . . . . 12
⊢ ((𝑁 ∈
(ℤ≥‘3) ∧ 3 < 𝑁 ∧ 𝐼 ∈ (2...(𝑁 − 1))) → 2 < (𝐼 + 1)) | 
| 252 |  | ltne 11359 | . . . . . . . . . . . 12
⊢ ((2
∈ ℝ ∧ 2 < (𝐼 + 1)) → (𝐼 + 1) ≠ 2) | 
| 253 | 152, 251,
252 | sylancr 587 | . . . . . . . . . . 11
⊢ ((𝑁 ∈
(ℤ≥‘3) ∧ 3 < 𝑁 ∧ 𝐼 ∈ (2...(𝑁 − 1))) → (𝐼 + 1) ≠ 2) | 
| 254 | 253 | necomd 2995 | . . . . . . . . . 10
⊢ ((𝑁 ∈
(ℤ≥‘3) ∧ 3 < 𝑁 ∧ 𝐼 ∈ (2...(𝑁 − 1))) → 2 ≠ (𝐼 + 1)) | 
| 255 | 23 | axlowdimlem12 28969 | . . . . . . . . . 10
⊢ ((2
∈ (1...𝑁) ∧ 2 ≠
(𝐼 + 1)) → (𝑄‘2) = 0) | 
| 256 | 248, 254,
255 | syl2anc 584 | . . . . . . . . 9
⊢ ((𝑁 ∈
(ℤ≥‘3) ∧ 3 < 𝑁 ∧ 𝐼 ∈ (2...(𝑁 − 1))) → (𝑄‘2) = 0) | 
| 257 | 256 | sq0id 14234 | . . . . . . . 8
⊢ ((𝑁 ∈
(ℤ≥‘3) ∧ 3 < 𝑁 ∧ 𝐼 ∈ (2...(𝑁 − 1))) → ((𝑄‘2)↑2) = 0) | 
| 258 | 257 | oveq1d 7447 | . . . . . . 7
⊢ ((𝑁 ∈
(ℤ≥‘3) ∧ 3 < 𝑁 ∧ 𝐼 ∈ (2...(𝑁 − 1))) → (((𝑄‘2)↑2) + Σ𝑖 ∈ ((2 + 1)...𝑁)((𝑄‘𝑖)↑2)) = (0 + Σ𝑖 ∈ ((2 + 1)...𝑁)((𝑄‘𝑖)↑2))) | 
| 259 | 15 | oveq1i 7442 | . . . . . . . . 9
⊢
(3...𝑁) = ((2 +
1)...𝑁) | 
| 260 | 259 | sumeq1i 15734 | . . . . . . . 8
⊢
Σ𝑖 ∈
(3...𝑁)((𝑄‘𝑖)↑2) = Σ𝑖 ∈ ((2 + 1)...𝑁)((𝑄‘𝑖)↑2) | 
| 261 | 260 | oveq2i 7443 | . . . . . . 7
⊢ (0 +
Σ𝑖 ∈ (3...𝑁)((𝑄‘𝑖)↑2)) = (0 + Σ𝑖 ∈ ((2 + 1)...𝑁)((𝑄‘𝑖)↑2)) | 
| 262 | 258, 261 | eqtr4di 2794 | . . . . . 6
⊢ ((𝑁 ∈
(ℤ≥‘3) ∧ 3 < 𝑁 ∧ 𝐼 ∈ (2...(𝑁 − 1))) → (((𝑄‘2)↑2) + Σ𝑖 ∈ ((2 + 1)...𝑁)((𝑄‘𝑖)↑2)) = (0 + Σ𝑖 ∈ (3...𝑁)((𝑄‘𝑖)↑2))) | 
| 263 |  | fzfid 14015 | . . . . . . . 8
⊢ ((𝑁 ∈
(ℤ≥‘3) ∧ 3 < 𝑁 ∧ 𝐼 ∈ (2...(𝑁 − 1))) → (3...𝑁) ∈ Fin) | 
| 264 |  | 3nn 12346 | . . . . . . . . . . . . . 14
⊢ 3 ∈
ℕ | 
| 265 | 264, 175 | eleqtri 2838 | . . . . . . . . . . . . 13
⊢ 3 ∈
(ℤ≥‘1) | 
| 266 |  | fzss1 13604 | . . . . . . . . . . . . 13
⊢ (3 ∈
(ℤ≥‘1) → (3...𝑁) ⊆ (1...𝑁)) | 
| 267 | 265, 266 | ax-mp 5 | . . . . . . . . . . . 12
⊢
(3...𝑁) ⊆
(1...𝑁) | 
| 268 | 267 | sseli 3978 | . . . . . . . . . . 11
⊢ (𝑖 ∈ (3...𝑁) → 𝑖 ∈ (1...𝑁)) | 
| 269 | 81, 268, 85 | syl2an 596 | . . . . . . . . . 10
⊢ (((𝑁 ∈
(ℤ≥‘3) ∧ 𝐼 ∈ (2...(𝑁 − 1))) ∧ 𝑖 ∈ (3...𝑁)) → (𝑄‘𝑖) ∈ ℂ) | 
| 270 | 269 | sqcld 14185 | . . . . . . . . 9
⊢ (((𝑁 ∈
(ℤ≥‘3) ∧ 𝐼 ∈ (2...(𝑁 − 1))) ∧ 𝑖 ∈ (3...𝑁)) → ((𝑄‘𝑖)↑2) ∈ ℂ) | 
| 271 | 270 | 3adantl2 1167 | . . . . . . . 8
⊢ (((𝑁 ∈
(ℤ≥‘3) ∧ 3 < 𝑁 ∧ 𝐼 ∈ (2...(𝑁 − 1))) ∧ 𝑖 ∈ (3...𝑁)) → ((𝑄‘𝑖)↑2) ∈ ℂ) | 
| 272 | 263, 271 | fsumcl 15770 | . . . . . . 7
⊢ ((𝑁 ∈
(ℤ≥‘3) ∧ 3 < 𝑁 ∧ 𝐼 ∈ (2...(𝑁 − 1))) → Σ𝑖 ∈ (3...𝑁)((𝑄‘𝑖)↑2) ∈ ℂ) | 
| 273 | 272 | addlidd 11463 | . . . . . 6
⊢ ((𝑁 ∈
(ℤ≥‘3) ∧ 3 < 𝑁 ∧ 𝐼 ∈ (2...(𝑁 − 1))) → (0 + Σ𝑖 ∈ (3...𝑁)((𝑄‘𝑖)↑2)) = Σ𝑖 ∈ (3...𝑁)((𝑄‘𝑖)↑2)) | 
| 274 | 232, 262,
273 | 3eqtrrd 2781 | . . . . 5
⊢ ((𝑁 ∈
(ℤ≥‘3) ∧ 3 < 𝑁 ∧ 𝐼 ∈ (2...(𝑁 − 1))) → Σ𝑖 ∈ (3...𝑁)((𝑄‘𝑖)↑2) = Σ𝑖 ∈ (2...𝑁)((𝑄‘𝑖)↑2)) | 
| 275 |  | simpl 482 | . . . . . . . . 9
⊢ ((𝑁 ∈
(ℤ≥‘3) ∧ 3 < 𝑁) → 𝑁 ∈
(ℤ≥‘3)) | 
| 276 | 6 | axlowdimlem7 28964 | . . . . . . . . . . . 12
⊢ (𝑁 ∈
(ℤ≥‘3) → 𝑃 ∈ (𝔼‘𝑁)) | 
| 277 | 276 | ad2antrr 726 | . . . . . . . . . . 11
⊢ (((𝑁 ∈
(ℤ≥‘3) ∧ 3 < 𝑁) ∧ 𝑖 ∈ (3...𝑁)) → 𝑃 ∈ (𝔼‘𝑁)) | 
| 278 | 268 | adantl 481 | . . . . . . . . . . 11
⊢ (((𝑁 ∈
(ℤ≥‘3) ∧ 3 < 𝑁) ∧ 𝑖 ∈ (3...𝑁)) → 𝑖 ∈ (1...𝑁)) | 
| 279 |  | fveecn 28918 | . . . . . . . . . . 11
⊢ ((𝑃 ∈ (𝔼‘𝑁) ∧ 𝑖 ∈ (1...𝑁)) → (𝑃‘𝑖) ∈ ℂ) | 
| 280 | 277, 278,
279 | syl2anc 584 | . . . . . . . . . 10
⊢ (((𝑁 ∈
(ℤ≥‘3) ∧ 3 < 𝑁) ∧ 𝑖 ∈ (3...𝑁)) → (𝑃‘𝑖) ∈ ℂ) | 
| 281 | 280 | sqcld 14185 | . . . . . . . . 9
⊢ (((𝑁 ∈
(ℤ≥‘3) ∧ 3 < 𝑁) ∧ 𝑖 ∈ (3...𝑁)) → ((𝑃‘𝑖)↑2) ∈ ℂ) | 
| 282 |  | neg1sqe1 14236 | . . . . . . . . . 10
⊢
(-1↑2) = 1 | 
| 283 | 9, 282 | eqtrdi 2792 | . . . . . . . . 9
⊢ (𝑖 = 3 → ((𝑃‘𝑖)↑2) = 1) | 
| 284 | 275, 281,
283 | fsum1p 15790 | . . . . . . . 8
⊢ ((𝑁 ∈
(ℤ≥‘3) ∧ 3 < 𝑁) → Σ𝑖 ∈ (3...𝑁)((𝑃‘𝑖)↑2) = (1 + Σ𝑖 ∈ ((3 + 1)...𝑁)((𝑃‘𝑖)↑2))) | 
| 285 |  | 1re 11262 | . . . . . . . . . . . . . . . . 17
⊢ 1 ∈
ℝ | 
| 286 |  | zaddcl 12659 | . . . . . . . . . . . . . . . . . . 19
⊢ ((3
∈ ℤ ∧ 1 ∈ ℤ) → (3 + 1) ∈
ℤ) | 
| 287 | 2, 244, 286 | mp2an 692 | . . . . . . . . . . . . . . . . . 18
⊢ (3 + 1)
∈ ℤ | 
| 288 | 287 | zrei 12621 | . . . . . . . . . . . . . . . . 17
⊢ (3 + 1)
∈ ℝ | 
| 289 |  | 1lt3 12440 | . . . . . . . . . . . . . . . . . 18
⊢ 1 <
3 | 
| 290 | 48 | ltp1i 12173 | . . . . . . . . . . . . . . . . . 18
⊢ 3 < (3
+ 1) | 
| 291 | 285, 48, 288 | lttri 11388 | . . . . . . . . . . . . . . . . . 18
⊢ ((1 <
3 ∧ 3 < (3 + 1)) → 1 < (3 + 1)) | 
| 292 | 289, 290,
291 | mp2an 692 | . . . . . . . . . . . . . . . . 17
⊢ 1 < (3
+ 1) | 
| 293 | 285, 288,
292 | ltleii 11385 | . . . . . . . . . . . . . . . 16
⊢ 1 ≤ (3
+ 1) | 
| 294 |  | eluz 12893 | . . . . . . . . . . . . . . . . 17
⊢ ((1
∈ ℤ ∧ (3 + 1) ∈ ℤ) → ((3 + 1) ∈
(ℤ≥‘1) ↔ 1 ≤ (3 + 1))) | 
| 295 | 244, 287,
294 | mp2an 692 | . . . . . . . . . . . . . . . 16
⊢ ((3 + 1)
∈ (ℤ≥‘1) ↔ 1 ≤ (3 + 1)) | 
| 296 | 293, 295 | mpbir 231 | . . . . . . . . . . . . . . 15
⊢ (3 + 1)
∈ (ℤ≥‘1) | 
| 297 |  | fzss1 13604 | . . . . . . . . . . . . . . 15
⊢ ((3 + 1)
∈ (ℤ≥‘1) → ((3 + 1)...𝑁) ⊆ (1...𝑁)) | 
| 298 | 296, 297 | ax-mp 5 | . . . . . . . . . . . . . 14
⊢ ((3 +
1)...𝑁) ⊆ (1...𝑁) | 
| 299 | 298 | sseli 3978 | . . . . . . . . . . . . 13
⊢ (𝑖 ∈ ((3 + 1)...𝑁) → 𝑖 ∈ (1...𝑁)) | 
| 300 | 48, 288 | ltnlei 11383 | . . . . . . . . . . . . . . . . . . 19
⊢ (3 <
(3 + 1) ↔ ¬ (3 + 1) ≤ 3) | 
| 301 | 290, 300 | mpbi 230 | . . . . . . . . . . . . . . . . . 18
⊢  ¬ (3
+ 1) ≤ 3 | 
| 302 | 301 | intnanr 487 | . . . . . . . . . . . . . . . . 17
⊢  ¬
((3 + 1) ≤ 3 ∧ 3 ≤ 𝑁) | 
| 303 |  | elfz 13554 | . . . . . . . . . . . . . . . . . 18
⊢ ((3
∈ ℤ ∧ (3 + 1) ∈ ℤ ∧ 𝑁 ∈ ℤ) → (3 ∈ ((3 +
1)...𝑁) ↔ ((3 + 1)
≤ 3 ∧ 3 ≤ 𝑁))) | 
| 304 | 2, 287, 233, 303 | mp3an12i 1466 | . . . . . . . . . . . . . . . . 17
⊢ ((𝑁 ∈
(ℤ≥‘3) ∧ 3 < 𝑁) → (3 ∈ ((3 + 1)...𝑁) ↔ ((3 + 1) ≤ 3 ∧ 3
≤ 𝑁))) | 
| 305 | 302, 304 | mtbiri 327 | . . . . . . . . . . . . . . . 16
⊢ ((𝑁 ∈
(ℤ≥‘3) ∧ 3 < 𝑁) → ¬ 3 ∈ ((3 + 1)...𝑁)) | 
| 306 |  | eleq1 2828 | . . . . . . . . . . . . . . . . 17
⊢ (𝑖 = 3 → (𝑖 ∈ ((3 + 1)...𝑁) ↔ 3 ∈ ((3 + 1)...𝑁))) | 
| 307 | 306 | notbid 318 | . . . . . . . . . . . . . . . 16
⊢ (𝑖 = 3 → (¬ 𝑖 ∈ ((3 + 1)...𝑁) ↔ ¬ 3 ∈ ((3 +
1)...𝑁))) | 
| 308 | 305, 307 | syl5ibrcom 247 | . . . . . . . . . . . . . . 15
⊢ ((𝑁 ∈
(ℤ≥‘3) ∧ 3 < 𝑁) → (𝑖 = 3 → ¬ 𝑖 ∈ ((3 + 1)...𝑁))) | 
| 309 | 308 | necon2ad 2954 | . . . . . . . . . . . . . 14
⊢ ((𝑁 ∈
(ℤ≥‘3) ∧ 3 < 𝑁) → (𝑖 ∈ ((3 + 1)...𝑁) → 𝑖 ≠ 3)) | 
| 310 | 309 | imp 406 | . . . . . . . . . . . . 13
⊢ (((𝑁 ∈
(ℤ≥‘3) ∧ 3 < 𝑁) ∧ 𝑖 ∈ ((3 + 1)...𝑁)) → 𝑖 ≠ 3) | 
| 311 | 6 | axlowdimlem9 28966 | . . . . . . . . . . . . 13
⊢ ((𝑖 ∈ (1...𝑁) ∧ 𝑖 ≠ 3) → (𝑃‘𝑖) = 0) | 
| 312 | 299, 310,
311 | syl2an2 686 | . . . . . . . . . . . 12
⊢ (((𝑁 ∈
(ℤ≥‘3) ∧ 3 < 𝑁) ∧ 𝑖 ∈ ((3 + 1)...𝑁)) → (𝑃‘𝑖) = 0) | 
| 313 | 312 | sq0id 14234 | . . . . . . . . . . 11
⊢ (((𝑁 ∈
(ℤ≥‘3) ∧ 3 < 𝑁) ∧ 𝑖 ∈ ((3 + 1)...𝑁)) → ((𝑃‘𝑖)↑2) = 0) | 
| 314 | 313 | sumeq2dv 15739 | . . . . . . . . . 10
⊢ ((𝑁 ∈
(ℤ≥‘3) ∧ 3 < 𝑁) → Σ𝑖 ∈ ((3 + 1)...𝑁)((𝑃‘𝑖)↑2) = Σ𝑖 ∈ ((3 + 1)...𝑁)0) | 
| 315 |  | fzfi 14014 | . . . . . . . . . . . 12
⊢ ((3 +
1)...𝑁) ∈
Fin | 
| 316 | 315 | olci 866 | . . . . . . . . . . 11
⊢ (((3 +
1)...𝑁) ⊆
(ℤ≥‘1) ∨ ((3 + 1)...𝑁) ∈ Fin) | 
| 317 |  | sumz 15759 | . . . . . . . . . . 11
⊢ ((((3 +
1)...𝑁) ⊆
(ℤ≥‘1) ∨ ((3 + 1)...𝑁) ∈ Fin) → Σ𝑖 ∈ ((3 + 1)...𝑁)0 = 0) | 
| 318 | 316, 317 | ax-mp 5 | . . . . . . . . . 10
⊢
Σ𝑖 ∈ ((3
+ 1)...𝑁)0 =
0 | 
| 319 | 314, 318 | eqtrdi 2792 | . . . . . . . . 9
⊢ ((𝑁 ∈
(ℤ≥‘3) ∧ 3 < 𝑁) → Σ𝑖 ∈ ((3 + 1)...𝑁)((𝑃‘𝑖)↑2) = 0) | 
| 320 | 319 | oveq2d 7448 | . . . . . . . 8
⊢ ((𝑁 ∈
(ℤ≥‘3) ∧ 3 < 𝑁) → (1 + Σ𝑖 ∈ ((3 + 1)...𝑁)((𝑃‘𝑖)↑2)) = (1 + 0)) | 
| 321 | 284, 320 | eqtrd 2776 | . . . . . . 7
⊢ ((𝑁 ∈
(ℤ≥‘3) ∧ 3 < 𝑁) → Σ𝑖 ∈ (3...𝑁)((𝑃‘𝑖)↑2) = (1 + 0)) | 
| 322 | 321, 213 | eqtrdi 2792 | . . . . . 6
⊢ ((𝑁 ∈
(ℤ≥‘3) ∧ 3 < 𝑁) → Σ𝑖 ∈ (3...𝑁)((𝑃‘𝑖)↑2) = 1) | 
| 323 | 322 | 3adant3 1132 | . . . . 5
⊢ ((𝑁 ∈
(ℤ≥‘3) ∧ 3 < 𝑁 ∧ 𝐼 ∈ (2...(𝑁 − 1))) → Σ𝑖 ∈ (3...𝑁)((𝑃‘𝑖)↑2) = 1) | 
| 324 | 221, 274,
323 | 3eqtr4rd 2787 | . . . 4
⊢ ((𝑁 ∈
(ℤ≥‘3) ∧ 3 < 𝑁 ∧ 𝐼 ∈ (2...(𝑁 − 1))) → Σ𝑖 ∈ (3...𝑁)((𝑃‘𝑖)↑2) = Σ𝑖 ∈ (3...𝑁)((𝑄‘𝑖)↑2)) | 
| 325 | 44, 54, 55, 324 | syl3anc 1372 | . . 3
⊢ ((𝑁 ≠ 3 ∧ (𝑁 ∈ (ℤ≥‘3)
∧ 𝐼 ∈ (2...(𝑁 − 1)))) →
Σ𝑖 ∈ (3...𝑁)((𝑃‘𝑖)↑2) = Σ𝑖 ∈ (3...𝑁)((𝑄‘𝑖)↑2)) | 
| 326 | 325 | ex 412 | . 2
⊢ (𝑁 ≠ 3 → ((𝑁 ∈
(ℤ≥‘3) ∧ 𝐼 ∈ (2...(𝑁 − 1))) → Σ𝑖 ∈ (3...𝑁)((𝑃‘𝑖)↑2) = Σ𝑖 ∈ (3...𝑁)((𝑄‘𝑖)↑2))) | 
| 327 | 43, 326 | pm2.61ine 3024 | 1
⊢ ((𝑁 ∈
(ℤ≥‘3) ∧ 𝐼 ∈ (2...(𝑁 − 1))) → Σ𝑖 ∈ (3...𝑁)((𝑃‘𝑖)↑2) = Σ𝑖 ∈ (3...𝑁)((𝑄‘𝑖)↑2)) |