MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  axlowdimlem16 Structured version   Visualization version   GIF version

Theorem axlowdimlem16 28990
Description: Lemma for axlowdim 28994. Set up a summation that will help establish distance. (Contributed by Scott Fenton, 21-Apr-2013.)
Hypotheses
Ref Expression
axlowdimlem16.1 𝑃 = ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0}))
axlowdimlem16.2 𝑄 = ({⟨(𝐼 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝐼 + 1)}) × {0}))
Assertion
Ref Expression
axlowdimlem16 ((𝑁 ∈ (ℤ‘3) ∧ 𝐼 ∈ (2...(𝑁 − 1))) → Σ𝑖 ∈ (3...𝑁)((𝑃𝑖)↑2) = Σ𝑖 ∈ (3...𝑁)((𝑄𝑖)↑2))
Distinct variable groups:   𝑃,𝑖   𝑖,𝐼   𝑖,𝑁   𝑄,𝑖

Proof of Theorem axlowdimlem16
StepHypRef Expression
1 elfz1eq 13595 . . . . . 6 (𝐼 ∈ (2...2) → 𝐼 = 2)
2 3z 12676 . . . . . . . 8 3 ∈ ℤ
3 ax-1cn 11242 . . . . . . . . 9 1 ∈ ℂ
43sqcli 14230 . . . . . . . 8 (1↑2) ∈ ℂ
5 fveq2 6920 . . . . . . . . . . . 12 (𝑖 = 3 → (𝑃𝑖) = (𝑃‘3))
6 axlowdimlem16.1 . . . . . . . . . . . . 13 𝑃 = ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0}))
76axlowdimlem8 28982 . . . . . . . . . . . 12 (𝑃‘3) = -1
85, 7eqtrdi 2796 . . . . . . . . . . 11 (𝑖 = 3 → (𝑃𝑖) = -1)
98oveq1d 7463 . . . . . . . . . 10 (𝑖 = 3 → ((𝑃𝑖)↑2) = (-1↑2))
10 sqneg 14166 . . . . . . . . . . 11 (1 ∈ ℂ → (-1↑2) = (1↑2))
113, 10ax-mp 5 . . . . . . . . . 10 (-1↑2) = (1↑2)
129, 11eqtrdi 2796 . . . . . . . . 9 (𝑖 = 3 → ((𝑃𝑖)↑2) = (1↑2))
1312fsum1 15795 . . . . . . . 8 ((3 ∈ ℤ ∧ (1↑2) ∈ ℂ) → Σ𝑖 ∈ (3...3)((𝑃𝑖)↑2) = (1↑2))
142, 4, 13mp2an 691 . . . . . . 7 Σ𝑖 ∈ (3...3)((𝑃𝑖)↑2) = (1↑2)
15 df-3 12357 . . . . . . . . . . 11 3 = (2 + 1)
16 oveq1 7455 . . . . . . . . . . 11 (𝐼 = 2 → (𝐼 + 1) = (2 + 1))
1715, 16eqtr4id 2799 . . . . . . . . . 10 (𝐼 = 2 → 3 = (𝐼 + 1))
1817, 17oveq12d 7466 . . . . . . . . 9 (𝐼 = 2 → (3...3) = ((𝐼 + 1)...(𝐼 + 1)))
1918sumeq1d 15748 . . . . . . . 8 (𝐼 = 2 → Σ𝑖 ∈ (3...3)((𝑄𝑖)↑2) = Σ𝑖 ∈ ((𝐼 + 1)...(𝐼 + 1))((𝑄𝑖)↑2))
2016, 15eqtr4di 2798 . . . . . . . . . 10 (𝐼 = 2 → (𝐼 + 1) = 3)
2120, 2eqeltrdi 2852 . . . . . . . . 9 (𝐼 = 2 → (𝐼 + 1) ∈ ℤ)
22 fveq2 6920 . . . . . . . . . . . 12 (𝑖 = (𝐼 + 1) → (𝑄𝑖) = (𝑄‘(𝐼 + 1)))
23 axlowdimlem16.2 . . . . . . . . . . . . 13 𝑄 = ({⟨(𝐼 + 1), 1⟩} ∪ (((1...𝑁) ∖ {(𝐼 + 1)}) × {0}))
2423axlowdimlem11 28985 . . . . . . . . . . . 12 (𝑄‘(𝐼 + 1)) = 1
2522, 24eqtrdi 2796 . . . . . . . . . . 11 (𝑖 = (𝐼 + 1) → (𝑄𝑖) = 1)
2625oveq1d 7463 . . . . . . . . . 10 (𝑖 = (𝐼 + 1) → ((𝑄𝑖)↑2) = (1↑2))
2726fsum1 15795 . . . . . . . . 9 (((𝐼 + 1) ∈ ℤ ∧ (1↑2) ∈ ℂ) → Σ𝑖 ∈ ((𝐼 + 1)...(𝐼 + 1))((𝑄𝑖)↑2) = (1↑2))
2821, 4, 27sylancl 585 . . . . . . . 8 (𝐼 = 2 → Σ𝑖 ∈ ((𝐼 + 1)...(𝐼 + 1))((𝑄𝑖)↑2) = (1↑2))
2919, 28eqtrd 2780 . . . . . . 7 (𝐼 = 2 → Σ𝑖 ∈ (3...3)((𝑄𝑖)↑2) = (1↑2))
3014, 29eqtr4id 2799 . . . . . 6 (𝐼 = 2 → Σ𝑖 ∈ (3...3)((𝑃𝑖)↑2) = Σ𝑖 ∈ (3...3)((𝑄𝑖)↑2))
311, 30syl 17 . . . . 5 (𝐼 ∈ (2...2) → Σ𝑖 ∈ (3...3)((𝑃𝑖)↑2) = Σ𝑖 ∈ (3...3)((𝑄𝑖)↑2))
3231a1i 11 . . . 4 (𝑁 = 3 → (𝐼 ∈ (2...2) → Σ𝑖 ∈ (3...3)((𝑃𝑖)↑2) = Σ𝑖 ∈ (3...3)((𝑄𝑖)↑2)))
33 oveq1 7455 . . . . . . 7 (𝑁 = 3 → (𝑁 − 1) = (3 − 1))
34 3m1e2 12421 . . . . . . 7 (3 − 1) = 2
3533, 34eqtrdi 2796 . . . . . 6 (𝑁 = 3 → (𝑁 − 1) = 2)
3635oveq2d 7464 . . . . 5 (𝑁 = 3 → (2...(𝑁 − 1)) = (2...2))
3736eleq2d 2830 . . . 4 (𝑁 = 3 → (𝐼 ∈ (2...(𝑁 − 1)) ↔ 𝐼 ∈ (2...2)))
38 oveq2 7456 . . . . . 6 (𝑁 = 3 → (3...𝑁) = (3...3))
3938sumeq1d 15748 . . . . 5 (𝑁 = 3 → Σ𝑖 ∈ (3...𝑁)((𝑃𝑖)↑2) = Σ𝑖 ∈ (3...3)((𝑃𝑖)↑2))
4038sumeq1d 15748 . . . . 5 (𝑁 = 3 → Σ𝑖 ∈ (3...𝑁)((𝑄𝑖)↑2) = Σ𝑖 ∈ (3...3)((𝑄𝑖)↑2))
4139, 40eqeq12d 2756 . . . 4 (𝑁 = 3 → (Σ𝑖 ∈ (3...𝑁)((𝑃𝑖)↑2) = Σ𝑖 ∈ (3...𝑁)((𝑄𝑖)↑2) ↔ Σ𝑖 ∈ (3...3)((𝑃𝑖)↑2) = Σ𝑖 ∈ (3...3)((𝑄𝑖)↑2)))
4232, 37, 413imtr4d 294 . . 3 (𝑁 = 3 → (𝐼 ∈ (2...(𝑁 − 1)) → Σ𝑖 ∈ (3...𝑁)((𝑃𝑖)↑2) = Σ𝑖 ∈ (3...𝑁)((𝑄𝑖)↑2)))
4342adantld 490 . 2 (𝑁 = 3 → ((𝑁 ∈ (ℤ‘3) ∧ 𝐼 ∈ (2...(𝑁 − 1))) → Σ𝑖 ∈ (3...𝑁)((𝑃𝑖)↑2) = Σ𝑖 ∈ (3...𝑁)((𝑄𝑖)↑2)))
44 simprl 770 . . . 4 ((𝑁 ≠ 3 ∧ (𝑁 ∈ (ℤ‘3) ∧ 𝐼 ∈ (2...(𝑁 − 1)))) → 𝑁 ∈ (ℤ‘3))
45 eluzle 12916 . . . . . . 7 (𝑁 ∈ (ℤ‘3) → 3 ≤ 𝑁)
4645adantl 481 . . . . . 6 ((𝑁 ≠ 3 ∧ 𝑁 ∈ (ℤ‘3)) → 3 ≤ 𝑁)
47 simpl 482 . . . . . 6 ((𝑁 ≠ 3 ∧ 𝑁 ∈ (ℤ‘3)) → 𝑁 ≠ 3)
48 3re 12373 . . . . . . 7 3 ∈ ℝ
49 eluzelre 12914 . . . . . . . 8 (𝑁 ∈ (ℤ‘3) → 𝑁 ∈ ℝ)
5049adantl 481 . . . . . . 7 ((𝑁 ≠ 3 ∧ 𝑁 ∈ (ℤ‘3)) → 𝑁 ∈ ℝ)
51 ltlen 11391 . . . . . . 7 ((3 ∈ ℝ ∧ 𝑁 ∈ ℝ) → (3 < 𝑁 ↔ (3 ≤ 𝑁𝑁 ≠ 3)))
5248, 50, 51sylancr 586 . . . . . 6 ((𝑁 ≠ 3 ∧ 𝑁 ∈ (ℤ‘3)) → (3 < 𝑁 ↔ (3 ≤ 𝑁𝑁 ≠ 3)))
5346, 47, 52mpbir2and 712 . . . . 5 ((𝑁 ≠ 3 ∧ 𝑁 ∈ (ℤ‘3)) → 3 < 𝑁)
5453adantrr 716 . . . 4 ((𝑁 ≠ 3 ∧ (𝑁 ∈ (ℤ‘3) ∧ 𝐼 ∈ (2...(𝑁 − 1)))) → 3 < 𝑁)
55 simprr 772 . . . 4 ((𝑁 ≠ 3 ∧ (𝑁 ∈ (ℤ‘3) ∧ 𝐼 ∈ (2...(𝑁 − 1)))) → 𝐼 ∈ (2...(𝑁 − 1)))
56 fzssp1 13627 . . . . . . . . . . . . 13 (2...(𝑁 − 1)) ⊆ (2...((𝑁 − 1) + 1))
57 simp3 1138 . . . . . . . . . . . . 13 ((𝑁 ∈ (ℤ‘3) ∧ 3 < 𝑁𝐼 ∈ (2...(𝑁 − 1))) → 𝐼 ∈ (2...(𝑁 − 1)))
5856, 57sselid 4006 . . . . . . . . . . . 12 ((𝑁 ∈ (ℤ‘3) ∧ 3 < 𝑁𝐼 ∈ (2...(𝑁 − 1))) → 𝐼 ∈ (2...((𝑁 − 1) + 1)))
59 eluzelz 12913 . . . . . . . . . . . . . . . 16 (𝑁 ∈ (ℤ‘3) → 𝑁 ∈ ℤ)
60593ad2ant1 1133 . . . . . . . . . . . . . . 15 ((𝑁 ∈ (ℤ‘3) ∧ 3 < 𝑁𝐼 ∈ (2...(𝑁 − 1))) → 𝑁 ∈ ℤ)
6160zcnd 12748 . . . . . . . . . . . . . 14 ((𝑁 ∈ (ℤ‘3) ∧ 3 < 𝑁𝐼 ∈ (2...(𝑁 − 1))) → 𝑁 ∈ ℂ)
62 npcan 11545 . . . . . . . . . . . . . 14 ((𝑁 ∈ ℂ ∧ 1 ∈ ℂ) → ((𝑁 − 1) + 1) = 𝑁)
6361, 3, 62sylancl 585 . . . . . . . . . . . . 13 ((𝑁 ∈ (ℤ‘3) ∧ 3 < 𝑁𝐼 ∈ (2...(𝑁 − 1))) → ((𝑁 − 1) + 1) = 𝑁)
6463oveq2d 7464 . . . . . . . . . . . 12 ((𝑁 ∈ (ℤ‘3) ∧ 3 < 𝑁𝐼 ∈ (2...(𝑁 − 1))) → (2...((𝑁 − 1) + 1)) = (2...𝑁))
6558, 64eleqtrd 2846 . . . . . . . . . . 11 ((𝑁 ∈ (ℤ‘3) ∧ 3 < 𝑁𝐼 ∈ (2...(𝑁 − 1))) → 𝐼 ∈ (2...𝑁))
66 elfzelz 13584 . . . . . . . . . . 11 (𝐼 ∈ (2...𝑁) → 𝐼 ∈ ℤ)
6765, 66syl 17 . . . . . . . . . 10 ((𝑁 ∈ (ℤ‘3) ∧ 3 < 𝑁𝐼 ∈ (2...(𝑁 − 1))) → 𝐼 ∈ ℤ)
6867zred 12747 . . . . . . . . 9 ((𝑁 ∈ (ℤ‘3) ∧ 3 < 𝑁𝐼 ∈ (2...(𝑁 − 1))) → 𝐼 ∈ ℝ)
6968ltp1d 12225 . . . . . . . 8 ((𝑁 ∈ (ℤ‘3) ∧ 3 < 𝑁𝐼 ∈ (2...(𝑁 − 1))) → 𝐼 < (𝐼 + 1))
70 fzdisj 13611 . . . . . . . 8 (𝐼 < (𝐼 + 1) → ((2...𝐼) ∩ ((𝐼 + 1)...𝑁)) = ∅)
7169, 70syl 17 . . . . . . 7 ((𝑁 ∈ (ℤ‘3) ∧ 3 < 𝑁𝐼 ∈ (2...(𝑁 − 1))) → ((2...𝐼) ∩ ((𝐼 + 1)...𝑁)) = ∅)
72 fzsplit 13610 . . . . . . . 8 (𝐼 ∈ (2...𝑁) → (2...𝑁) = ((2...𝐼) ∪ ((𝐼 + 1)...𝑁)))
7365, 72syl 17 . . . . . . 7 ((𝑁 ∈ (ℤ‘3) ∧ 3 < 𝑁𝐼 ∈ (2...(𝑁 − 1))) → (2...𝑁) = ((2...𝐼) ∪ ((𝐼 + 1)...𝑁)))
74 fzfid 14024 . . . . . . 7 ((𝑁 ∈ (ℤ‘3) ∧ 3 < 𝑁𝐼 ∈ (2...(𝑁 − 1))) → (2...𝑁) ∈ Fin)
75 eluzge3nn 12955 . . . . . . . . . . 11 (𝑁 ∈ (ℤ‘3) → 𝑁 ∈ ℕ)
76 2eluzge1 12959 . . . . . . . . . . . . 13 2 ∈ (ℤ‘1)
77 fzss1 13623 . . . . . . . . . . . . 13 (2 ∈ (ℤ‘1) → (2...(𝑁 − 1)) ⊆ (1...(𝑁 − 1)))
7876, 77ax-mp 5 . . . . . . . . . . . 12 (2...(𝑁 − 1)) ⊆ (1...(𝑁 − 1))
7978sseli 4004 . . . . . . . . . . 11 (𝐼 ∈ (2...(𝑁 − 1)) → 𝐼 ∈ (1...(𝑁 − 1)))
8023axlowdimlem10 28984 . . . . . . . . . . 11 ((𝑁 ∈ ℕ ∧ 𝐼 ∈ (1...(𝑁 − 1))) → 𝑄 ∈ (𝔼‘𝑁))
8175, 79, 80syl2an 595 . . . . . . . . . 10 ((𝑁 ∈ (ℤ‘3) ∧ 𝐼 ∈ (2...(𝑁 − 1))) → 𝑄 ∈ (𝔼‘𝑁))
82 fzss1 13623 . . . . . . . . . . . 12 (2 ∈ (ℤ‘1) → (2...𝑁) ⊆ (1...𝑁))
8376, 82ax-mp 5 . . . . . . . . . . 11 (2...𝑁) ⊆ (1...𝑁)
8483sseli 4004 . . . . . . . . . 10 (𝑖 ∈ (2...𝑁) → 𝑖 ∈ (1...𝑁))
85 fveecn 28935 . . . . . . . . . 10 ((𝑄 ∈ (𝔼‘𝑁) ∧ 𝑖 ∈ (1...𝑁)) → (𝑄𝑖) ∈ ℂ)
8681, 84, 85syl2an 595 . . . . . . . . 9 (((𝑁 ∈ (ℤ‘3) ∧ 𝐼 ∈ (2...(𝑁 − 1))) ∧ 𝑖 ∈ (2...𝑁)) → (𝑄𝑖) ∈ ℂ)
8786sqcld 14194 . . . . . . . 8 (((𝑁 ∈ (ℤ‘3) ∧ 𝐼 ∈ (2...(𝑁 − 1))) ∧ 𝑖 ∈ (2...𝑁)) → ((𝑄𝑖)↑2) ∈ ℂ)
88873adantl2 1167 . . . . . . 7 (((𝑁 ∈ (ℤ‘3) ∧ 3 < 𝑁𝐼 ∈ (2...(𝑁 − 1))) ∧ 𝑖 ∈ (2...𝑁)) → ((𝑄𝑖)↑2) ∈ ℂ)
8971, 73, 74, 88fsumsplit 15789 . . . . . 6 ((𝑁 ∈ (ℤ‘3) ∧ 3 < 𝑁𝐼 ∈ (2...(𝑁 − 1))) → Σ𝑖 ∈ (2...𝑁)((𝑄𝑖)↑2) = (Σ𝑖 ∈ (2...𝐼)((𝑄𝑖)↑2) + Σ𝑖 ∈ ((𝐼 + 1)...𝑁)((𝑄𝑖)↑2)))
90 elfzelz 13584 . . . . . . . . . . . . . . . . . . 19 (𝐼 ∈ (2...(𝑁 − 1)) → 𝐼 ∈ ℤ)
9190zred 12747 . . . . . . . . . . . . . . . . . 18 (𝐼 ∈ (2...(𝑁 − 1)) → 𝐼 ∈ ℝ)
92913ad2ant3 1135 . . . . . . . . . . . . . . . . 17 ((𝑁 ∈ (ℤ‘3) ∧ 3 < 𝑁𝐼 ∈ (2...(𝑁 − 1))) → 𝐼 ∈ ℝ)
93493ad2ant1 1133 . . . . . . . . . . . . . . . . 17 ((𝑁 ∈ (ℤ‘3) ∧ 3 < 𝑁𝐼 ∈ (2...(𝑁 − 1))) → 𝑁 ∈ ℝ)
94 peano2rem 11603 . . . . . . . . . . . . . . . . . . 19 (𝑁 ∈ ℝ → (𝑁 − 1) ∈ ℝ)
9593, 94syl 17 . . . . . . . . . . . . . . . . . 18 ((𝑁 ∈ (ℤ‘3) ∧ 3 < 𝑁𝐼 ∈ (2...(𝑁 − 1))) → (𝑁 − 1) ∈ ℝ)
96 elfzle2 13588 . . . . . . . . . . . . . . . . . . 19 (𝐼 ∈ (2...(𝑁 − 1)) → 𝐼 ≤ (𝑁 − 1))
97963ad2ant3 1135 . . . . . . . . . . . . . . . . . 18 ((𝑁 ∈ (ℤ‘3) ∧ 3 < 𝑁𝐼 ∈ (2...(𝑁 − 1))) → 𝐼 ≤ (𝑁 − 1))
9893ltm1d 12227 . . . . . . . . . . . . . . . . . 18 ((𝑁 ∈ (ℤ‘3) ∧ 3 < 𝑁𝐼 ∈ (2...(𝑁 − 1))) → (𝑁 − 1) < 𝑁)
9992, 95, 93, 97, 98lelttrd 11448 . . . . . . . . . . . . . . . . 17 ((𝑁 ∈ (ℤ‘3) ∧ 3 < 𝑁𝐼 ∈ (2...(𝑁 − 1))) → 𝐼 < 𝑁)
10092, 93, 99ltled 11438 . . . . . . . . . . . . . . . 16 ((𝑁 ∈ (ℤ‘3) ∧ 3 < 𝑁𝐼 ∈ (2...(𝑁 − 1))) → 𝐼𝑁)
101903ad2ant3 1135 . . . . . . . . . . . . . . . . 17 ((𝑁 ∈ (ℤ‘3) ∧ 3 < 𝑁𝐼 ∈ (2...(𝑁 − 1))) → 𝐼 ∈ ℤ)
102 eluz 12917 . . . . . . . . . . . . . . . . 17 ((𝐼 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑁 ∈ (ℤ𝐼) ↔ 𝐼𝑁))
103101, 60, 102syl2anc 583 . . . . . . . . . . . . . . . 16 ((𝑁 ∈ (ℤ‘3) ∧ 3 < 𝑁𝐼 ∈ (2...(𝑁 − 1))) → (𝑁 ∈ (ℤ𝐼) ↔ 𝐼𝑁))
104100, 103mpbird 257 . . . . . . . . . . . . . . 15 ((𝑁 ∈ (ℤ‘3) ∧ 3 < 𝑁𝐼 ∈ (2...(𝑁 − 1))) → 𝑁 ∈ (ℤ𝐼))
105 fzss2 13624 . . . . . . . . . . . . . . 15 (𝑁 ∈ (ℤ𝐼) → (1...𝐼) ⊆ (1...𝑁))
106104, 105syl 17 . . . . . . . . . . . . . 14 ((𝑁 ∈ (ℤ‘3) ∧ 3 < 𝑁𝐼 ∈ (2...(𝑁 − 1))) → (1...𝐼) ⊆ (1...𝑁))
107106sseld 4007 . . . . . . . . . . . . 13 ((𝑁 ∈ (ℤ‘3) ∧ 3 < 𝑁𝐼 ∈ (2...(𝑁 − 1))) → (𝑖 ∈ (1...𝐼) → 𝑖 ∈ (1...𝑁)))
108 fzss1 13623 . . . . . . . . . . . . . . 15 (2 ∈ (ℤ‘1) → (2...𝐼) ⊆ (1...𝐼))
10976, 108ax-mp 5 . . . . . . . . . . . . . 14 (2...𝐼) ⊆ (1...𝐼)
110109sseli 4004 . . . . . . . . . . . . 13 (𝑖 ∈ (2...𝐼) → 𝑖 ∈ (1...𝐼))
111107, 110impel 505 . . . . . . . . . . . 12 (((𝑁 ∈ (ℤ‘3) ∧ 3 < 𝑁𝐼 ∈ (2...(𝑁 − 1))) ∧ 𝑖 ∈ (2...𝐼)) → 𝑖 ∈ (1...𝑁))
112 elfzelz 13584 . . . . . . . . . . . . . . 15 (𝑖 ∈ (2...𝐼) → 𝑖 ∈ ℤ)
113112zred 12747 . . . . . . . . . . . . . 14 (𝑖 ∈ (2...𝐼) → 𝑖 ∈ ℝ)
114113adantl 481 . . . . . . . . . . . . 13 (((𝑁 ∈ (ℤ‘3) ∧ 3 < 𝑁𝐼 ∈ (2...(𝑁 − 1))) ∧ 𝑖 ∈ (2...𝐼)) → 𝑖 ∈ ℝ)
11592adantr 480 . . . . . . . . . . . . . 14 (((𝑁 ∈ (ℤ‘3) ∧ 3 < 𝑁𝐼 ∈ (2...(𝑁 − 1))) ∧ 𝑖 ∈ (2...𝐼)) → 𝐼 ∈ ℝ)
116 peano2re 11463 . . . . . . . . . . . . . . . . 17 (𝐼 ∈ ℝ → (𝐼 + 1) ∈ ℝ)
11791, 116syl 17 . . . . . . . . . . . . . . . 16 (𝐼 ∈ (2...(𝑁 − 1)) → (𝐼 + 1) ∈ ℝ)
1181173ad2ant3 1135 . . . . . . . . . . . . . . 15 ((𝑁 ∈ (ℤ‘3) ∧ 3 < 𝑁𝐼 ∈ (2...(𝑁 − 1))) → (𝐼 + 1) ∈ ℝ)
119118adantr 480 . . . . . . . . . . . . . 14 (((𝑁 ∈ (ℤ‘3) ∧ 3 < 𝑁𝐼 ∈ (2...(𝑁 − 1))) ∧ 𝑖 ∈ (2...𝐼)) → (𝐼 + 1) ∈ ℝ)
120 elfzle2 13588 . . . . . . . . . . . . . . 15 (𝑖 ∈ (2...𝐼) → 𝑖𝐼)
121120adantl 481 . . . . . . . . . . . . . 14 (((𝑁 ∈ (ℤ‘3) ∧ 3 < 𝑁𝐼 ∈ (2...(𝑁 − 1))) ∧ 𝑖 ∈ (2...𝐼)) → 𝑖𝐼)
122115ltp1d 12225 . . . . . . . . . . . . . 14 (((𝑁 ∈ (ℤ‘3) ∧ 3 < 𝑁𝐼 ∈ (2...(𝑁 − 1))) ∧ 𝑖 ∈ (2...𝐼)) → 𝐼 < (𝐼 + 1))
123114, 115, 119, 121, 122lelttrd 11448 . . . . . . . . . . . . 13 (((𝑁 ∈ (ℤ‘3) ∧ 3 < 𝑁𝐼 ∈ (2...(𝑁 − 1))) ∧ 𝑖 ∈ (2...𝐼)) → 𝑖 < (𝐼 + 1))
124114, 123ltned 11426 . . . . . . . . . . . 12 (((𝑁 ∈ (ℤ‘3) ∧ 3 < 𝑁𝐼 ∈ (2...(𝑁 − 1))) ∧ 𝑖 ∈ (2...𝐼)) → 𝑖 ≠ (𝐼 + 1))
12523axlowdimlem12 28986 . . . . . . . . . . . 12 ((𝑖 ∈ (1...𝑁) ∧ 𝑖 ≠ (𝐼 + 1)) → (𝑄𝑖) = 0)
126111, 124, 125syl2anc 583 . . . . . . . . . . 11 (((𝑁 ∈ (ℤ‘3) ∧ 3 < 𝑁𝐼 ∈ (2...(𝑁 − 1))) ∧ 𝑖 ∈ (2...𝐼)) → (𝑄𝑖) = 0)
127126sq0id 14243 . . . . . . . . . 10 (((𝑁 ∈ (ℤ‘3) ∧ 3 < 𝑁𝐼 ∈ (2...(𝑁 − 1))) ∧ 𝑖 ∈ (2...𝐼)) → ((𝑄𝑖)↑2) = 0)
128127sumeq2dv 15750 . . . . . . . . 9 ((𝑁 ∈ (ℤ‘3) ∧ 3 < 𝑁𝐼 ∈ (2...(𝑁 − 1))) → Σ𝑖 ∈ (2...𝐼)((𝑄𝑖)↑2) = Σ𝑖 ∈ (2...𝐼)0)
129 fzfi 14023 . . . . . . . . . . 11 (2...𝐼) ∈ Fin
130129olci 865 . . . . . . . . . 10 ((2...𝐼) ⊆ (ℤ‘1) ∨ (2...𝐼) ∈ Fin)
131 sumz 15770 . . . . . . . . . 10 (((2...𝐼) ⊆ (ℤ‘1) ∨ (2...𝐼) ∈ Fin) → Σ𝑖 ∈ (2...𝐼)0 = 0)
132130, 131ax-mp 5 . . . . . . . . 9 Σ𝑖 ∈ (2...𝐼)0 = 0
133128, 132eqtrdi 2796 . . . . . . . 8 ((𝑁 ∈ (ℤ‘3) ∧ 3 < 𝑁𝐼 ∈ (2...(𝑁 − 1))) → Σ𝑖 ∈ (2...𝐼)((𝑄𝑖)↑2) = 0)
134101peano2zd 12750 . . . . . . . . . . 11 ((𝑁 ∈ (ℤ‘3) ∧ 3 < 𝑁𝐼 ∈ (2...(𝑁 − 1))) → (𝐼 + 1) ∈ ℤ)
135 sq1 14244 . . . . . . . . . . . . 13 (1↑2) = 1
13626, 135eqtrdi 2796 . . . . . . . . . . . 12 (𝑖 = (𝐼 + 1) → ((𝑄𝑖)↑2) = 1)
137136fsum1 15795 . . . . . . . . . . 11 (((𝐼 + 1) ∈ ℤ ∧ 1 ∈ ℂ) → Σ𝑖 ∈ ((𝐼 + 1)...(𝐼 + 1))((𝑄𝑖)↑2) = 1)
138134, 3, 137sylancl 585 . . . . . . . . . 10 ((𝑁 ∈ (ℤ‘3) ∧ 3 < 𝑁𝐼 ∈ (2...(𝑁 − 1))) → Σ𝑖 ∈ ((𝐼 + 1)...(𝐼 + 1))((𝑄𝑖)↑2) = 1)
139 oveq2 7456 . . . . . . . . . . . 12 ((𝐼 + 1) = 𝑁 → ((𝐼 + 1)...(𝐼 + 1)) = ((𝐼 + 1)...𝑁))
140139sumeq1d 15748 . . . . . . . . . . 11 ((𝐼 + 1) = 𝑁 → Σ𝑖 ∈ ((𝐼 + 1)...(𝐼 + 1))((𝑄𝑖)↑2) = Σ𝑖 ∈ ((𝐼 + 1)...𝑁)((𝑄𝑖)↑2))
141140eqeq1d 2742 . . . . . . . . . 10 ((𝐼 + 1) = 𝑁 → (Σ𝑖 ∈ ((𝐼 + 1)...(𝐼 + 1))((𝑄𝑖)↑2) = 1 ↔ Σ𝑖 ∈ ((𝐼 + 1)...𝑁)((𝑄𝑖)↑2) = 1))
142138, 141imbitrid 244 . . . . . . . . 9 ((𝐼 + 1) = 𝑁 → ((𝑁 ∈ (ℤ‘3) ∧ 3 < 𝑁𝐼 ∈ (2...(𝑁 − 1))) → Σ𝑖 ∈ ((𝐼 + 1)...𝑁)((𝑄𝑖)↑2) = 1))
143101adantl 481 . . . . . . . . . . . . . . . 16 (((𝐼 + 1) ≠ 𝑁 ∧ (𝑁 ∈ (ℤ‘3) ∧ 3 < 𝑁𝐼 ∈ (2...(𝑁 − 1)))) → 𝐼 ∈ ℤ)
144143zred 12747 . . . . . . . . . . . . . . 15 (((𝐼 + 1) ≠ 𝑁 ∧ (𝑁 ∈ (ℤ‘3) ∧ 3 < 𝑁𝐼 ∈ (2...(𝑁 − 1)))) → 𝐼 ∈ ℝ)
14560adantl 481 . . . . . . . . . . . . . . . . 17 (((𝐼 + 1) ≠ 𝑁 ∧ (𝑁 ∈ (ℤ‘3) ∧ 3 < 𝑁𝐼 ∈ (2...(𝑁 − 1)))) → 𝑁 ∈ ℤ)
146145zred 12747 . . . . . . . . . . . . . . . 16 (((𝐼 + 1) ≠ 𝑁 ∧ (𝑁 ∈ (ℤ‘3) ∧ 3 < 𝑁𝐼 ∈ (2...(𝑁 − 1)))) → 𝑁 ∈ ℝ)
147146, 94syl 17 . . . . . . . . . . . . . . 15 (((𝐼 + 1) ≠ 𝑁 ∧ (𝑁 ∈ (ℤ‘3) ∧ 3 < 𝑁𝐼 ∈ (2...(𝑁 − 1)))) → (𝑁 − 1) ∈ ℝ)
14897adantl 481 . . . . . . . . . . . . . . 15 (((𝐼 + 1) ≠ 𝑁 ∧ (𝑁 ∈ (ℤ‘3) ∧ 3 < 𝑁𝐼 ∈ (2...(𝑁 − 1)))) → 𝐼 ≤ (𝑁 − 1))
149146ltm1d 12227 . . . . . . . . . . . . . . 15 (((𝐼 + 1) ≠ 𝑁 ∧ (𝑁 ∈ (ℤ‘3) ∧ 3 < 𝑁𝐼 ∈ (2...(𝑁 − 1)))) → (𝑁 − 1) < 𝑁)
150144, 147, 146, 148, 149lelttrd 11448 . . . . . . . . . . . . . 14 (((𝐼 + 1) ≠ 𝑁 ∧ (𝑁 ∈ (ℤ‘3) ∧ 3 < 𝑁𝐼 ∈ (2...(𝑁 − 1)))) → 𝐼 < 𝑁)
151 1red 11291 . . . . . . . . . . . . . . . . . . 19 (𝐼 ∈ (2...(𝑁 − 1)) → 1 ∈ ℝ)
152 2re 12367 . . . . . . . . . . . . . . . . . . . 20 2 ∈ ℝ
153152a1i 11 . . . . . . . . . . . . . . . . . . 19 (𝐼 ∈ (2...(𝑁 − 1)) → 2 ∈ ℝ)
154 1le2 12502 . . . . . . . . . . . . . . . . . . . 20 1 ≤ 2
155154a1i 11 . . . . . . . . . . . . . . . . . . 19 (𝐼 ∈ (2...(𝑁 − 1)) → 1 ≤ 2)
156 elfzle1 13587 . . . . . . . . . . . . . . . . . . 19 (𝐼 ∈ (2...(𝑁 − 1)) → 2 ≤ 𝐼)
157151, 153, 91, 155, 156letrd 11447 . . . . . . . . . . . . . . . . . 18 (𝐼 ∈ (2...(𝑁 − 1)) → 1 ≤ 𝐼)
1581573ad2ant3 1135 . . . . . . . . . . . . . . . . 17 ((𝑁 ∈ (ℤ‘3) ∧ 3 < 𝑁𝐼 ∈ (2...(𝑁 − 1))) → 1 ≤ 𝐼)
159158adantl 481 . . . . . . . . . . . . . . . 16 (((𝐼 + 1) ≠ 𝑁 ∧ (𝑁 ∈ (ℤ‘3) ∧ 3 < 𝑁𝐼 ∈ (2...(𝑁 − 1)))) → 1 ≤ 𝐼)
160 elnnz1 12669 . . . . . . . . . . . . . . . 16 (𝐼 ∈ ℕ ↔ (𝐼 ∈ ℤ ∧ 1 ≤ 𝐼))
161143, 159, 160sylanbrc 582 . . . . . . . . . . . . . . 15 (((𝐼 + 1) ≠ 𝑁 ∧ (𝑁 ∈ (ℤ‘3) ∧ 3 < 𝑁𝐼 ∈ (2...(𝑁 − 1)))) → 𝐼 ∈ ℕ)
162753ad2ant1 1133 . . . . . . . . . . . . . . . 16 ((𝑁 ∈ (ℤ‘3) ∧ 3 < 𝑁𝐼 ∈ (2...(𝑁 − 1))) → 𝑁 ∈ ℕ)
163162adantl 481 . . . . . . . . . . . . . . 15 (((𝐼 + 1) ≠ 𝑁 ∧ (𝑁 ∈ (ℤ‘3) ∧ 3 < 𝑁𝐼 ∈ (2...(𝑁 − 1)))) → 𝑁 ∈ ℕ)
164 nnltp1le 12699 . . . . . . . . . . . . . . 15 ((𝐼 ∈ ℕ ∧ 𝑁 ∈ ℕ) → (𝐼 < 𝑁 ↔ (𝐼 + 1) ≤ 𝑁))
165161, 163, 164syl2anc 583 . . . . . . . . . . . . . 14 (((𝐼 + 1) ≠ 𝑁 ∧ (𝑁 ∈ (ℤ‘3) ∧ 3 < 𝑁𝐼 ∈ (2...(𝑁 − 1)))) → (𝐼 < 𝑁 ↔ (𝐼 + 1) ≤ 𝑁))
166150, 165mpbid 232 . . . . . . . . . . . . 13 (((𝐼 + 1) ≠ 𝑁 ∧ (𝑁 ∈ (ℤ‘3) ∧ 3 < 𝑁𝐼 ∈ (2...(𝑁 − 1)))) → (𝐼 + 1) ≤ 𝑁)
167 eluz 12917 . . . . . . . . . . . . . 14 (((𝐼 + 1) ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑁 ∈ (ℤ‘(𝐼 + 1)) ↔ (𝐼 + 1) ≤ 𝑁))
168134, 145, 167syl2an2 685 . . . . . . . . . . . . 13 (((𝐼 + 1) ≠ 𝑁 ∧ (𝑁 ∈ (ℤ‘3) ∧ 3 < 𝑁𝐼 ∈ (2...(𝑁 − 1)))) → (𝑁 ∈ (ℤ‘(𝐼 + 1)) ↔ (𝐼 + 1) ≤ 𝑁))
169166, 168mpbird 257 . . . . . . . . . . . 12 (((𝐼 + 1) ≠ 𝑁 ∧ (𝑁 ∈ (ℤ‘3) ∧ 3 < 𝑁𝐼 ∈ (2...(𝑁 − 1)))) → 𝑁 ∈ (ℤ‘(𝐼 + 1)))
170 simpr1 1194 . . . . . . . . . . . . . . . 16 (((𝐼 + 1) ≠ 𝑁 ∧ (𝑁 ∈ (ℤ‘3) ∧ 3 < 𝑁𝐼 ∈ (2...(𝑁 − 1)))) → 𝑁 ∈ (ℤ‘3))
171 simpr3 1196 . . . . . . . . . . . . . . . 16 (((𝐼 + 1) ≠ 𝑁 ∧ (𝑁 ∈ (ℤ‘3) ∧ 3 < 𝑁𝐼 ∈ (2...(𝑁 − 1)))) → 𝐼 ∈ (2...(𝑁 − 1)))
172170, 171, 81syl2anc 583 . . . . . . . . . . . . . . 15 (((𝐼 + 1) ≠ 𝑁 ∧ (𝑁 ∈ (ℤ‘3) ∧ 3 < 𝑁𝐼 ∈ (2...(𝑁 − 1)))) → 𝑄 ∈ (𝔼‘𝑁))
173172adantr 480 . . . . . . . . . . . . . 14 ((((𝐼 + 1) ≠ 𝑁 ∧ (𝑁 ∈ (ℤ‘3) ∧ 3 < 𝑁𝐼 ∈ (2...(𝑁 − 1)))) ∧ 𝑖 ∈ ((𝐼 + 1)...𝑁)) → 𝑄 ∈ (𝔼‘𝑁))
174161peano2nnd 12310 . . . . . . . . . . . . . . . . 17 (((𝐼 + 1) ≠ 𝑁 ∧ (𝑁 ∈ (ℤ‘3) ∧ 3 < 𝑁𝐼 ∈ (2...(𝑁 − 1)))) → (𝐼 + 1) ∈ ℕ)
175 nnuz 12946 . . . . . . . . . . . . . . . . 17 ℕ = (ℤ‘1)
176174, 175eleqtrdi 2854 . . . . . . . . . . . . . . . 16 (((𝐼 + 1) ≠ 𝑁 ∧ (𝑁 ∈ (ℤ‘3) ∧ 3 < 𝑁𝐼 ∈ (2...(𝑁 − 1)))) → (𝐼 + 1) ∈ (ℤ‘1))
177 fzss1 13623 . . . . . . . . . . . . . . . 16 ((𝐼 + 1) ∈ (ℤ‘1) → ((𝐼 + 1)...𝑁) ⊆ (1...𝑁))
178176, 177syl 17 . . . . . . . . . . . . . . 15 (((𝐼 + 1) ≠ 𝑁 ∧ (𝑁 ∈ (ℤ‘3) ∧ 3 < 𝑁𝐼 ∈ (2...(𝑁 − 1)))) → ((𝐼 + 1)...𝑁) ⊆ (1...𝑁))
179178sselda 4008 . . . . . . . . . . . . . 14 ((((𝐼 + 1) ≠ 𝑁 ∧ (𝑁 ∈ (ℤ‘3) ∧ 3 < 𝑁𝐼 ∈ (2...(𝑁 − 1)))) ∧ 𝑖 ∈ ((𝐼 + 1)...𝑁)) → 𝑖 ∈ (1...𝑁))
180173, 179, 85syl2anc 583 . . . . . . . . . . . . 13 ((((𝐼 + 1) ≠ 𝑁 ∧ (𝑁 ∈ (ℤ‘3) ∧ 3 < 𝑁𝐼 ∈ (2...(𝑁 − 1)))) ∧ 𝑖 ∈ ((𝐼 + 1)...𝑁)) → (𝑄𝑖) ∈ ℂ)
181180sqcld 14194 . . . . . . . . . . . 12 ((((𝐼 + 1) ≠ 𝑁 ∧ (𝑁 ∈ (ℤ‘3) ∧ 3 < 𝑁𝐼 ∈ (2...(𝑁 − 1)))) ∧ 𝑖 ∈ ((𝐼 + 1)...𝑁)) → ((𝑄𝑖)↑2) ∈ ℂ)
18222oveq1d 7463 . . . . . . . . . . . . 13 (𝑖 = (𝐼 + 1) → ((𝑄𝑖)↑2) = ((𝑄‘(𝐼 + 1))↑2))
18324oveq1i 7458 . . . . . . . . . . . . . 14 ((𝑄‘(𝐼 + 1))↑2) = (1↑2)
184183, 135eqtri 2768 . . . . . . . . . . . . 13 ((𝑄‘(𝐼 + 1))↑2) = 1
185182, 184eqtrdi 2796 . . . . . . . . . . . 12 (𝑖 = (𝐼 + 1) → ((𝑄𝑖)↑2) = 1)
186169, 181, 185fsum1p 15801 . . . . . . . . . . 11 (((𝐼 + 1) ≠ 𝑁 ∧ (𝑁 ∈ (ℤ‘3) ∧ 3 < 𝑁𝐼 ∈ (2...(𝑁 − 1)))) → Σ𝑖 ∈ ((𝐼 + 1)...𝑁)((𝑄𝑖)↑2) = (1 + Σ𝑖 ∈ (((𝐼 + 1) + 1)...𝑁)((𝑄𝑖)↑2)))
187174peano2nnd 12310 . . . . . . . . . . . . . . . . . . . 20 (((𝐼 + 1) ≠ 𝑁 ∧ (𝑁 ∈ (ℤ‘3) ∧ 3 < 𝑁𝐼 ∈ (2...(𝑁 − 1)))) → ((𝐼 + 1) + 1) ∈ ℕ)
188187, 175eleqtrdi 2854 . . . . . . . . . . . . . . . . . . 19 (((𝐼 + 1) ≠ 𝑁 ∧ (𝑁 ∈ (ℤ‘3) ∧ 3 < 𝑁𝐼 ∈ (2...(𝑁 − 1)))) → ((𝐼 + 1) + 1) ∈ (ℤ‘1))
189 fzss1 13623 . . . . . . . . . . . . . . . . . . 19 (((𝐼 + 1) + 1) ∈ (ℤ‘1) → (((𝐼 + 1) + 1)...𝑁) ⊆ (1...𝑁))
190188, 189syl 17 . . . . . . . . . . . . . . . . . 18 (((𝐼 + 1) ≠ 𝑁 ∧ (𝑁 ∈ (ℤ‘3) ∧ 3 < 𝑁𝐼 ∈ (2...(𝑁 − 1)))) → (((𝐼 + 1) + 1)...𝑁) ⊆ (1...𝑁))
191190sselda 4008 . . . . . . . . . . . . . . . . 17 ((((𝐼 + 1) ≠ 𝑁 ∧ (𝑁 ∈ (ℤ‘3) ∧ 3 < 𝑁𝐼 ∈ (2...(𝑁 − 1)))) ∧ 𝑖 ∈ (((𝐼 + 1) + 1)...𝑁)) → 𝑖 ∈ (1...𝑁))
192144, 116syl 17 . . . . . . . . . . . . . . . . . . 19 (((𝐼 + 1) ≠ 𝑁 ∧ (𝑁 ∈ (ℤ‘3) ∧ 3 < 𝑁𝐼 ∈ (2...(𝑁 − 1)))) → (𝐼 + 1) ∈ ℝ)
193192adantr 480 . . . . . . . . . . . . . . . . . 18 ((((𝐼 + 1) ≠ 𝑁 ∧ (𝑁 ∈ (ℤ‘3) ∧ 3 < 𝑁𝐼 ∈ (2...(𝑁 − 1)))) ∧ 𝑖 ∈ (((𝐼 + 1) + 1)...𝑁)) → (𝐼 + 1) ∈ ℝ)
194 peano2re 11463 . . . . . . . . . . . . . . . . . . . 20 ((𝐼 + 1) ∈ ℝ → ((𝐼 + 1) + 1) ∈ ℝ)
195193, 194syl 17 . . . . . . . . . . . . . . . . . . 19 ((((𝐼 + 1) ≠ 𝑁 ∧ (𝑁 ∈ (ℤ‘3) ∧ 3 < 𝑁𝐼 ∈ (2...(𝑁 − 1)))) ∧ 𝑖 ∈ (((𝐼 + 1) + 1)...𝑁)) → ((𝐼 + 1) + 1) ∈ ℝ)
196 elfzelz 13584 . . . . . . . . . . . . . . . . . . . . 21 (𝑖 ∈ (((𝐼 + 1) + 1)...𝑁) → 𝑖 ∈ ℤ)
197196zred 12747 . . . . . . . . . . . . . . . . . . . 20 (𝑖 ∈ (((𝐼 + 1) + 1)...𝑁) → 𝑖 ∈ ℝ)
198197adantl 481 . . . . . . . . . . . . . . . . . . 19 ((((𝐼 + 1) ≠ 𝑁 ∧ (𝑁 ∈ (ℤ‘3) ∧ 3 < 𝑁𝐼 ∈ (2...(𝑁 − 1)))) ∧ 𝑖 ∈ (((𝐼 + 1) + 1)...𝑁)) → 𝑖 ∈ ℝ)
199193ltp1d 12225 . . . . . . . . . . . . . . . . . . 19 ((((𝐼 + 1) ≠ 𝑁 ∧ (𝑁 ∈ (ℤ‘3) ∧ 3 < 𝑁𝐼 ∈ (2...(𝑁 − 1)))) ∧ 𝑖 ∈ (((𝐼 + 1) + 1)...𝑁)) → (𝐼 + 1) < ((𝐼 + 1) + 1))
200 elfzle1 13587 . . . . . . . . . . . . . . . . . . . 20 (𝑖 ∈ (((𝐼 + 1) + 1)...𝑁) → ((𝐼 + 1) + 1) ≤ 𝑖)
201200adantl 481 . . . . . . . . . . . . . . . . . . 19 ((((𝐼 + 1) ≠ 𝑁 ∧ (𝑁 ∈ (ℤ‘3) ∧ 3 < 𝑁𝐼 ∈ (2...(𝑁 − 1)))) ∧ 𝑖 ∈ (((𝐼 + 1) + 1)...𝑁)) → ((𝐼 + 1) + 1) ≤ 𝑖)
202193, 195, 198, 199, 201ltletrd 11450 . . . . . . . . . . . . . . . . . 18 ((((𝐼 + 1) ≠ 𝑁 ∧ (𝑁 ∈ (ℤ‘3) ∧ 3 < 𝑁𝐼 ∈ (2...(𝑁 − 1)))) ∧ 𝑖 ∈ (((𝐼 + 1) + 1)...𝑁)) → (𝐼 + 1) < 𝑖)
203193, 202gtned 11425 . . . . . . . . . . . . . . . . 17 ((((𝐼 + 1) ≠ 𝑁 ∧ (𝑁 ∈ (ℤ‘3) ∧ 3 < 𝑁𝐼 ∈ (2...(𝑁 − 1)))) ∧ 𝑖 ∈ (((𝐼 + 1) + 1)...𝑁)) → 𝑖 ≠ (𝐼 + 1))
204191, 203, 125syl2anc 583 . . . . . . . . . . . . . . . 16 ((((𝐼 + 1) ≠ 𝑁 ∧ (𝑁 ∈ (ℤ‘3) ∧ 3 < 𝑁𝐼 ∈ (2...(𝑁 − 1)))) ∧ 𝑖 ∈ (((𝐼 + 1) + 1)...𝑁)) → (𝑄𝑖) = 0)
205204sq0id 14243 . . . . . . . . . . . . . . 15 ((((𝐼 + 1) ≠ 𝑁 ∧ (𝑁 ∈ (ℤ‘3) ∧ 3 < 𝑁𝐼 ∈ (2...(𝑁 − 1)))) ∧ 𝑖 ∈ (((𝐼 + 1) + 1)...𝑁)) → ((𝑄𝑖)↑2) = 0)
206205sumeq2dv 15750 . . . . . . . . . . . . . 14 (((𝐼 + 1) ≠ 𝑁 ∧ (𝑁 ∈ (ℤ‘3) ∧ 3 < 𝑁𝐼 ∈ (2...(𝑁 − 1)))) → Σ𝑖 ∈ (((𝐼 + 1) + 1)...𝑁)((𝑄𝑖)↑2) = Σ𝑖 ∈ (((𝐼 + 1) + 1)...𝑁)0)
207 fzfi 14023 . . . . . . . . . . . . . . . 16 (((𝐼 + 1) + 1)...𝑁) ∈ Fin
208207olci 865 . . . . . . . . . . . . . . 15 ((((𝐼 + 1) + 1)...𝑁) ⊆ (ℤ‘1) ∨ (((𝐼 + 1) + 1)...𝑁) ∈ Fin)
209 sumz 15770 . . . . . . . . . . . . . . 15 (((((𝐼 + 1) + 1)...𝑁) ⊆ (ℤ‘1) ∨ (((𝐼 + 1) + 1)...𝑁) ∈ Fin) → Σ𝑖 ∈ (((𝐼 + 1) + 1)...𝑁)0 = 0)
210208, 209ax-mp 5 . . . . . . . . . . . . . 14 Σ𝑖 ∈ (((𝐼 + 1) + 1)...𝑁)0 = 0
211206, 210eqtrdi 2796 . . . . . . . . . . . . 13 (((𝐼 + 1) ≠ 𝑁 ∧ (𝑁 ∈ (ℤ‘3) ∧ 3 < 𝑁𝐼 ∈ (2...(𝑁 − 1)))) → Σ𝑖 ∈ (((𝐼 + 1) + 1)...𝑁)((𝑄𝑖)↑2) = 0)
212211oveq2d 7464 . . . . . . . . . . . 12 (((𝐼 + 1) ≠ 𝑁 ∧ (𝑁 ∈ (ℤ‘3) ∧ 3 < 𝑁𝐼 ∈ (2...(𝑁 − 1)))) → (1 + Σ𝑖 ∈ (((𝐼 + 1) + 1)...𝑁)((𝑄𝑖)↑2)) = (1 + 0))
213 1p0e1 12417 . . . . . . . . . . . 12 (1 + 0) = 1
214212, 213eqtrdi 2796 . . . . . . . . . . 11 (((𝐼 + 1) ≠ 𝑁 ∧ (𝑁 ∈ (ℤ‘3) ∧ 3 < 𝑁𝐼 ∈ (2...(𝑁 − 1)))) → (1 + Σ𝑖 ∈ (((𝐼 + 1) + 1)...𝑁)((𝑄𝑖)↑2)) = 1)
215186, 214eqtrd 2780 . . . . . . . . . 10 (((𝐼 + 1) ≠ 𝑁 ∧ (𝑁 ∈ (ℤ‘3) ∧ 3 < 𝑁𝐼 ∈ (2...(𝑁 − 1)))) → Σ𝑖 ∈ ((𝐼 + 1)...𝑁)((𝑄𝑖)↑2) = 1)
216215ex 412 . . . . . . . . 9 ((𝐼 + 1) ≠ 𝑁 → ((𝑁 ∈ (ℤ‘3) ∧ 3 < 𝑁𝐼 ∈ (2...(𝑁 − 1))) → Σ𝑖 ∈ ((𝐼 + 1)...𝑁)((𝑄𝑖)↑2) = 1))
217142, 216pm2.61ine 3031 . . . . . . . 8 ((𝑁 ∈ (ℤ‘3) ∧ 3 < 𝑁𝐼 ∈ (2...(𝑁 − 1))) → Σ𝑖 ∈ ((𝐼 + 1)...𝑁)((𝑄𝑖)↑2) = 1)
218133, 217oveq12d 7466 . . . . . . 7 ((𝑁 ∈ (ℤ‘3) ∧ 3 < 𝑁𝐼 ∈ (2...(𝑁 − 1))) → (Σ𝑖 ∈ (2...𝐼)((𝑄𝑖)↑2) + Σ𝑖 ∈ ((𝐼 + 1)...𝑁)((𝑄𝑖)↑2)) = (0 + 1))
219 0p1e1 12415 . . . . . . 7 (0 + 1) = 1
220218, 219eqtrdi 2796 . . . . . 6 ((𝑁 ∈ (ℤ‘3) ∧ 3 < 𝑁𝐼 ∈ (2...(𝑁 − 1))) → (Σ𝑖 ∈ (2...𝐼)((𝑄𝑖)↑2) + Σ𝑖 ∈ ((𝐼 + 1)...𝑁)((𝑄𝑖)↑2)) = 1)
22189, 220eqtrd 2780 . . . . 5 ((𝑁 ∈ (ℤ‘3) ∧ 3 < 𝑁𝐼 ∈ (2...(𝑁 − 1))) → Σ𝑖 ∈ (2...𝑁)((𝑄𝑖)↑2) = 1)
222 simp1 1136 . . . . . . . 8 ((𝑁 ∈ (ℤ‘3) ∧ 3 < 𝑁𝐼 ∈ (2...(𝑁 − 1))) → 𝑁 ∈ (ℤ‘3))
223 2lt3 12465 . . . . . . . . . 10 2 < 3
224152, 48, 223ltleii 11413 . . . . . . . . 9 2 ≤ 3
225 2z 12675 . . . . . . . . . 10 2 ∈ ℤ
226225eluz1i 12911 . . . . . . . . 9 (3 ∈ (ℤ‘2) ↔ (3 ∈ ℤ ∧ 2 ≤ 3))
2272, 224, 226mpbir2an 710 . . . . . . . 8 3 ∈ (ℤ‘2)
228 uztrn 12921 . . . . . . . 8 ((𝑁 ∈ (ℤ‘3) ∧ 3 ∈ (ℤ‘2)) → 𝑁 ∈ (ℤ‘2))
229222, 227, 228sylancl 585 . . . . . . 7 ((𝑁 ∈ (ℤ‘3) ∧ 3 < 𝑁𝐼 ∈ (2...(𝑁 − 1))) → 𝑁 ∈ (ℤ‘2))
230 fveq2 6920 . . . . . . . 8 (𝑖 = 2 → (𝑄𝑖) = (𝑄‘2))
231230oveq1d 7463 . . . . . . 7 (𝑖 = 2 → ((𝑄𝑖)↑2) = ((𝑄‘2)↑2))
232229, 88, 231fsum1p 15801 . . . . . 6 ((𝑁 ∈ (ℤ‘3) ∧ 3 < 𝑁𝐼 ∈ (2...(𝑁 − 1))) → Σ𝑖 ∈ (2...𝑁)((𝑄𝑖)↑2) = (((𝑄‘2)↑2) + Σ𝑖 ∈ ((2 + 1)...𝑁)((𝑄𝑖)↑2)))
23359adantr 480 . . . . . . . . . . . . . . 15 ((𝑁 ∈ (ℤ‘3) ∧ 3 < 𝑁) → 𝑁 ∈ ℤ)
234233zred 12747 . . . . . . . . . . . . . 14 ((𝑁 ∈ (ℤ‘3) ∧ 3 < 𝑁) → 𝑁 ∈ ℝ)
235 lttr 11366 . . . . . . . . . . . . . . . . . 18 ((2 ∈ ℝ ∧ 3 ∈ ℝ ∧ 𝑁 ∈ ℝ) → ((2 < 3 ∧ 3 < 𝑁) → 2 < 𝑁))
236152, 48, 235mp3an12 1451 . . . . . . . . . . . . . . . . 17 (𝑁 ∈ ℝ → ((2 < 3 ∧ 3 < 𝑁) → 2 < 𝑁))
237223, 236mpani 695 . . . . . . . . . . . . . . . 16 (𝑁 ∈ ℝ → (3 < 𝑁 → 2 < 𝑁))
23849, 237syl 17 . . . . . . . . . . . . . . 15 (𝑁 ∈ (ℤ‘3) → (3 < 𝑁 → 2 < 𝑁))
239238imp 406 . . . . . . . . . . . . . 14 ((𝑁 ∈ (ℤ‘3) ∧ 3 < 𝑁) → 2 < 𝑁)
240 ltle 11378 . . . . . . . . . . . . . . 15 ((2 ∈ ℝ ∧ 𝑁 ∈ ℝ) → (2 < 𝑁 → 2 ≤ 𝑁))
241152, 240mpan 689 . . . . . . . . . . . . . 14 (𝑁 ∈ ℝ → (2 < 𝑁 → 2 ≤ 𝑁))
242234, 239, 241sylc 65 . . . . . . . . . . . . 13 ((𝑁 ∈ (ℤ‘3) ∧ 3 < 𝑁) → 2 ≤ 𝑁)
243242, 154jctil 519 . . . . . . . . . . . 12 ((𝑁 ∈ (ℤ‘3) ∧ 3 < 𝑁) → (1 ≤ 2 ∧ 2 ≤ 𝑁))
244 1z 12673 . . . . . . . . . . . . 13 1 ∈ ℤ
245 elfz 13573 . . . . . . . . . . . . 13 ((2 ∈ ℤ ∧ 1 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (2 ∈ (1...𝑁) ↔ (1 ≤ 2 ∧ 2 ≤ 𝑁)))
246225, 244, 233, 245mp3an12i 1465 . . . . . . . . . . . 12 ((𝑁 ∈ (ℤ‘3) ∧ 3 < 𝑁) → (2 ∈ (1...𝑁) ↔ (1 ≤ 2 ∧ 2 ≤ 𝑁)))
247243, 246mpbird 257 . . . . . . . . . . 11 ((𝑁 ∈ (ℤ‘3) ∧ 3 < 𝑁) → 2 ∈ (1...𝑁))
2482473adant3 1132 . . . . . . . . . 10 ((𝑁 ∈ (ℤ‘3) ∧ 3 < 𝑁𝐼 ∈ (2...(𝑁 − 1))) → 2 ∈ (1...𝑁))
24991ltp1d 12225 . . . . . . . . . . . . . 14 (𝐼 ∈ (2...(𝑁 − 1)) → 𝐼 < (𝐼 + 1))
250153, 91, 117, 156, 249lelttrd 11448 . . . . . . . . . . . . 13 (𝐼 ∈ (2...(𝑁 − 1)) → 2 < (𝐼 + 1))
2512503ad2ant3 1135 . . . . . . . . . . . 12 ((𝑁 ∈ (ℤ‘3) ∧ 3 < 𝑁𝐼 ∈ (2...(𝑁 − 1))) → 2 < (𝐼 + 1))
252 ltne 11387 . . . . . . . . . . . 12 ((2 ∈ ℝ ∧ 2 < (𝐼 + 1)) → (𝐼 + 1) ≠ 2)
253152, 251, 252sylancr 586 . . . . . . . . . . 11 ((𝑁 ∈ (ℤ‘3) ∧ 3 < 𝑁𝐼 ∈ (2...(𝑁 − 1))) → (𝐼 + 1) ≠ 2)
254253necomd 3002 . . . . . . . . . 10 ((𝑁 ∈ (ℤ‘3) ∧ 3 < 𝑁𝐼 ∈ (2...(𝑁 − 1))) → 2 ≠ (𝐼 + 1))
25523axlowdimlem12 28986 . . . . . . . . . 10 ((2 ∈ (1...𝑁) ∧ 2 ≠ (𝐼 + 1)) → (𝑄‘2) = 0)
256248, 254, 255syl2anc 583 . . . . . . . . 9 ((𝑁 ∈ (ℤ‘3) ∧ 3 < 𝑁𝐼 ∈ (2...(𝑁 − 1))) → (𝑄‘2) = 0)
257256sq0id 14243 . . . . . . . 8 ((𝑁 ∈ (ℤ‘3) ∧ 3 < 𝑁𝐼 ∈ (2...(𝑁 − 1))) → ((𝑄‘2)↑2) = 0)
258257oveq1d 7463 . . . . . . 7 ((𝑁 ∈ (ℤ‘3) ∧ 3 < 𝑁𝐼 ∈ (2...(𝑁 − 1))) → (((𝑄‘2)↑2) + Σ𝑖 ∈ ((2 + 1)...𝑁)((𝑄𝑖)↑2)) = (0 + Σ𝑖 ∈ ((2 + 1)...𝑁)((𝑄𝑖)↑2)))
25915oveq1i 7458 . . . . . . . . 9 (3...𝑁) = ((2 + 1)...𝑁)
260259sumeq1i 15745 . . . . . . . 8 Σ𝑖 ∈ (3...𝑁)((𝑄𝑖)↑2) = Σ𝑖 ∈ ((2 + 1)...𝑁)((𝑄𝑖)↑2)
261260oveq2i 7459 . . . . . . 7 (0 + Σ𝑖 ∈ (3...𝑁)((𝑄𝑖)↑2)) = (0 + Σ𝑖 ∈ ((2 + 1)...𝑁)((𝑄𝑖)↑2))
262258, 261eqtr4di 2798 . . . . . 6 ((𝑁 ∈ (ℤ‘3) ∧ 3 < 𝑁𝐼 ∈ (2...(𝑁 − 1))) → (((𝑄‘2)↑2) + Σ𝑖 ∈ ((2 + 1)...𝑁)((𝑄𝑖)↑2)) = (0 + Σ𝑖 ∈ (3...𝑁)((𝑄𝑖)↑2)))
263 fzfid 14024 . . . . . . . 8 ((𝑁 ∈ (ℤ‘3) ∧ 3 < 𝑁𝐼 ∈ (2...(𝑁 − 1))) → (3...𝑁) ∈ Fin)
264 3nn 12372 . . . . . . . . . . . . . 14 3 ∈ ℕ
265264, 175eleqtri 2842 . . . . . . . . . . . . 13 3 ∈ (ℤ‘1)
266 fzss1 13623 . . . . . . . . . . . . 13 (3 ∈ (ℤ‘1) → (3...𝑁) ⊆ (1...𝑁))
267265, 266ax-mp 5 . . . . . . . . . . . 12 (3...𝑁) ⊆ (1...𝑁)
268267sseli 4004 . . . . . . . . . . 11 (𝑖 ∈ (3...𝑁) → 𝑖 ∈ (1...𝑁))
26981, 268, 85syl2an 595 . . . . . . . . . 10 (((𝑁 ∈ (ℤ‘3) ∧ 𝐼 ∈ (2...(𝑁 − 1))) ∧ 𝑖 ∈ (3...𝑁)) → (𝑄𝑖) ∈ ℂ)
270269sqcld 14194 . . . . . . . . 9 (((𝑁 ∈ (ℤ‘3) ∧ 𝐼 ∈ (2...(𝑁 − 1))) ∧ 𝑖 ∈ (3...𝑁)) → ((𝑄𝑖)↑2) ∈ ℂ)
2712703adantl2 1167 . . . . . . . 8 (((𝑁 ∈ (ℤ‘3) ∧ 3 < 𝑁𝐼 ∈ (2...(𝑁 − 1))) ∧ 𝑖 ∈ (3...𝑁)) → ((𝑄𝑖)↑2) ∈ ℂ)
272263, 271fsumcl 15781 . . . . . . 7 ((𝑁 ∈ (ℤ‘3) ∧ 3 < 𝑁𝐼 ∈ (2...(𝑁 − 1))) → Σ𝑖 ∈ (3...𝑁)((𝑄𝑖)↑2) ∈ ℂ)
273272addlidd 11491 . . . . . 6 ((𝑁 ∈ (ℤ‘3) ∧ 3 < 𝑁𝐼 ∈ (2...(𝑁 − 1))) → (0 + Σ𝑖 ∈ (3...𝑁)((𝑄𝑖)↑2)) = Σ𝑖 ∈ (3...𝑁)((𝑄𝑖)↑2))
274232, 262, 2733eqtrrd 2785 . . . . 5 ((𝑁 ∈ (ℤ‘3) ∧ 3 < 𝑁𝐼 ∈ (2...(𝑁 − 1))) → Σ𝑖 ∈ (3...𝑁)((𝑄𝑖)↑2) = Σ𝑖 ∈ (2...𝑁)((𝑄𝑖)↑2))
275 simpl 482 . . . . . . . . 9 ((𝑁 ∈ (ℤ‘3) ∧ 3 < 𝑁) → 𝑁 ∈ (ℤ‘3))
2766axlowdimlem7 28981 . . . . . . . . . . . 12 (𝑁 ∈ (ℤ‘3) → 𝑃 ∈ (𝔼‘𝑁))
277276ad2antrr 725 . . . . . . . . . . 11 (((𝑁 ∈ (ℤ‘3) ∧ 3 < 𝑁) ∧ 𝑖 ∈ (3...𝑁)) → 𝑃 ∈ (𝔼‘𝑁))
278268adantl 481 . . . . . . . . . . 11 (((𝑁 ∈ (ℤ‘3) ∧ 3 < 𝑁) ∧ 𝑖 ∈ (3...𝑁)) → 𝑖 ∈ (1...𝑁))
279 fveecn 28935 . . . . . . . . . . 11 ((𝑃 ∈ (𝔼‘𝑁) ∧ 𝑖 ∈ (1...𝑁)) → (𝑃𝑖) ∈ ℂ)
280277, 278, 279syl2anc 583 . . . . . . . . . 10 (((𝑁 ∈ (ℤ‘3) ∧ 3 < 𝑁) ∧ 𝑖 ∈ (3...𝑁)) → (𝑃𝑖) ∈ ℂ)
281280sqcld 14194 . . . . . . . . 9 (((𝑁 ∈ (ℤ‘3) ∧ 3 < 𝑁) ∧ 𝑖 ∈ (3...𝑁)) → ((𝑃𝑖)↑2) ∈ ℂ)
282 neg1sqe1 14245 . . . . . . . . . 10 (-1↑2) = 1
2839, 282eqtrdi 2796 . . . . . . . . 9 (𝑖 = 3 → ((𝑃𝑖)↑2) = 1)
284275, 281, 283fsum1p 15801 . . . . . . . 8 ((𝑁 ∈ (ℤ‘3) ∧ 3 < 𝑁) → Σ𝑖 ∈ (3...𝑁)((𝑃𝑖)↑2) = (1 + Σ𝑖 ∈ ((3 + 1)...𝑁)((𝑃𝑖)↑2)))
285 1re 11290 . . . . . . . . . . . . . . . . 17 1 ∈ ℝ
286 zaddcl 12683 . . . . . . . . . . . . . . . . . . 19 ((3 ∈ ℤ ∧ 1 ∈ ℤ) → (3 + 1) ∈ ℤ)
2872, 244, 286mp2an 691 . . . . . . . . . . . . . . . . . 18 (3 + 1) ∈ ℤ
288287zrei 12645 . . . . . . . . . . . . . . . . 17 (3 + 1) ∈ ℝ
289 1lt3 12466 . . . . . . . . . . . . . . . . . 18 1 < 3
29048ltp1i 12199 . . . . . . . . . . . . . . . . . 18 3 < (3 + 1)
291285, 48, 288lttri 11416 . . . . . . . . . . . . . . . . . 18 ((1 < 3 ∧ 3 < (3 + 1)) → 1 < (3 + 1))
292289, 290, 291mp2an 691 . . . . . . . . . . . . . . . . 17 1 < (3 + 1)
293285, 288, 292ltleii 11413 . . . . . . . . . . . . . . . 16 1 ≤ (3 + 1)
294 eluz 12917 . . . . . . . . . . . . . . . . 17 ((1 ∈ ℤ ∧ (3 + 1) ∈ ℤ) → ((3 + 1) ∈ (ℤ‘1) ↔ 1 ≤ (3 + 1)))
295244, 287, 294mp2an 691 . . . . . . . . . . . . . . . 16 ((3 + 1) ∈ (ℤ‘1) ↔ 1 ≤ (3 + 1))
296293, 295mpbir 231 . . . . . . . . . . . . . . 15 (3 + 1) ∈ (ℤ‘1)
297 fzss1 13623 . . . . . . . . . . . . . . 15 ((3 + 1) ∈ (ℤ‘1) → ((3 + 1)...𝑁) ⊆ (1...𝑁))
298296, 297ax-mp 5 . . . . . . . . . . . . . 14 ((3 + 1)...𝑁) ⊆ (1...𝑁)
299298sseli 4004 . . . . . . . . . . . . 13 (𝑖 ∈ ((3 + 1)...𝑁) → 𝑖 ∈ (1...𝑁))
30048, 288ltnlei 11411 . . . . . . . . . . . . . . . . . . 19 (3 < (3 + 1) ↔ ¬ (3 + 1) ≤ 3)
301290, 300mpbi 230 . . . . . . . . . . . . . . . . . 18 ¬ (3 + 1) ≤ 3
302301intnanr 487 . . . . . . . . . . . . . . . . 17 ¬ ((3 + 1) ≤ 3 ∧ 3 ≤ 𝑁)
303 elfz 13573 . . . . . . . . . . . . . . . . . 18 ((3 ∈ ℤ ∧ (3 + 1) ∈ ℤ ∧ 𝑁 ∈ ℤ) → (3 ∈ ((3 + 1)...𝑁) ↔ ((3 + 1) ≤ 3 ∧ 3 ≤ 𝑁)))
3042, 287, 233, 303mp3an12i 1465 . . . . . . . . . . . . . . . . 17 ((𝑁 ∈ (ℤ‘3) ∧ 3 < 𝑁) → (3 ∈ ((3 + 1)...𝑁) ↔ ((3 + 1) ≤ 3 ∧ 3 ≤ 𝑁)))
305302, 304mtbiri 327 . . . . . . . . . . . . . . . 16 ((𝑁 ∈ (ℤ‘3) ∧ 3 < 𝑁) → ¬ 3 ∈ ((3 + 1)...𝑁))
306 eleq1 2832 . . . . . . . . . . . . . . . . 17 (𝑖 = 3 → (𝑖 ∈ ((3 + 1)...𝑁) ↔ 3 ∈ ((3 + 1)...𝑁)))
307306notbid 318 . . . . . . . . . . . . . . . 16 (𝑖 = 3 → (¬ 𝑖 ∈ ((3 + 1)...𝑁) ↔ ¬ 3 ∈ ((3 + 1)...𝑁)))
308305, 307syl5ibrcom 247 . . . . . . . . . . . . . . 15 ((𝑁 ∈ (ℤ‘3) ∧ 3 < 𝑁) → (𝑖 = 3 → ¬ 𝑖 ∈ ((3 + 1)...𝑁)))
309308necon2ad 2961 . . . . . . . . . . . . . 14 ((𝑁 ∈ (ℤ‘3) ∧ 3 < 𝑁) → (𝑖 ∈ ((3 + 1)...𝑁) → 𝑖 ≠ 3))
310309imp 406 . . . . . . . . . . . . 13 (((𝑁 ∈ (ℤ‘3) ∧ 3 < 𝑁) ∧ 𝑖 ∈ ((3 + 1)...𝑁)) → 𝑖 ≠ 3)
3116axlowdimlem9 28983 . . . . . . . . . . . . 13 ((𝑖 ∈ (1...𝑁) ∧ 𝑖 ≠ 3) → (𝑃𝑖) = 0)
312299, 310, 311syl2an2 685 . . . . . . . . . . . 12 (((𝑁 ∈ (ℤ‘3) ∧ 3 < 𝑁) ∧ 𝑖 ∈ ((3 + 1)...𝑁)) → (𝑃𝑖) = 0)
313312sq0id 14243 . . . . . . . . . . 11 (((𝑁 ∈ (ℤ‘3) ∧ 3 < 𝑁) ∧ 𝑖 ∈ ((3 + 1)...𝑁)) → ((𝑃𝑖)↑2) = 0)
314313sumeq2dv 15750 . . . . . . . . . 10 ((𝑁 ∈ (ℤ‘3) ∧ 3 < 𝑁) → Σ𝑖 ∈ ((3 + 1)...𝑁)((𝑃𝑖)↑2) = Σ𝑖 ∈ ((3 + 1)...𝑁)0)
315 fzfi 14023 . . . . . . . . . . . 12 ((3 + 1)...𝑁) ∈ Fin
316315olci 865 . . . . . . . . . . 11 (((3 + 1)...𝑁) ⊆ (ℤ‘1) ∨ ((3 + 1)...𝑁) ∈ Fin)
317 sumz 15770 . . . . . . . . . . 11 ((((3 + 1)...𝑁) ⊆ (ℤ‘1) ∨ ((3 + 1)...𝑁) ∈ Fin) → Σ𝑖 ∈ ((3 + 1)...𝑁)0 = 0)
318316, 317ax-mp 5 . . . . . . . . . 10 Σ𝑖 ∈ ((3 + 1)...𝑁)0 = 0
319314, 318eqtrdi 2796 . . . . . . . . 9 ((𝑁 ∈ (ℤ‘3) ∧ 3 < 𝑁) → Σ𝑖 ∈ ((3 + 1)...𝑁)((𝑃𝑖)↑2) = 0)
320319oveq2d 7464 . . . . . . . 8 ((𝑁 ∈ (ℤ‘3) ∧ 3 < 𝑁) → (1 + Σ𝑖 ∈ ((3 + 1)...𝑁)((𝑃𝑖)↑2)) = (1 + 0))
321284, 320eqtrd 2780 . . . . . . 7 ((𝑁 ∈ (ℤ‘3) ∧ 3 < 𝑁) → Σ𝑖 ∈ (3...𝑁)((𝑃𝑖)↑2) = (1 + 0))
322321, 213eqtrdi 2796 . . . . . 6 ((𝑁 ∈ (ℤ‘3) ∧ 3 < 𝑁) → Σ𝑖 ∈ (3...𝑁)((𝑃𝑖)↑2) = 1)
3233223adant3 1132 . . . . 5 ((𝑁 ∈ (ℤ‘3) ∧ 3 < 𝑁𝐼 ∈ (2...(𝑁 − 1))) → Σ𝑖 ∈ (3...𝑁)((𝑃𝑖)↑2) = 1)
324221, 274, 3233eqtr4rd 2791 . . . 4 ((𝑁 ∈ (ℤ‘3) ∧ 3 < 𝑁𝐼 ∈ (2...(𝑁 − 1))) → Σ𝑖 ∈ (3...𝑁)((𝑃𝑖)↑2) = Σ𝑖 ∈ (3...𝑁)((𝑄𝑖)↑2))
32544, 54, 55, 324syl3anc 1371 . . 3 ((𝑁 ≠ 3 ∧ (𝑁 ∈ (ℤ‘3) ∧ 𝐼 ∈ (2...(𝑁 − 1)))) → Σ𝑖 ∈ (3...𝑁)((𝑃𝑖)↑2) = Σ𝑖 ∈ (3...𝑁)((𝑄𝑖)↑2))
326325ex 412 . 2 (𝑁 ≠ 3 → ((𝑁 ∈ (ℤ‘3) ∧ 𝐼 ∈ (2...(𝑁 − 1))) → Σ𝑖 ∈ (3...𝑁)((𝑃𝑖)↑2) = Σ𝑖 ∈ (3...𝑁)((𝑄𝑖)↑2)))
32743, 326pm2.61ine 3031 1 ((𝑁 ∈ (ℤ‘3) ∧ 𝐼 ∈ (2...(𝑁 − 1))) → Σ𝑖 ∈ (3...𝑁)((𝑃𝑖)↑2) = Σ𝑖 ∈ (3...𝑁)((𝑄𝑖)↑2))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wo 846  w3a 1087   = wceq 1537  wcel 2108  wne 2946  cdif 3973  cun 3974  cin 3975  wss 3976  c0 4352  {csn 4648  cop 4654   class class class wbr 5166   × cxp 5698  cfv 6573  (class class class)co 7448  Fincfn 9003  cc 11182  cr 11183  0cc0 11184  1c1 11185   + caddc 11187   < clt 11324  cle 11325  cmin 11520  -cneg 11521  cn 12293  2c2 12348  3c3 12349  cz 12639  cuz 12903  ...cfz 13567  cexp 14112  Σcsu 15734  𝔼cee 28921
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-inf2 9710  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261  ax-pre-sup 11262
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-int 4971  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-se 5653  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-isom 6582  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-om 7904  df-1st 8030  df-2nd 8031  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-1o 8522  df-er 8763  df-map 8886  df-en 9004  df-dom 9005  df-sdom 9006  df-fin 9007  df-sup 9511  df-oi 9579  df-card 10008  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-div 11948  df-nn 12294  df-2 12356  df-3 12357  df-n0 12554  df-z 12640  df-uz 12904  df-rp 13058  df-fz 13568  df-fzo 13712  df-seq 14053  df-exp 14113  df-hash 14380  df-cj 15148  df-re 15149  df-im 15150  df-sqrt 15284  df-abs 15285  df-clim 15534  df-sum 15735  df-ee 28924
This theorem is referenced by:  axlowdimlem17  28991
  Copyright terms: Public domain W3C validator