Proof of Theorem axlowdimlem16
Step | Hyp | Ref
| Expression |
1 | | elfz1eq 12674 |
. . . . . 6
⊢ (𝐼 ∈ (2...2) → 𝐼 = 2) |
2 | | oveq1 6931 |
. . . . . . . . . . 11
⊢ (𝐼 = 2 → (𝐼 + 1) = (2 + 1)) |
3 | | df-3 11444 |
. . . . . . . . . . 11
⊢ 3 = (2 +
1) |
4 | 2, 3 | syl6reqr 2833 |
. . . . . . . . . 10
⊢ (𝐼 = 2 → 3 = (𝐼 + 1)) |
5 | 4, 4 | oveq12d 6942 |
. . . . . . . . 9
⊢ (𝐼 = 2 → (3...3) = ((𝐼 + 1)...(𝐼 + 1))) |
6 | 5 | sumeq1d 14848 |
. . . . . . . 8
⊢ (𝐼 = 2 → Σ𝑖 ∈ (3...3)((𝑄‘𝑖)↑2) = Σ𝑖 ∈ ((𝐼 + 1)...(𝐼 + 1))((𝑄‘𝑖)↑2)) |
7 | 2, 3 | syl6eqr 2832 |
. . . . . . . . . 10
⊢ (𝐼 = 2 → (𝐼 + 1) = 3) |
8 | | 3z 11767 |
. . . . . . . . . 10
⊢ 3 ∈
ℤ |
9 | 7, 8 | syl6eqel 2867 |
. . . . . . . . 9
⊢ (𝐼 = 2 → (𝐼 + 1) ∈ ℤ) |
10 | | ax-1cn 10332 |
. . . . . . . . . 10
⊢ 1 ∈
ℂ |
11 | 10 | sqcli 13268 |
. . . . . . . . 9
⊢
(1↑2) ∈ ℂ |
12 | | fveq2 6448 |
. . . . . . . . . . . 12
⊢ (𝑖 = (𝐼 + 1) → (𝑄‘𝑖) = (𝑄‘(𝐼 + 1))) |
13 | | axlowdimlem16.2 |
. . . . . . . . . . . . 13
⊢ 𝑄 = ({〈(𝐼 + 1), 1〉} ∪ (((1...𝑁) ∖ {(𝐼 + 1)}) × {0})) |
14 | 13 | axlowdimlem11 26318 |
. . . . . . . . . . . 12
⊢ (𝑄‘(𝐼 + 1)) = 1 |
15 | 12, 14 | syl6eq 2830 |
. . . . . . . . . . 11
⊢ (𝑖 = (𝐼 + 1) → (𝑄‘𝑖) = 1) |
16 | 15 | oveq1d 6939 |
. . . . . . . . . 10
⊢ (𝑖 = (𝐼 + 1) → ((𝑄‘𝑖)↑2) = (1↑2)) |
17 | 16 | fsum1 14892 |
. . . . . . . . 9
⊢ (((𝐼 + 1) ∈ ℤ ∧
(1↑2) ∈ ℂ) → Σ𝑖 ∈ ((𝐼 + 1)...(𝐼 + 1))((𝑄‘𝑖)↑2) = (1↑2)) |
18 | 9, 11, 17 | sylancl 580 |
. . . . . . . 8
⊢ (𝐼 = 2 → Σ𝑖 ∈ ((𝐼 + 1)...(𝐼 + 1))((𝑄‘𝑖)↑2) = (1↑2)) |
19 | 6, 18 | eqtrd 2814 |
. . . . . . 7
⊢ (𝐼 = 2 → Σ𝑖 ∈ (3...3)((𝑄‘𝑖)↑2) = (1↑2)) |
20 | | fveq2 6448 |
. . . . . . . . . . . 12
⊢ (𝑖 = 3 → (𝑃‘𝑖) = (𝑃‘3)) |
21 | | axlowdimlem16.1 |
. . . . . . . . . . . . 13
⊢ 𝑃 = ({〈3, -1〉} ∪
(((1...𝑁) ∖ {3})
× {0})) |
22 | 21 | axlowdimlem8 26315 |
. . . . . . . . . . . 12
⊢ (𝑃‘3) = -1 |
23 | 20, 22 | syl6eq 2830 |
. . . . . . . . . . 11
⊢ (𝑖 = 3 → (𝑃‘𝑖) = -1) |
24 | 23 | oveq1d 6939 |
. . . . . . . . . 10
⊢ (𝑖 = 3 → ((𝑃‘𝑖)↑2) = (-1↑2)) |
25 | | sqneg 13246 |
. . . . . . . . . . 11
⊢ (1 ∈
ℂ → (-1↑2) = (1↑2)) |
26 | 10, 25 | ax-mp 5 |
. . . . . . . . . 10
⊢
(-1↑2) = (1↑2) |
27 | 24, 26 | syl6eq 2830 |
. . . . . . . . 9
⊢ (𝑖 = 3 → ((𝑃‘𝑖)↑2) = (1↑2)) |
28 | 27 | fsum1 14892 |
. . . . . . . 8
⊢ ((3
∈ ℤ ∧ (1↑2) ∈ ℂ) → Σ𝑖 ∈ (3...3)((𝑃‘𝑖)↑2) = (1↑2)) |
29 | 8, 11, 28 | mp2an 682 |
. . . . . . 7
⊢
Σ𝑖 ∈
(3...3)((𝑃‘𝑖)↑2) =
(1↑2) |
30 | 19, 29 | syl6reqr 2833 |
. . . . . 6
⊢ (𝐼 = 2 → Σ𝑖 ∈ (3...3)((𝑃‘𝑖)↑2) = Σ𝑖 ∈ (3...3)((𝑄‘𝑖)↑2)) |
31 | 1, 30 | syl 17 |
. . . . 5
⊢ (𝐼 ∈ (2...2) →
Σ𝑖 ∈
(3...3)((𝑃‘𝑖)↑2) = Σ𝑖 ∈ (3...3)((𝑄‘𝑖)↑2)) |
32 | 31 | a1i 11 |
. . . 4
⊢ (𝑁 = 3 → (𝐼 ∈ (2...2) → Σ𝑖 ∈ (3...3)((𝑃‘𝑖)↑2) = Σ𝑖 ∈ (3...3)((𝑄‘𝑖)↑2))) |
33 | | oveq1 6931 |
. . . . . . 7
⊢ (𝑁 = 3 → (𝑁 − 1) = (3 −
1)) |
34 | | 3m1e2 11515 |
. . . . . . 7
⊢ (3
− 1) = 2 |
35 | 33, 34 | syl6eq 2830 |
. . . . . 6
⊢ (𝑁 = 3 → (𝑁 − 1) = 2) |
36 | 35 | oveq2d 6940 |
. . . . 5
⊢ (𝑁 = 3 → (2...(𝑁 − 1)) =
(2...2)) |
37 | 36 | eleq2d 2845 |
. . . 4
⊢ (𝑁 = 3 → (𝐼 ∈ (2...(𝑁 − 1)) ↔ 𝐼 ∈ (2...2))) |
38 | | oveq2 6932 |
. . . . . 6
⊢ (𝑁 = 3 → (3...𝑁) = (3...3)) |
39 | 38 | sumeq1d 14848 |
. . . . 5
⊢ (𝑁 = 3 → Σ𝑖 ∈ (3...𝑁)((𝑃‘𝑖)↑2) = Σ𝑖 ∈ (3...3)((𝑃‘𝑖)↑2)) |
40 | 38 | sumeq1d 14848 |
. . . . 5
⊢ (𝑁 = 3 → Σ𝑖 ∈ (3...𝑁)((𝑄‘𝑖)↑2) = Σ𝑖 ∈ (3...3)((𝑄‘𝑖)↑2)) |
41 | 39, 40 | eqeq12d 2793 |
. . . 4
⊢ (𝑁 = 3 → (Σ𝑖 ∈ (3...𝑁)((𝑃‘𝑖)↑2) = Σ𝑖 ∈ (3...𝑁)((𝑄‘𝑖)↑2) ↔ Σ𝑖 ∈ (3...3)((𝑃‘𝑖)↑2) = Σ𝑖 ∈ (3...3)((𝑄‘𝑖)↑2))) |
42 | 32, 37, 41 | 3imtr4d 286 |
. . 3
⊢ (𝑁 = 3 → (𝐼 ∈ (2...(𝑁 − 1)) → Σ𝑖 ∈ (3...𝑁)((𝑃‘𝑖)↑2) = Σ𝑖 ∈ (3...𝑁)((𝑄‘𝑖)↑2))) |
43 | 42 | adantld 486 |
. 2
⊢ (𝑁 = 3 → ((𝑁 ∈ (ℤ≥‘3)
∧ 𝐼 ∈ (2...(𝑁 − 1))) →
Σ𝑖 ∈ (3...𝑁)((𝑃‘𝑖)↑2) = Σ𝑖 ∈ (3...𝑁)((𝑄‘𝑖)↑2))) |
44 | | simprl 761 |
. . . 4
⊢ ((𝑁 ≠ 3 ∧ (𝑁 ∈ (ℤ≥‘3)
∧ 𝐼 ∈ (2...(𝑁 − 1)))) → 𝑁 ∈
(ℤ≥‘3)) |
45 | | eluzle 12010 |
. . . . . . 7
⊢ (𝑁 ∈
(ℤ≥‘3) → 3 ≤ 𝑁) |
46 | 45 | adantl 475 |
. . . . . 6
⊢ ((𝑁 ≠ 3 ∧ 𝑁 ∈ (ℤ≥‘3))
→ 3 ≤ 𝑁) |
47 | | simpl 476 |
. . . . . 6
⊢ ((𝑁 ≠ 3 ∧ 𝑁 ∈ (ℤ≥‘3))
→ 𝑁 ≠
3) |
48 | | 3re 11460 |
. . . . . . 7
⊢ 3 ∈
ℝ |
49 | | eluzelre 12008 |
. . . . . . . 8
⊢ (𝑁 ∈
(ℤ≥‘3) → 𝑁 ∈ ℝ) |
50 | 49 | adantl 475 |
. . . . . . 7
⊢ ((𝑁 ≠ 3 ∧ 𝑁 ∈ (ℤ≥‘3))
→ 𝑁 ∈
ℝ) |
51 | | ltlen 10479 |
. . . . . . 7
⊢ ((3
∈ ℝ ∧ 𝑁
∈ ℝ) → (3 < 𝑁 ↔ (3 ≤ 𝑁 ∧ 𝑁 ≠ 3))) |
52 | 48, 50, 51 | sylancr 581 |
. . . . . 6
⊢ ((𝑁 ≠ 3 ∧ 𝑁 ∈ (ℤ≥‘3))
→ (3 < 𝑁 ↔ (3
≤ 𝑁 ∧ 𝑁 ≠ 3))) |
53 | 46, 47, 52 | mpbir2and 703 |
. . . . 5
⊢ ((𝑁 ≠ 3 ∧ 𝑁 ∈ (ℤ≥‘3))
→ 3 < 𝑁) |
54 | 53 | adantrr 707 |
. . . 4
⊢ ((𝑁 ≠ 3 ∧ (𝑁 ∈ (ℤ≥‘3)
∧ 𝐼 ∈ (2...(𝑁 − 1)))) → 3 <
𝑁) |
55 | | simprr 763 |
. . . 4
⊢ ((𝑁 ≠ 3 ∧ (𝑁 ∈ (ℤ≥‘3)
∧ 𝐼 ∈ (2...(𝑁 − 1)))) → 𝐼 ∈ (2...(𝑁 − 1))) |
56 | | fzssp1 12706 |
. . . . . . . . . . . . 13
⊢
(2...(𝑁 − 1))
⊆ (2...((𝑁 − 1)
+ 1)) |
57 | | simp3 1129 |
. . . . . . . . . . . . 13
⊢ ((𝑁 ∈
(ℤ≥‘3) ∧ 3 < 𝑁 ∧ 𝐼 ∈ (2...(𝑁 − 1))) → 𝐼 ∈ (2...(𝑁 − 1))) |
58 | 56, 57 | sseldi 3819 |
. . . . . . . . . . . 12
⊢ ((𝑁 ∈
(ℤ≥‘3) ∧ 3 < 𝑁 ∧ 𝐼 ∈ (2...(𝑁 − 1))) → 𝐼 ∈ (2...((𝑁 − 1) + 1))) |
59 | | eluzelz 12007 |
. . . . . . . . . . . . . . . 16
⊢ (𝑁 ∈
(ℤ≥‘3) → 𝑁 ∈ ℤ) |
60 | 59 | 3ad2ant1 1124 |
. . . . . . . . . . . . . . 15
⊢ ((𝑁 ∈
(ℤ≥‘3) ∧ 3 < 𝑁 ∧ 𝐼 ∈ (2...(𝑁 − 1))) → 𝑁 ∈ ℤ) |
61 | 60 | zcnd 11840 |
. . . . . . . . . . . . . 14
⊢ ((𝑁 ∈
(ℤ≥‘3) ∧ 3 < 𝑁 ∧ 𝐼 ∈ (2...(𝑁 − 1))) → 𝑁 ∈ ℂ) |
62 | | npcan 10634 |
. . . . . . . . . . . . . 14
⊢ ((𝑁 ∈ ℂ ∧ 1 ∈
ℂ) → ((𝑁 −
1) + 1) = 𝑁) |
63 | 61, 10, 62 | sylancl 580 |
. . . . . . . . . . . . 13
⊢ ((𝑁 ∈
(ℤ≥‘3) ∧ 3 < 𝑁 ∧ 𝐼 ∈ (2...(𝑁 − 1))) → ((𝑁 − 1) + 1) = 𝑁) |
64 | 63 | oveq2d 6940 |
. . . . . . . . . . . 12
⊢ ((𝑁 ∈
(ℤ≥‘3) ∧ 3 < 𝑁 ∧ 𝐼 ∈ (2...(𝑁 − 1))) → (2...((𝑁 − 1) + 1)) = (2...𝑁)) |
65 | 58, 64 | eleqtrd 2861 |
. . . . . . . . . . 11
⊢ ((𝑁 ∈
(ℤ≥‘3) ∧ 3 < 𝑁 ∧ 𝐼 ∈ (2...(𝑁 − 1))) → 𝐼 ∈ (2...𝑁)) |
66 | | elfzelz 12664 |
. . . . . . . . . . 11
⊢ (𝐼 ∈ (2...𝑁) → 𝐼 ∈ ℤ) |
67 | 65, 66 | syl 17 |
. . . . . . . . . 10
⊢ ((𝑁 ∈
(ℤ≥‘3) ∧ 3 < 𝑁 ∧ 𝐼 ∈ (2...(𝑁 − 1))) → 𝐼 ∈ ℤ) |
68 | 67 | zred 11839 |
. . . . . . . . 9
⊢ ((𝑁 ∈
(ℤ≥‘3) ∧ 3 < 𝑁 ∧ 𝐼 ∈ (2...(𝑁 − 1))) → 𝐼 ∈ ℝ) |
69 | 68 | ltp1d 11311 |
. . . . . . . 8
⊢ ((𝑁 ∈
(ℤ≥‘3) ∧ 3 < 𝑁 ∧ 𝐼 ∈ (2...(𝑁 − 1))) → 𝐼 < (𝐼 + 1)) |
70 | | fzdisj 12690 |
. . . . . . . 8
⊢ (𝐼 < (𝐼 + 1) → ((2...𝐼) ∩ ((𝐼 + 1)...𝑁)) = ∅) |
71 | 69, 70 | syl 17 |
. . . . . . 7
⊢ ((𝑁 ∈
(ℤ≥‘3) ∧ 3 < 𝑁 ∧ 𝐼 ∈ (2...(𝑁 − 1))) → ((2...𝐼) ∩ ((𝐼 + 1)...𝑁)) = ∅) |
72 | | fzsplit 12689 |
. . . . . . . 8
⊢ (𝐼 ∈ (2...𝑁) → (2...𝑁) = ((2...𝐼) ∪ ((𝐼 + 1)...𝑁))) |
73 | 65, 72 | syl 17 |
. . . . . . 7
⊢ ((𝑁 ∈
(ℤ≥‘3) ∧ 3 < 𝑁 ∧ 𝐼 ∈ (2...(𝑁 − 1))) → (2...𝑁) = ((2...𝐼) ∪ ((𝐼 + 1)...𝑁))) |
74 | | fzfid 13096 |
. . . . . . 7
⊢ ((𝑁 ∈
(ℤ≥‘3) ∧ 3 < 𝑁 ∧ 𝐼 ∈ (2...(𝑁 − 1))) → (2...𝑁) ∈ Fin) |
75 | | eluzge3nn 12041 |
. . . . . . . . . . 11
⊢ (𝑁 ∈
(ℤ≥‘3) → 𝑁 ∈ ℕ) |
76 | | 2eluzge1 12045 |
. . . . . . . . . . . . 13
⊢ 2 ∈
(ℤ≥‘1) |
77 | | fzss1 12702 |
. . . . . . . . . . . . 13
⊢ (2 ∈
(ℤ≥‘1) → (2...(𝑁 − 1)) ⊆ (1...(𝑁 − 1))) |
78 | 76, 77 | ax-mp 5 |
. . . . . . . . . . . 12
⊢
(2...(𝑁 − 1))
⊆ (1...(𝑁 −
1)) |
79 | 78 | sseli 3817 |
. . . . . . . . . . 11
⊢ (𝐼 ∈ (2...(𝑁 − 1)) → 𝐼 ∈ (1...(𝑁 − 1))) |
80 | 13 | axlowdimlem10 26317 |
. . . . . . . . . . 11
⊢ ((𝑁 ∈ ℕ ∧ 𝐼 ∈ (1...(𝑁 − 1))) → 𝑄 ∈ (𝔼‘𝑁)) |
81 | 75, 79, 80 | syl2an 589 |
. . . . . . . . . 10
⊢ ((𝑁 ∈
(ℤ≥‘3) ∧ 𝐼 ∈ (2...(𝑁 − 1))) → 𝑄 ∈ (𝔼‘𝑁)) |
82 | | fzss1 12702 |
. . . . . . . . . . . 12
⊢ (2 ∈
(ℤ≥‘1) → (2...𝑁) ⊆ (1...𝑁)) |
83 | 76, 82 | ax-mp 5 |
. . . . . . . . . . 11
⊢
(2...𝑁) ⊆
(1...𝑁) |
84 | 83 | sseli 3817 |
. . . . . . . . . 10
⊢ (𝑖 ∈ (2...𝑁) → 𝑖 ∈ (1...𝑁)) |
85 | | fveecn 26268 |
. . . . . . . . . 10
⊢ ((𝑄 ∈ (𝔼‘𝑁) ∧ 𝑖 ∈ (1...𝑁)) → (𝑄‘𝑖) ∈ ℂ) |
86 | 81, 84, 85 | syl2an 589 |
. . . . . . . . 9
⊢ (((𝑁 ∈
(ℤ≥‘3) ∧ 𝐼 ∈ (2...(𝑁 − 1))) ∧ 𝑖 ∈ (2...𝑁)) → (𝑄‘𝑖) ∈ ℂ) |
87 | 86 | sqcld 13330 |
. . . . . . . 8
⊢ (((𝑁 ∈
(ℤ≥‘3) ∧ 𝐼 ∈ (2...(𝑁 − 1))) ∧ 𝑖 ∈ (2...𝑁)) → ((𝑄‘𝑖)↑2) ∈ ℂ) |
88 | 87 | 3adantl2 1169 |
. . . . . . 7
⊢ (((𝑁 ∈
(ℤ≥‘3) ∧ 3 < 𝑁 ∧ 𝐼 ∈ (2...(𝑁 − 1))) ∧ 𝑖 ∈ (2...𝑁)) → ((𝑄‘𝑖)↑2) ∈ ℂ) |
89 | 71, 73, 74, 88 | fsumsplit 14887 |
. . . . . 6
⊢ ((𝑁 ∈
(ℤ≥‘3) ∧ 3 < 𝑁 ∧ 𝐼 ∈ (2...(𝑁 − 1))) → Σ𝑖 ∈ (2...𝑁)((𝑄‘𝑖)↑2) = (Σ𝑖 ∈ (2...𝐼)((𝑄‘𝑖)↑2) + Σ𝑖 ∈ ((𝐼 + 1)...𝑁)((𝑄‘𝑖)↑2))) |
90 | | fzss1 12702 |
. . . . . . . . . . . . . . . 16
⊢ (2 ∈
(ℤ≥‘1) → (2...𝐼) ⊆ (1...𝐼)) |
91 | 76, 90 | ax-mp 5 |
. . . . . . . . . . . . . . 15
⊢
(2...𝐼) ⊆
(1...𝐼) |
92 | 91 | sseli 3817 |
. . . . . . . . . . . . . 14
⊢ (𝑖 ∈ (2...𝐼) → 𝑖 ∈ (1...𝐼)) |
93 | | elfzelz 12664 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝐼 ∈ (2...(𝑁 − 1)) → 𝐼 ∈ ℤ) |
94 | 93 | zred 11839 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝐼 ∈ (2...(𝑁 − 1)) → 𝐼 ∈ ℝ) |
95 | 94 | 3ad2ant3 1126 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑁 ∈
(ℤ≥‘3) ∧ 3 < 𝑁 ∧ 𝐼 ∈ (2...(𝑁 − 1))) → 𝐼 ∈ ℝ) |
96 | 49 | 3ad2ant1 1124 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑁 ∈
(ℤ≥‘3) ∧ 3 < 𝑁 ∧ 𝐼 ∈ (2...(𝑁 − 1))) → 𝑁 ∈ ℝ) |
97 | | peano2rem 10692 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑁 ∈ ℝ → (𝑁 − 1) ∈
ℝ) |
98 | 96, 97 | syl 17 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝑁 ∈
(ℤ≥‘3) ∧ 3 < 𝑁 ∧ 𝐼 ∈ (2...(𝑁 − 1))) → (𝑁 − 1) ∈ ℝ) |
99 | | elfzle2 12667 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝐼 ∈ (2...(𝑁 − 1)) → 𝐼 ≤ (𝑁 − 1)) |
100 | 99 | 3ad2ant3 1126 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝑁 ∈
(ℤ≥‘3) ∧ 3 < 𝑁 ∧ 𝐼 ∈ (2...(𝑁 − 1))) → 𝐼 ≤ (𝑁 − 1)) |
101 | 96 | ltm1d 11313 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝑁 ∈
(ℤ≥‘3) ∧ 3 < 𝑁 ∧ 𝐼 ∈ (2...(𝑁 − 1))) → (𝑁 − 1) < 𝑁) |
102 | 95, 98, 96, 100, 101 | lelttrd 10536 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑁 ∈
(ℤ≥‘3) ∧ 3 < 𝑁 ∧ 𝐼 ∈ (2...(𝑁 − 1))) → 𝐼 < 𝑁) |
103 | 95, 96, 102 | ltled 10526 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑁 ∈
(ℤ≥‘3) ∧ 3 < 𝑁 ∧ 𝐼 ∈ (2...(𝑁 − 1))) → 𝐼 ≤ 𝑁) |
104 | 93 | 3ad2ant3 1126 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑁 ∈
(ℤ≥‘3) ∧ 3 < 𝑁 ∧ 𝐼 ∈ (2...(𝑁 − 1))) → 𝐼 ∈ ℤ) |
105 | | eluz 12011 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝐼 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑁 ∈
(ℤ≥‘𝐼) ↔ 𝐼 ≤ 𝑁)) |
106 | 104, 60, 105 | syl2anc 579 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑁 ∈
(ℤ≥‘3) ∧ 3 < 𝑁 ∧ 𝐼 ∈ (2...(𝑁 − 1))) → (𝑁 ∈ (ℤ≥‘𝐼) ↔ 𝐼 ≤ 𝑁)) |
107 | 103, 106 | mpbird 249 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑁 ∈
(ℤ≥‘3) ∧ 3 < 𝑁 ∧ 𝐼 ∈ (2...(𝑁 − 1))) → 𝑁 ∈ (ℤ≥‘𝐼)) |
108 | | fzss2 12703 |
. . . . . . . . . . . . . . . 16
⊢ (𝑁 ∈
(ℤ≥‘𝐼) → (1...𝐼) ⊆ (1...𝑁)) |
109 | 107, 108 | syl 17 |
. . . . . . . . . . . . . . 15
⊢ ((𝑁 ∈
(ℤ≥‘3) ∧ 3 < 𝑁 ∧ 𝐼 ∈ (2...(𝑁 − 1))) → (1...𝐼) ⊆ (1...𝑁)) |
110 | 109 | sseld 3820 |
. . . . . . . . . . . . . 14
⊢ ((𝑁 ∈
(ℤ≥‘3) ∧ 3 < 𝑁 ∧ 𝐼 ∈ (2...(𝑁 − 1))) → (𝑖 ∈ (1...𝐼) → 𝑖 ∈ (1...𝑁))) |
111 | 92, 110 | syl5 34 |
. . . . . . . . . . . . 13
⊢ ((𝑁 ∈
(ℤ≥‘3) ∧ 3 < 𝑁 ∧ 𝐼 ∈ (2...(𝑁 − 1))) → (𝑖 ∈ (2...𝐼) → 𝑖 ∈ (1...𝑁))) |
112 | 111 | imp 397 |
. . . . . . . . . . . 12
⊢ (((𝑁 ∈
(ℤ≥‘3) ∧ 3 < 𝑁 ∧ 𝐼 ∈ (2...(𝑁 − 1))) ∧ 𝑖 ∈ (2...𝐼)) → 𝑖 ∈ (1...𝑁)) |
113 | | elfzelz 12664 |
. . . . . . . . . . . . . . 15
⊢ (𝑖 ∈ (2...𝐼) → 𝑖 ∈ ℤ) |
114 | 113 | zred 11839 |
. . . . . . . . . . . . . 14
⊢ (𝑖 ∈ (2...𝐼) → 𝑖 ∈ ℝ) |
115 | 114 | adantl 475 |
. . . . . . . . . . . . 13
⊢ (((𝑁 ∈
(ℤ≥‘3) ∧ 3 < 𝑁 ∧ 𝐼 ∈ (2...(𝑁 − 1))) ∧ 𝑖 ∈ (2...𝐼)) → 𝑖 ∈ ℝ) |
116 | 95 | adantr 474 |
. . . . . . . . . . . . . 14
⊢ (((𝑁 ∈
(ℤ≥‘3) ∧ 3 < 𝑁 ∧ 𝐼 ∈ (2...(𝑁 − 1))) ∧ 𝑖 ∈ (2...𝐼)) → 𝐼 ∈ ℝ) |
117 | | peano2re 10551 |
. . . . . . . . . . . . . . . . 17
⊢ (𝐼 ∈ ℝ → (𝐼 + 1) ∈
ℝ) |
118 | 94, 117 | syl 17 |
. . . . . . . . . . . . . . . 16
⊢ (𝐼 ∈ (2...(𝑁 − 1)) → (𝐼 + 1) ∈ ℝ) |
119 | 118 | 3ad2ant3 1126 |
. . . . . . . . . . . . . . 15
⊢ ((𝑁 ∈
(ℤ≥‘3) ∧ 3 < 𝑁 ∧ 𝐼 ∈ (2...(𝑁 − 1))) → (𝐼 + 1) ∈ ℝ) |
120 | 119 | adantr 474 |
. . . . . . . . . . . . . 14
⊢ (((𝑁 ∈
(ℤ≥‘3) ∧ 3 < 𝑁 ∧ 𝐼 ∈ (2...(𝑁 − 1))) ∧ 𝑖 ∈ (2...𝐼)) → (𝐼 + 1) ∈ ℝ) |
121 | | elfzle2 12667 |
. . . . . . . . . . . . . . 15
⊢ (𝑖 ∈ (2...𝐼) → 𝑖 ≤ 𝐼) |
122 | 121 | adantl 475 |
. . . . . . . . . . . . . 14
⊢ (((𝑁 ∈
(ℤ≥‘3) ∧ 3 < 𝑁 ∧ 𝐼 ∈ (2...(𝑁 − 1))) ∧ 𝑖 ∈ (2...𝐼)) → 𝑖 ≤ 𝐼) |
123 | 116 | ltp1d 11311 |
. . . . . . . . . . . . . 14
⊢ (((𝑁 ∈
(ℤ≥‘3) ∧ 3 < 𝑁 ∧ 𝐼 ∈ (2...(𝑁 − 1))) ∧ 𝑖 ∈ (2...𝐼)) → 𝐼 < (𝐼 + 1)) |
124 | 115, 116,
120, 122, 123 | lelttrd 10536 |
. . . . . . . . . . . . 13
⊢ (((𝑁 ∈
(ℤ≥‘3) ∧ 3 < 𝑁 ∧ 𝐼 ∈ (2...(𝑁 − 1))) ∧ 𝑖 ∈ (2...𝐼)) → 𝑖 < (𝐼 + 1)) |
125 | 115, 124 | ltned 10514 |
. . . . . . . . . . . 12
⊢ (((𝑁 ∈
(ℤ≥‘3) ∧ 3 < 𝑁 ∧ 𝐼 ∈ (2...(𝑁 − 1))) ∧ 𝑖 ∈ (2...𝐼)) → 𝑖 ≠ (𝐼 + 1)) |
126 | 13 | axlowdimlem12 26319 |
. . . . . . . . . . . 12
⊢ ((𝑖 ∈ (1...𝑁) ∧ 𝑖 ≠ (𝐼 + 1)) → (𝑄‘𝑖) = 0) |
127 | 112, 125,
126 | syl2anc 579 |
. . . . . . . . . . 11
⊢ (((𝑁 ∈
(ℤ≥‘3) ∧ 3 < 𝑁 ∧ 𝐼 ∈ (2...(𝑁 − 1))) ∧ 𝑖 ∈ (2...𝐼)) → (𝑄‘𝑖) = 0) |
128 | 127 | sq0id 13281 |
. . . . . . . . . 10
⊢ (((𝑁 ∈
(ℤ≥‘3) ∧ 3 < 𝑁 ∧ 𝐼 ∈ (2...(𝑁 − 1))) ∧ 𝑖 ∈ (2...𝐼)) → ((𝑄‘𝑖)↑2) = 0) |
129 | 128 | sumeq2dv 14850 |
. . . . . . . . 9
⊢ ((𝑁 ∈
(ℤ≥‘3) ∧ 3 < 𝑁 ∧ 𝐼 ∈ (2...(𝑁 − 1))) → Σ𝑖 ∈ (2...𝐼)((𝑄‘𝑖)↑2) = Σ𝑖 ∈ (2...𝐼)0) |
130 | | fzfi 13095 |
. . . . . . . . . . 11
⊢
(2...𝐼) ∈
Fin |
131 | 130 | olci 855 |
. . . . . . . . . 10
⊢
((2...𝐼) ⊆
(ℤ≥‘1) ∨ (2...𝐼) ∈ Fin) |
132 | | sumz 14869 |
. . . . . . . . . 10
⊢
(((2...𝐼) ⊆
(ℤ≥‘1) ∨ (2...𝐼) ∈ Fin) → Σ𝑖 ∈ (2...𝐼)0 = 0) |
133 | 131, 132 | ax-mp 5 |
. . . . . . . . 9
⊢
Σ𝑖 ∈
(2...𝐼)0 =
0 |
134 | 129, 133 | syl6eq 2830 |
. . . . . . . 8
⊢ ((𝑁 ∈
(ℤ≥‘3) ∧ 3 < 𝑁 ∧ 𝐼 ∈ (2...(𝑁 − 1))) → Σ𝑖 ∈ (2...𝐼)((𝑄‘𝑖)↑2) = 0) |
135 | 104 | peano2zd 11842 |
. . . . . . . . . . 11
⊢ ((𝑁 ∈
(ℤ≥‘3) ∧ 3 < 𝑁 ∧ 𝐼 ∈ (2...(𝑁 − 1))) → (𝐼 + 1) ∈ ℤ) |
136 | | sq1 13282 |
. . . . . . . . . . . . 13
⊢
(1↑2) = 1 |
137 | 16, 136 | syl6eq 2830 |
. . . . . . . . . . . 12
⊢ (𝑖 = (𝐼 + 1) → ((𝑄‘𝑖)↑2) = 1) |
138 | 137 | fsum1 14892 |
. . . . . . . . . . 11
⊢ (((𝐼 + 1) ∈ ℤ ∧ 1
∈ ℂ) → Σ𝑖 ∈ ((𝐼 + 1)...(𝐼 + 1))((𝑄‘𝑖)↑2) = 1) |
139 | 135, 10, 138 | sylancl 580 |
. . . . . . . . . 10
⊢ ((𝑁 ∈
(ℤ≥‘3) ∧ 3 < 𝑁 ∧ 𝐼 ∈ (2...(𝑁 − 1))) → Σ𝑖 ∈ ((𝐼 + 1)...(𝐼 + 1))((𝑄‘𝑖)↑2) = 1) |
140 | | oveq2 6932 |
. . . . . . . . . . . 12
⊢ ((𝐼 + 1) = 𝑁 → ((𝐼 + 1)...(𝐼 + 1)) = ((𝐼 + 1)...𝑁)) |
141 | 140 | sumeq1d 14848 |
. . . . . . . . . . 11
⊢ ((𝐼 + 1) = 𝑁 → Σ𝑖 ∈ ((𝐼 + 1)...(𝐼 + 1))((𝑄‘𝑖)↑2) = Σ𝑖 ∈ ((𝐼 + 1)...𝑁)((𝑄‘𝑖)↑2)) |
142 | 141 | eqeq1d 2780 |
. . . . . . . . . 10
⊢ ((𝐼 + 1) = 𝑁 → (Σ𝑖 ∈ ((𝐼 + 1)...(𝐼 + 1))((𝑄‘𝑖)↑2) = 1 ↔ Σ𝑖 ∈ ((𝐼 + 1)...𝑁)((𝑄‘𝑖)↑2) = 1)) |
143 | 139, 142 | syl5ib 236 |
. . . . . . . . 9
⊢ ((𝐼 + 1) = 𝑁 → ((𝑁 ∈ (ℤ≥‘3)
∧ 3 < 𝑁 ∧ 𝐼 ∈ (2...(𝑁 − 1))) → Σ𝑖 ∈ ((𝐼 + 1)...𝑁)((𝑄‘𝑖)↑2) = 1)) |
144 | 104 | adantl 475 |
. . . . . . . . . . . . . . . 16
⊢ (((𝐼 + 1) ≠ 𝑁 ∧ (𝑁 ∈ (ℤ≥‘3)
∧ 3 < 𝑁 ∧ 𝐼 ∈ (2...(𝑁 − 1)))) → 𝐼 ∈ ℤ) |
145 | 144 | zred 11839 |
. . . . . . . . . . . . . . 15
⊢ (((𝐼 + 1) ≠ 𝑁 ∧ (𝑁 ∈ (ℤ≥‘3)
∧ 3 < 𝑁 ∧ 𝐼 ∈ (2...(𝑁 − 1)))) → 𝐼 ∈ ℝ) |
146 | 60 | adantl 475 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝐼 + 1) ≠ 𝑁 ∧ (𝑁 ∈ (ℤ≥‘3)
∧ 3 < 𝑁 ∧ 𝐼 ∈ (2...(𝑁 − 1)))) → 𝑁 ∈ ℤ) |
147 | 146 | zred 11839 |
. . . . . . . . . . . . . . . 16
⊢ (((𝐼 + 1) ≠ 𝑁 ∧ (𝑁 ∈ (ℤ≥‘3)
∧ 3 < 𝑁 ∧ 𝐼 ∈ (2...(𝑁 − 1)))) → 𝑁 ∈ ℝ) |
148 | 147, 97 | syl 17 |
. . . . . . . . . . . . . . 15
⊢ (((𝐼 + 1) ≠ 𝑁 ∧ (𝑁 ∈ (ℤ≥‘3)
∧ 3 < 𝑁 ∧ 𝐼 ∈ (2...(𝑁 − 1)))) → (𝑁 − 1) ∈ ℝ) |
149 | 100 | adantl 475 |
. . . . . . . . . . . . . . 15
⊢ (((𝐼 + 1) ≠ 𝑁 ∧ (𝑁 ∈ (ℤ≥‘3)
∧ 3 < 𝑁 ∧ 𝐼 ∈ (2...(𝑁 − 1)))) → 𝐼 ≤ (𝑁 − 1)) |
150 | 147 | ltm1d 11313 |
. . . . . . . . . . . . . . 15
⊢ (((𝐼 + 1) ≠ 𝑁 ∧ (𝑁 ∈ (ℤ≥‘3)
∧ 3 < 𝑁 ∧ 𝐼 ∈ (2...(𝑁 − 1)))) → (𝑁 − 1) < 𝑁) |
151 | 145, 148,
147, 149, 150 | lelttrd 10536 |
. . . . . . . . . . . . . 14
⊢ (((𝐼 + 1) ≠ 𝑁 ∧ (𝑁 ∈ (ℤ≥‘3)
∧ 3 < 𝑁 ∧ 𝐼 ∈ (2...(𝑁 − 1)))) → 𝐼 < 𝑁) |
152 | | 1red 10379 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝐼 ∈ (2...(𝑁 − 1)) → 1 ∈
ℝ) |
153 | | 2re 11454 |
. . . . . . . . . . . . . . . . . . . 20
⊢ 2 ∈
ℝ |
154 | 153 | a1i 11 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝐼 ∈ (2...(𝑁 − 1)) → 2 ∈
ℝ) |
155 | | 1le2 11596 |
. . . . . . . . . . . . . . . . . . . 20
⊢ 1 ≤
2 |
156 | 155 | a1i 11 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝐼 ∈ (2...(𝑁 − 1)) → 1 ≤
2) |
157 | | elfzle1 12666 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝐼 ∈ (2...(𝑁 − 1)) → 2 ≤ 𝐼) |
158 | 152, 154,
94, 156, 157 | letrd 10535 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝐼 ∈ (2...(𝑁 − 1)) → 1 ≤ 𝐼) |
159 | 158 | 3ad2ant3 1126 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑁 ∈
(ℤ≥‘3) ∧ 3 < 𝑁 ∧ 𝐼 ∈ (2...(𝑁 − 1))) → 1 ≤ 𝐼) |
160 | 159 | adantl 475 |
. . . . . . . . . . . . . . . 16
⊢ (((𝐼 + 1) ≠ 𝑁 ∧ (𝑁 ∈ (ℤ≥‘3)
∧ 3 < 𝑁 ∧ 𝐼 ∈ (2...(𝑁 − 1)))) → 1 ≤ 𝐼) |
161 | | elnnz1 11760 |
. . . . . . . . . . . . . . . 16
⊢ (𝐼 ∈ ℕ ↔ (𝐼 ∈ ℤ ∧ 1 ≤
𝐼)) |
162 | 144, 160,
161 | sylanbrc 578 |
. . . . . . . . . . . . . . 15
⊢ (((𝐼 + 1) ≠ 𝑁 ∧ (𝑁 ∈ (ℤ≥‘3)
∧ 3 < 𝑁 ∧ 𝐼 ∈ (2...(𝑁 − 1)))) → 𝐼 ∈ ℕ) |
163 | 75 | 3ad2ant1 1124 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑁 ∈
(ℤ≥‘3) ∧ 3 < 𝑁 ∧ 𝐼 ∈ (2...(𝑁 − 1))) → 𝑁 ∈ ℕ) |
164 | 163 | adantl 475 |
. . . . . . . . . . . . . . 15
⊢ (((𝐼 + 1) ≠ 𝑁 ∧ (𝑁 ∈ (ℤ≥‘3)
∧ 3 < 𝑁 ∧ 𝐼 ∈ (2...(𝑁 − 1)))) → 𝑁 ∈ ℕ) |
165 | | nnltp1le 11790 |
. . . . . . . . . . . . . . 15
⊢ ((𝐼 ∈ ℕ ∧ 𝑁 ∈ ℕ) → (𝐼 < 𝑁 ↔ (𝐼 + 1) ≤ 𝑁)) |
166 | 162, 164,
165 | syl2anc 579 |
. . . . . . . . . . . . . 14
⊢ (((𝐼 + 1) ≠ 𝑁 ∧ (𝑁 ∈ (ℤ≥‘3)
∧ 3 < 𝑁 ∧ 𝐼 ∈ (2...(𝑁 − 1)))) → (𝐼 < 𝑁 ↔ (𝐼 + 1) ≤ 𝑁)) |
167 | 151, 166 | mpbid 224 |
. . . . . . . . . . . . 13
⊢ (((𝐼 + 1) ≠ 𝑁 ∧ (𝑁 ∈ (ℤ≥‘3)
∧ 3 < 𝑁 ∧ 𝐼 ∈ (2...(𝑁 − 1)))) → (𝐼 + 1) ≤ 𝑁) |
168 | 135 | adantl 475 |
. . . . . . . . . . . . . 14
⊢ (((𝐼 + 1) ≠ 𝑁 ∧ (𝑁 ∈ (ℤ≥‘3)
∧ 3 < 𝑁 ∧ 𝐼 ∈ (2...(𝑁 − 1)))) → (𝐼 + 1) ∈ ℤ) |
169 | | eluz 12011 |
. . . . . . . . . . . . . 14
⊢ (((𝐼 + 1) ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑁 ∈
(ℤ≥‘(𝐼 + 1)) ↔ (𝐼 + 1) ≤ 𝑁)) |
170 | 168, 146,
169 | syl2anc 579 |
. . . . . . . . . . . . 13
⊢ (((𝐼 + 1) ≠ 𝑁 ∧ (𝑁 ∈ (ℤ≥‘3)
∧ 3 < 𝑁 ∧ 𝐼 ∈ (2...(𝑁 − 1)))) → (𝑁 ∈ (ℤ≥‘(𝐼 + 1)) ↔ (𝐼 + 1) ≤ 𝑁)) |
171 | 167, 170 | mpbird 249 |
. . . . . . . . . . . 12
⊢ (((𝐼 + 1) ≠ 𝑁 ∧ (𝑁 ∈ (ℤ≥‘3)
∧ 3 < 𝑁 ∧ 𝐼 ∈ (2...(𝑁 − 1)))) → 𝑁 ∈ (ℤ≥‘(𝐼 + 1))) |
172 | | simpr1 1205 |
. . . . . . . . . . . . . . . 16
⊢ (((𝐼 + 1) ≠ 𝑁 ∧ (𝑁 ∈ (ℤ≥‘3)
∧ 3 < 𝑁 ∧ 𝐼 ∈ (2...(𝑁 − 1)))) → 𝑁 ∈
(ℤ≥‘3)) |
173 | | simpr3 1209 |
. . . . . . . . . . . . . . . 16
⊢ (((𝐼 + 1) ≠ 𝑁 ∧ (𝑁 ∈ (ℤ≥‘3)
∧ 3 < 𝑁 ∧ 𝐼 ∈ (2...(𝑁 − 1)))) → 𝐼 ∈ (2...(𝑁 − 1))) |
174 | 172, 173,
81 | syl2anc 579 |
. . . . . . . . . . . . . . 15
⊢ (((𝐼 + 1) ≠ 𝑁 ∧ (𝑁 ∈ (ℤ≥‘3)
∧ 3 < 𝑁 ∧ 𝐼 ∈ (2...(𝑁 − 1)))) → 𝑄 ∈ (𝔼‘𝑁)) |
175 | 174 | adantr 474 |
. . . . . . . . . . . . . 14
⊢ ((((𝐼 + 1) ≠ 𝑁 ∧ (𝑁 ∈ (ℤ≥‘3)
∧ 3 < 𝑁 ∧ 𝐼 ∈ (2...(𝑁 − 1)))) ∧ 𝑖 ∈ ((𝐼 + 1)...𝑁)) → 𝑄 ∈ (𝔼‘𝑁)) |
176 | 162 | peano2nnd 11398 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝐼 + 1) ≠ 𝑁 ∧ (𝑁 ∈ (ℤ≥‘3)
∧ 3 < 𝑁 ∧ 𝐼 ∈ (2...(𝑁 − 1)))) → (𝐼 + 1) ∈ ℕ) |
177 | | nnuz 12034 |
. . . . . . . . . . . . . . . . 17
⊢ ℕ =
(ℤ≥‘1) |
178 | 176, 177 | syl6eleq 2869 |
. . . . . . . . . . . . . . . 16
⊢ (((𝐼 + 1) ≠ 𝑁 ∧ (𝑁 ∈ (ℤ≥‘3)
∧ 3 < 𝑁 ∧ 𝐼 ∈ (2...(𝑁 − 1)))) → (𝐼 + 1) ∈
(ℤ≥‘1)) |
179 | | fzss1 12702 |
. . . . . . . . . . . . . . . 16
⊢ ((𝐼 + 1) ∈
(ℤ≥‘1) → ((𝐼 + 1)...𝑁) ⊆ (1...𝑁)) |
180 | 178, 179 | syl 17 |
. . . . . . . . . . . . . . 15
⊢ (((𝐼 + 1) ≠ 𝑁 ∧ (𝑁 ∈ (ℤ≥‘3)
∧ 3 < 𝑁 ∧ 𝐼 ∈ (2...(𝑁 − 1)))) → ((𝐼 + 1)...𝑁) ⊆ (1...𝑁)) |
181 | 180 | sselda 3821 |
. . . . . . . . . . . . . 14
⊢ ((((𝐼 + 1) ≠ 𝑁 ∧ (𝑁 ∈ (ℤ≥‘3)
∧ 3 < 𝑁 ∧ 𝐼 ∈ (2...(𝑁 − 1)))) ∧ 𝑖 ∈ ((𝐼 + 1)...𝑁)) → 𝑖 ∈ (1...𝑁)) |
182 | 175, 181,
85 | syl2anc 579 |
. . . . . . . . . . . . 13
⊢ ((((𝐼 + 1) ≠ 𝑁 ∧ (𝑁 ∈ (ℤ≥‘3)
∧ 3 < 𝑁 ∧ 𝐼 ∈ (2...(𝑁 − 1)))) ∧ 𝑖 ∈ ((𝐼 + 1)...𝑁)) → (𝑄‘𝑖) ∈ ℂ) |
183 | 182 | sqcld 13330 |
. . . . . . . . . . . 12
⊢ ((((𝐼 + 1) ≠ 𝑁 ∧ (𝑁 ∈ (ℤ≥‘3)
∧ 3 < 𝑁 ∧ 𝐼 ∈ (2...(𝑁 − 1)))) ∧ 𝑖 ∈ ((𝐼 + 1)...𝑁)) → ((𝑄‘𝑖)↑2) ∈ ℂ) |
184 | 12 | oveq1d 6939 |
. . . . . . . . . . . . 13
⊢ (𝑖 = (𝐼 + 1) → ((𝑄‘𝑖)↑2) = ((𝑄‘(𝐼 + 1))↑2)) |
185 | 14 | oveq1i 6934 |
. . . . . . . . . . . . . 14
⊢ ((𝑄‘(𝐼 + 1))↑2) = (1↑2) |
186 | 185, 136 | eqtri 2802 |
. . . . . . . . . . . . 13
⊢ ((𝑄‘(𝐼 + 1))↑2) = 1 |
187 | 184, 186 | syl6eq 2830 |
. . . . . . . . . . . 12
⊢ (𝑖 = (𝐼 + 1) → ((𝑄‘𝑖)↑2) = 1) |
188 | 171, 183,
187 | fsum1p 14898 |
. . . . . . . . . . 11
⊢ (((𝐼 + 1) ≠ 𝑁 ∧ (𝑁 ∈ (ℤ≥‘3)
∧ 3 < 𝑁 ∧ 𝐼 ∈ (2...(𝑁 − 1)))) → Σ𝑖 ∈ ((𝐼 + 1)...𝑁)((𝑄‘𝑖)↑2) = (1 + Σ𝑖 ∈ (((𝐼 + 1) + 1)...𝑁)((𝑄‘𝑖)↑2))) |
189 | 176 | peano2nnd 11398 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝐼 + 1) ≠ 𝑁 ∧ (𝑁 ∈ (ℤ≥‘3)
∧ 3 < 𝑁 ∧ 𝐼 ∈ (2...(𝑁 − 1)))) → ((𝐼 + 1) + 1) ∈ ℕ) |
190 | 189, 177 | syl6eleq 2869 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝐼 + 1) ≠ 𝑁 ∧ (𝑁 ∈ (ℤ≥‘3)
∧ 3 < 𝑁 ∧ 𝐼 ∈ (2...(𝑁 − 1)))) → ((𝐼 + 1) + 1) ∈
(ℤ≥‘1)) |
191 | | fzss1 12702 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝐼 + 1) + 1) ∈
(ℤ≥‘1) → (((𝐼 + 1) + 1)...𝑁) ⊆ (1...𝑁)) |
192 | 190, 191 | syl 17 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝐼 + 1) ≠ 𝑁 ∧ (𝑁 ∈ (ℤ≥‘3)
∧ 3 < 𝑁 ∧ 𝐼 ∈ (2...(𝑁 − 1)))) → (((𝐼 + 1) + 1)...𝑁) ⊆ (1...𝑁)) |
193 | 192 | sselda 3821 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝐼 + 1) ≠ 𝑁 ∧ (𝑁 ∈ (ℤ≥‘3)
∧ 3 < 𝑁 ∧ 𝐼 ∈ (2...(𝑁 − 1)))) ∧ 𝑖 ∈ (((𝐼 + 1) + 1)...𝑁)) → 𝑖 ∈ (1...𝑁)) |
194 | 145, 117 | syl 17 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝐼 + 1) ≠ 𝑁 ∧ (𝑁 ∈ (ℤ≥‘3)
∧ 3 < 𝑁 ∧ 𝐼 ∈ (2...(𝑁 − 1)))) → (𝐼 + 1) ∈ ℝ) |
195 | 194 | adantr 474 |
. . . . . . . . . . . . . . . . . 18
⊢ ((((𝐼 + 1) ≠ 𝑁 ∧ (𝑁 ∈ (ℤ≥‘3)
∧ 3 < 𝑁 ∧ 𝐼 ∈ (2...(𝑁 − 1)))) ∧ 𝑖 ∈ (((𝐼 + 1) + 1)...𝑁)) → (𝐼 + 1) ∈ ℝ) |
196 | | peano2re 10551 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝐼 + 1) ∈ ℝ →
((𝐼 + 1) + 1) ∈
ℝ) |
197 | 195, 196 | syl 17 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((((𝐼 + 1) ≠ 𝑁 ∧ (𝑁 ∈ (ℤ≥‘3)
∧ 3 < 𝑁 ∧ 𝐼 ∈ (2...(𝑁 − 1)))) ∧ 𝑖 ∈ (((𝐼 + 1) + 1)...𝑁)) → ((𝐼 + 1) + 1) ∈ ℝ) |
198 | | elfzelz 12664 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑖 ∈ (((𝐼 + 1) + 1)...𝑁) → 𝑖 ∈ ℤ) |
199 | 198 | zred 11839 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑖 ∈ (((𝐼 + 1) + 1)...𝑁) → 𝑖 ∈ ℝ) |
200 | 199 | adantl 475 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((((𝐼 + 1) ≠ 𝑁 ∧ (𝑁 ∈ (ℤ≥‘3)
∧ 3 < 𝑁 ∧ 𝐼 ∈ (2...(𝑁 − 1)))) ∧ 𝑖 ∈ (((𝐼 + 1) + 1)...𝑁)) → 𝑖 ∈ ℝ) |
201 | 195 | ltp1d 11311 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((((𝐼 + 1) ≠ 𝑁 ∧ (𝑁 ∈ (ℤ≥‘3)
∧ 3 < 𝑁 ∧ 𝐼 ∈ (2...(𝑁 − 1)))) ∧ 𝑖 ∈ (((𝐼 + 1) + 1)...𝑁)) → (𝐼 + 1) < ((𝐼 + 1) + 1)) |
202 | | elfzle1 12666 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑖 ∈ (((𝐼 + 1) + 1)...𝑁) → ((𝐼 + 1) + 1) ≤ 𝑖) |
203 | 202 | adantl 475 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((((𝐼 + 1) ≠ 𝑁 ∧ (𝑁 ∈ (ℤ≥‘3)
∧ 3 < 𝑁 ∧ 𝐼 ∈ (2...(𝑁 − 1)))) ∧ 𝑖 ∈ (((𝐼 + 1) + 1)...𝑁)) → ((𝐼 + 1) + 1) ≤ 𝑖) |
204 | 195, 197,
200, 201, 203 | ltletrd 10538 |
. . . . . . . . . . . . . . . . . 18
⊢ ((((𝐼 + 1) ≠ 𝑁 ∧ (𝑁 ∈ (ℤ≥‘3)
∧ 3 < 𝑁 ∧ 𝐼 ∈ (2...(𝑁 − 1)))) ∧ 𝑖 ∈ (((𝐼 + 1) + 1)...𝑁)) → (𝐼 + 1) < 𝑖) |
205 | 195, 204 | gtned 10513 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝐼 + 1) ≠ 𝑁 ∧ (𝑁 ∈ (ℤ≥‘3)
∧ 3 < 𝑁 ∧ 𝐼 ∈ (2...(𝑁 − 1)))) ∧ 𝑖 ∈ (((𝐼 + 1) + 1)...𝑁)) → 𝑖 ≠ (𝐼 + 1)) |
206 | 193, 205,
126 | syl2anc 579 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝐼 + 1) ≠ 𝑁 ∧ (𝑁 ∈ (ℤ≥‘3)
∧ 3 < 𝑁 ∧ 𝐼 ∈ (2...(𝑁 − 1)))) ∧ 𝑖 ∈ (((𝐼 + 1) + 1)...𝑁)) → (𝑄‘𝑖) = 0) |
207 | 206 | sq0id 13281 |
. . . . . . . . . . . . . . 15
⊢ ((((𝐼 + 1) ≠ 𝑁 ∧ (𝑁 ∈ (ℤ≥‘3)
∧ 3 < 𝑁 ∧ 𝐼 ∈ (2...(𝑁 − 1)))) ∧ 𝑖 ∈ (((𝐼 + 1) + 1)...𝑁)) → ((𝑄‘𝑖)↑2) = 0) |
208 | 207 | sumeq2dv 14850 |
. . . . . . . . . . . . . 14
⊢ (((𝐼 + 1) ≠ 𝑁 ∧ (𝑁 ∈ (ℤ≥‘3)
∧ 3 < 𝑁 ∧ 𝐼 ∈ (2...(𝑁 − 1)))) → Σ𝑖 ∈ (((𝐼 + 1) + 1)...𝑁)((𝑄‘𝑖)↑2) = Σ𝑖 ∈ (((𝐼 + 1) + 1)...𝑁)0) |
209 | | fzfi 13095 |
. . . . . . . . . . . . . . . 16
⊢ (((𝐼 + 1) + 1)...𝑁) ∈ Fin |
210 | 209 | olci 855 |
. . . . . . . . . . . . . . 15
⊢ ((((𝐼 + 1) + 1)...𝑁) ⊆ (ℤ≥‘1)
∨ (((𝐼 + 1) + 1)...𝑁) ∈ Fin) |
211 | | sumz 14869 |
. . . . . . . . . . . . . . 15
⊢
(((((𝐼 + 1) +
1)...𝑁) ⊆
(ℤ≥‘1) ∨ (((𝐼 + 1) + 1)...𝑁) ∈ Fin) → Σ𝑖 ∈ (((𝐼 + 1) + 1)...𝑁)0 = 0) |
212 | 210, 211 | ax-mp 5 |
. . . . . . . . . . . . . 14
⊢
Σ𝑖 ∈
(((𝐼 + 1) + 1)...𝑁)0 = 0 |
213 | 208, 212 | syl6eq 2830 |
. . . . . . . . . . . . 13
⊢ (((𝐼 + 1) ≠ 𝑁 ∧ (𝑁 ∈ (ℤ≥‘3)
∧ 3 < 𝑁 ∧ 𝐼 ∈ (2...(𝑁 − 1)))) → Σ𝑖 ∈ (((𝐼 + 1) + 1)...𝑁)((𝑄‘𝑖)↑2) = 0) |
214 | 213 | oveq2d 6940 |
. . . . . . . . . . . 12
⊢ (((𝐼 + 1) ≠ 𝑁 ∧ (𝑁 ∈ (ℤ≥‘3)
∧ 3 < 𝑁 ∧ 𝐼 ∈ (2...(𝑁 − 1)))) → (1 + Σ𝑖 ∈ (((𝐼 + 1) + 1)...𝑁)((𝑄‘𝑖)↑2)) = (1 + 0)) |
215 | | 1p0e1 11511 |
. . . . . . . . . . . 12
⊢ (1 + 0) =
1 |
216 | 214, 215 | syl6eq 2830 |
. . . . . . . . . . 11
⊢ (((𝐼 + 1) ≠ 𝑁 ∧ (𝑁 ∈ (ℤ≥‘3)
∧ 3 < 𝑁 ∧ 𝐼 ∈ (2...(𝑁 − 1)))) → (1 + Σ𝑖 ∈ (((𝐼 + 1) + 1)...𝑁)((𝑄‘𝑖)↑2)) = 1) |
217 | 188, 216 | eqtrd 2814 |
. . . . . . . . . 10
⊢ (((𝐼 + 1) ≠ 𝑁 ∧ (𝑁 ∈ (ℤ≥‘3)
∧ 3 < 𝑁 ∧ 𝐼 ∈ (2...(𝑁 − 1)))) → Σ𝑖 ∈ ((𝐼 + 1)...𝑁)((𝑄‘𝑖)↑2) = 1) |
218 | 217 | ex 403 |
. . . . . . . . 9
⊢ ((𝐼 + 1) ≠ 𝑁 → ((𝑁 ∈ (ℤ≥‘3)
∧ 3 < 𝑁 ∧ 𝐼 ∈ (2...(𝑁 − 1))) → Σ𝑖 ∈ ((𝐼 + 1)...𝑁)((𝑄‘𝑖)↑2) = 1)) |
219 | 143, 218 | pm2.61ine 3053 |
. . . . . . . 8
⊢ ((𝑁 ∈
(ℤ≥‘3) ∧ 3 < 𝑁 ∧ 𝐼 ∈ (2...(𝑁 − 1))) → Σ𝑖 ∈ ((𝐼 + 1)...𝑁)((𝑄‘𝑖)↑2) = 1) |
220 | 134, 219 | oveq12d 6942 |
. . . . . . 7
⊢ ((𝑁 ∈
(ℤ≥‘3) ∧ 3 < 𝑁 ∧ 𝐼 ∈ (2...(𝑁 − 1))) → (Σ𝑖 ∈ (2...𝐼)((𝑄‘𝑖)↑2) + Σ𝑖 ∈ ((𝐼 + 1)...𝑁)((𝑄‘𝑖)↑2)) = (0 + 1)) |
221 | | 0p1e1 11509 |
. . . . . . 7
⊢ (0 + 1) =
1 |
222 | 220, 221 | syl6eq 2830 |
. . . . . 6
⊢ ((𝑁 ∈
(ℤ≥‘3) ∧ 3 < 𝑁 ∧ 𝐼 ∈ (2...(𝑁 − 1))) → (Σ𝑖 ∈ (2...𝐼)((𝑄‘𝑖)↑2) + Σ𝑖 ∈ ((𝐼 + 1)...𝑁)((𝑄‘𝑖)↑2)) = 1) |
223 | 89, 222 | eqtrd 2814 |
. . . . 5
⊢ ((𝑁 ∈
(ℤ≥‘3) ∧ 3 < 𝑁 ∧ 𝐼 ∈ (2...(𝑁 − 1))) → Σ𝑖 ∈ (2...𝑁)((𝑄‘𝑖)↑2) = 1) |
224 | | simp1 1127 |
. . . . . . . 8
⊢ ((𝑁 ∈
(ℤ≥‘3) ∧ 3 < 𝑁 ∧ 𝐼 ∈ (2...(𝑁 − 1))) → 𝑁 ∈
(ℤ≥‘3)) |
225 | | 2lt3 11559 |
. . . . . . . . . 10
⊢ 2 <
3 |
226 | 153, 48, 225 | ltleii 10501 |
. . . . . . . . 9
⊢ 2 ≤
3 |
227 | | 2z 11766 |
. . . . . . . . . 10
⊢ 2 ∈
ℤ |
228 | 227 | eluz1i 12005 |
. . . . . . . . 9
⊢ (3 ∈
(ℤ≥‘2) ↔ (3 ∈ ℤ ∧ 2 ≤
3)) |
229 | 8, 226, 228 | mpbir2an 701 |
. . . . . . . 8
⊢ 3 ∈
(ℤ≥‘2) |
230 | | uztrn 12014 |
. . . . . . . 8
⊢ ((𝑁 ∈
(ℤ≥‘3) ∧ 3 ∈
(ℤ≥‘2)) → 𝑁 ∈
(ℤ≥‘2)) |
231 | 224, 229,
230 | sylancl 580 |
. . . . . . 7
⊢ ((𝑁 ∈
(ℤ≥‘3) ∧ 3 < 𝑁 ∧ 𝐼 ∈ (2...(𝑁 − 1))) → 𝑁 ∈
(ℤ≥‘2)) |
232 | | fveq2 6448 |
. . . . . . . 8
⊢ (𝑖 = 2 → (𝑄‘𝑖) = (𝑄‘2)) |
233 | 232 | oveq1d 6939 |
. . . . . . 7
⊢ (𝑖 = 2 → ((𝑄‘𝑖)↑2) = ((𝑄‘2)↑2)) |
234 | 231, 88, 233 | fsum1p 14898 |
. . . . . 6
⊢ ((𝑁 ∈
(ℤ≥‘3) ∧ 3 < 𝑁 ∧ 𝐼 ∈ (2...(𝑁 − 1))) → Σ𝑖 ∈ (2...𝑁)((𝑄‘𝑖)↑2) = (((𝑄‘2)↑2) + Σ𝑖 ∈ ((2 + 1)...𝑁)((𝑄‘𝑖)↑2))) |
235 | 59 | adantr 474 |
. . . . . . . . . . . . . . 15
⊢ ((𝑁 ∈
(ℤ≥‘3) ∧ 3 < 𝑁) → 𝑁 ∈ ℤ) |
236 | 235 | zred 11839 |
. . . . . . . . . . . . . 14
⊢ ((𝑁 ∈
(ℤ≥‘3) ∧ 3 < 𝑁) → 𝑁 ∈ ℝ) |
237 | | lttr 10455 |
. . . . . . . . . . . . . . . . . 18
⊢ ((2
∈ ℝ ∧ 3 ∈ ℝ ∧ 𝑁 ∈ ℝ) → ((2 < 3 ∧ 3
< 𝑁) → 2 < 𝑁)) |
238 | 153, 48, 237 | mp3an12 1524 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑁 ∈ ℝ → ((2 <
3 ∧ 3 < 𝑁) → 2
< 𝑁)) |
239 | 225, 238 | mpani 686 |
. . . . . . . . . . . . . . . 16
⊢ (𝑁 ∈ ℝ → (3 <
𝑁 → 2 < 𝑁)) |
240 | 49, 239 | syl 17 |
. . . . . . . . . . . . . . 15
⊢ (𝑁 ∈
(ℤ≥‘3) → (3 < 𝑁 → 2 < 𝑁)) |
241 | 240 | imp 397 |
. . . . . . . . . . . . . 14
⊢ ((𝑁 ∈
(ℤ≥‘3) ∧ 3 < 𝑁) → 2 < 𝑁) |
242 | | ltle 10467 |
. . . . . . . . . . . . . . 15
⊢ ((2
∈ ℝ ∧ 𝑁
∈ ℝ) → (2 < 𝑁 → 2 ≤ 𝑁)) |
243 | 153, 242 | mpan 680 |
. . . . . . . . . . . . . 14
⊢ (𝑁 ∈ ℝ → (2 <
𝑁 → 2 ≤ 𝑁)) |
244 | 236, 241,
243 | sylc 65 |
. . . . . . . . . . . . 13
⊢ ((𝑁 ∈
(ℤ≥‘3) ∧ 3 < 𝑁) → 2 ≤ 𝑁) |
245 | 244, 155 | jctil 515 |
. . . . . . . . . . . 12
⊢ ((𝑁 ∈
(ℤ≥‘3) ∧ 3 < 𝑁) → (1 ≤ 2 ∧ 2 ≤ 𝑁)) |
246 | | 1z 11764 |
. . . . . . . . . . . . . 14
⊢ 1 ∈
ℤ |
247 | | elfz 12654 |
. . . . . . . . . . . . . 14
⊢ ((2
∈ ℤ ∧ 1 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (2 ∈ (1...𝑁) ↔ (1 ≤ 2 ∧ 2 ≤
𝑁))) |
248 | 227, 246,
247 | mp3an12 1524 |
. . . . . . . . . . . . 13
⊢ (𝑁 ∈ ℤ → (2 ∈
(1...𝑁) ↔ (1 ≤ 2
∧ 2 ≤ 𝑁))) |
249 | 235, 248 | syl 17 |
. . . . . . . . . . . 12
⊢ ((𝑁 ∈
(ℤ≥‘3) ∧ 3 < 𝑁) → (2 ∈ (1...𝑁) ↔ (1 ≤ 2 ∧ 2 ≤ 𝑁))) |
250 | 245, 249 | mpbird 249 |
. . . . . . . . . . 11
⊢ ((𝑁 ∈
(ℤ≥‘3) ∧ 3 < 𝑁) → 2 ∈ (1...𝑁)) |
251 | 250 | 3adant3 1123 |
. . . . . . . . . 10
⊢ ((𝑁 ∈
(ℤ≥‘3) ∧ 3 < 𝑁 ∧ 𝐼 ∈ (2...(𝑁 − 1))) → 2 ∈ (1...𝑁)) |
252 | 94 | ltp1d 11311 |
. . . . . . . . . . . . . 14
⊢ (𝐼 ∈ (2...(𝑁 − 1)) → 𝐼 < (𝐼 + 1)) |
253 | 154, 94, 118, 157, 252 | lelttrd 10536 |
. . . . . . . . . . . . 13
⊢ (𝐼 ∈ (2...(𝑁 − 1)) → 2 < (𝐼 + 1)) |
254 | 253 | 3ad2ant3 1126 |
. . . . . . . . . . . 12
⊢ ((𝑁 ∈
(ℤ≥‘3) ∧ 3 < 𝑁 ∧ 𝐼 ∈ (2...(𝑁 − 1))) → 2 < (𝐼 + 1)) |
255 | | ltne 10475 |
. . . . . . . . . . . 12
⊢ ((2
∈ ℝ ∧ 2 < (𝐼 + 1)) → (𝐼 + 1) ≠ 2) |
256 | 153, 254,
255 | sylancr 581 |
. . . . . . . . . . 11
⊢ ((𝑁 ∈
(ℤ≥‘3) ∧ 3 < 𝑁 ∧ 𝐼 ∈ (2...(𝑁 − 1))) → (𝐼 + 1) ≠ 2) |
257 | 256 | necomd 3024 |
. . . . . . . . . 10
⊢ ((𝑁 ∈
(ℤ≥‘3) ∧ 3 < 𝑁 ∧ 𝐼 ∈ (2...(𝑁 − 1))) → 2 ≠ (𝐼 + 1)) |
258 | 13 | axlowdimlem12 26319 |
. . . . . . . . . 10
⊢ ((2
∈ (1...𝑁) ∧ 2 ≠
(𝐼 + 1)) → (𝑄‘2) = 0) |
259 | 251, 257,
258 | syl2anc 579 |
. . . . . . . . 9
⊢ ((𝑁 ∈
(ℤ≥‘3) ∧ 3 < 𝑁 ∧ 𝐼 ∈ (2...(𝑁 − 1))) → (𝑄‘2) = 0) |
260 | 259 | sq0id 13281 |
. . . . . . . 8
⊢ ((𝑁 ∈
(ℤ≥‘3) ∧ 3 < 𝑁 ∧ 𝐼 ∈ (2...(𝑁 − 1))) → ((𝑄‘2)↑2) = 0) |
261 | 260 | oveq1d 6939 |
. . . . . . 7
⊢ ((𝑁 ∈
(ℤ≥‘3) ∧ 3 < 𝑁 ∧ 𝐼 ∈ (2...(𝑁 − 1))) → (((𝑄‘2)↑2) + Σ𝑖 ∈ ((2 + 1)...𝑁)((𝑄‘𝑖)↑2)) = (0 + Σ𝑖 ∈ ((2 + 1)...𝑁)((𝑄‘𝑖)↑2))) |
262 | 3 | oveq1i 6934 |
. . . . . . . . 9
⊢
(3...𝑁) = ((2 +
1)...𝑁) |
263 | 262 | sumeq1i 14845 |
. . . . . . . 8
⊢
Σ𝑖 ∈
(3...𝑁)((𝑄‘𝑖)↑2) = Σ𝑖 ∈ ((2 + 1)...𝑁)((𝑄‘𝑖)↑2) |
264 | 263 | oveq2i 6935 |
. . . . . . 7
⊢ (0 +
Σ𝑖 ∈ (3...𝑁)((𝑄‘𝑖)↑2)) = (0 + Σ𝑖 ∈ ((2 + 1)...𝑁)((𝑄‘𝑖)↑2)) |
265 | 261, 264 | syl6eqr 2832 |
. . . . . 6
⊢ ((𝑁 ∈
(ℤ≥‘3) ∧ 3 < 𝑁 ∧ 𝐼 ∈ (2...(𝑁 − 1))) → (((𝑄‘2)↑2) + Σ𝑖 ∈ ((2 + 1)...𝑁)((𝑄‘𝑖)↑2)) = (0 + Σ𝑖 ∈ (3...𝑁)((𝑄‘𝑖)↑2))) |
266 | | fzfid 13096 |
. . . . . . . 8
⊢ ((𝑁 ∈
(ℤ≥‘3) ∧ 3 < 𝑁 ∧ 𝐼 ∈ (2...(𝑁 − 1))) → (3...𝑁) ∈ Fin) |
267 | | 3nn 11459 |
. . . . . . . . . . . . . 14
⊢ 3 ∈
ℕ |
268 | 267, 177 | eleqtri 2857 |
. . . . . . . . . . . . 13
⊢ 3 ∈
(ℤ≥‘1) |
269 | | fzss1 12702 |
. . . . . . . . . . . . 13
⊢ (3 ∈
(ℤ≥‘1) → (3...𝑁) ⊆ (1...𝑁)) |
270 | 268, 269 | ax-mp 5 |
. . . . . . . . . . . 12
⊢
(3...𝑁) ⊆
(1...𝑁) |
271 | 270 | sseli 3817 |
. . . . . . . . . . 11
⊢ (𝑖 ∈ (3...𝑁) → 𝑖 ∈ (1...𝑁)) |
272 | 81, 271, 85 | syl2an 589 |
. . . . . . . . . 10
⊢ (((𝑁 ∈
(ℤ≥‘3) ∧ 𝐼 ∈ (2...(𝑁 − 1))) ∧ 𝑖 ∈ (3...𝑁)) → (𝑄‘𝑖) ∈ ℂ) |
273 | 272 | sqcld 13330 |
. . . . . . . . 9
⊢ (((𝑁 ∈
(ℤ≥‘3) ∧ 𝐼 ∈ (2...(𝑁 − 1))) ∧ 𝑖 ∈ (3...𝑁)) → ((𝑄‘𝑖)↑2) ∈ ℂ) |
274 | 273 | 3adantl2 1169 |
. . . . . . . 8
⊢ (((𝑁 ∈
(ℤ≥‘3) ∧ 3 < 𝑁 ∧ 𝐼 ∈ (2...(𝑁 − 1))) ∧ 𝑖 ∈ (3...𝑁)) → ((𝑄‘𝑖)↑2) ∈ ℂ) |
275 | 266, 274 | fsumcl 14880 |
. . . . . . 7
⊢ ((𝑁 ∈
(ℤ≥‘3) ∧ 3 < 𝑁 ∧ 𝐼 ∈ (2...(𝑁 − 1))) → Σ𝑖 ∈ (3...𝑁)((𝑄‘𝑖)↑2) ∈ ℂ) |
276 | 275 | addid2d 10579 |
. . . . . 6
⊢ ((𝑁 ∈
(ℤ≥‘3) ∧ 3 < 𝑁 ∧ 𝐼 ∈ (2...(𝑁 − 1))) → (0 + Σ𝑖 ∈ (3...𝑁)((𝑄‘𝑖)↑2)) = Σ𝑖 ∈ (3...𝑁)((𝑄‘𝑖)↑2)) |
277 | 234, 265,
276 | 3eqtrrd 2819 |
. . . . 5
⊢ ((𝑁 ∈
(ℤ≥‘3) ∧ 3 < 𝑁 ∧ 𝐼 ∈ (2...(𝑁 − 1))) → Σ𝑖 ∈ (3...𝑁)((𝑄‘𝑖)↑2) = Σ𝑖 ∈ (2...𝑁)((𝑄‘𝑖)↑2)) |
278 | | simpl 476 |
. . . . . . . . 9
⊢ ((𝑁 ∈
(ℤ≥‘3) ∧ 3 < 𝑁) → 𝑁 ∈
(ℤ≥‘3)) |
279 | 21 | axlowdimlem7 26314 |
. . . . . . . . . . . 12
⊢ (𝑁 ∈
(ℤ≥‘3) → 𝑃 ∈ (𝔼‘𝑁)) |
280 | 279 | ad2antrr 716 |
. . . . . . . . . . 11
⊢ (((𝑁 ∈
(ℤ≥‘3) ∧ 3 < 𝑁) ∧ 𝑖 ∈ (3...𝑁)) → 𝑃 ∈ (𝔼‘𝑁)) |
281 | 271 | adantl 475 |
. . . . . . . . . . 11
⊢ (((𝑁 ∈
(ℤ≥‘3) ∧ 3 < 𝑁) ∧ 𝑖 ∈ (3...𝑁)) → 𝑖 ∈ (1...𝑁)) |
282 | | fveecn 26268 |
. . . . . . . . . . 11
⊢ ((𝑃 ∈ (𝔼‘𝑁) ∧ 𝑖 ∈ (1...𝑁)) → (𝑃‘𝑖) ∈ ℂ) |
283 | 280, 281,
282 | syl2anc 579 |
. . . . . . . . . 10
⊢ (((𝑁 ∈
(ℤ≥‘3) ∧ 3 < 𝑁) ∧ 𝑖 ∈ (3...𝑁)) → (𝑃‘𝑖) ∈ ℂ) |
284 | 283 | sqcld 13330 |
. . . . . . . . 9
⊢ (((𝑁 ∈
(ℤ≥‘3) ∧ 3 < 𝑁) ∧ 𝑖 ∈ (3...𝑁)) → ((𝑃‘𝑖)↑2) ∈ ℂ) |
285 | | neg1sqe1 13283 |
. . . . . . . . . 10
⊢
(-1↑2) = 1 |
286 | 24, 285 | syl6eq 2830 |
. . . . . . . . 9
⊢ (𝑖 = 3 → ((𝑃‘𝑖)↑2) = 1) |
287 | 278, 284,
286 | fsum1p 14898 |
. . . . . . . 8
⊢ ((𝑁 ∈
(ℤ≥‘3) ∧ 3 < 𝑁) → Σ𝑖 ∈ (3...𝑁)((𝑃‘𝑖)↑2) = (1 + Σ𝑖 ∈ ((3 + 1)...𝑁)((𝑃‘𝑖)↑2))) |
288 | | 1re 10378 |
. . . . . . . . . . . . . . . . . 18
⊢ 1 ∈
ℝ |
289 | | zaddcl 11774 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((3
∈ ℤ ∧ 1 ∈ ℤ) → (3 + 1) ∈
ℤ) |
290 | 8, 246, 289 | mp2an 682 |
. . . . . . . . . . . . . . . . . . 19
⊢ (3 + 1)
∈ ℤ |
291 | 290 | zrei 11739 |
. . . . . . . . . . . . . . . . . 18
⊢ (3 + 1)
∈ ℝ |
292 | | 1lt3 11560 |
. . . . . . . . . . . . . . . . . . 19
⊢ 1 <
3 |
293 | 48 | ltp1i 11284 |
. . . . . . . . . . . . . . . . . . 19
⊢ 3 < (3
+ 1) |
294 | 288, 48, 291 | lttri 10504 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((1 <
3 ∧ 3 < (3 + 1)) → 1 < (3 + 1)) |
295 | 292, 293,
294 | mp2an 682 |
. . . . . . . . . . . . . . . . . 18
⊢ 1 < (3
+ 1) |
296 | 288, 291,
295 | ltleii 10501 |
. . . . . . . . . . . . . . . . 17
⊢ 1 ≤ (3
+ 1) |
297 | | eluz 12011 |
. . . . . . . . . . . . . . . . . 18
⊢ ((1
∈ ℤ ∧ (3 + 1) ∈ ℤ) → ((3 + 1) ∈
(ℤ≥‘1) ↔ 1 ≤ (3 + 1))) |
298 | 246, 290,
297 | mp2an 682 |
. . . . . . . . . . . . . . . . 17
⊢ ((3 + 1)
∈ (ℤ≥‘1) ↔ 1 ≤ (3 + 1)) |
299 | 296, 298 | mpbir 223 |
. . . . . . . . . . . . . . . 16
⊢ (3 + 1)
∈ (ℤ≥‘1) |
300 | | fzss1 12702 |
. . . . . . . . . . . . . . . 16
⊢ ((3 + 1)
∈ (ℤ≥‘1) → ((3 + 1)...𝑁) ⊆ (1...𝑁)) |
301 | 299, 300 | ax-mp 5 |
. . . . . . . . . . . . . . 15
⊢ ((3 +
1)...𝑁) ⊆ (1...𝑁) |
302 | 301 | sseli 3817 |
. . . . . . . . . . . . . 14
⊢ (𝑖 ∈ ((3 + 1)...𝑁) → 𝑖 ∈ (1...𝑁)) |
303 | 302 | adantl 475 |
. . . . . . . . . . . . 13
⊢ (((𝑁 ∈
(ℤ≥‘3) ∧ 3 < 𝑁) ∧ 𝑖 ∈ ((3 + 1)...𝑁)) → 𝑖 ∈ (1...𝑁)) |
304 | 48, 291 | ltnlei 10499 |
. . . . . . . . . . . . . . . . . . 19
⊢ (3 <
(3 + 1) ↔ ¬ (3 + 1) ≤ 3) |
305 | 293, 304 | mpbi 222 |
. . . . . . . . . . . . . . . . . 18
⊢ ¬ (3
+ 1) ≤ 3 |
306 | 305 | intnanr 483 |
. . . . . . . . . . . . . . . . 17
⊢ ¬
((3 + 1) ≤ 3 ∧ 3 ≤ 𝑁) |
307 | | elfz 12654 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((3
∈ ℤ ∧ (3 + 1) ∈ ℤ ∧ 𝑁 ∈ ℤ) → (3 ∈ ((3 +
1)...𝑁) ↔ ((3 + 1)
≤ 3 ∧ 3 ≤ 𝑁))) |
308 | 8, 290, 307 | mp3an12 1524 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑁 ∈ ℤ → (3 ∈
((3 + 1)...𝑁) ↔ ((3 +
1) ≤ 3 ∧ 3 ≤ 𝑁))) |
309 | 235, 308 | syl 17 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑁 ∈
(ℤ≥‘3) ∧ 3 < 𝑁) → (3 ∈ ((3 + 1)...𝑁) ↔ ((3 + 1) ≤ 3 ∧ 3
≤ 𝑁))) |
310 | 306, 309 | mtbiri 319 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑁 ∈
(ℤ≥‘3) ∧ 3 < 𝑁) → ¬ 3 ∈ ((3 + 1)...𝑁)) |
311 | | eleq1 2847 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑖 = 3 → (𝑖 ∈ ((3 + 1)...𝑁) ↔ 3 ∈ ((3 + 1)...𝑁))) |
312 | 311 | notbid 310 |
. . . . . . . . . . . . . . . 16
⊢ (𝑖 = 3 → (¬ 𝑖 ∈ ((3 + 1)...𝑁) ↔ ¬ 3 ∈ ((3 +
1)...𝑁))) |
313 | 310, 312 | syl5ibrcom 239 |
. . . . . . . . . . . . . . 15
⊢ ((𝑁 ∈
(ℤ≥‘3) ∧ 3 < 𝑁) → (𝑖 = 3 → ¬ 𝑖 ∈ ((3 + 1)...𝑁))) |
314 | 313 | necon2ad 2984 |
. . . . . . . . . . . . . 14
⊢ ((𝑁 ∈
(ℤ≥‘3) ∧ 3 < 𝑁) → (𝑖 ∈ ((3 + 1)...𝑁) → 𝑖 ≠ 3)) |
315 | 314 | imp 397 |
. . . . . . . . . . . . 13
⊢ (((𝑁 ∈
(ℤ≥‘3) ∧ 3 < 𝑁) ∧ 𝑖 ∈ ((3 + 1)...𝑁)) → 𝑖 ≠ 3) |
316 | 21 | axlowdimlem9 26316 |
. . . . . . . . . . . . 13
⊢ ((𝑖 ∈ (1...𝑁) ∧ 𝑖 ≠ 3) → (𝑃‘𝑖) = 0) |
317 | 303, 315,
316 | syl2anc 579 |
. . . . . . . . . . . 12
⊢ (((𝑁 ∈
(ℤ≥‘3) ∧ 3 < 𝑁) ∧ 𝑖 ∈ ((3 + 1)...𝑁)) → (𝑃‘𝑖) = 0) |
318 | 317 | sq0id 13281 |
. . . . . . . . . . 11
⊢ (((𝑁 ∈
(ℤ≥‘3) ∧ 3 < 𝑁) ∧ 𝑖 ∈ ((3 + 1)...𝑁)) → ((𝑃‘𝑖)↑2) = 0) |
319 | 318 | sumeq2dv 14850 |
. . . . . . . . . 10
⊢ ((𝑁 ∈
(ℤ≥‘3) ∧ 3 < 𝑁) → Σ𝑖 ∈ ((3 + 1)...𝑁)((𝑃‘𝑖)↑2) = Σ𝑖 ∈ ((3 + 1)...𝑁)0) |
320 | | fzfi 13095 |
. . . . . . . . . . . 12
⊢ ((3 +
1)...𝑁) ∈
Fin |
321 | 320 | olci 855 |
. . . . . . . . . . 11
⊢ (((3 +
1)...𝑁) ⊆
(ℤ≥‘1) ∨ ((3 + 1)...𝑁) ∈ Fin) |
322 | | sumz 14869 |
. . . . . . . . . . 11
⊢ ((((3 +
1)...𝑁) ⊆
(ℤ≥‘1) ∨ ((3 + 1)...𝑁) ∈ Fin) → Σ𝑖 ∈ ((3 + 1)...𝑁)0 = 0) |
323 | 321, 322 | ax-mp 5 |
. . . . . . . . . 10
⊢
Σ𝑖 ∈ ((3
+ 1)...𝑁)0 =
0 |
324 | 319, 323 | syl6eq 2830 |
. . . . . . . . 9
⊢ ((𝑁 ∈
(ℤ≥‘3) ∧ 3 < 𝑁) → Σ𝑖 ∈ ((3 + 1)...𝑁)((𝑃‘𝑖)↑2) = 0) |
325 | 324 | oveq2d 6940 |
. . . . . . . 8
⊢ ((𝑁 ∈
(ℤ≥‘3) ∧ 3 < 𝑁) → (1 + Σ𝑖 ∈ ((3 + 1)...𝑁)((𝑃‘𝑖)↑2)) = (1 + 0)) |
326 | 287, 325 | eqtrd 2814 |
. . . . . . 7
⊢ ((𝑁 ∈
(ℤ≥‘3) ∧ 3 < 𝑁) → Σ𝑖 ∈ (3...𝑁)((𝑃‘𝑖)↑2) = (1 + 0)) |
327 | 326, 215 | syl6eq 2830 |
. . . . . 6
⊢ ((𝑁 ∈
(ℤ≥‘3) ∧ 3 < 𝑁) → Σ𝑖 ∈ (3...𝑁)((𝑃‘𝑖)↑2) = 1) |
328 | 327 | 3adant3 1123 |
. . . . 5
⊢ ((𝑁 ∈
(ℤ≥‘3) ∧ 3 < 𝑁 ∧ 𝐼 ∈ (2...(𝑁 − 1))) → Σ𝑖 ∈ (3...𝑁)((𝑃‘𝑖)↑2) = 1) |
329 | 223, 277,
328 | 3eqtr4rd 2825 |
. . . 4
⊢ ((𝑁 ∈
(ℤ≥‘3) ∧ 3 < 𝑁 ∧ 𝐼 ∈ (2...(𝑁 − 1))) → Σ𝑖 ∈ (3...𝑁)((𝑃‘𝑖)↑2) = Σ𝑖 ∈ (3...𝑁)((𝑄‘𝑖)↑2)) |
330 | 44, 54, 55, 329 | syl3anc 1439 |
. . 3
⊢ ((𝑁 ≠ 3 ∧ (𝑁 ∈ (ℤ≥‘3)
∧ 𝐼 ∈ (2...(𝑁 − 1)))) →
Σ𝑖 ∈ (3...𝑁)((𝑃‘𝑖)↑2) = Σ𝑖 ∈ (3...𝑁)((𝑄‘𝑖)↑2)) |
331 | 330 | ex 403 |
. 2
⊢ (𝑁 ≠ 3 → ((𝑁 ∈
(ℤ≥‘3) ∧ 𝐼 ∈ (2...(𝑁 − 1))) → Σ𝑖 ∈ (3...𝑁)((𝑃‘𝑖)↑2) = Σ𝑖 ∈ (3...𝑁)((𝑄‘𝑖)↑2))) |
332 | 43, 331 | pm2.61ine 3053 |
1
⊢ ((𝑁 ∈
(ℤ≥‘3) ∧ 𝐼 ∈ (2...(𝑁 − 1))) → Σ𝑖 ∈ (3...𝑁)((𝑃‘𝑖)↑2) = Σ𝑖 ∈ (3...𝑁)((𝑄‘𝑖)↑2)) |