Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  eldioph4b Structured version   Visualization version   GIF version

Theorem eldioph4b 39752
Description: Membership in Dioph expressed using a quantified union to add witness variables instead of a restriction to remove them. (Contributed by Stefan O'Rear, 16-Oct-2014.)
Hypotheses
Ref Expression
eldioph4b.a 𝑊 ∈ V
eldioph4b.b ¬ 𝑊 ∈ Fin
eldioph4b.c (𝑊 ∩ ℕ) = ∅
Assertion
Ref Expression
eldioph4b (𝑆 ∈ (Dioph‘𝑁) ↔ (𝑁 ∈ ℕ0 ∧ ∃𝑝 ∈ (mzPoly‘(𝑊 ∪ (1...𝑁)))𝑆 = {𝑡 ∈ (ℕ0m (1...𝑁)) ∣ ∃𝑤 ∈ (ℕ0m 𝑊)(𝑝‘(𝑡𝑤)) = 0}))
Distinct variable groups:   𝑊,𝑝,𝑡,𝑤   𝑆,𝑝,𝑡,𝑤   𝑁,𝑝,𝑡,𝑤

Proof of Theorem eldioph4b
Dummy variable 𝑢 is distinct from all other variables.
StepHypRef Expression
1 eldiophelnn0 39705 . 2 (𝑆 ∈ (Dioph‘𝑁) → 𝑁 ∈ ℕ0)
2 eldioph4b.a . . . . . 6 𝑊 ∈ V
3 ovex 7168 . . . . . 6 (1...𝑁) ∈ V
42, 3unex 7449 . . . . 5 (𝑊 ∪ (1...𝑁)) ∈ V
54jctr 528 . . . 4 (𝑁 ∈ ℕ0 → (𝑁 ∈ ℕ0 ∧ (𝑊 ∪ (1...𝑁)) ∈ V))
6 eldioph4b.b . . . . . . 7 ¬ 𝑊 ∈ Fin
76intnanr 491 . . . . . 6 ¬ (𝑊 ∈ Fin ∧ (1...𝑁) ∈ Fin)
8 unfir 8770 . . . . . 6 ((𝑊 ∪ (1...𝑁)) ∈ Fin → (𝑊 ∈ Fin ∧ (1...𝑁) ∈ Fin))
97, 8mto 200 . . . . 5 ¬ (𝑊 ∪ (1...𝑁)) ∈ Fin
10 ssun2 4100 . . . . 5 (1...𝑁) ⊆ (𝑊 ∪ (1...𝑁))
119, 10pm3.2i 474 . . . 4 (¬ (𝑊 ∪ (1...𝑁)) ∈ Fin ∧ (1...𝑁) ⊆ (𝑊 ∪ (1...𝑁)))
12 eldioph2b 39704 . . . 4 (((𝑁 ∈ ℕ0 ∧ (𝑊 ∪ (1...𝑁)) ∈ V) ∧ (¬ (𝑊 ∪ (1...𝑁)) ∈ Fin ∧ (1...𝑁) ⊆ (𝑊 ∪ (1...𝑁)))) → (𝑆 ∈ (Dioph‘𝑁) ↔ ∃𝑝 ∈ (mzPoly‘(𝑊 ∪ (1...𝑁)))𝑆 = {𝑡 ∣ ∃𝑢 ∈ (ℕ0m (𝑊 ∪ (1...𝑁)))(𝑡 = (𝑢 ↾ (1...𝑁)) ∧ (𝑝𝑢) = 0)}))
135, 11, 12sylancl 589 . . 3 (𝑁 ∈ ℕ0 → (𝑆 ∈ (Dioph‘𝑁) ↔ ∃𝑝 ∈ (mzPoly‘(𝑊 ∪ (1...𝑁)))𝑆 = {𝑡 ∣ ∃𝑢 ∈ (ℕ0m (𝑊 ∪ (1...𝑁)))(𝑡 = (𝑢 ↾ (1...𝑁)) ∧ (𝑝𝑢) = 0)}))
14 elmapssres 8414 . . . . . . . . . . . . . . 15 ((𝑢 ∈ (ℕ0m (𝑊 ∪ (1...𝑁))) ∧ (1...𝑁) ⊆ (𝑊 ∪ (1...𝑁))) → (𝑢 ↾ (1...𝑁)) ∈ (ℕ0m (1...𝑁)))
1510, 14mpan2 690 . . . . . . . . . . . . . 14 (𝑢 ∈ (ℕ0m (𝑊 ∪ (1...𝑁))) → (𝑢 ↾ (1...𝑁)) ∈ (ℕ0m (1...𝑁)))
1615adantr 484 . . . . . . . . . . . . 13 ((𝑢 ∈ (ℕ0m (𝑊 ∪ (1...𝑁))) ∧ (𝑝𝑢) = 0) → (𝑢 ↾ (1...𝑁)) ∈ (ℕ0m (1...𝑁)))
17 ssun1 4099 . . . . . . . . . . . . . . . 16 𝑊 ⊆ (𝑊 ∪ (1...𝑁))
18 elmapssres 8414 . . . . . . . . . . . . . . . 16 ((𝑢 ∈ (ℕ0m (𝑊 ∪ (1...𝑁))) ∧ 𝑊 ⊆ (𝑊 ∪ (1...𝑁))) → (𝑢𝑊) ∈ (ℕ0m 𝑊))
1917, 18mpan2 690 . . . . . . . . . . . . . . 15 (𝑢 ∈ (ℕ0m (𝑊 ∪ (1...𝑁))) → (𝑢𝑊) ∈ (ℕ0m 𝑊))
2019adantr 484 . . . . . . . . . . . . . 14 ((𝑢 ∈ (ℕ0m (𝑊 ∪ (1...𝑁))) ∧ (𝑝𝑢) = 0) → (𝑢𝑊) ∈ (ℕ0m 𝑊))
21 uncom 4080 . . . . . . . . . . . . . . . . . 18 ((𝑢 ↾ (1...𝑁)) ∪ (𝑢𝑊)) = ((𝑢𝑊) ∪ (𝑢 ↾ (1...𝑁)))
22 resundi 5832 . . . . . . . . . . . . . . . . . 18 (𝑢 ↾ (𝑊 ∪ (1...𝑁))) = ((𝑢𝑊) ∪ (𝑢 ↾ (1...𝑁)))
2321, 22eqtr4i 2824 . . . . . . . . . . . . . . . . 17 ((𝑢 ↾ (1...𝑁)) ∪ (𝑢𝑊)) = (𝑢 ↾ (𝑊 ∪ (1...𝑁)))
24 elmapi 8411 . . . . . . . . . . . . . . . . . 18 (𝑢 ∈ (ℕ0m (𝑊 ∪ (1...𝑁))) → 𝑢:(𝑊 ∪ (1...𝑁))⟶ℕ0)
25 ffn 6487 . . . . . . . . . . . . . . . . . 18 (𝑢:(𝑊 ∪ (1...𝑁))⟶ℕ0𝑢 Fn (𝑊 ∪ (1...𝑁)))
26 fnresdm 6438 . . . . . . . . . . . . . . . . . 18 (𝑢 Fn (𝑊 ∪ (1...𝑁)) → (𝑢 ↾ (𝑊 ∪ (1...𝑁))) = 𝑢)
2724, 25, 263syl 18 . . . . . . . . . . . . . . . . 17 (𝑢 ∈ (ℕ0m (𝑊 ∪ (1...𝑁))) → (𝑢 ↾ (𝑊 ∪ (1...𝑁))) = 𝑢)
2823, 27syl5eq 2845 . . . . . . . . . . . . . . . 16 (𝑢 ∈ (ℕ0m (𝑊 ∪ (1...𝑁))) → ((𝑢 ↾ (1...𝑁)) ∪ (𝑢𝑊)) = 𝑢)
2928fveqeq2d 6653 . . . . . . . . . . . . . . 15 (𝑢 ∈ (ℕ0m (𝑊 ∪ (1...𝑁))) → ((𝑝‘((𝑢 ↾ (1...𝑁)) ∪ (𝑢𝑊))) = 0 ↔ (𝑝𝑢) = 0))
3029biimpar 481 . . . . . . . . . . . . . 14 ((𝑢 ∈ (ℕ0m (𝑊 ∪ (1...𝑁))) ∧ (𝑝𝑢) = 0) → (𝑝‘((𝑢 ↾ (1...𝑁)) ∪ (𝑢𝑊))) = 0)
31 uneq2 4084 . . . . . . . . . . . . . . . 16 (𝑤 = (𝑢𝑊) → ((𝑢 ↾ (1...𝑁)) ∪ 𝑤) = ((𝑢 ↾ (1...𝑁)) ∪ (𝑢𝑊)))
3231fveqeq2d 6653 . . . . . . . . . . . . . . 15 (𝑤 = (𝑢𝑊) → ((𝑝‘((𝑢 ↾ (1...𝑁)) ∪ 𝑤)) = 0 ↔ (𝑝‘((𝑢 ↾ (1...𝑁)) ∪ (𝑢𝑊))) = 0))
3332rspcev 3571 . . . . . . . . . . . . . 14 (((𝑢𝑊) ∈ (ℕ0m 𝑊) ∧ (𝑝‘((𝑢 ↾ (1...𝑁)) ∪ (𝑢𝑊))) = 0) → ∃𝑤 ∈ (ℕ0m 𝑊)(𝑝‘((𝑢 ↾ (1...𝑁)) ∪ 𝑤)) = 0)
3420, 30, 33syl2anc 587 . . . . . . . . . . . . 13 ((𝑢 ∈ (ℕ0m (𝑊 ∪ (1...𝑁))) ∧ (𝑝𝑢) = 0) → ∃𝑤 ∈ (ℕ0m 𝑊)(𝑝‘((𝑢 ↾ (1...𝑁)) ∪ 𝑤)) = 0)
3516, 34jca 515 . . . . . . . . . . . 12 ((𝑢 ∈ (ℕ0m (𝑊 ∪ (1...𝑁))) ∧ (𝑝𝑢) = 0) → ((𝑢 ↾ (1...𝑁)) ∈ (ℕ0m (1...𝑁)) ∧ ∃𝑤 ∈ (ℕ0m 𝑊)(𝑝‘((𝑢 ↾ (1...𝑁)) ∪ 𝑤)) = 0))
36 eleq1 2877 . . . . . . . . . . . . 13 (𝑡 = (𝑢 ↾ (1...𝑁)) → (𝑡 ∈ (ℕ0m (1...𝑁)) ↔ (𝑢 ↾ (1...𝑁)) ∈ (ℕ0m (1...𝑁))))
37 uneq1 4083 . . . . . . . . . . . . . . 15 (𝑡 = (𝑢 ↾ (1...𝑁)) → (𝑡𝑤) = ((𝑢 ↾ (1...𝑁)) ∪ 𝑤))
3837fveqeq2d 6653 . . . . . . . . . . . . . 14 (𝑡 = (𝑢 ↾ (1...𝑁)) → ((𝑝‘(𝑡𝑤)) = 0 ↔ (𝑝‘((𝑢 ↾ (1...𝑁)) ∪ 𝑤)) = 0))
3938rexbidv 3256 . . . . . . . . . . . . 13 (𝑡 = (𝑢 ↾ (1...𝑁)) → (∃𝑤 ∈ (ℕ0m 𝑊)(𝑝‘(𝑡𝑤)) = 0 ↔ ∃𝑤 ∈ (ℕ0m 𝑊)(𝑝‘((𝑢 ↾ (1...𝑁)) ∪ 𝑤)) = 0))
4036, 39anbi12d 633 . . . . . . . . . . . 12 (𝑡 = (𝑢 ↾ (1...𝑁)) → ((𝑡 ∈ (ℕ0m (1...𝑁)) ∧ ∃𝑤 ∈ (ℕ0m 𝑊)(𝑝‘(𝑡𝑤)) = 0) ↔ ((𝑢 ↾ (1...𝑁)) ∈ (ℕ0m (1...𝑁)) ∧ ∃𝑤 ∈ (ℕ0m 𝑊)(𝑝‘((𝑢 ↾ (1...𝑁)) ∪ 𝑤)) = 0)))
4135, 40syl5ibrcom 250 . . . . . . . . . . 11 ((𝑢 ∈ (ℕ0m (𝑊 ∪ (1...𝑁))) ∧ (𝑝𝑢) = 0) → (𝑡 = (𝑢 ↾ (1...𝑁)) → (𝑡 ∈ (ℕ0m (1...𝑁)) ∧ ∃𝑤 ∈ (ℕ0m 𝑊)(𝑝‘(𝑡𝑤)) = 0)))
4241expimpd 457 . . . . . . . . . 10 (𝑢 ∈ (ℕ0m (𝑊 ∪ (1...𝑁))) → (((𝑝𝑢) = 0 ∧ 𝑡 = (𝑢 ↾ (1...𝑁))) → (𝑡 ∈ (ℕ0m (1...𝑁)) ∧ ∃𝑤 ∈ (ℕ0m 𝑊)(𝑝‘(𝑡𝑤)) = 0)))
4342ancomsd 469 . . . . . . . . 9 (𝑢 ∈ (ℕ0m (𝑊 ∪ (1...𝑁))) → ((𝑡 = (𝑢 ↾ (1...𝑁)) ∧ (𝑝𝑢) = 0) → (𝑡 ∈ (ℕ0m (1...𝑁)) ∧ ∃𝑤 ∈ (ℕ0m 𝑊)(𝑝‘(𝑡𝑤)) = 0)))
4443rexlimiv 3239 . . . . . . . 8 (∃𝑢 ∈ (ℕ0m (𝑊 ∪ (1...𝑁)))(𝑡 = (𝑢 ↾ (1...𝑁)) ∧ (𝑝𝑢) = 0) → (𝑡 ∈ (ℕ0m (1...𝑁)) ∧ ∃𝑤 ∈ (ℕ0m 𝑊)(𝑝‘(𝑡𝑤)) = 0))
45 uncom 4080 . . . . . . . . . . . 12 (𝑡𝑤) = (𝑤𝑡)
46 fz1ssnn 12933 . . . . . . . . . . . . . . . . . . . 20 (1...𝑁) ⊆ ℕ
47 sslin 4161 . . . . . . . . . . . . . . . . . . . 20 ((1...𝑁) ⊆ ℕ → (𝑊 ∩ (1...𝑁)) ⊆ (𝑊 ∩ ℕ))
4846, 47ax-mp 5 . . . . . . . . . . . . . . . . . . 19 (𝑊 ∩ (1...𝑁)) ⊆ (𝑊 ∩ ℕ)
49 eldioph4b.c . . . . . . . . . . . . . . . . . . 19 (𝑊 ∩ ℕ) = ∅
5048, 49sseqtri 3951 . . . . . . . . . . . . . . . . . 18 (𝑊 ∩ (1...𝑁)) ⊆ ∅
51 ss0 4306 . . . . . . . . . . . . . . . . . 18 ((𝑊 ∩ (1...𝑁)) ⊆ ∅ → (𝑊 ∩ (1...𝑁)) = ∅)
5250, 51ax-mp 5 . . . . . . . . . . . . . . . . 17 (𝑊 ∩ (1...𝑁)) = ∅
5352reseq2i 5815 . . . . . . . . . . . . . . . 16 (𝑤 ↾ (𝑊 ∩ (1...𝑁))) = (𝑤 ↾ ∅)
54 res0 5822 . . . . . . . . . . . . . . . 16 (𝑤 ↾ ∅) = ∅
5553, 54eqtri 2821 . . . . . . . . . . . . . . 15 (𝑤 ↾ (𝑊 ∩ (1...𝑁))) = ∅
5652reseq2i 5815 . . . . . . . . . . . . . . . 16 (𝑡 ↾ (𝑊 ∩ (1...𝑁))) = (𝑡 ↾ ∅)
57 res0 5822 . . . . . . . . . . . . . . . 16 (𝑡 ↾ ∅) = ∅
5856, 57eqtri 2821 . . . . . . . . . . . . . . 15 (𝑡 ↾ (𝑊 ∩ (1...𝑁))) = ∅
5955, 58eqtr4i 2824 . . . . . . . . . . . . . 14 (𝑤 ↾ (𝑊 ∩ (1...𝑁))) = (𝑡 ↾ (𝑊 ∩ (1...𝑁)))
60 elmapresaun 8427 . . . . . . . . . . . . . 14 ((𝑤 ∈ (ℕ0m 𝑊) ∧ 𝑡 ∈ (ℕ0m (1...𝑁)) ∧ (𝑤 ↾ (𝑊 ∩ (1...𝑁))) = (𝑡 ↾ (𝑊 ∩ (1...𝑁)))) → (𝑤𝑡) ∈ (ℕ0m (𝑊 ∪ (1...𝑁))))
6159, 60mp3an3 1447 . . . . . . . . . . . . 13 ((𝑤 ∈ (ℕ0m 𝑊) ∧ 𝑡 ∈ (ℕ0m (1...𝑁))) → (𝑤𝑡) ∈ (ℕ0m (𝑊 ∪ (1...𝑁))))
6261ancoms 462 . . . . . . . . . . . 12 ((𝑡 ∈ (ℕ0m (1...𝑁)) ∧ 𝑤 ∈ (ℕ0m 𝑊)) → (𝑤𝑡) ∈ (ℕ0m (𝑊 ∪ (1...𝑁))))
6345, 62eqeltrid 2894 . . . . . . . . . . 11 ((𝑡 ∈ (ℕ0m (1...𝑁)) ∧ 𝑤 ∈ (ℕ0m 𝑊)) → (𝑡𝑤) ∈ (ℕ0m (𝑊 ∪ (1...𝑁))))
6463adantr 484 . . . . . . . . . 10 (((𝑡 ∈ (ℕ0m (1...𝑁)) ∧ 𝑤 ∈ (ℕ0m 𝑊)) ∧ (𝑝‘(𝑡𝑤)) = 0) → (𝑡𝑤) ∈ (ℕ0m (𝑊 ∪ (1...𝑁))))
6545reseq1i 5814 . . . . . . . . . . . 12 ((𝑡𝑤) ↾ (1...𝑁)) = ((𝑤𝑡) ↾ (1...𝑁))
66 elmapresaunres2 39712 . . . . . . . . . . . . . 14 ((𝑤 ∈ (ℕ0m 𝑊) ∧ 𝑡 ∈ (ℕ0m (1...𝑁)) ∧ (𝑤 ↾ (𝑊 ∩ (1...𝑁))) = (𝑡 ↾ (𝑊 ∩ (1...𝑁)))) → ((𝑤𝑡) ↾ (1...𝑁)) = 𝑡)
6759, 66mp3an3 1447 . . . . . . . . . . . . 13 ((𝑤 ∈ (ℕ0m 𝑊) ∧ 𝑡 ∈ (ℕ0m (1...𝑁))) → ((𝑤𝑡) ↾ (1...𝑁)) = 𝑡)
6867ancoms 462 . . . . . . . . . . . 12 ((𝑡 ∈ (ℕ0m (1...𝑁)) ∧ 𝑤 ∈ (ℕ0m 𝑊)) → ((𝑤𝑡) ↾ (1...𝑁)) = 𝑡)
6965, 68syl5req 2846 . . . . . . . . . . 11 ((𝑡 ∈ (ℕ0m (1...𝑁)) ∧ 𝑤 ∈ (ℕ0m 𝑊)) → 𝑡 = ((𝑡𝑤) ↾ (1...𝑁)))
7069adantr 484 . . . . . . . . . 10 (((𝑡 ∈ (ℕ0m (1...𝑁)) ∧ 𝑤 ∈ (ℕ0m 𝑊)) ∧ (𝑝‘(𝑡𝑤)) = 0) → 𝑡 = ((𝑡𝑤) ↾ (1...𝑁)))
71 simpr 488 . . . . . . . . . 10 (((𝑡 ∈ (ℕ0m (1...𝑁)) ∧ 𝑤 ∈ (ℕ0m 𝑊)) ∧ (𝑝‘(𝑡𝑤)) = 0) → (𝑝‘(𝑡𝑤)) = 0)
72 reseq1 5812 . . . . . . . . . . . . 13 (𝑢 = (𝑡𝑤) → (𝑢 ↾ (1...𝑁)) = ((𝑡𝑤) ↾ (1...𝑁)))
7372eqeq2d 2809 . . . . . . . . . . . 12 (𝑢 = (𝑡𝑤) → (𝑡 = (𝑢 ↾ (1...𝑁)) ↔ 𝑡 = ((𝑡𝑤) ↾ (1...𝑁))))
74 fveqeq2 6654 . . . . . . . . . . . 12 (𝑢 = (𝑡𝑤) → ((𝑝𝑢) = 0 ↔ (𝑝‘(𝑡𝑤)) = 0))
7573, 74anbi12d 633 . . . . . . . . . . 11 (𝑢 = (𝑡𝑤) → ((𝑡 = (𝑢 ↾ (1...𝑁)) ∧ (𝑝𝑢) = 0) ↔ (𝑡 = ((𝑡𝑤) ↾ (1...𝑁)) ∧ (𝑝‘(𝑡𝑤)) = 0)))
7675rspcev 3571 . . . . . . . . . 10 (((𝑡𝑤) ∈ (ℕ0m (𝑊 ∪ (1...𝑁))) ∧ (𝑡 = ((𝑡𝑤) ↾ (1...𝑁)) ∧ (𝑝‘(𝑡𝑤)) = 0)) → ∃𝑢 ∈ (ℕ0m (𝑊 ∪ (1...𝑁)))(𝑡 = (𝑢 ↾ (1...𝑁)) ∧ (𝑝𝑢) = 0))
7764, 70, 71, 76syl12anc 835 . . . . . . . . 9 (((𝑡 ∈ (ℕ0m (1...𝑁)) ∧ 𝑤 ∈ (ℕ0m 𝑊)) ∧ (𝑝‘(𝑡𝑤)) = 0) → ∃𝑢 ∈ (ℕ0m (𝑊 ∪ (1...𝑁)))(𝑡 = (𝑢 ↾ (1...𝑁)) ∧ (𝑝𝑢) = 0))
7877r19.29an 3247 . . . . . . . 8 ((𝑡 ∈ (ℕ0m (1...𝑁)) ∧ ∃𝑤 ∈ (ℕ0m 𝑊)(𝑝‘(𝑡𝑤)) = 0) → ∃𝑢 ∈ (ℕ0m (𝑊 ∪ (1...𝑁)))(𝑡 = (𝑢 ↾ (1...𝑁)) ∧ (𝑝𝑢) = 0))
7944, 78impbii 212 . . . . . . 7 (∃𝑢 ∈ (ℕ0m (𝑊 ∪ (1...𝑁)))(𝑡 = (𝑢 ↾ (1...𝑁)) ∧ (𝑝𝑢) = 0) ↔ (𝑡 ∈ (ℕ0m (1...𝑁)) ∧ ∃𝑤 ∈ (ℕ0m 𝑊)(𝑝‘(𝑡𝑤)) = 0))
8079abbii 2863 . . . . . 6 {𝑡 ∣ ∃𝑢 ∈ (ℕ0m (𝑊 ∪ (1...𝑁)))(𝑡 = (𝑢 ↾ (1...𝑁)) ∧ (𝑝𝑢) = 0)} = {𝑡 ∣ (𝑡 ∈ (ℕ0m (1...𝑁)) ∧ ∃𝑤 ∈ (ℕ0m 𝑊)(𝑝‘(𝑡𝑤)) = 0)}
81 df-rab 3115 . . . . . 6 {𝑡 ∈ (ℕ0m (1...𝑁)) ∣ ∃𝑤 ∈ (ℕ0m 𝑊)(𝑝‘(𝑡𝑤)) = 0} = {𝑡 ∣ (𝑡 ∈ (ℕ0m (1...𝑁)) ∧ ∃𝑤 ∈ (ℕ0m 𝑊)(𝑝‘(𝑡𝑤)) = 0)}
8280, 81eqtr4i 2824 . . . . 5 {𝑡 ∣ ∃𝑢 ∈ (ℕ0m (𝑊 ∪ (1...𝑁)))(𝑡 = (𝑢 ↾ (1...𝑁)) ∧ (𝑝𝑢) = 0)} = {𝑡 ∈ (ℕ0m (1...𝑁)) ∣ ∃𝑤 ∈ (ℕ0m 𝑊)(𝑝‘(𝑡𝑤)) = 0}
8382eqeq2i 2811 . . . 4 (𝑆 = {𝑡 ∣ ∃𝑢 ∈ (ℕ0m (𝑊 ∪ (1...𝑁)))(𝑡 = (𝑢 ↾ (1...𝑁)) ∧ (𝑝𝑢) = 0)} ↔ 𝑆 = {𝑡 ∈ (ℕ0m (1...𝑁)) ∣ ∃𝑤 ∈ (ℕ0m 𝑊)(𝑝‘(𝑡𝑤)) = 0})
8483rexbii 3210 . . 3 (∃𝑝 ∈ (mzPoly‘(𝑊 ∪ (1...𝑁)))𝑆 = {𝑡 ∣ ∃𝑢 ∈ (ℕ0m (𝑊 ∪ (1...𝑁)))(𝑡 = (𝑢 ↾ (1...𝑁)) ∧ (𝑝𝑢) = 0)} ↔ ∃𝑝 ∈ (mzPoly‘(𝑊 ∪ (1...𝑁)))𝑆 = {𝑡 ∈ (ℕ0m (1...𝑁)) ∣ ∃𝑤 ∈ (ℕ0m 𝑊)(𝑝‘(𝑡𝑤)) = 0})
8513, 84syl6bb 290 . 2 (𝑁 ∈ ℕ0 → (𝑆 ∈ (Dioph‘𝑁) ↔ ∃𝑝 ∈ (mzPoly‘(𝑊 ∪ (1...𝑁)))𝑆 = {𝑡 ∈ (ℕ0m (1...𝑁)) ∣ ∃𝑤 ∈ (ℕ0m 𝑊)(𝑝‘(𝑡𝑤)) = 0}))
861, 85biadanii 821 1 (𝑆 ∈ (Dioph‘𝑁) ↔ (𝑁 ∈ ℕ0 ∧ ∃𝑝 ∈ (mzPoly‘(𝑊 ∪ (1...𝑁)))𝑆 = {𝑡 ∈ (ℕ0m (1...𝑁)) ∣ ∃𝑤 ∈ (ℕ0m 𝑊)(𝑝‘(𝑡𝑤)) = 0}))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wb 209  wa 399   = wceq 1538  wcel 2111  {cab 2776  wrex 3107  {crab 3110  Vcvv 3441  cun 3879  cin 3880  wss 3881  c0 4243  cres 5521   Fn wfn 6319  wf 6320  cfv 6324  (class class class)co 7135  m cmap 8389  Fincfn 8492  0cc0 10526  1c1 10527  cn 11625  0cn0 11885  ...cfz 12885  mzPolycmzp 39663  Diophcdioph 39696
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-rep 5154  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441  ax-cnex 10582  ax-resscn 10583  ax-1cn 10584  ax-icn 10585  ax-addcl 10586  ax-addrcl 10587  ax-mulcl 10588  ax-mulrcl 10589  ax-mulcom 10590  ax-addass 10591  ax-mulass 10592  ax-distr 10593  ax-i2m1 10594  ax-1ne0 10595  ax-1rid 10596  ax-rnegex 10597  ax-rrecex 10598  ax-cnre 10599  ax-pre-lttri 10600  ax-pre-lttrn 10601  ax-pre-ltadd 10602  ax-pre-mulgt0 10603
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-nel 3092  df-ral 3111  df-rex 3112  df-reu 3113  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-pss 3900  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4801  df-int 4839  df-iun 4883  df-br 5031  df-opab 5093  df-mpt 5111  df-tr 5137  df-id 5425  df-eprel 5430  df-po 5438  df-so 5439  df-fr 5478  df-we 5480  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-pred 6116  df-ord 6162  df-on 6163  df-lim 6164  df-suc 6165  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-riota 7093  df-ov 7138  df-oprab 7139  df-mpo 7140  df-of 7389  df-om 7561  df-1st 7671  df-2nd 7672  df-wrecs 7930  df-recs 7991  df-rdg 8029  df-1o 8085  df-oadd 8089  df-er 8272  df-map 8391  df-en 8493  df-dom 8494  df-sdom 8495  df-fin 8496  df-dju 9314  df-card 9352  df-pnf 10666  df-mnf 10667  df-xr 10668  df-ltxr 10669  df-le 10670  df-sub 10861  df-neg 10862  df-nn 11626  df-n0 11886  df-z 11970  df-uz 12232  df-fz 12886  df-hash 13687  df-mzpcl 39664  df-mzp 39665  df-dioph 39697
This theorem is referenced by:  eldioph4i  39753  diophren  39754
  Copyright terms: Public domain W3C validator