Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  eldioph4b Structured version   Visualization version   GIF version

Theorem eldioph4b 42767
Description: Membership in Dioph expressed using a quantified union to add witness variables instead of a restriction to remove them. (Contributed by Stefan O'Rear, 16-Oct-2014.)
Hypotheses
Ref Expression
eldioph4b.a 𝑊 ∈ V
eldioph4b.b ¬ 𝑊 ∈ Fin
eldioph4b.c (𝑊 ∩ ℕ) = ∅
Assertion
Ref Expression
eldioph4b (𝑆 ∈ (Dioph‘𝑁) ↔ (𝑁 ∈ ℕ0 ∧ ∃𝑝 ∈ (mzPoly‘(𝑊 ∪ (1...𝑁)))𝑆 = {𝑡 ∈ (ℕ0m (1...𝑁)) ∣ ∃𝑤 ∈ (ℕ0m 𝑊)(𝑝‘(𝑡𝑤)) = 0}))
Distinct variable groups:   𝑊,𝑝,𝑡,𝑤   𝑆,𝑝,𝑡,𝑤   𝑁,𝑝,𝑡,𝑤

Proof of Theorem eldioph4b
Dummy variable 𝑢 is distinct from all other variables.
StepHypRef Expression
1 eldiophelnn0 42720 . 2 (𝑆 ∈ (Dioph‘𝑁) → 𝑁 ∈ ℕ0)
2 eldioph4b.a . . . . . 6 𝑊 ∈ V
3 ovex 7481 . . . . . 6 (1...𝑁) ∈ V
42, 3unex 7779 . . . . 5 (𝑊 ∪ (1...𝑁)) ∈ V
54jctr 524 . . . 4 (𝑁 ∈ ℕ0 → (𝑁 ∈ ℕ0 ∧ (𝑊 ∪ (1...𝑁)) ∈ V))
6 eldioph4b.b . . . . . . 7 ¬ 𝑊 ∈ Fin
76intnanr 487 . . . . . 6 ¬ (𝑊 ∈ Fin ∧ (1...𝑁) ∈ Fin)
8 unfir 9374 . . . . . 6 ((𝑊 ∪ (1...𝑁)) ∈ Fin → (𝑊 ∈ Fin ∧ (1...𝑁) ∈ Fin))
97, 8mto 197 . . . . 5 ¬ (𝑊 ∪ (1...𝑁)) ∈ Fin
10 ssun2 4202 . . . . 5 (1...𝑁) ⊆ (𝑊 ∪ (1...𝑁))
119, 10pm3.2i 470 . . . 4 (¬ (𝑊 ∪ (1...𝑁)) ∈ Fin ∧ (1...𝑁) ⊆ (𝑊 ∪ (1...𝑁)))
12 eldioph2b 42719 . . . 4 (((𝑁 ∈ ℕ0 ∧ (𝑊 ∪ (1...𝑁)) ∈ V) ∧ (¬ (𝑊 ∪ (1...𝑁)) ∈ Fin ∧ (1...𝑁) ⊆ (𝑊 ∪ (1...𝑁)))) → (𝑆 ∈ (Dioph‘𝑁) ↔ ∃𝑝 ∈ (mzPoly‘(𝑊 ∪ (1...𝑁)))𝑆 = {𝑡 ∣ ∃𝑢 ∈ (ℕ0m (𝑊 ∪ (1...𝑁)))(𝑡 = (𝑢 ↾ (1...𝑁)) ∧ (𝑝𝑢) = 0)}))
135, 11, 12sylancl 585 . . 3 (𝑁 ∈ ℕ0 → (𝑆 ∈ (Dioph‘𝑁) ↔ ∃𝑝 ∈ (mzPoly‘(𝑊 ∪ (1...𝑁)))𝑆 = {𝑡 ∣ ∃𝑢 ∈ (ℕ0m (𝑊 ∪ (1...𝑁)))(𝑡 = (𝑢 ↾ (1...𝑁)) ∧ (𝑝𝑢) = 0)}))
14 elmapssres 8925 . . . . . . . . . . . . . . 15 ((𝑢 ∈ (ℕ0m (𝑊 ∪ (1...𝑁))) ∧ (1...𝑁) ⊆ (𝑊 ∪ (1...𝑁))) → (𝑢 ↾ (1...𝑁)) ∈ (ℕ0m (1...𝑁)))
1510, 14mpan2 690 . . . . . . . . . . . . . 14 (𝑢 ∈ (ℕ0m (𝑊 ∪ (1...𝑁))) → (𝑢 ↾ (1...𝑁)) ∈ (ℕ0m (1...𝑁)))
1615adantr 480 . . . . . . . . . . . . 13 ((𝑢 ∈ (ℕ0m (𝑊 ∪ (1...𝑁))) ∧ (𝑝𝑢) = 0) → (𝑢 ↾ (1...𝑁)) ∈ (ℕ0m (1...𝑁)))
17 ssun1 4201 . . . . . . . . . . . . . . . 16 𝑊 ⊆ (𝑊 ∪ (1...𝑁))
18 elmapssres 8925 . . . . . . . . . . . . . . . 16 ((𝑢 ∈ (ℕ0m (𝑊 ∪ (1...𝑁))) ∧ 𝑊 ⊆ (𝑊 ∪ (1...𝑁))) → (𝑢𝑊) ∈ (ℕ0m 𝑊))
1917, 18mpan2 690 . . . . . . . . . . . . . . 15 (𝑢 ∈ (ℕ0m (𝑊 ∪ (1...𝑁))) → (𝑢𝑊) ∈ (ℕ0m 𝑊))
2019adantr 480 . . . . . . . . . . . . . 14 ((𝑢 ∈ (ℕ0m (𝑊 ∪ (1...𝑁))) ∧ (𝑝𝑢) = 0) → (𝑢𝑊) ∈ (ℕ0m 𝑊))
21 uncom 4181 . . . . . . . . . . . . . . . . . 18 ((𝑢 ↾ (1...𝑁)) ∪ (𝑢𝑊)) = ((𝑢𝑊) ∪ (𝑢 ↾ (1...𝑁)))
22 resundi 6023 . . . . . . . . . . . . . . . . . 18 (𝑢 ↾ (𝑊 ∪ (1...𝑁))) = ((𝑢𝑊) ∪ (𝑢 ↾ (1...𝑁)))
2321, 22eqtr4i 2771 . . . . . . . . . . . . . . . . 17 ((𝑢 ↾ (1...𝑁)) ∪ (𝑢𝑊)) = (𝑢 ↾ (𝑊 ∪ (1...𝑁)))
24 elmapi 8907 . . . . . . . . . . . . . . . . . 18 (𝑢 ∈ (ℕ0m (𝑊 ∪ (1...𝑁))) → 𝑢:(𝑊 ∪ (1...𝑁))⟶ℕ0)
25 ffn 6747 . . . . . . . . . . . . . . . . . 18 (𝑢:(𝑊 ∪ (1...𝑁))⟶ℕ0𝑢 Fn (𝑊 ∪ (1...𝑁)))
26 fnresdm 6699 . . . . . . . . . . . . . . . . . 18 (𝑢 Fn (𝑊 ∪ (1...𝑁)) → (𝑢 ↾ (𝑊 ∪ (1...𝑁))) = 𝑢)
2724, 25, 263syl 18 . . . . . . . . . . . . . . . . 17 (𝑢 ∈ (ℕ0m (𝑊 ∪ (1...𝑁))) → (𝑢 ↾ (𝑊 ∪ (1...𝑁))) = 𝑢)
2823, 27eqtrid 2792 . . . . . . . . . . . . . . . 16 (𝑢 ∈ (ℕ0m (𝑊 ∪ (1...𝑁))) → ((𝑢 ↾ (1...𝑁)) ∪ (𝑢𝑊)) = 𝑢)
2928fveqeq2d 6928 . . . . . . . . . . . . . . 15 (𝑢 ∈ (ℕ0m (𝑊 ∪ (1...𝑁))) → ((𝑝‘((𝑢 ↾ (1...𝑁)) ∪ (𝑢𝑊))) = 0 ↔ (𝑝𝑢) = 0))
3029biimpar 477 . . . . . . . . . . . . . 14 ((𝑢 ∈ (ℕ0m (𝑊 ∪ (1...𝑁))) ∧ (𝑝𝑢) = 0) → (𝑝‘((𝑢 ↾ (1...𝑁)) ∪ (𝑢𝑊))) = 0)
31 uneq2 4185 . . . . . . . . . . . . . . . 16 (𝑤 = (𝑢𝑊) → ((𝑢 ↾ (1...𝑁)) ∪ 𝑤) = ((𝑢 ↾ (1...𝑁)) ∪ (𝑢𝑊)))
3231fveqeq2d 6928 . . . . . . . . . . . . . . 15 (𝑤 = (𝑢𝑊) → ((𝑝‘((𝑢 ↾ (1...𝑁)) ∪ 𝑤)) = 0 ↔ (𝑝‘((𝑢 ↾ (1...𝑁)) ∪ (𝑢𝑊))) = 0))
3332rspcev 3635 . . . . . . . . . . . . . 14 (((𝑢𝑊) ∈ (ℕ0m 𝑊) ∧ (𝑝‘((𝑢 ↾ (1...𝑁)) ∪ (𝑢𝑊))) = 0) → ∃𝑤 ∈ (ℕ0m 𝑊)(𝑝‘((𝑢 ↾ (1...𝑁)) ∪ 𝑤)) = 0)
3420, 30, 33syl2anc 583 . . . . . . . . . . . . 13 ((𝑢 ∈ (ℕ0m (𝑊 ∪ (1...𝑁))) ∧ (𝑝𝑢) = 0) → ∃𝑤 ∈ (ℕ0m 𝑊)(𝑝‘((𝑢 ↾ (1...𝑁)) ∪ 𝑤)) = 0)
3516, 34jca 511 . . . . . . . . . . . 12 ((𝑢 ∈ (ℕ0m (𝑊 ∪ (1...𝑁))) ∧ (𝑝𝑢) = 0) → ((𝑢 ↾ (1...𝑁)) ∈ (ℕ0m (1...𝑁)) ∧ ∃𝑤 ∈ (ℕ0m 𝑊)(𝑝‘((𝑢 ↾ (1...𝑁)) ∪ 𝑤)) = 0))
36 eleq1 2832 . . . . . . . . . . . . 13 (𝑡 = (𝑢 ↾ (1...𝑁)) → (𝑡 ∈ (ℕ0m (1...𝑁)) ↔ (𝑢 ↾ (1...𝑁)) ∈ (ℕ0m (1...𝑁))))
37 uneq1 4184 . . . . . . . . . . . . . . 15 (𝑡 = (𝑢 ↾ (1...𝑁)) → (𝑡𝑤) = ((𝑢 ↾ (1...𝑁)) ∪ 𝑤))
3837fveqeq2d 6928 . . . . . . . . . . . . . 14 (𝑡 = (𝑢 ↾ (1...𝑁)) → ((𝑝‘(𝑡𝑤)) = 0 ↔ (𝑝‘((𝑢 ↾ (1...𝑁)) ∪ 𝑤)) = 0))
3938rexbidv 3185 . . . . . . . . . . . . 13 (𝑡 = (𝑢 ↾ (1...𝑁)) → (∃𝑤 ∈ (ℕ0m 𝑊)(𝑝‘(𝑡𝑤)) = 0 ↔ ∃𝑤 ∈ (ℕ0m 𝑊)(𝑝‘((𝑢 ↾ (1...𝑁)) ∪ 𝑤)) = 0))
4036, 39anbi12d 631 . . . . . . . . . . . 12 (𝑡 = (𝑢 ↾ (1...𝑁)) → ((𝑡 ∈ (ℕ0m (1...𝑁)) ∧ ∃𝑤 ∈ (ℕ0m 𝑊)(𝑝‘(𝑡𝑤)) = 0) ↔ ((𝑢 ↾ (1...𝑁)) ∈ (ℕ0m (1...𝑁)) ∧ ∃𝑤 ∈ (ℕ0m 𝑊)(𝑝‘((𝑢 ↾ (1...𝑁)) ∪ 𝑤)) = 0)))
4135, 40syl5ibrcom 247 . . . . . . . . . . 11 ((𝑢 ∈ (ℕ0m (𝑊 ∪ (1...𝑁))) ∧ (𝑝𝑢) = 0) → (𝑡 = (𝑢 ↾ (1...𝑁)) → (𝑡 ∈ (ℕ0m (1...𝑁)) ∧ ∃𝑤 ∈ (ℕ0m 𝑊)(𝑝‘(𝑡𝑤)) = 0)))
4241expimpd 453 . . . . . . . . . 10 (𝑢 ∈ (ℕ0m (𝑊 ∪ (1...𝑁))) → (((𝑝𝑢) = 0 ∧ 𝑡 = (𝑢 ↾ (1...𝑁))) → (𝑡 ∈ (ℕ0m (1...𝑁)) ∧ ∃𝑤 ∈ (ℕ0m 𝑊)(𝑝‘(𝑡𝑤)) = 0)))
4342ancomsd 465 . . . . . . . . 9 (𝑢 ∈ (ℕ0m (𝑊 ∪ (1...𝑁))) → ((𝑡 = (𝑢 ↾ (1...𝑁)) ∧ (𝑝𝑢) = 0) → (𝑡 ∈ (ℕ0m (1...𝑁)) ∧ ∃𝑤 ∈ (ℕ0m 𝑊)(𝑝‘(𝑡𝑤)) = 0)))
4443rexlimiv 3154 . . . . . . . 8 (∃𝑢 ∈ (ℕ0m (𝑊 ∪ (1...𝑁)))(𝑡 = (𝑢 ↾ (1...𝑁)) ∧ (𝑝𝑢) = 0) → (𝑡 ∈ (ℕ0m (1...𝑁)) ∧ ∃𝑤 ∈ (ℕ0m 𝑊)(𝑝‘(𝑡𝑤)) = 0))
45 uncom 4181 . . . . . . . . . . . 12 (𝑡𝑤) = (𝑤𝑡)
46 fz1ssnn 13615 . . . . . . . . . . . . . . . . . . . 20 (1...𝑁) ⊆ ℕ
47 sslin 4264 . . . . . . . . . . . . . . . . . . . 20 ((1...𝑁) ⊆ ℕ → (𝑊 ∩ (1...𝑁)) ⊆ (𝑊 ∩ ℕ))
4846, 47ax-mp 5 . . . . . . . . . . . . . . . . . . 19 (𝑊 ∩ (1...𝑁)) ⊆ (𝑊 ∩ ℕ)
49 eldioph4b.c . . . . . . . . . . . . . . . . . . 19 (𝑊 ∩ ℕ) = ∅
5048, 49sseqtri 4045 . . . . . . . . . . . . . . . . . 18 (𝑊 ∩ (1...𝑁)) ⊆ ∅
51 ss0 4425 . . . . . . . . . . . . . . . . . 18 ((𝑊 ∩ (1...𝑁)) ⊆ ∅ → (𝑊 ∩ (1...𝑁)) = ∅)
5250, 51ax-mp 5 . . . . . . . . . . . . . . . . 17 (𝑊 ∩ (1...𝑁)) = ∅
5352reseq2i 6006 . . . . . . . . . . . . . . . 16 (𝑤 ↾ (𝑊 ∩ (1...𝑁))) = (𝑤 ↾ ∅)
54 res0 6013 . . . . . . . . . . . . . . . 16 (𝑤 ↾ ∅) = ∅
5553, 54eqtri 2768 . . . . . . . . . . . . . . 15 (𝑤 ↾ (𝑊 ∩ (1...𝑁))) = ∅
5652reseq2i 6006 . . . . . . . . . . . . . . . 16 (𝑡 ↾ (𝑊 ∩ (1...𝑁))) = (𝑡 ↾ ∅)
57 res0 6013 . . . . . . . . . . . . . . . 16 (𝑡 ↾ ∅) = ∅
5856, 57eqtri 2768 . . . . . . . . . . . . . . 15 (𝑡 ↾ (𝑊 ∩ (1...𝑁))) = ∅
5955, 58eqtr4i 2771 . . . . . . . . . . . . . 14 (𝑤 ↾ (𝑊 ∩ (1...𝑁))) = (𝑡 ↾ (𝑊 ∩ (1...𝑁)))
60 elmapresaun 8938 . . . . . . . . . . . . . 14 ((𝑤 ∈ (ℕ0m 𝑊) ∧ 𝑡 ∈ (ℕ0m (1...𝑁)) ∧ (𝑤 ↾ (𝑊 ∩ (1...𝑁))) = (𝑡 ↾ (𝑊 ∩ (1...𝑁)))) → (𝑤𝑡) ∈ (ℕ0m (𝑊 ∪ (1...𝑁))))
6159, 60mp3an3 1450 . . . . . . . . . . . . 13 ((𝑤 ∈ (ℕ0m 𝑊) ∧ 𝑡 ∈ (ℕ0m (1...𝑁))) → (𝑤𝑡) ∈ (ℕ0m (𝑊 ∪ (1...𝑁))))
6261ancoms 458 . . . . . . . . . . . 12 ((𝑡 ∈ (ℕ0m (1...𝑁)) ∧ 𝑤 ∈ (ℕ0m 𝑊)) → (𝑤𝑡) ∈ (ℕ0m (𝑊 ∪ (1...𝑁))))
6345, 62eqeltrid 2848 . . . . . . . . . . 11 ((𝑡 ∈ (ℕ0m (1...𝑁)) ∧ 𝑤 ∈ (ℕ0m 𝑊)) → (𝑡𝑤) ∈ (ℕ0m (𝑊 ∪ (1...𝑁))))
6463adantr 480 . . . . . . . . . 10 (((𝑡 ∈ (ℕ0m (1...𝑁)) ∧ 𝑤 ∈ (ℕ0m 𝑊)) ∧ (𝑝‘(𝑡𝑤)) = 0) → (𝑡𝑤) ∈ (ℕ0m (𝑊 ∪ (1...𝑁))))
6545reseq1i 6005 . . . . . . . . . . . 12 ((𝑡𝑤) ↾ (1...𝑁)) = ((𝑤𝑡) ↾ (1...𝑁))
66 elmapresaunres2 42727 . . . . . . . . . . . . . 14 ((𝑤 ∈ (ℕ0m 𝑊) ∧ 𝑡 ∈ (ℕ0m (1...𝑁)) ∧ (𝑤 ↾ (𝑊 ∩ (1...𝑁))) = (𝑡 ↾ (𝑊 ∩ (1...𝑁)))) → ((𝑤𝑡) ↾ (1...𝑁)) = 𝑡)
6759, 66mp3an3 1450 . . . . . . . . . . . . 13 ((𝑤 ∈ (ℕ0m 𝑊) ∧ 𝑡 ∈ (ℕ0m (1...𝑁))) → ((𝑤𝑡) ↾ (1...𝑁)) = 𝑡)
6867ancoms 458 . . . . . . . . . . . 12 ((𝑡 ∈ (ℕ0m (1...𝑁)) ∧ 𝑤 ∈ (ℕ0m 𝑊)) → ((𝑤𝑡) ↾ (1...𝑁)) = 𝑡)
6965, 68eqtr2id 2793 . . . . . . . . . . 11 ((𝑡 ∈ (ℕ0m (1...𝑁)) ∧ 𝑤 ∈ (ℕ0m 𝑊)) → 𝑡 = ((𝑡𝑤) ↾ (1...𝑁)))
7069adantr 480 . . . . . . . . . 10 (((𝑡 ∈ (ℕ0m (1...𝑁)) ∧ 𝑤 ∈ (ℕ0m 𝑊)) ∧ (𝑝‘(𝑡𝑤)) = 0) → 𝑡 = ((𝑡𝑤) ↾ (1...𝑁)))
71 simpr 484 . . . . . . . . . 10 (((𝑡 ∈ (ℕ0m (1...𝑁)) ∧ 𝑤 ∈ (ℕ0m 𝑊)) ∧ (𝑝‘(𝑡𝑤)) = 0) → (𝑝‘(𝑡𝑤)) = 0)
72 reseq1 6003 . . . . . . . . . . . . 13 (𝑢 = (𝑡𝑤) → (𝑢 ↾ (1...𝑁)) = ((𝑡𝑤) ↾ (1...𝑁)))
7372eqeq2d 2751 . . . . . . . . . . . 12 (𝑢 = (𝑡𝑤) → (𝑡 = (𝑢 ↾ (1...𝑁)) ↔ 𝑡 = ((𝑡𝑤) ↾ (1...𝑁))))
74 fveqeq2 6929 . . . . . . . . . . . 12 (𝑢 = (𝑡𝑤) → ((𝑝𝑢) = 0 ↔ (𝑝‘(𝑡𝑤)) = 0))
7573, 74anbi12d 631 . . . . . . . . . . 11 (𝑢 = (𝑡𝑤) → ((𝑡 = (𝑢 ↾ (1...𝑁)) ∧ (𝑝𝑢) = 0) ↔ (𝑡 = ((𝑡𝑤) ↾ (1...𝑁)) ∧ (𝑝‘(𝑡𝑤)) = 0)))
7675rspcev 3635 . . . . . . . . . 10 (((𝑡𝑤) ∈ (ℕ0m (𝑊 ∪ (1...𝑁))) ∧ (𝑡 = ((𝑡𝑤) ↾ (1...𝑁)) ∧ (𝑝‘(𝑡𝑤)) = 0)) → ∃𝑢 ∈ (ℕ0m (𝑊 ∪ (1...𝑁)))(𝑡 = (𝑢 ↾ (1...𝑁)) ∧ (𝑝𝑢) = 0))
7764, 70, 71, 76syl12anc 836 . . . . . . . . 9 (((𝑡 ∈ (ℕ0m (1...𝑁)) ∧ 𝑤 ∈ (ℕ0m 𝑊)) ∧ (𝑝‘(𝑡𝑤)) = 0) → ∃𝑢 ∈ (ℕ0m (𝑊 ∪ (1...𝑁)))(𝑡 = (𝑢 ↾ (1...𝑁)) ∧ (𝑝𝑢) = 0))
7877r19.29an 3164 . . . . . . . 8 ((𝑡 ∈ (ℕ0m (1...𝑁)) ∧ ∃𝑤 ∈ (ℕ0m 𝑊)(𝑝‘(𝑡𝑤)) = 0) → ∃𝑢 ∈ (ℕ0m (𝑊 ∪ (1...𝑁)))(𝑡 = (𝑢 ↾ (1...𝑁)) ∧ (𝑝𝑢) = 0))
7944, 78impbii 209 . . . . . . 7 (∃𝑢 ∈ (ℕ0m (𝑊 ∪ (1...𝑁)))(𝑡 = (𝑢 ↾ (1...𝑁)) ∧ (𝑝𝑢) = 0) ↔ (𝑡 ∈ (ℕ0m (1...𝑁)) ∧ ∃𝑤 ∈ (ℕ0m 𝑊)(𝑝‘(𝑡𝑤)) = 0))
8079abbii 2812 . . . . . 6 {𝑡 ∣ ∃𝑢 ∈ (ℕ0m (𝑊 ∪ (1...𝑁)))(𝑡 = (𝑢 ↾ (1...𝑁)) ∧ (𝑝𝑢) = 0)} = {𝑡 ∣ (𝑡 ∈ (ℕ0m (1...𝑁)) ∧ ∃𝑤 ∈ (ℕ0m 𝑊)(𝑝‘(𝑡𝑤)) = 0)}
81 df-rab 3444 . . . . . 6 {𝑡 ∈ (ℕ0m (1...𝑁)) ∣ ∃𝑤 ∈ (ℕ0m 𝑊)(𝑝‘(𝑡𝑤)) = 0} = {𝑡 ∣ (𝑡 ∈ (ℕ0m (1...𝑁)) ∧ ∃𝑤 ∈ (ℕ0m 𝑊)(𝑝‘(𝑡𝑤)) = 0)}
8280, 81eqtr4i 2771 . . . . 5 {𝑡 ∣ ∃𝑢 ∈ (ℕ0m (𝑊 ∪ (1...𝑁)))(𝑡 = (𝑢 ↾ (1...𝑁)) ∧ (𝑝𝑢) = 0)} = {𝑡 ∈ (ℕ0m (1...𝑁)) ∣ ∃𝑤 ∈ (ℕ0m 𝑊)(𝑝‘(𝑡𝑤)) = 0}
8382eqeq2i 2753 . . . 4 (𝑆 = {𝑡 ∣ ∃𝑢 ∈ (ℕ0m (𝑊 ∪ (1...𝑁)))(𝑡 = (𝑢 ↾ (1...𝑁)) ∧ (𝑝𝑢) = 0)} ↔ 𝑆 = {𝑡 ∈ (ℕ0m (1...𝑁)) ∣ ∃𝑤 ∈ (ℕ0m 𝑊)(𝑝‘(𝑡𝑤)) = 0})
8483rexbii 3100 . . 3 (∃𝑝 ∈ (mzPoly‘(𝑊 ∪ (1...𝑁)))𝑆 = {𝑡 ∣ ∃𝑢 ∈ (ℕ0m (𝑊 ∪ (1...𝑁)))(𝑡 = (𝑢 ↾ (1...𝑁)) ∧ (𝑝𝑢) = 0)} ↔ ∃𝑝 ∈ (mzPoly‘(𝑊 ∪ (1...𝑁)))𝑆 = {𝑡 ∈ (ℕ0m (1...𝑁)) ∣ ∃𝑤 ∈ (ℕ0m 𝑊)(𝑝‘(𝑡𝑤)) = 0})
8513, 84bitrdi 287 . 2 (𝑁 ∈ ℕ0 → (𝑆 ∈ (Dioph‘𝑁) ↔ ∃𝑝 ∈ (mzPoly‘(𝑊 ∪ (1...𝑁)))𝑆 = {𝑡 ∈ (ℕ0m (1...𝑁)) ∣ ∃𝑤 ∈ (ℕ0m 𝑊)(𝑝‘(𝑡𝑤)) = 0}))
861, 85biadanii 821 1 (𝑆 ∈ (Dioph‘𝑁) ↔ (𝑁 ∈ ℕ0 ∧ ∃𝑝 ∈ (mzPoly‘(𝑊 ∪ (1...𝑁)))𝑆 = {𝑡 ∈ (ℕ0m (1...𝑁)) ∣ ∃𝑤 ∈ (ℕ0m 𝑊)(𝑝‘(𝑡𝑤)) = 0}))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wb 206  wa 395   = wceq 1537  wcel 2108  {cab 2717  wrex 3076  {crab 3443  Vcvv 3488  cun 3974  cin 3975  wss 3976  c0 4352  cres 5702   Fn wfn 6568  wf 6569  cfv 6573  (class class class)co 7448  m cmap 8884  Fincfn 9003  0cc0 11184  1c1 11185  cn 12293  0cn0 12553  ...cfz 13567  mzPolycmzp 42678  Diophcdioph 42711
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-int 4971  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-of 7714  df-om 7904  df-1st 8030  df-2nd 8031  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-1o 8522  df-oadd 8526  df-er 8763  df-map 8886  df-en 9004  df-dom 9005  df-sdom 9006  df-fin 9007  df-dju 9970  df-card 10008  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-nn 12294  df-n0 12554  df-z 12640  df-uz 12904  df-fz 13568  df-hash 14380  df-mzpcl 42679  df-mzp 42680  df-dioph 42712
This theorem is referenced by:  eldioph4i  42768  diophren  42769
  Copyright terms: Public domain W3C validator