Step | Hyp | Ref
| Expression |
1 | | eldiophelnn0 41584 |
. 2
β’ (π β (Diophβπ) β π β
β0) |
2 | | eldioph4b.a |
. . . . . 6
β’ π β V |
3 | | ovex 7444 |
. . . . . 6
β’
(1...π) β
V |
4 | 2, 3 | unex 7735 |
. . . . 5
β’ (π βͺ (1...π)) β V |
5 | 4 | jctr 525 |
. . . 4
β’ (π β β0
β (π β
β0 β§ (π βͺ (1...π)) β V)) |
6 | | eldioph4b.b |
. . . . . . 7
β’ Β¬
π β
Fin |
7 | 6 | intnanr 488 |
. . . . . 6
β’ Β¬
(π β Fin β§
(1...π) β
Fin) |
8 | | unfir 9316 |
. . . . . 6
β’ ((π βͺ (1...π)) β Fin β (π β Fin β§ (1...π) β Fin)) |
9 | 7, 8 | mto 196 |
. . . . 5
β’ Β¬
(π βͺ (1...π)) β Fin |
10 | | ssun2 4173 |
. . . . 5
β’
(1...π) β
(π βͺ (1...π)) |
11 | 9, 10 | pm3.2i 471 |
. . . 4
β’ (Β¬
(π βͺ (1...π)) β Fin β§ (1...π) β (π βͺ (1...π))) |
12 | | eldioph2b 41583 |
. . . 4
β’ (((π β β0
β§ (π βͺ (1...π)) β V) β§ (Β¬ (π βͺ (1...π)) β Fin β§ (1...π) β (π βͺ (1...π)))) β (π β (Diophβπ) β βπ β (mzPolyβ(π βͺ (1...π)))π = {π‘ β£ βπ’ β (β0
βm (π βͺ
(1...π)))(π‘ = (π’ βΎ (1...π)) β§ (πβπ’) = 0)})) |
13 | 5, 11, 12 | sylancl 586 |
. . 3
β’ (π β β0
β (π β
(Diophβπ) β
βπ β
(mzPolyβ(π βͺ
(1...π)))π = {π‘ β£ βπ’ β (β0
βm (π βͺ
(1...π)))(π‘ = (π’ βΎ (1...π)) β§ (πβπ’) = 0)})) |
14 | | elmapssres 8863 |
. . . . . . . . . . . . . . 15
β’ ((π’ β (β0
βm (π βͺ
(1...π))) β§ (1...π) β (π βͺ (1...π))) β (π’ βΎ (1...π)) β (β0
βm (1...π))) |
15 | 10, 14 | mpan2 689 |
. . . . . . . . . . . . . 14
β’ (π’ β (β0
βm (π βͺ
(1...π))) β (π’ βΎ (1...π)) β (β0
βm (1...π))) |
16 | 15 | adantr 481 |
. . . . . . . . . . . . 13
β’ ((π’ β (β0
βm (π βͺ
(1...π))) β§ (πβπ’) = 0) β (π’ βΎ (1...π)) β (β0
βm (1...π))) |
17 | | ssun1 4172 |
. . . . . . . . . . . . . . . 16
β’ π β (π βͺ (1...π)) |
18 | | elmapssres 8863 |
. . . . . . . . . . . . . . . 16
β’ ((π’ β (β0
βm (π βͺ
(1...π))) β§ π β (π βͺ (1...π))) β (π’ βΎ π) β (β0
βm π)) |
19 | 17, 18 | mpan2 689 |
. . . . . . . . . . . . . . 15
β’ (π’ β (β0
βm (π βͺ
(1...π))) β (π’ βΎ π) β (β0
βm π)) |
20 | 19 | adantr 481 |
. . . . . . . . . . . . . 14
β’ ((π’ β (β0
βm (π βͺ
(1...π))) β§ (πβπ’) = 0) β (π’ βΎ π) β (β0
βm π)) |
21 | | uncom 4153 |
. . . . . . . . . . . . . . . . . 18
β’ ((π’ βΎ (1...π)) βͺ (π’ βΎ π)) = ((π’ βΎ π) βͺ (π’ βΎ (1...π))) |
22 | | resundi 5995 |
. . . . . . . . . . . . . . . . . 18
β’ (π’ βΎ (π βͺ (1...π))) = ((π’ βΎ π) βͺ (π’ βΎ (1...π))) |
23 | 21, 22 | eqtr4i 2763 |
. . . . . . . . . . . . . . . . 17
β’ ((π’ βΎ (1...π)) βͺ (π’ βΎ π)) = (π’ βΎ (π βͺ (1...π))) |
24 | | elmapi 8845 |
. . . . . . . . . . . . . . . . . 18
β’ (π’ β (β0
βm (π βͺ
(1...π))) β π’:(π βͺ (1...π))βΆβ0) |
25 | | ffn 6717 |
. . . . . . . . . . . . . . . . . 18
β’ (π’:(π βͺ (1...π))βΆβ0 β π’ Fn (π βͺ (1...π))) |
26 | | fnresdm 6669 |
. . . . . . . . . . . . . . . . . 18
β’ (π’ Fn (π βͺ (1...π)) β (π’ βΎ (π βͺ (1...π))) = π’) |
27 | 24, 25, 26 | 3syl 18 |
. . . . . . . . . . . . . . . . 17
β’ (π’ β (β0
βm (π βͺ
(1...π))) β (π’ βΎ (π βͺ (1...π))) = π’) |
28 | 23, 27 | eqtrid 2784 |
. . . . . . . . . . . . . . . 16
β’ (π’ β (β0
βm (π βͺ
(1...π))) β ((π’ βΎ (1...π)) βͺ (π’ βΎ π)) = π’) |
29 | 28 | fveqeq2d 6899 |
. . . . . . . . . . . . . . 15
β’ (π’ β (β0
βm (π βͺ
(1...π))) β ((πβ((π’ βΎ (1...π)) βͺ (π’ βΎ π))) = 0 β (πβπ’) = 0)) |
30 | 29 | biimpar 478 |
. . . . . . . . . . . . . 14
β’ ((π’ β (β0
βm (π βͺ
(1...π))) β§ (πβπ’) = 0) β (πβ((π’ βΎ (1...π)) βͺ (π’ βΎ π))) = 0) |
31 | | uneq2 4157 |
. . . . . . . . . . . . . . . 16
β’ (π€ = (π’ βΎ π) β ((π’ βΎ (1...π)) βͺ π€) = ((π’ βΎ (1...π)) βͺ (π’ βΎ π))) |
32 | 31 | fveqeq2d 6899 |
. . . . . . . . . . . . . . 15
β’ (π€ = (π’ βΎ π) β ((πβ((π’ βΎ (1...π)) βͺ π€)) = 0 β (πβ((π’ βΎ (1...π)) βͺ (π’ βΎ π))) = 0)) |
33 | 32 | rspcev 3612 |
. . . . . . . . . . . . . 14
β’ (((π’ βΎ π) β (β0
βm π) β§
(πβ((π’ βΎ (1...π)) βͺ (π’ βΎ π))) = 0) β βπ€ β (β0
βm π)(πβ((π’ βΎ (1...π)) βͺ π€)) = 0) |
34 | 20, 30, 33 | syl2anc 584 |
. . . . . . . . . . . . 13
β’ ((π’ β (β0
βm (π βͺ
(1...π))) β§ (πβπ’) = 0) β βπ€ β (β0
βm π)(πβ((π’ βΎ (1...π)) βͺ π€)) = 0) |
35 | 16, 34 | jca 512 |
. . . . . . . . . . . 12
β’ ((π’ β (β0
βm (π βͺ
(1...π))) β§ (πβπ’) = 0) β ((π’ βΎ (1...π)) β (β0
βm (1...π))
β§ βπ€ β
(β0 βm π)(πβ((π’ βΎ (1...π)) βͺ π€)) = 0)) |
36 | | eleq1 2821 |
. . . . . . . . . . . . 13
β’ (π‘ = (π’ βΎ (1...π)) β (π‘ β (β0
βm (1...π))
β (π’ βΎ
(1...π)) β
(β0 βm (1...π)))) |
37 | | uneq1 4156 |
. . . . . . . . . . . . . . 15
β’ (π‘ = (π’ βΎ (1...π)) β (π‘ βͺ π€) = ((π’ βΎ (1...π)) βͺ π€)) |
38 | 37 | fveqeq2d 6899 |
. . . . . . . . . . . . . 14
β’ (π‘ = (π’ βΎ (1...π)) β ((πβ(π‘ βͺ π€)) = 0 β (πβ((π’ βΎ (1...π)) βͺ π€)) = 0)) |
39 | 38 | rexbidv 3178 |
. . . . . . . . . . . . 13
β’ (π‘ = (π’ βΎ (1...π)) β (βπ€ β (β0
βm π)(πβ(π‘ βͺ π€)) = 0 β βπ€ β (β0
βm π)(πβ((π’ βΎ (1...π)) βͺ π€)) = 0)) |
40 | 36, 39 | anbi12d 631 |
. . . . . . . . . . . 12
β’ (π‘ = (π’ βΎ (1...π)) β ((π‘ β (β0
βm (1...π))
β§ βπ€ β
(β0 βm π)(πβ(π‘ βͺ π€)) = 0) β ((π’ βΎ (1...π)) β (β0
βm (1...π))
β§ βπ€ β
(β0 βm π)(πβ((π’ βΎ (1...π)) βͺ π€)) = 0))) |
41 | 35, 40 | syl5ibrcom 246 |
. . . . . . . . . . 11
β’ ((π’ β (β0
βm (π βͺ
(1...π))) β§ (πβπ’) = 0) β (π‘ = (π’ βΎ (1...π)) β (π‘ β (β0
βm (1...π))
β§ βπ€ β
(β0 βm π)(πβ(π‘ βͺ π€)) = 0))) |
42 | 41 | expimpd 454 |
. . . . . . . . . 10
β’ (π’ β (β0
βm (π βͺ
(1...π))) β (((πβπ’) = 0 β§ π‘ = (π’ βΎ (1...π))) β (π‘ β (β0
βm (1...π))
β§ βπ€ β
(β0 βm π)(πβ(π‘ βͺ π€)) = 0))) |
43 | 42 | ancomsd 466 |
. . . . . . . . 9
β’ (π’ β (β0
βm (π βͺ
(1...π))) β ((π‘ = (π’ βΎ (1...π)) β§ (πβπ’) = 0) β (π‘ β (β0
βm (1...π))
β§ βπ€ β
(β0 βm π)(πβ(π‘ βͺ π€)) = 0))) |
44 | 43 | rexlimiv 3148 |
. . . . . . . 8
β’
(βπ’ β
(β0 βm (π βͺ (1...π)))(π‘ = (π’ βΎ (1...π)) β§ (πβπ’) = 0) β (π‘ β (β0
βm (1...π))
β§ βπ€ β
(β0 βm π)(πβ(π‘ βͺ π€)) = 0)) |
45 | | uncom 4153 |
. . . . . . . . . . . 12
β’ (π‘ βͺ π€) = (π€ βͺ π‘) |
46 | | fz1ssnn 13534 |
. . . . . . . . . . . . . . . . . . . 20
β’
(1...π) β
β |
47 | | sslin 4234 |
. . . . . . . . . . . . . . . . . . . 20
β’
((1...π) β
β β (π β©
(1...π)) β (π β©
β)) |
48 | 46, 47 | ax-mp 5 |
. . . . . . . . . . . . . . . . . . 19
β’ (π β© (1...π)) β (π β© β) |
49 | | eldioph4b.c |
. . . . . . . . . . . . . . . . . . 19
β’ (π β© β) =
β
|
50 | 48, 49 | sseqtri 4018 |
. . . . . . . . . . . . . . . . . 18
β’ (π β© (1...π)) β β
|
51 | | ss0 4398 |
. . . . . . . . . . . . . . . . . 18
β’ ((π β© (1...π)) β β
β (π β© (1...π)) = β
) |
52 | 50, 51 | ax-mp 5 |
. . . . . . . . . . . . . . . . 17
β’ (π β© (1...π)) = β
|
53 | 52 | reseq2i 5978 |
. . . . . . . . . . . . . . . 16
β’ (π€ βΎ (π β© (1...π))) = (π€ βΎ β
) |
54 | | res0 5985 |
. . . . . . . . . . . . . . . 16
β’ (π€ βΎ β
) =
β
|
55 | 53, 54 | eqtri 2760 |
. . . . . . . . . . . . . . 15
β’ (π€ βΎ (π β© (1...π))) = β
|
56 | 52 | reseq2i 5978 |
. . . . . . . . . . . . . . . 16
β’ (π‘ βΎ (π β© (1...π))) = (π‘ βΎ β
) |
57 | | res0 5985 |
. . . . . . . . . . . . . . . 16
β’ (π‘ βΎ β
) =
β
|
58 | 56, 57 | eqtri 2760 |
. . . . . . . . . . . . . . 15
β’ (π‘ βΎ (π β© (1...π))) = β
|
59 | 55, 58 | eqtr4i 2763 |
. . . . . . . . . . . . . 14
β’ (π€ βΎ (π β© (1...π))) = (π‘ βΎ (π β© (1...π))) |
60 | | elmapresaun 8876 |
. . . . . . . . . . . . . 14
β’ ((π€ β (β0
βm π) β§
π‘ β
(β0 βm (1...π)) β§ (π€ βΎ (π β© (1...π))) = (π‘ βΎ (π β© (1...π)))) β (π€ βͺ π‘) β (β0
βm (π βͺ
(1...π)))) |
61 | 59, 60 | mp3an3 1450 |
. . . . . . . . . . . . 13
β’ ((π€ β (β0
βm π) β§
π‘ β
(β0 βm (1...π))) β (π€ βͺ π‘) β (β0
βm (π βͺ
(1...π)))) |
62 | 61 | ancoms 459 |
. . . . . . . . . . . 12
β’ ((π‘ β (β0
βm (1...π))
β§ π€ β
(β0 βm π)) β (π€ βͺ π‘) β (β0
βm (π βͺ
(1...π)))) |
63 | 45, 62 | eqeltrid 2837 |
. . . . . . . . . . 11
β’ ((π‘ β (β0
βm (1...π))
β§ π€ β
(β0 βm π)) β (π‘ βͺ π€) β (β0
βm (π βͺ
(1...π)))) |
64 | 63 | adantr 481 |
. . . . . . . . . 10
β’ (((π‘ β (β0
βm (1...π))
β§ π€ β
(β0 βm π)) β§ (πβ(π‘ βͺ π€)) = 0) β (π‘ βͺ π€) β (β0
βm (π βͺ
(1...π)))) |
65 | 45 | reseq1i 5977 |
. . . . . . . . . . . 12
β’ ((π‘ βͺ π€) βΎ (1...π)) = ((π€ βͺ π‘) βΎ (1...π)) |
66 | | elmapresaunres2 41591 |
. . . . . . . . . . . . . 14
β’ ((π€ β (β0
βm π) β§
π‘ β
(β0 βm (1...π)) β§ (π€ βΎ (π β© (1...π))) = (π‘ βΎ (π β© (1...π)))) β ((π€ βͺ π‘) βΎ (1...π)) = π‘) |
67 | 59, 66 | mp3an3 1450 |
. . . . . . . . . . . . 13
β’ ((π€ β (β0
βm π) β§
π‘ β
(β0 βm (1...π))) β ((π€ βͺ π‘) βΎ (1...π)) = π‘) |
68 | 67 | ancoms 459 |
. . . . . . . . . . . 12
β’ ((π‘ β (β0
βm (1...π))
β§ π€ β
(β0 βm π)) β ((π€ βͺ π‘) βΎ (1...π)) = π‘) |
69 | 65, 68 | eqtr2id 2785 |
. . . . . . . . . . 11
β’ ((π‘ β (β0
βm (1...π))
β§ π€ β
(β0 βm π)) β π‘ = ((π‘ βͺ π€) βΎ (1...π))) |
70 | 69 | adantr 481 |
. . . . . . . . . 10
β’ (((π‘ β (β0
βm (1...π))
β§ π€ β
(β0 βm π)) β§ (πβ(π‘ βͺ π€)) = 0) β π‘ = ((π‘ βͺ π€) βΎ (1...π))) |
71 | | simpr 485 |
. . . . . . . . . 10
β’ (((π‘ β (β0
βm (1...π))
β§ π€ β
(β0 βm π)) β§ (πβ(π‘ βͺ π€)) = 0) β (πβ(π‘ βͺ π€)) = 0) |
72 | | reseq1 5975 |
. . . . . . . . . . . . 13
β’ (π’ = (π‘ βͺ π€) β (π’ βΎ (1...π)) = ((π‘ βͺ π€) βΎ (1...π))) |
73 | 72 | eqeq2d 2743 |
. . . . . . . . . . . 12
β’ (π’ = (π‘ βͺ π€) β (π‘ = (π’ βΎ (1...π)) β π‘ = ((π‘ βͺ π€) βΎ (1...π)))) |
74 | | fveqeq2 6900 |
. . . . . . . . . . . 12
β’ (π’ = (π‘ βͺ π€) β ((πβπ’) = 0 β (πβ(π‘ βͺ π€)) = 0)) |
75 | 73, 74 | anbi12d 631 |
. . . . . . . . . . 11
β’ (π’ = (π‘ βͺ π€) β ((π‘ = (π’ βΎ (1...π)) β§ (πβπ’) = 0) β (π‘ = ((π‘ βͺ π€) βΎ (1...π)) β§ (πβ(π‘ βͺ π€)) = 0))) |
76 | 75 | rspcev 3612 |
. . . . . . . . . 10
β’ (((π‘ βͺ π€) β (β0
βm (π βͺ
(1...π))) β§ (π‘ = ((π‘ βͺ π€) βΎ (1...π)) β§ (πβ(π‘ βͺ π€)) = 0)) β βπ’ β (β0
βm (π βͺ
(1...π)))(π‘ = (π’ βΎ (1...π)) β§ (πβπ’) = 0)) |
77 | 64, 70, 71, 76 | syl12anc 835 |
. . . . . . . . 9
β’ (((π‘ β (β0
βm (1...π))
β§ π€ β
(β0 βm π)) β§ (πβ(π‘ βͺ π€)) = 0) β βπ’ β (β0
βm (π βͺ
(1...π)))(π‘ = (π’ βΎ (1...π)) β§ (πβπ’) = 0)) |
78 | 77 | r19.29an 3158 |
. . . . . . . 8
β’ ((π‘ β (β0
βm (1...π))
β§ βπ€ β
(β0 βm π)(πβ(π‘ βͺ π€)) = 0) β βπ’ β (β0
βm (π βͺ
(1...π)))(π‘ = (π’ βΎ (1...π)) β§ (πβπ’) = 0)) |
79 | 44, 78 | impbii 208 |
. . . . . . 7
β’
(βπ’ β
(β0 βm (π βͺ (1...π)))(π‘ = (π’ βΎ (1...π)) β§ (πβπ’) = 0) β (π‘ β (β0
βm (1...π))
β§ βπ€ β
(β0 βm π)(πβ(π‘ βͺ π€)) = 0)) |
80 | 79 | abbii 2802 |
. . . . . 6
β’ {π‘ β£ βπ’ β (β0
βm (π βͺ
(1...π)))(π‘ = (π’ βΎ (1...π)) β§ (πβπ’) = 0)} = {π‘ β£ (π‘ β (β0
βm (1...π))
β§ βπ€ β
(β0 βm π)(πβ(π‘ βͺ π€)) = 0)} |
81 | | df-rab 3433 |
. . . . . 6
β’ {π‘ β (β0
βm (1...π))
β£ βπ€ β
(β0 βm π)(πβ(π‘ βͺ π€)) = 0} = {π‘ β£ (π‘ β (β0
βm (1...π))
β§ βπ€ β
(β0 βm π)(πβ(π‘ βͺ π€)) = 0)} |
82 | 80, 81 | eqtr4i 2763 |
. . . . 5
β’ {π‘ β£ βπ’ β (β0
βm (π βͺ
(1...π)))(π‘ = (π’ βΎ (1...π)) β§ (πβπ’) = 0)} = {π‘ β (β0
βm (1...π))
β£ βπ€ β
(β0 βm π)(πβ(π‘ βͺ π€)) = 0} |
83 | 82 | eqeq2i 2745 |
. . . 4
β’ (π = {π‘ β£ βπ’ β (β0
βm (π βͺ
(1...π)))(π‘ = (π’ βΎ (1...π)) β§ (πβπ’) = 0)} β π = {π‘ β (β0
βm (1...π))
β£ βπ€ β
(β0 βm π)(πβ(π‘ βͺ π€)) = 0}) |
84 | 83 | rexbii 3094 |
. . 3
β’
(βπ β
(mzPolyβ(π βͺ
(1...π)))π = {π‘ β£ βπ’ β (β0
βm (π βͺ
(1...π)))(π‘ = (π’ βΎ (1...π)) β§ (πβπ’) = 0)} β βπ β (mzPolyβ(π βͺ (1...π)))π = {π‘ β (β0
βm (1...π))
β£ βπ€ β
(β0 βm π)(πβ(π‘ βͺ π€)) = 0}) |
85 | 13, 84 | bitrdi 286 |
. 2
β’ (π β β0
β (π β
(Diophβπ) β
βπ β
(mzPolyβ(π βͺ
(1...π)))π = {π‘ β (β0
βm (1...π))
β£ βπ€ β
(β0 βm π)(πβ(π‘ βͺ π€)) = 0})) |
86 | 1, 85 | biadanii 820 |
1
β’ (π β (Diophβπ) β (π β β0 β§
βπ β
(mzPolyβ(π βͺ
(1...π)))π = {π‘ β (β0
βm (1...π))
β£ βπ€ β
(β0 βm π)(πβ(π‘ βͺ π€)) = 0})) |