Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  eldioph4b Structured version   Visualization version   GIF version

Theorem eldioph4b 41631
Description: Membership in Dioph expressed using a quantified union to add witness variables instead of a restriction to remove them. (Contributed by Stefan O'Rear, 16-Oct-2014.)
Hypotheses
Ref Expression
eldioph4b.a π‘Š ∈ V
eldioph4b.b Β¬ π‘Š ∈ Fin
eldioph4b.c (π‘Š ∩ β„•) = βˆ…
Assertion
Ref Expression
eldioph4b (𝑆 ∈ (Diophβ€˜π‘) ↔ (𝑁 ∈ β„•0 ∧ βˆƒπ‘ ∈ (mzPolyβ€˜(π‘Š βˆͺ (1...𝑁)))𝑆 = {𝑑 ∈ (β„•0 ↑m (1...𝑁)) ∣ βˆƒπ‘€ ∈ (β„•0 ↑m π‘Š)(π‘β€˜(𝑑 βˆͺ 𝑀)) = 0}))
Distinct variable groups:   π‘Š,𝑝,𝑑,𝑀   𝑆,𝑝,𝑑,𝑀   𝑁,𝑝,𝑑,𝑀

Proof of Theorem eldioph4b
Dummy variable 𝑒 is distinct from all other variables.
StepHypRef Expression
1 eldiophelnn0 41584 . 2 (𝑆 ∈ (Diophβ€˜π‘) β†’ 𝑁 ∈ β„•0)
2 eldioph4b.a . . . . . 6 π‘Š ∈ V
3 ovex 7444 . . . . . 6 (1...𝑁) ∈ V
42, 3unex 7735 . . . . 5 (π‘Š βˆͺ (1...𝑁)) ∈ V
54jctr 525 . . . 4 (𝑁 ∈ β„•0 β†’ (𝑁 ∈ β„•0 ∧ (π‘Š βˆͺ (1...𝑁)) ∈ V))
6 eldioph4b.b . . . . . . 7 Β¬ π‘Š ∈ Fin
76intnanr 488 . . . . . 6 Β¬ (π‘Š ∈ Fin ∧ (1...𝑁) ∈ Fin)
8 unfir 9316 . . . . . 6 ((π‘Š βˆͺ (1...𝑁)) ∈ Fin β†’ (π‘Š ∈ Fin ∧ (1...𝑁) ∈ Fin))
97, 8mto 196 . . . . 5 Β¬ (π‘Š βˆͺ (1...𝑁)) ∈ Fin
10 ssun2 4173 . . . . 5 (1...𝑁) βŠ† (π‘Š βˆͺ (1...𝑁))
119, 10pm3.2i 471 . . . 4 (Β¬ (π‘Š βˆͺ (1...𝑁)) ∈ Fin ∧ (1...𝑁) βŠ† (π‘Š βˆͺ (1...𝑁)))
12 eldioph2b 41583 . . . 4 (((𝑁 ∈ β„•0 ∧ (π‘Š βˆͺ (1...𝑁)) ∈ V) ∧ (Β¬ (π‘Š βˆͺ (1...𝑁)) ∈ Fin ∧ (1...𝑁) βŠ† (π‘Š βˆͺ (1...𝑁)))) β†’ (𝑆 ∈ (Diophβ€˜π‘) ↔ βˆƒπ‘ ∈ (mzPolyβ€˜(π‘Š βˆͺ (1...𝑁)))𝑆 = {𝑑 ∣ βˆƒπ‘’ ∈ (β„•0 ↑m (π‘Š βˆͺ (1...𝑁)))(𝑑 = (𝑒 β†Ύ (1...𝑁)) ∧ (π‘β€˜π‘’) = 0)}))
135, 11, 12sylancl 586 . . 3 (𝑁 ∈ β„•0 β†’ (𝑆 ∈ (Diophβ€˜π‘) ↔ βˆƒπ‘ ∈ (mzPolyβ€˜(π‘Š βˆͺ (1...𝑁)))𝑆 = {𝑑 ∣ βˆƒπ‘’ ∈ (β„•0 ↑m (π‘Š βˆͺ (1...𝑁)))(𝑑 = (𝑒 β†Ύ (1...𝑁)) ∧ (π‘β€˜π‘’) = 0)}))
14 elmapssres 8863 . . . . . . . . . . . . . . 15 ((𝑒 ∈ (β„•0 ↑m (π‘Š βˆͺ (1...𝑁))) ∧ (1...𝑁) βŠ† (π‘Š βˆͺ (1...𝑁))) β†’ (𝑒 β†Ύ (1...𝑁)) ∈ (β„•0 ↑m (1...𝑁)))
1510, 14mpan2 689 . . . . . . . . . . . . . 14 (𝑒 ∈ (β„•0 ↑m (π‘Š βˆͺ (1...𝑁))) β†’ (𝑒 β†Ύ (1...𝑁)) ∈ (β„•0 ↑m (1...𝑁)))
1615adantr 481 . . . . . . . . . . . . 13 ((𝑒 ∈ (β„•0 ↑m (π‘Š βˆͺ (1...𝑁))) ∧ (π‘β€˜π‘’) = 0) β†’ (𝑒 β†Ύ (1...𝑁)) ∈ (β„•0 ↑m (1...𝑁)))
17 ssun1 4172 . . . . . . . . . . . . . . . 16 π‘Š βŠ† (π‘Š βˆͺ (1...𝑁))
18 elmapssres 8863 . . . . . . . . . . . . . . . 16 ((𝑒 ∈ (β„•0 ↑m (π‘Š βˆͺ (1...𝑁))) ∧ π‘Š βŠ† (π‘Š βˆͺ (1...𝑁))) β†’ (𝑒 β†Ύ π‘Š) ∈ (β„•0 ↑m π‘Š))
1917, 18mpan2 689 . . . . . . . . . . . . . . 15 (𝑒 ∈ (β„•0 ↑m (π‘Š βˆͺ (1...𝑁))) β†’ (𝑒 β†Ύ π‘Š) ∈ (β„•0 ↑m π‘Š))
2019adantr 481 . . . . . . . . . . . . . 14 ((𝑒 ∈ (β„•0 ↑m (π‘Š βˆͺ (1...𝑁))) ∧ (π‘β€˜π‘’) = 0) β†’ (𝑒 β†Ύ π‘Š) ∈ (β„•0 ↑m π‘Š))
21 uncom 4153 . . . . . . . . . . . . . . . . . 18 ((𝑒 β†Ύ (1...𝑁)) βˆͺ (𝑒 β†Ύ π‘Š)) = ((𝑒 β†Ύ π‘Š) βˆͺ (𝑒 β†Ύ (1...𝑁)))
22 resundi 5995 . . . . . . . . . . . . . . . . . 18 (𝑒 β†Ύ (π‘Š βˆͺ (1...𝑁))) = ((𝑒 β†Ύ π‘Š) βˆͺ (𝑒 β†Ύ (1...𝑁)))
2321, 22eqtr4i 2763 . . . . . . . . . . . . . . . . 17 ((𝑒 β†Ύ (1...𝑁)) βˆͺ (𝑒 β†Ύ π‘Š)) = (𝑒 β†Ύ (π‘Š βˆͺ (1...𝑁)))
24 elmapi 8845 . . . . . . . . . . . . . . . . . 18 (𝑒 ∈ (β„•0 ↑m (π‘Š βˆͺ (1...𝑁))) β†’ 𝑒:(π‘Š βˆͺ (1...𝑁))βŸΆβ„•0)
25 ffn 6717 . . . . . . . . . . . . . . . . . 18 (𝑒:(π‘Š βˆͺ (1...𝑁))βŸΆβ„•0 β†’ 𝑒 Fn (π‘Š βˆͺ (1...𝑁)))
26 fnresdm 6669 . . . . . . . . . . . . . . . . . 18 (𝑒 Fn (π‘Š βˆͺ (1...𝑁)) β†’ (𝑒 β†Ύ (π‘Š βˆͺ (1...𝑁))) = 𝑒)
2724, 25, 263syl 18 . . . . . . . . . . . . . . . . 17 (𝑒 ∈ (β„•0 ↑m (π‘Š βˆͺ (1...𝑁))) β†’ (𝑒 β†Ύ (π‘Š βˆͺ (1...𝑁))) = 𝑒)
2823, 27eqtrid 2784 . . . . . . . . . . . . . . . 16 (𝑒 ∈ (β„•0 ↑m (π‘Š βˆͺ (1...𝑁))) β†’ ((𝑒 β†Ύ (1...𝑁)) βˆͺ (𝑒 β†Ύ π‘Š)) = 𝑒)
2928fveqeq2d 6899 . . . . . . . . . . . . . . 15 (𝑒 ∈ (β„•0 ↑m (π‘Š βˆͺ (1...𝑁))) β†’ ((π‘β€˜((𝑒 β†Ύ (1...𝑁)) βˆͺ (𝑒 β†Ύ π‘Š))) = 0 ↔ (π‘β€˜π‘’) = 0))
3029biimpar 478 . . . . . . . . . . . . . 14 ((𝑒 ∈ (β„•0 ↑m (π‘Š βˆͺ (1...𝑁))) ∧ (π‘β€˜π‘’) = 0) β†’ (π‘β€˜((𝑒 β†Ύ (1...𝑁)) βˆͺ (𝑒 β†Ύ π‘Š))) = 0)
31 uneq2 4157 . . . . . . . . . . . . . . . 16 (𝑀 = (𝑒 β†Ύ π‘Š) β†’ ((𝑒 β†Ύ (1...𝑁)) βˆͺ 𝑀) = ((𝑒 β†Ύ (1...𝑁)) βˆͺ (𝑒 β†Ύ π‘Š)))
3231fveqeq2d 6899 . . . . . . . . . . . . . . 15 (𝑀 = (𝑒 β†Ύ π‘Š) β†’ ((π‘β€˜((𝑒 β†Ύ (1...𝑁)) βˆͺ 𝑀)) = 0 ↔ (π‘β€˜((𝑒 β†Ύ (1...𝑁)) βˆͺ (𝑒 β†Ύ π‘Š))) = 0))
3332rspcev 3612 . . . . . . . . . . . . . 14 (((𝑒 β†Ύ π‘Š) ∈ (β„•0 ↑m π‘Š) ∧ (π‘β€˜((𝑒 β†Ύ (1...𝑁)) βˆͺ (𝑒 β†Ύ π‘Š))) = 0) β†’ βˆƒπ‘€ ∈ (β„•0 ↑m π‘Š)(π‘β€˜((𝑒 β†Ύ (1...𝑁)) βˆͺ 𝑀)) = 0)
3420, 30, 33syl2anc 584 . . . . . . . . . . . . 13 ((𝑒 ∈ (β„•0 ↑m (π‘Š βˆͺ (1...𝑁))) ∧ (π‘β€˜π‘’) = 0) β†’ βˆƒπ‘€ ∈ (β„•0 ↑m π‘Š)(π‘β€˜((𝑒 β†Ύ (1...𝑁)) βˆͺ 𝑀)) = 0)
3516, 34jca 512 . . . . . . . . . . . 12 ((𝑒 ∈ (β„•0 ↑m (π‘Š βˆͺ (1...𝑁))) ∧ (π‘β€˜π‘’) = 0) β†’ ((𝑒 β†Ύ (1...𝑁)) ∈ (β„•0 ↑m (1...𝑁)) ∧ βˆƒπ‘€ ∈ (β„•0 ↑m π‘Š)(π‘β€˜((𝑒 β†Ύ (1...𝑁)) βˆͺ 𝑀)) = 0))
36 eleq1 2821 . . . . . . . . . . . . 13 (𝑑 = (𝑒 β†Ύ (1...𝑁)) β†’ (𝑑 ∈ (β„•0 ↑m (1...𝑁)) ↔ (𝑒 β†Ύ (1...𝑁)) ∈ (β„•0 ↑m (1...𝑁))))
37 uneq1 4156 . . . . . . . . . . . . . . 15 (𝑑 = (𝑒 β†Ύ (1...𝑁)) β†’ (𝑑 βˆͺ 𝑀) = ((𝑒 β†Ύ (1...𝑁)) βˆͺ 𝑀))
3837fveqeq2d 6899 . . . . . . . . . . . . . 14 (𝑑 = (𝑒 β†Ύ (1...𝑁)) β†’ ((π‘β€˜(𝑑 βˆͺ 𝑀)) = 0 ↔ (π‘β€˜((𝑒 β†Ύ (1...𝑁)) βˆͺ 𝑀)) = 0))
3938rexbidv 3178 . . . . . . . . . . . . 13 (𝑑 = (𝑒 β†Ύ (1...𝑁)) β†’ (βˆƒπ‘€ ∈ (β„•0 ↑m π‘Š)(π‘β€˜(𝑑 βˆͺ 𝑀)) = 0 ↔ βˆƒπ‘€ ∈ (β„•0 ↑m π‘Š)(π‘β€˜((𝑒 β†Ύ (1...𝑁)) βˆͺ 𝑀)) = 0))
4036, 39anbi12d 631 . . . . . . . . . . . 12 (𝑑 = (𝑒 β†Ύ (1...𝑁)) β†’ ((𝑑 ∈ (β„•0 ↑m (1...𝑁)) ∧ βˆƒπ‘€ ∈ (β„•0 ↑m π‘Š)(π‘β€˜(𝑑 βˆͺ 𝑀)) = 0) ↔ ((𝑒 β†Ύ (1...𝑁)) ∈ (β„•0 ↑m (1...𝑁)) ∧ βˆƒπ‘€ ∈ (β„•0 ↑m π‘Š)(π‘β€˜((𝑒 β†Ύ (1...𝑁)) βˆͺ 𝑀)) = 0)))
4135, 40syl5ibrcom 246 . . . . . . . . . . 11 ((𝑒 ∈ (β„•0 ↑m (π‘Š βˆͺ (1...𝑁))) ∧ (π‘β€˜π‘’) = 0) β†’ (𝑑 = (𝑒 β†Ύ (1...𝑁)) β†’ (𝑑 ∈ (β„•0 ↑m (1...𝑁)) ∧ βˆƒπ‘€ ∈ (β„•0 ↑m π‘Š)(π‘β€˜(𝑑 βˆͺ 𝑀)) = 0)))
4241expimpd 454 . . . . . . . . . 10 (𝑒 ∈ (β„•0 ↑m (π‘Š βˆͺ (1...𝑁))) β†’ (((π‘β€˜π‘’) = 0 ∧ 𝑑 = (𝑒 β†Ύ (1...𝑁))) β†’ (𝑑 ∈ (β„•0 ↑m (1...𝑁)) ∧ βˆƒπ‘€ ∈ (β„•0 ↑m π‘Š)(π‘β€˜(𝑑 βˆͺ 𝑀)) = 0)))
4342ancomsd 466 . . . . . . . . 9 (𝑒 ∈ (β„•0 ↑m (π‘Š βˆͺ (1...𝑁))) β†’ ((𝑑 = (𝑒 β†Ύ (1...𝑁)) ∧ (π‘β€˜π‘’) = 0) β†’ (𝑑 ∈ (β„•0 ↑m (1...𝑁)) ∧ βˆƒπ‘€ ∈ (β„•0 ↑m π‘Š)(π‘β€˜(𝑑 βˆͺ 𝑀)) = 0)))
4443rexlimiv 3148 . . . . . . . 8 (βˆƒπ‘’ ∈ (β„•0 ↑m (π‘Š βˆͺ (1...𝑁)))(𝑑 = (𝑒 β†Ύ (1...𝑁)) ∧ (π‘β€˜π‘’) = 0) β†’ (𝑑 ∈ (β„•0 ↑m (1...𝑁)) ∧ βˆƒπ‘€ ∈ (β„•0 ↑m π‘Š)(π‘β€˜(𝑑 βˆͺ 𝑀)) = 0))
45 uncom 4153 . . . . . . . . . . . 12 (𝑑 βˆͺ 𝑀) = (𝑀 βˆͺ 𝑑)
46 fz1ssnn 13534 . . . . . . . . . . . . . . . . . . . 20 (1...𝑁) βŠ† β„•
47 sslin 4234 . . . . . . . . . . . . . . . . . . . 20 ((1...𝑁) βŠ† β„• β†’ (π‘Š ∩ (1...𝑁)) βŠ† (π‘Š ∩ β„•))
4846, 47ax-mp 5 . . . . . . . . . . . . . . . . . . 19 (π‘Š ∩ (1...𝑁)) βŠ† (π‘Š ∩ β„•)
49 eldioph4b.c . . . . . . . . . . . . . . . . . . 19 (π‘Š ∩ β„•) = βˆ…
5048, 49sseqtri 4018 . . . . . . . . . . . . . . . . . 18 (π‘Š ∩ (1...𝑁)) βŠ† βˆ…
51 ss0 4398 . . . . . . . . . . . . . . . . . 18 ((π‘Š ∩ (1...𝑁)) βŠ† βˆ… β†’ (π‘Š ∩ (1...𝑁)) = βˆ…)
5250, 51ax-mp 5 . . . . . . . . . . . . . . . . 17 (π‘Š ∩ (1...𝑁)) = βˆ…
5352reseq2i 5978 . . . . . . . . . . . . . . . 16 (𝑀 β†Ύ (π‘Š ∩ (1...𝑁))) = (𝑀 β†Ύ βˆ…)
54 res0 5985 . . . . . . . . . . . . . . . 16 (𝑀 β†Ύ βˆ…) = βˆ…
5553, 54eqtri 2760 . . . . . . . . . . . . . . 15 (𝑀 β†Ύ (π‘Š ∩ (1...𝑁))) = βˆ…
5652reseq2i 5978 . . . . . . . . . . . . . . . 16 (𝑑 β†Ύ (π‘Š ∩ (1...𝑁))) = (𝑑 β†Ύ βˆ…)
57 res0 5985 . . . . . . . . . . . . . . . 16 (𝑑 β†Ύ βˆ…) = βˆ…
5856, 57eqtri 2760 . . . . . . . . . . . . . . 15 (𝑑 β†Ύ (π‘Š ∩ (1...𝑁))) = βˆ…
5955, 58eqtr4i 2763 . . . . . . . . . . . . . 14 (𝑀 β†Ύ (π‘Š ∩ (1...𝑁))) = (𝑑 β†Ύ (π‘Š ∩ (1...𝑁)))
60 elmapresaun 8876 . . . . . . . . . . . . . 14 ((𝑀 ∈ (β„•0 ↑m π‘Š) ∧ 𝑑 ∈ (β„•0 ↑m (1...𝑁)) ∧ (𝑀 β†Ύ (π‘Š ∩ (1...𝑁))) = (𝑑 β†Ύ (π‘Š ∩ (1...𝑁)))) β†’ (𝑀 βˆͺ 𝑑) ∈ (β„•0 ↑m (π‘Š βˆͺ (1...𝑁))))
6159, 60mp3an3 1450 . . . . . . . . . . . . 13 ((𝑀 ∈ (β„•0 ↑m π‘Š) ∧ 𝑑 ∈ (β„•0 ↑m (1...𝑁))) β†’ (𝑀 βˆͺ 𝑑) ∈ (β„•0 ↑m (π‘Š βˆͺ (1...𝑁))))
6261ancoms 459 . . . . . . . . . . . 12 ((𝑑 ∈ (β„•0 ↑m (1...𝑁)) ∧ 𝑀 ∈ (β„•0 ↑m π‘Š)) β†’ (𝑀 βˆͺ 𝑑) ∈ (β„•0 ↑m (π‘Š βˆͺ (1...𝑁))))
6345, 62eqeltrid 2837 . . . . . . . . . . 11 ((𝑑 ∈ (β„•0 ↑m (1...𝑁)) ∧ 𝑀 ∈ (β„•0 ↑m π‘Š)) β†’ (𝑑 βˆͺ 𝑀) ∈ (β„•0 ↑m (π‘Š βˆͺ (1...𝑁))))
6463adantr 481 . . . . . . . . . 10 (((𝑑 ∈ (β„•0 ↑m (1...𝑁)) ∧ 𝑀 ∈ (β„•0 ↑m π‘Š)) ∧ (π‘β€˜(𝑑 βˆͺ 𝑀)) = 0) β†’ (𝑑 βˆͺ 𝑀) ∈ (β„•0 ↑m (π‘Š βˆͺ (1...𝑁))))
6545reseq1i 5977 . . . . . . . . . . . 12 ((𝑑 βˆͺ 𝑀) β†Ύ (1...𝑁)) = ((𝑀 βˆͺ 𝑑) β†Ύ (1...𝑁))
66 elmapresaunres2 41591 . . . . . . . . . . . . . 14 ((𝑀 ∈ (β„•0 ↑m π‘Š) ∧ 𝑑 ∈ (β„•0 ↑m (1...𝑁)) ∧ (𝑀 β†Ύ (π‘Š ∩ (1...𝑁))) = (𝑑 β†Ύ (π‘Š ∩ (1...𝑁)))) β†’ ((𝑀 βˆͺ 𝑑) β†Ύ (1...𝑁)) = 𝑑)
6759, 66mp3an3 1450 . . . . . . . . . . . . 13 ((𝑀 ∈ (β„•0 ↑m π‘Š) ∧ 𝑑 ∈ (β„•0 ↑m (1...𝑁))) β†’ ((𝑀 βˆͺ 𝑑) β†Ύ (1...𝑁)) = 𝑑)
6867ancoms 459 . . . . . . . . . . . 12 ((𝑑 ∈ (β„•0 ↑m (1...𝑁)) ∧ 𝑀 ∈ (β„•0 ↑m π‘Š)) β†’ ((𝑀 βˆͺ 𝑑) β†Ύ (1...𝑁)) = 𝑑)
6965, 68eqtr2id 2785 . . . . . . . . . . 11 ((𝑑 ∈ (β„•0 ↑m (1...𝑁)) ∧ 𝑀 ∈ (β„•0 ↑m π‘Š)) β†’ 𝑑 = ((𝑑 βˆͺ 𝑀) β†Ύ (1...𝑁)))
7069adantr 481 . . . . . . . . . 10 (((𝑑 ∈ (β„•0 ↑m (1...𝑁)) ∧ 𝑀 ∈ (β„•0 ↑m π‘Š)) ∧ (π‘β€˜(𝑑 βˆͺ 𝑀)) = 0) β†’ 𝑑 = ((𝑑 βˆͺ 𝑀) β†Ύ (1...𝑁)))
71 simpr 485 . . . . . . . . . 10 (((𝑑 ∈ (β„•0 ↑m (1...𝑁)) ∧ 𝑀 ∈ (β„•0 ↑m π‘Š)) ∧ (π‘β€˜(𝑑 βˆͺ 𝑀)) = 0) β†’ (π‘β€˜(𝑑 βˆͺ 𝑀)) = 0)
72 reseq1 5975 . . . . . . . . . . . . 13 (𝑒 = (𝑑 βˆͺ 𝑀) β†’ (𝑒 β†Ύ (1...𝑁)) = ((𝑑 βˆͺ 𝑀) β†Ύ (1...𝑁)))
7372eqeq2d 2743 . . . . . . . . . . . 12 (𝑒 = (𝑑 βˆͺ 𝑀) β†’ (𝑑 = (𝑒 β†Ύ (1...𝑁)) ↔ 𝑑 = ((𝑑 βˆͺ 𝑀) β†Ύ (1...𝑁))))
74 fveqeq2 6900 . . . . . . . . . . . 12 (𝑒 = (𝑑 βˆͺ 𝑀) β†’ ((π‘β€˜π‘’) = 0 ↔ (π‘β€˜(𝑑 βˆͺ 𝑀)) = 0))
7573, 74anbi12d 631 . . . . . . . . . . 11 (𝑒 = (𝑑 βˆͺ 𝑀) β†’ ((𝑑 = (𝑒 β†Ύ (1...𝑁)) ∧ (π‘β€˜π‘’) = 0) ↔ (𝑑 = ((𝑑 βˆͺ 𝑀) β†Ύ (1...𝑁)) ∧ (π‘β€˜(𝑑 βˆͺ 𝑀)) = 0)))
7675rspcev 3612 . . . . . . . . . 10 (((𝑑 βˆͺ 𝑀) ∈ (β„•0 ↑m (π‘Š βˆͺ (1...𝑁))) ∧ (𝑑 = ((𝑑 βˆͺ 𝑀) β†Ύ (1...𝑁)) ∧ (π‘β€˜(𝑑 βˆͺ 𝑀)) = 0)) β†’ βˆƒπ‘’ ∈ (β„•0 ↑m (π‘Š βˆͺ (1...𝑁)))(𝑑 = (𝑒 β†Ύ (1...𝑁)) ∧ (π‘β€˜π‘’) = 0))
7764, 70, 71, 76syl12anc 835 . . . . . . . . 9 (((𝑑 ∈ (β„•0 ↑m (1...𝑁)) ∧ 𝑀 ∈ (β„•0 ↑m π‘Š)) ∧ (π‘β€˜(𝑑 βˆͺ 𝑀)) = 0) β†’ βˆƒπ‘’ ∈ (β„•0 ↑m (π‘Š βˆͺ (1...𝑁)))(𝑑 = (𝑒 β†Ύ (1...𝑁)) ∧ (π‘β€˜π‘’) = 0))
7877r19.29an 3158 . . . . . . . 8 ((𝑑 ∈ (β„•0 ↑m (1...𝑁)) ∧ βˆƒπ‘€ ∈ (β„•0 ↑m π‘Š)(π‘β€˜(𝑑 βˆͺ 𝑀)) = 0) β†’ βˆƒπ‘’ ∈ (β„•0 ↑m (π‘Š βˆͺ (1...𝑁)))(𝑑 = (𝑒 β†Ύ (1...𝑁)) ∧ (π‘β€˜π‘’) = 0))
7944, 78impbii 208 . . . . . . 7 (βˆƒπ‘’ ∈ (β„•0 ↑m (π‘Š βˆͺ (1...𝑁)))(𝑑 = (𝑒 β†Ύ (1...𝑁)) ∧ (π‘β€˜π‘’) = 0) ↔ (𝑑 ∈ (β„•0 ↑m (1...𝑁)) ∧ βˆƒπ‘€ ∈ (β„•0 ↑m π‘Š)(π‘β€˜(𝑑 βˆͺ 𝑀)) = 0))
8079abbii 2802 . . . . . 6 {𝑑 ∣ βˆƒπ‘’ ∈ (β„•0 ↑m (π‘Š βˆͺ (1...𝑁)))(𝑑 = (𝑒 β†Ύ (1...𝑁)) ∧ (π‘β€˜π‘’) = 0)} = {𝑑 ∣ (𝑑 ∈ (β„•0 ↑m (1...𝑁)) ∧ βˆƒπ‘€ ∈ (β„•0 ↑m π‘Š)(π‘β€˜(𝑑 βˆͺ 𝑀)) = 0)}
81 df-rab 3433 . . . . . 6 {𝑑 ∈ (β„•0 ↑m (1...𝑁)) ∣ βˆƒπ‘€ ∈ (β„•0 ↑m π‘Š)(π‘β€˜(𝑑 βˆͺ 𝑀)) = 0} = {𝑑 ∣ (𝑑 ∈ (β„•0 ↑m (1...𝑁)) ∧ βˆƒπ‘€ ∈ (β„•0 ↑m π‘Š)(π‘β€˜(𝑑 βˆͺ 𝑀)) = 0)}
8280, 81eqtr4i 2763 . . . . 5 {𝑑 ∣ βˆƒπ‘’ ∈ (β„•0 ↑m (π‘Š βˆͺ (1...𝑁)))(𝑑 = (𝑒 β†Ύ (1...𝑁)) ∧ (π‘β€˜π‘’) = 0)} = {𝑑 ∈ (β„•0 ↑m (1...𝑁)) ∣ βˆƒπ‘€ ∈ (β„•0 ↑m π‘Š)(π‘β€˜(𝑑 βˆͺ 𝑀)) = 0}
8382eqeq2i 2745 . . . 4 (𝑆 = {𝑑 ∣ βˆƒπ‘’ ∈ (β„•0 ↑m (π‘Š βˆͺ (1...𝑁)))(𝑑 = (𝑒 β†Ύ (1...𝑁)) ∧ (π‘β€˜π‘’) = 0)} ↔ 𝑆 = {𝑑 ∈ (β„•0 ↑m (1...𝑁)) ∣ βˆƒπ‘€ ∈ (β„•0 ↑m π‘Š)(π‘β€˜(𝑑 βˆͺ 𝑀)) = 0})
8483rexbii 3094 . . 3 (βˆƒπ‘ ∈ (mzPolyβ€˜(π‘Š βˆͺ (1...𝑁)))𝑆 = {𝑑 ∣ βˆƒπ‘’ ∈ (β„•0 ↑m (π‘Š βˆͺ (1...𝑁)))(𝑑 = (𝑒 β†Ύ (1...𝑁)) ∧ (π‘β€˜π‘’) = 0)} ↔ βˆƒπ‘ ∈ (mzPolyβ€˜(π‘Š βˆͺ (1...𝑁)))𝑆 = {𝑑 ∈ (β„•0 ↑m (1...𝑁)) ∣ βˆƒπ‘€ ∈ (β„•0 ↑m π‘Š)(π‘β€˜(𝑑 βˆͺ 𝑀)) = 0})
8513, 84bitrdi 286 . 2 (𝑁 ∈ β„•0 β†’ (𝑆 ∈ (Diophβ€˜π‘) ↔ βˆƒπ‘ ∈ (mzPolyβ€˜(π‘Š βˆͺ (1...𝑁)))𝑆 = {𝑑 ∈ (β„•0 ↑m (1...𝑁)) ∣ βˆƒπ‘€ ∈ (β„•0 ↑m π‘Š)(π‘β€˜(𝑑 βˆͺ 𝑀)) = 0}))
861, 85biadanii 820 1 (𝑆 ∈ (Diophβ€˜π‘) ↔ (𝑁 ∈ β„•0 ∧ βˆƒπ‘ ∈ (mzPolyβ€˜(π‘Š βˆͺ (1...𝑁)))𝑆 = {𝑑 ∈ (β„•0 ↑m (1...𝑁)) ∣ βˆƒπ‘€ ∈ (β„•0 ↑m π‘Š)(π‘β€˜(𝑑 βˆͺ 𝑀)) = 0}))
Colors of variables: wff setvar class
Syntax hints:  Β¬ wn 3   ↔ wb 205   ∧ wa 396   = wceq 1541   ∈ wcel 2106  {cab 2709  βˆƒwrex 3070  {crab 3432  Vcvv 3474   βˆͺ cun 3946   ∩ cin 3947   βŠ† wss 3948  βˆ…c0 4322   β†Ύ cres 5678   Fn wfn 6538  βŸΆwf 6539  β€˜cfv 6543  (class class class)co 7411   ↑m cmap 8822  Fincfn 8941  0cc0 11112  1c1 11113  β„•cn 12214  β„•0cn0 12474  ...cfz 13486  mzPolycmzp 41542  Diophcdioph 41575
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-rep 5285  ax-sep 5299  ax-nul 5306  ax-pow 5363  ax-pr 5427  ax-un 7727  ax-cnex 11168  ax-resscn 11169  ax-1cn 11170  ax-icn 11171  ax-addcl 11172  ax-addrcl 11173  ax-mulcl 11174  ax-mulrcl 11175  ax-mulcom 11176  ax-addass 11177  ax-mulass 11178  ax-distr 11179  ax-i2m1 11180  ax-1ne0 11181  ax-1rid 11182  ax-rnegex 11183  ax-rrecex 11184  ax-cnre 11185  ax-pre-lttri 11186  ax-pre-lttrn 11187  ax-pre-ltadd 11188  ax-pre-mulgt0 11189
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-reu 3377  df-rab 3433  df-v 3476  df-sbc 3778  df-csb 3894  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-pss 3967  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-int 4951  df-iun 4999  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5574  df-eprel 5580  df-po 5588  df-so 5589  df-fr 5631  df-we 5633  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-pred 6300  df-ord 6367  df-on 6368  df-lim 6369  df-suc 6370  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-riota 7367  df-ov 7414  df-oprab 7415  df-mpo 7416  df-of 7672  df-om 7858  df-1st 7977  df-2nd 7978  df-frecs 8268  df-wrecs 8299  df-recs 8373  df-rdg 8412  df-1o 8468  df-oadd 8472  df-er 8705  df-map 8824  df-en 8942  df-dom 8943  df-sdom 8944  df-fin 8945  df-dju 9898  df-card 9936  df-pnf 11252  df-mnf 11253  df-xr 11254  df-ltxr 11255  df-le 11256  df-sub 11448  df-neg 11449  df-nn 12215  df-n0 12475  df-z 12561  df-uz 12825  df-fz 13487  df-hash 14293  df-mzpcl 41543  df-mzp 41544  df-dioph 41576
This theorem is referenced by:  eldioph4i  41632  diophren  41633
  Copyright terms: Public domain W3C validator