![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 0g0 | Structured version Visualization version GIF version |
Description: The identity element function evaluates to the empty set on an empty structure. (Contributed by Stefan O'Rear, 2-Oct-2015.) |
Ref | Expression |
---|---|
0g0 | ⊢ ∅ = (0g‘∅) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | base0 17185 | . . 3 ⊢ ∅ = (Base‘∅) | |
2 | eqid 2728 | . . 3 ⊢ (+g‘∅) = (+g‘∅) | |
3 | eqid 2728 | . . 3 ⊢ (0g‘∅) = (0g‘∅) | |
4 | 1, 2, 3 | grpidval 18621 | . 2 ⊢ (0g‘∅) = (℩𝑒(𝑒 ∈ ∅ ∧ ∀𝑥 ∈ ∅ ((𝑒(+g‘∅)𝑥) = 𝑥 ∧ (𝑥(+g‘∅)𝑒) = 𝑥))) |
5 | noel 4331 | . . . . . 6 ⊢ ¬ 𝑒 ∈ ∅ | |
6 | 5 | intnanr 487 | . . . . 5 ⊢ ¬ (𝑒 ∈ ∅ ∧ ∀𝑥 ∈ ∅ ((𝑒(+g‘∅)𝑥) = 𝑥 ∧ (𝑥(+g‘∅)𝑒) = 𝑥)) |
7 | 6 | nex 1795 | . . . 4 ⊢ ¬ ∃𝑒(𝑒 ∈ ∅ ∧ ∀𝑥 ∈ ∅ ((𝑒(+g‘∅)𝑥) = 𝑥 ∧ (𝑥(+g‘∅)𝑒) = 𝑥)) |
8 | euex 2567 | . . . 4 ⊢ (∃!𝑒(𝑒 ∈ ∅ ∧ ∀𝑥 ∈ ∅ ((𝑒(+g‘∅)𝑥) = 𝑥 ∧ (𝑥(+g‘∅)𝑒) = 𝑥)) → ∃𝑒(𝑒 ∈ ∅ ∧ ∀𝑥 ∈ ∅ ((𝑒(+g‘∅)𝑥) = 𝑥 ∧ (𝑥(+g‘∅)𝑒) = 𝑥))) | |
9 | 7, 8 | mto 196 | . . 3 ⊢ ¬ ∃!𝑒(𝑒 ∈ ∅ ∧ ∀𝑥 ∈ ∅ ((𝑒(+g‘∅)𝑥) = 𝑥 ∧ (𝑥(+g‘∅)𝑒) = 𝑥)) |
10 | iotanul 6526 | . . 3 ⊢ (¬ ∃!𝑒(𝑒 ∈ ∅ ∧ ∀𝑥 ∈ ∅ ((𝑒(+g‘∅)𝑥) = 𝑥 ∧ (𝑥(+g‘∅)𝑒) = 𝑥)) → (℩𝑒(𝑒 ∈ ∅ ∧ ∀𝑥 ∈ ∅ ((𝑒(+g‘∅)𝑥) = 𝑥 ∧ (𝑥(+g‘∅)𝑒) = 𝑥))) = ∅) | |
11 | 9, 10 | ax-mp 5 | . 2 ⊢ (℩𝑒(𝑒 ∈ ∅ ∧ ∀𝑥 ∈ ∅ ((𝑒(+g‘∅)𝑥) = 𝑥 ∧ (𝑥(+g‘∅)𝑒) = 𝑥))) = ∅ |
12 | 4, 11 | eqtr2i 2757 | 1 ⊢ ∅ = (0g‘∅) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ∧ wa 395 = wceq 1534 ∃wex 1774 ∈ wcel 2099 ∃!weu 2558 ∀wral 3058 ∅c0 4323 ℩cio 6498 ‘cfv 6548 (class class class)co 7420 +gcplusg 17233 0gc0g 17421 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2699 ax-sep 5299 ax-nul 5306 ax-pow 5365 ax-pr 5429 ax-un 7740 ax-cnex 11195 ax-1cn 11197 ax-addcl 11199 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3or 1086 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2530 df-eu 2559 df-clab 2706 df-cleq 2720 df-clel 2806 df-nfc 2881 df-ne 2938 df-ral 3059 df-rex 3068 df-reu 3374 df-rab 3430 df-v 3473 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-pss 3966 df-nul 4324 df-if 4530 df-pw 4605 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4909 df-iun 4998 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5576 df-eprel 5582 df-po 5590 df-so 5591 df-fr 5633 df-we 5635 df-xp 5684 df-rel 5685 df-cnv 5686 df-co 5687 df-dm 5688 df-rn 5689 df-res 5690 df-ima 5691 df-pred 6305 df-ord 6372 df-on 6373 df-lim 6374 df-suc 6375 df-iota 6500 df-fun 6550 df-fn 6551 df-f 6552 df-f1 6553 df-fo 6554 df-f1o 6555 df-fv 6556 df-ov 7423 df-om 7871 df-2nd 7994 df-frecs 8287 df-wrecs 8318 df-recs 8392 df-rdg 8431 df-nn 12244 df-slot 17151 df-ndx 17163 df-base 17181 df-0g 17423 |
This theorem is referenced by: frmd0 18812 ringidval 20123 |
Copyright terms: Public domain | W3C validator |