| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 0nelfz1 | Structured version Visualization version GIF version | ||
| Description: 0 is not an element of a finite interval of integers starting at 1. (Contributed by AV, 27-Aug-2020.) |
| Ref | Expression |
|---|---|
| 0nelfz1 | ⊢ 0 ∉ (1...𝑁) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0lt1 11678 | . . . . 5 ⊢ 0 < 1 | |
| 2 | 0re 11154 | . . . . . 6 ⊢ 0 ∈ ℝ | |
| 3 | 1re 11152 | . . . . . 6 ⊢ 1 ∈ ℝ | |
| 4 | 2, 3 | ltnlei 11273 | . . . . 5 ⊢ (0 < 1 ↔ ¬ 1 ≤ 0) |
| 5 | 1, 4 | mpbi 230 | . . . 4 ⊢ ¬ 1 ≤ 0 |
| 6 | 5 | intnanr 487 | . . 3 ⊢ ¬ (1 ≤ 0 ∧ 0 ≤ 𝑁) |
| 7 | 6 | intnan 486 | . 2 ⊢ ¬ ((1 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 0 ∈ ℤ) ∧ (1 ≤ 0 ∧ 0 ≤ 𝑁)) |
| 8 | df-nel 3030 | . . 3 ⊢ (0 ∉ (1...𝑁) ↔ ¬ 0 ∈ (1...𝑁)) | |
| 9 | elfz2 13453 | . . 3 ⊢ (0 ∈ (1...𝑁) ↔ ((1 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 0 ∈ ℤ) ∧ (1 ≤ 0 ∧ 0 ≤ 𝑁))) | |
| 10 | 8, 9 | xchbinx 334 | . 2 ⊢ (0 ∉ (1...𝑁) ↔ ¬ ((1 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 0 ∈ ℤ) ∧ (1 ≤ 0 ∧ 0 ≤ 𝑁))) |
| 11 | 7, 10 | mpbir 231 | 1 ⊢ 0 ∉ (1...𝑁) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 ∧ wa 395 ∧ w3a 1086 ∈ wcel 2109 ∉ wnel 3029 class class class wbr 5102 (class class class)co 7369 0cc0 11046 1c1 11047 < clt 11186 ≤ cle 11187 ℤcz 12507 ...cfz 13446 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5246 ax-nul 5256 ax-pow 5315 ax-pr 5382 ax-un 7691 ax-cnex 11102 ax-resscn 11103 ax-1cn 11104 ax-icn 11105 ax-addcl 11106 ax-addrcl 11107 ax-mulcl 11108 ax-mulrcl 11109 ax-mulcom 11110 ax-addass 11111 ax-mulass 11112 ax-distr 11113 ax-i2m1 11114 ax-1ne0 11115 ax-1rid 11116 ax-rnegex 11117 ax-rrecex 11118 ax-cnre 11119 ax-pre-lttri 11120 ax-pre-lttrn 11121 ax-pre-ltadd 11122 ax-pre-mulgt0 11123 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-reu 3352 df-rab 3403 df-v 3446 df-sbc 3751 df-csb 3860 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-iun 4953 df-br 5103 df-opab 5165 df-mpt 5184 df-id 5526 df-po 5539 df-so 5540 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-f1 6504 df-fo 6505 df-f1o 6506 df-fv 6507 df-riota 7326 df-ov 7372 df-oprab 7373 df-mpo 7374 df-1st 7947 df-2nd 7948 df-er 8648 df-en 8896 df-dom 8897 df-sdom 8898 df-pnf 11188 df-mnf 11189 df-xr 11190 df-ltxr 11191 df-le 11192 df-sub 11385 df-neg 11386 df-z 12508 df-fz 13447 |
| This theorem is referenced by: lcmflefac 16595 prmodvdslcmf 16995 prmolelcmf 16996 prmgaplcmlem2 17000 prmgaplcm 17008 f1resfz0f1d 35095 |
| Copyright terms: Public domain | W3C validator |