MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  0nelfz1 Structured version   Visualization version   GIF version

Theorem 0nelfz1 13435
Description: 0 is not an element of a finite interval of integers starting at 1. (Contributed by AV, 27-Aug-2020.)
Assertion
Ref Expression
0nelfz1 0 ∉ (1...𝑁)

Proof of Theorem 0nelfz1
StepHypRef Expression
1 0lt1 11631 . . . . 5 0 < 1
2 0re 11106 . . . . . 6 0 ∈ ℝ
3 1re 11104 . . . . . 6 1 ∈ ℝ
42, 3ltnlei 11226 . . . . 5 (0 < 1 ↔ ¬ 1 ≤ 0)
51, 4mpbi 230 . . . 4 ¬ 1 ≤ 0
65intnanr 487 . . 3 ¬ (1 ≤ 0 ∧ 0 ≤ 𝑁)
76intnan 486 . 2 ¬ ((1 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 0 ∈ ℤ) ∧ (1 ≤ 0 ∧ 0 ≤ 𝑁))
8 df-nel 3031 . . 3 (0 ∉ (1...𝑁) ↔ ¬ 0 ∈ (1...𝑁))
9 elfz2 13406 . . 3 (0 ∈ (1...𝑁) ↔ ((1 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 0 ∈ ℤ) ∧ (1 ≤ 0 ∧ 0 ≤ 𝑁)))
108, 9xchbinx 334 . 2 (0 ∉ (1...𝑁) ↔ ¬ ((1 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 0 ∈ ℤ) ∧ (1 ≤ 0 ∧ 0 ≤ 𝑁)))
117, 10mpbir 231 1 0 ∉ (1...𝑁)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wa 395  w3a 1086  wcel 2110  wnel 3030   class class class wbr 5089  (class class class)co 7341  0cc0 10998  1c1 10999   < clt 11138  cle 11139  cz 12460  ...cfz 13399
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2112  ax-9 2120  ax-10 2143  ax-11 2159  ax-12 2179  ax-ext 2702  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7663  ax-cnex 11054  ax-resscn 11055  ax-1cn 11056  ax-icn 11057  ax-addcl 11058  ax-addrcl 11059  ax-mulcl 11060  ax-mulrcl 11061  ax-mulcom 11062  ax-addass 11063  ax-mulass 11064  ax-distr 11065  ax-i2m1 11066  ax-1ne0 11067  ax-1rid 11068  ax-rnegex 11069  ax-rrecex 11070  ax-cnre 11071  ax-pre-lttri 11072  ax-pre-lttrn 11073  ax-pre-ltadd 11074  ax-pre-mulgt0 11075
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-reu 3345  df-rab 3394  df-v 3436  df-sbc 3740  df-csb 3849  df-dif 3903  df-un 3905  df-in 3907  df-ss 3917  df-nul 4282  df-if 4474  df-pw 4550  df-sn 4575  df-pr 4577  df-op 4581  df-uni 4858  df-iun 4941  df-br 5090  df-opab 5152  df-mpt 5171  df-id 5509  df-po 5522  df-so 5523  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-iota 6433  df-fun 6479  df-fn 6480  df-f 6481  df-f1 6482  df-fo 6483  df-f1o 6484  df-fv 6485  df-riota 7298  df-ov 7344  df-oprab 7345  df-mpo 7346  df-1st 7916  df-2nd 7917  df-er 8617  df-en 8865  df-dom 8866  df-sdom 8867  df-pnf 11140  df-mnf 11141  df-xr 11142  df-ltxr 11143  df-le 11144  df-sub 11338  df-neg 11339  df-z 12461  df-fz 13400
This theorem is referenced by:  lcmflefac  16551  prmodvdslcmf  16951  prmolelcmf  16952  prmgaplcmlem2  16956  prmgaplcm  16964  f1resfz0f1d  35126
  Copyright terms: Public domain W3C validator