MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  0nelfz1 Structured version   Visualization version   GIF version

Theorem 0nelfz1 13483
Description: 0 is not an element of a finite interval of integers starting at 1. (Contributed by AV, 27-Aug-2020.)
Assertion
Ref Expression
0nelfz1 0 ∉ (1...𝑁)

Proof of Theorem 0nelfz1
StepHypRef Expression
1 0lt1 11679 . . . . 5 0 < 1
2 0re 11155 . . . . . 6 0 ∈ ℝ
3 1re 11153 . . . . . 6 1 ∈ ℝ
42, 3ltnlei 11274 . . . . 5 (0 < 1 ↔ ¬ 1 ≤ 0)
51, 4mpbi 230 . . . 4 ¬ 1 ≤ 0
65intnanr 487 . . 3 ¬ (1 ≤ 0 ∧ 0 ≤ 𝑁)
76intnan 486 . 2 ¬ ((1 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 0 ∈ ℤ) ∧ (1 ≤ 0 ∧ 0 ≤ 𝑁))
8 df-nel 3030 . . 3 (0 ∉ (1...𝑁) ↔ ¬ 0 ∈ (1...𝑁))
9 elfz2 13454 . . 3 (0 ∈ (1...𝑁) ↔ ((1 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 0 ∈ ℤ) ∧ (1 ≤ 0 ∧ 0 ≤ 𝑁)))
108, 9xchbinx 334 . 2 (0 ∉ (1...𝑁) ↔ ¬ ((1 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 0 ∈ ℤ) ∧ (1 ≤ 0 ∧ 0 ≤ 𝑁)))
117, 10mpbir 231 1 0 ∉ (1...𝑁)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wa 395  w3a 1086  wcel 2109  wnel 3029   class class class wbr 5102  (class class class)co 7370  0cc0 11047  1c1 11048   < clt 11187  cle 11188  cz 12508  ...cfz 13447
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7692  ax-cnex 11103  ax-resscn 11104  ax-1cn 11105  ax-icn 11106  ax-addcl 11107  ax-addrcl 11108  ax-mulcl 11109  ax-mulrcl 11110  ax-mulcom 11111  ax-addass 11112  ax-mulass 11113  ax-distr 11114  ax-i2m1 11115  ax-1ne0 11116  ax-1rid 11117  ax-rnegex 11118  ax-rrecex 11119  ax-cnre 11120  ax-pre-lttri 11121  ax-pre-lttrn 11122  ax-pre-ltadd 11123  ax-pre-mulgt0 11124
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-iun 4953  df-br 5103  df-opab 5165  df-mpt 5184  df-id 5526  df-po 5539  df-so 5540  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-iota 6453  df-fun 6502  df-fn 6503  df-f 6504  df-f1 6505  df-fo 6506  df-f1o 6507  df-fv 6508  df-riota 7327  df-ov 7373  df-oprab 7374  df-mpo 7375  df-1st 7948  df-2nd 7949  df-er 8649  df-en 8897  df-dom 8898  df-sdom 8899  df-pnf 11189  df-mnf 11190  df-xr 11191  df-ltxr 11192  df-le 11193  df-sub 11386  df-neg 11387  df-z 12509  df-fz 13448
This theorem is referenced by:  lcmflefac  16596  prmodvdslcmf  16996  prmolelcmf  16997  prmgaplcmlem2  17001  prmgaplcm  17009  f1resfz0f1d  35096
  Copyright terms: Public domain W3C validator