| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 0nelfz1 | Structured version Visualization version GIF version | ||
| Description: 0 is not an element of a finite interval of integers starting at 1. (Contributed by AV, 27-Aug-2020.) |
| Ref | Expression |
|---|---|
| 0nelfz1 | ⊢ 0 ∉ (1...𝑁) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0lt1 11631 | . . . . 5 ⊢ 0 < 1 | |
| 2 | 0re 11106 | . . . . . 6 ⊢ 0 ∈ ℝ | |
| 3 | 1re 11104 | . . . . . 6 ⊢ 1 ∈ ℝ | |
| 4 | 2, 3 | ltnlei 11226 | . . . . 5 ⊢ (0 < 1 ↔ ¬ 1 ≤ 0) |
| 5 | 1, 4 | mpbi 230 | . . . 4 ⊢ ¬ 1 ≤ 0 |
| 6 | 5 | intnanr 487 | . . 3 ⊢ ¬ (1 ≤ 0 ∧ 0 ≤ 𝑁) |
| 7 | 6 | intnan 486 | . 2 ⊢ ¬ ((1 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 0 ∈ ℤ) ∧ (1 ≤ 0 ∧ 0 ≤ 𝑁)) |
| 8 | df-nel 3031 | . . 3 ⊢ (0 ∉ (1...𝑁) ↔ ¬ 0 ∈ (1...𝑁)) | |
| 9 | elfz2 13406 | . . 3 ⊢ (0 ∈ (1...𝑁) ↔ ((1 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 0 ∈ ℤ) ∧ (1 ≤ 0 ∧ 0 ≤ 𝑁))) | |
| 10 | 8, 9 | xchbinx 334 | . 2 ⊢ (0 ∉ (1...𝑁) ↔ ¬ ((1 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 0 ∈ ℤ) ∧ (1 ≤ 0 ∧ 0 ≤ 𝑁))) |
| 11 | 7, 10 | mpbir 231 | 1 ⊢ 0 ∉ (1...𝑁) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 ∧ wa 395 ∧ w3a 1086 ∈ wcel 2110 ∉ wnel 3030 class class class wbr 5089 (class class class)co 7341 0cc0 10998 1c1 10999 < clt 11138 ≤ cle 11139 ℤcz 12460 ...cfz 13399 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2112 ax-9 2120 ax-10 2143 ax-11 2159 ax-12 2179 ax-ext 2702 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 ax-un 7663 ax-cnex 11054 ax-resscn 11055 ax-1cn 11056 ax-icn 11057 ax-addcl 11058 ax-addrcl 11059 ax-mulcl 11060 ax-mulrcl 11061 ax-mulcom 11062 ax-addass 11063 ax-mulass 11064 ax-distr 11065 ax-i2m1 11066 ax-1ne0 11067 ax-1rid 11068 ax-rnegex 11069 ax-rrecex 11070 ax-cnre 11071 ax-pre-lttri 11072 ax-pre-lttrn 11073 ax-pre-ltadd 11074 ax-pre-mulgt0 11075 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-nel 3031 df-ral 3046 df-rex 3055 df-reu 3345 df-rab 3394 df-v 3436 df-sbc 3740 df-csb 3849 df-dif 3903 df-un 3905 df-in 3907 df-ss 3917 df-nul 4282 df-if 4474 df-pw 4550 df-sn 4575 df-pr 4577 df-op 4581 df-uni 4858 df-iun 4941 df-br 5090 df-opab 5152 df-mpt 5171 df-id 5509 df-po 5522 df-so 5523 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-iota 6433 df-fun 6479 df-fn 6480 df-f 6481 df-f1 6482 df-fo 6483 df-f1o 6484 df-fv 6485 df-riota 7298 df-ov 7344 df-oprab 7345 df-mpo 7346 df-1st 7916 df-2nd 7917 df-er 8617 df-en 8865 df-dom 8866 df-sdom 8867 df-pnf 11140 df-mnf 11141 df-xr 11142 df-ltxr 11143 df-le 11144 df-sub 11338 df-neg 11339 df-z 12461 df-fz 13400 |
| This theorem is referenced by: lcmflefac 16551 prmodvdslcmf 16951 prmolelcmf 16952 prmgaplcmlem2 16956 prmgaplcm 16964 f1resfz0f1d 35126 |
| Copyright terms: Public domain | W3C validator |