Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bcneg1 Structured version   Visualization version   GIF version

Theorem bcneg1 35558
Description: The binomial coefficient over negative one is zero. (Contributed by Scott Fenton, 29-May-2020.)
Assertion
Ref Expression
bcneg1 (𝑁 ∈ ℕ0 → (𝑁C-1) = 0)

Proof of Theorem bcneg1
StepHypRef Expression
1 neg1z 12650 . . 3 -1 ∈ ℤ
2 bcval 14321 . . 3 ((𝑁 ∈ ℕ0 ∧ -1 ∈ ℤ) → (𝑁C-1) = if(-1 ∈ (0...𝑁), ((!‘𝑁) / ((!‘(𝑁 − -1)) · (!‘-1))), 0))
31, 2mpan2 689 . 2 (𝑁 ∈ ℕ0 → (𝑁C-1) = if(-1 ∈ (0...𝑁), ((!‘𝑁) / ((!‘(𝑁 − -1)) · (!‘-1))), 0))
4 neg1lt0 12381 . . . . . 6 -1 < 0
5 neg1rr 12379 . . . . . . 7 -1 ∈ ℝ
6 0re 11266 . . . . . . 7 0 ∈ ℝ
75, 6ltnlei 11385 . . . . . 6 (-1 < 0 ↔ ¬ 0 ≤ -1)
84, 7mpbi 229 . . . . 5 ¬ 0 ≤ -1
98intnanr 486 . . . 4 ¬ (0 ≤ -1 ∧ -1 ≤ 𝑁)
10 nn0z 12635 . . . . 5 (𝑁 ∈ ℕ0𝑁 ∈ ℤ)
11 0z 12621 . . . . . 6 0 ∈ ℤ
12 elfz 13544 . . . . . 6 ((-1 ∈ ℤ ∧ 0 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (-1 ∈ (0...𝑁) ↔ (0 ≤ -1 ∧ -1 ≤ 𝑁)))
131, 11, 12mp3an12 1448 . . . . 5 (𝑁 ∈ ℤ → (-1 ∈ (0...𝑁) ↔ (0 ≤ -1 ∧ -1 ≤ 𝑁)))
1410, 13syl 17 . . . 4 (𝑁 ∈ ℕ0 → (-1 ∈ (0...𝑁) ↔ (0 ≤ -1 ∧ -1 ≤ 𝑁)))
159, 14mtbiri 326 . . 3 (𝑁 ∈ ℕ0 → ¬ -1 ∈ (0...𝑁))
1615iffalsed 4544 . 2 (𝑁 ∈ ℕ0 → if(-1 ∈ (0...𝑁), ((!‘𝑁) / ((!‘(𝑁 − -1)) · (!‘-1))), 0) = 0)
173, 16eqtrd 2766 1 (𝑁 ∈ ℕ0 → (𝑁C-1) = 0)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 394   = wceq 1534  wcel 2099  ifcif 4533   class class class wbr 5153  cfv 6554  (class class class)co 7424  0cc0 11158  1c1 11159   · cmul 11163   < clt 11298  cle 11299  cmin 11494  -cneg 11495   / cdiv 11921  0cn0 12524  cz 12610  ...cfz 13538  !cfa 14290  Ccbc 14319
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2167  ax-ext 2697  ax-sep 5304  ax-nul 5311  ax-pow 5369  ax-pr 5433  ax-un 7746  ax-cnex 11214  ax-resscn 11215  ax-1cn 11216  ax-icn 11217  ax-addcl 11218  ax-addrcl 11219  ax-mulcl 11220  ax-mulrcl 11221  ax-mulcom 11222  ax-addass 11223  ax-mulass 11224  ax-distr 11225  ax-i2m1 11226  ax-1ne0 11227  ax-1rid 11228  ax-rnegex 11229  ax-rrecex 11230  ax-cnre 11231  ax-pre-lttri 11232  ax-pre-lttrn 11233  ax-pre-ltadd 11234  ax-pre-mulgt0 11235
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2529  df-eu 2558  df-clab 2704  df-cleq 2718  df-clel 2803  df-nfc 2878  df-ne 2931  df-nel 3037  df-ral 3052  df-rex 3061  df-reu 3365  df-rab 3420  df-v 3464  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3967  df-nul 4326  df-if 4534  df-pw 4609  df-sn 4634  df-pr 4636  df-op 4640  df-uni 4914  df-iun 5003  df-br 5154  df-opab 5216  df-mpt 5237  df-tr 5271  df-id 5580  df-eprel 5586  df-po 5594  df-so 5595  df-fr 5637  df-we 5639  df-xp 5688  df-rel 5689  df-cnv 5690  df-co 5691  df-dm 5692  df-rn 5693  df-res 5694  df-ima 5695  df-pred 6312  df-ord 6379  df-on 6380  df-lim 6381  df-suc 6382  df-iota 6506  df-fun 6556  df-fn 6557  df-f 6558  df-f1 6559  df-fo 6560  df-f1o 6561  df-fv 6562  df-riota 7380  df-ov 7427  df-oprab 7428  df-mpo 7429  df-om 7877  df-2nd 8004  df-frecs 8296  df-wrecs 8327  df-recs 8401  df-rdg 8440  df-er 8734  df-en 8975  df-dom 8976  df-sdom 8977  df-pnf 11300  df-mnf 11301  df-xr 11302  df-ltxr 11303  df-le 11304  df-sub 11496  df-neg 11497  df-nn 12265  df-n0 12525  df-z 12611  df-fz 13539  df-bc 14320
This theorem is referenced by:  fwddifnp1  35989
  Copyright terms: Public domain W3C validator