Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bcneg1 Structured version   Visualization version   GIF version

Theorem bcneg1 33608
Description: The binomial coefficent over negative one is zero. (Contributed by Scott Fenton, 29-May-2020.)
Assertion
Ref Expression
bcneg1 (𝑁 ∈ ℕ0 → (𝑁C-1) = 0)

Proof of Theorem bcneg1
StepHypRef Expression
1 neg1z 12286 . . 3 -1 ∈ ℤ
2 bcval 13946 . . 3 ((𝑁 ∈ ℕ0 ∧ -1 ∈ ℤ) → (𝑁C-1) = if(-1 ∈ (0...𝑁), ((!‘𝑁) / ((!‘(𝑁 − -1)) · (!‘-1))), 0))
31, 2mpan2 687 . 2 (𝑁 ∈ ℕ0 → (𝑁C-1) = if(-1 ∈ (0...𝑁), ((!‘𝑁) / ((!‘(𝑁 − -1)) · (!‘-1))), 0))
4 neg1lt0 12020 . . . . . 6 -1 < 0
5 neg1rr 12018 . . . . . . 7 -1 ∈ ℝ
6 0re 10908 . . . . . . 7 0 ∈ ℝ
75, 6ltnlei 11026 . . . . . 6 (-1 < 0 ↔ ¬ 0 ≤ -1)
84, 7mpbi 229 . . . . 5 ¬ 0 ≤ -1
98intnanr 487 . . . 4 ¬ (0 ≤ -1 ∧ -1 ≤ 𝑁)
10 nn0z 12273 . . . . 5 (𝑁 ∈ ℕ0𝑁 ∈ ℤ)
11 0z 12260 . . . . . 6 0 ∈ ℤ
12 elfz 13174 . . . . . 6 ((-1 ∈ ℤ ∧ 0 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (-1 ∈ (0...𝑁) ↔ (0 ≤ -1 ∧ -1 ≤ 𝑁)))
131, 11, 12mp3an12 1449 . . . . 5 (𝑁 ∈ ℤ → (-1 ∈ (0...𝑁) ↔ (0 ≤ -1 ∧ -1 ≤ 𝑁)))
1410, 13syl 17 . . . 4 (𝑁 ∈ ℕ0 → (-1 ∈ (0...𝑁) ↔ (0 ≤ -1 ∧ -1 ≤ 𝑁)))
159, 14mtbiri 326 . . 3 (𝑁 ∈ ℕ0 → ¬ -1 ∈ (0...𝑁))
1615iffalsed 4467 . 2 (𝑁 ∈ ℕ0 → if(-1 ∈ (0...𝑁), ((!‘𝑁) / ((!‘(𝑁 − -1)) · (!‘-1))), 0) = 0)
173, 16eqtrd 2778 1 (𝑁 ∈ ℕ0 → (𝑁C-1) = 0)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 395   = wceq 1539  wcel 2108  ifcif 4456   class class class wbr 5070  cfv 6418  (class class class)co 7255  0cc0 10802  1c1 10803   · cmul 10807   < clt 10940  cle 10941  cmin 11135  -cneg 11136   / cdiv 11562  0cn0 12163  cz 12249  ...cfz 13168  !cfa 13915  Ccbc 13944
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-om 7688  df-2nd 7805  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-er 8456  df-en 8692  df-dom 8693  df-sdom 8694  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-nn 11904  df-n0 12164  df-z 12250  df-fz 13169  df-bc 13945
This theorem is referenced by:  fwddifnp1  34394
  Copyright terms: Public domain W3C validator