Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bcneg1 Structured version   Visualization version   GIF version

Theorem bcneg1 35780
Description: The binomial coefficient over negative one is zero. (Contributed by Scott Fenton, 29-May-2020.)
Assertion
Ref Expression
bcneg1 (𝑁 ∈ ℕ0 → (𝑁C-1) = 0)

Proof of Theorem bcneg1
StepHypRef Expression
1 neg1z 12508 . . 3 -1 ∈ ℤ
2 bcval 14211 . . 3 ((𝑁 ∈ ℕ0 ∧ -1 ∈ ℤ) → (𝑁C-1) = if(-1 ∈ (0...𝑁), ((!‘𝑁) / ((!‘(𝑁 − -1)) · (!‘-1))), 0))
31, 2mpan2 691 . 2 (𝑁 ∈ ℕ0 → (𝑁C-1) = if(-1 ∈ (0...𝑁), ((!‘𝑁) / ((!‘(𝑁 − -1)) · (!‘-1))), 0))
4 neg1lt0 12113 . . . . . 6 -1 < 0
5 neg1rr 12111 . . . . . . 7 -1 ∈ ℝ
6 0re 11114 . . . . . . 7 0 ∈ ℝ
75, 6ltnlei 11234 . . . . . 6 (-1 < 0 ↔ ¬ 0 ≤ -1)
84, 7mpbi 230 . . . . 5 ¬ 0 ≤ -1
98intnanr 487 . . . 4 ¬ (0 ≤ -1 ∧ -1 ≤ 𝑁)
10 nn0z 12493 . . . . 5 (𝑁 ∈ ℕ0𝑁 ∈ ℤ)
11 0z 12479 . . . . . 6 0 ∈ ℤ
12 elfz 13413 . . . . . 6 ((-1 ∈ ℤ ∧ 0 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (-1 ∈ (0...𝑁) ↔ (0 ≤ -1 ∧ -1 ≤ 𝑁)))
131, 11, 12mp3an12 1453 . . . . 5 (𝑁 ∈ ℤ → (-1 ∈ (0...𝑁) ↔ (0 ≤ -1 ∧ -1 ≤ 𝑁)))
1410, 13syl 17 . . . 4 (𝑁 ∈ ℕ0 → (-1 ∈ (0...𝑁) ↔ (0 ≤ -1 ∧ -1 ≤ 𝑁)))
159, 14mtbiri 327 . . 3 (𝑁 ∈ ℕ0 → ¬ -1 ∈ (0...𝑁))
1615iffalsed 4483 . 2 (𝑁 ∈ ℕ0 → if(-1 ∈ (0...𝑁), ((!‘𝑁) / ((!‘(𝑁 − -1)) · (!‘-1))), 0) = 0)
173, 16eqtrd 2766 1 (𝑁 ∈ ℕ0 → (𝑁C-1) = 0)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395   = wceq 1541  wcel 2111  ifcif 4472   class class class wbr 5089  cfv 6481  (class class class)co 7346  0cc0 11006  1c1 11007   · cmul 11011   < clt 11146  cle 11147  cmin 11344  -cneg 11345   / cdiv 11774  0cn0 12381  cz 12468  ...cfz 13407  !cfa 14180  Ccbc 14209
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7668  ax-cnex 11062  ax-resscn 11063  ax-1cn 11064  ax-icn 11065  ax-addcl 11066  ax-addrcl 11067  ax-mulcl 11068  ax-mulrcl 11069  ax-mulcom 11070  ax-addass 11071  ax-mulass 11072  ax-distr 11073  ax-i2m1 11074  ax-1ne0 11075  ax-1rid 11076  ax-rnegex 11077  ax-rrecex 11078  ax-cnre 11079  ax-pre-lttri 11080  ax-pre-lttrn 11081  ax-pre-ltadd 11082  ax-pre-mulgt0 11083
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-iun 4941  df-br 5090  df-opab 5152  df-mpt 5171  df-tr 5197  df-id 5509  df-eprel 5514  df-po 5522  df-so 5523  df-fr 5567  df-we 5569  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-om 7797  df-2nd 7922  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-er 8622  df-en 8870  df-dom 8871  df-sdom 8872  df-pnf 11148  df-mnf 11149  df-xr 11150  df-ltxr 11151  df-le 11152  df-sub 11346  df-neg 11347  df-nn 12126  df-n0 12382  df-z 12469  df-fz 13408  df-bc 14210
This theorem is referenced by:  fwddifnp1  36209
  Copyright terms: Public domain W3C validator