MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  inelfi Structured version   Visualization version   GIF version

Theorem inelfi 9376
Description: The intersection of two sets is a finite intersection. (Contributed by Thierry Arnoux, 6-Jan-2017.)
Assertion
Ref Expression
inelfi ((𝑋𝑉𝐴𝑋𝐵𝑋) → (𝐴𝐵) ∈ (fi‘𝑋))

Proof of Theorem inelfi
Dummy variable 𝑝 is distinct from all other variables.
StepHypRef Expression
1 prelpwi 5410 . . . . 5 ((𝐴𝑋𝐵𝑋) → {𝐴, 𝐵} ∈ 𝒫 𝑋)
213adant1 1130 . . . 4 ((𝑋𝑉𝐴𝑋𝐵𝑋) → {𝐴, 𝐵} ∈ 𝒫 𝑋)
3 prfi 9281 . . . . 5 {𝐴, 𝐵} ∈ Fin
43a1i 11 . . . 4 ((𝑋𝑉𝐴𝑋𝐵𝑋) → {𝐴, 𝐵} ∈ Fin)
52, 4elind 4166 . . 3 ((𝑋𝑉𝐴𝑋𝐵𝑋) → {𝐴, 𝐵} ∈ (𝒫 𝑋 ∩ Fin))
6 intprg 4948 . . . . 5 ((𝐴𝑋𝐵𝑋) → {𝐴, 𝐵} = (𝐴𝐵))
763adant1 1130 . . . 4 ((𝑋𝑉𝐴𝑋𝐵𝑋) → {𝐴, 𝐵} = (𝐴𝐵))
87eqcomd 2736 . . 3 ((𝑋𝑉𝐴𝑋𝐵𝑋) → (𝐴𝐵) = {𝐴, 𝐵})
9 inteq 4916 . . . 4 (𝑝 = {𝐴, 𝐵} → 𝑝 = {𝐴, 𝐵})
109rspceeqv 3614 . . 3 (({𝐴, 𝐵} ∈ (𝒫 𝑋 ∩ Fin) ∧ (𝐴𝐵) = {𝐴, 𝐵}) → ∃𝑝 ∈ (𝒫 𝑋 ∩ Fin)(𝐴𝐵) = 𝑝)
115, 8, 10syl2anc 584 . 2 ((𝑋𝑉𝐴𝑋𝐵𝑋) → ∃𝑝 ∈ (𝒫 𝑋 ∩ Fin)(𝐴𝐵) = 𝑝)
12 inex1g 5277 . . . 4 (𝐴𝑋 → (𝐴𝐵) ∈ V)
13123ad2ant2 1134 . . 3 ((𝑋𝑉𝐴𝑋𝐵𝑋) → (𝐴𝐵) ∈ V)
14 simp1 1136 . . 3 ((𝑋𝑉𝐴𝑋𝐵𝑋) → 𝑋𝑉)
15 elfi 9371 . . 3 (((𝐴𝐵) ∈ V ∧ 𝑋𝑉) → ((𝐴𝐵) ∈ (fi‘𝑋) ↔ ∃𝑝 ∈ (𝒫 𝑋 ∩ Fin)(𝐴𝐵) = 𝑝))
1613, 14, 15syl2anc 584 . 2 ((𝑋𝑉𝐴𝑋𝐵𝑋) → ((𝐴𝐵) ∈ (fi‘𝑋) ↔ ∃𝑝 ∈ (𝒫 𝑋 ∩ Fin)(𝐴𝐵) = 𝑝))
1711, 16mpbird 257 1 ((𝑋𝑉𝐴𝑋𝐵𝑋) → (𝐴𝐵) ∈ (fi‘𝑋))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  w3a 1086   = wceq 1540  wcel 2109  wrex 3054  Vcvv 3450  cin 3916  𝒫 cpw 4566  {cpr 4594   cint 4913  cfv 6514  Fincfn 8921  ficfi 9368
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-rab 3409  df-v 3452  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-int 4914  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-om 7846  df-1o 8437  df-2o 8438  df-en 8922  df-fin 8925  df-fi 9369
This theorem is referenced by:  neiptoptop  23025  sigapildsyslem  34158
  Copyright terms: Public domain W3C validator