MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  inelfi Structured version   Visualization version   GIF version

Theorem inelfi 9361
Description: The intersection of two sets is a finite intersection. (Contributed by Thierry Arnoux, 6-Jan-2017.)
Assertion
Ref Expression
inelfi ((𝑋𝑉𝐴𝑋𝐵𝑋) → (𝐴𝐵) ∈ (fi‘𝑋))

Proof of Theorem inelfi
Dummy variable 𝑝 is distinct from all other variables.
StepHypRef Expression
1 prelpwi 5409 . . . . 5 ((𝐴𝑋𝐵𝑋) → {𝐴, 𝐵} ∈ 𝒫 𝑋)
213adant1 1131 . . . 4 ((𝑋𝑉𝐴𝑋𝐵𝑋) → {𝐴, 𝐵} ∈ 𝒫 𝑋)
3 prfi 9273 . . . . 5 {𝐴, 𝐵} ∈ Fin
43a1i 11 . . . 4 ((𝑋𝑉𝐴𝑋𝐵𝑋) → {𝐴, 𝐵} ∈ Fin)
52, 4elind 4159 . . 3 ((𝑋𝑉𝐴𝑋𝐵𝑋) → {𝐴, 𝐵} ∈ (𝒫 𝑋 ∩ Fin))
6 intprg 4947 . . . . 5 ((𝐴𝑋𝐵𝑋) → {𝐴, 𝐵} = (𝐴𝐵))
763adant1 1131 . . . 4 ((𝑋𝑉𝐴𝑋𝐵𝑋) → {𝐴, 𝐵} = (𝐴𝐵))
87eqcomd 2743 . . 3 ((𝑋𝑉𝐴𝑋𝐵𝑋) → (𝐴𝐵) = {𝐴, 𝐵})
9 inteq 4915 . . . 4 (𝑝 = {𝐴, 𝐵} → 𝑝 = {𝐴, 𝐵})
109rspceeqv 3600 . . 3 (({𝐴, 𝐵} ∈ (𝒫 𝑋 ∩ Fin) ∧ (𝐴𝐵) = {𝐴, 𝐵}) → ∃𝑝 ∈ (𝒫 𝑋 ∩ Fin)(𝐴𝐵) = 𝑝)
115, 8, 10syl2anc 585 . 2 ((𝑋𝑉𝐴𝑋𝐵𝑋) → ∃𝑝 ∈ (𝒫 𝑋 ∩ Fin)(𝐴𝐵) = 𝑝)
12 inex1g 5281 . . . 4 (𝐴𝑋 → (𝐴𝐵) ∈ V)
13123ad2ant2 1135 . . 3 ((𝑋𝑉𝐴𝑋𝐵𝑋) → (𝐴𝐵) ∈ V)
14 simp1 1137 . . 3 ((𝑋𝑉𝐴𝑋𝐵𝑋) → 𝑋𝑉)
15 elfi 9356 . . 3 (((𝐴𝐵) ∈ V ∧ 𝑋𝑉) → ((𝐴𝐵) ∈ (fi‘𝑋) ↔ ∃𝑝 ∈ (𝒫 𝑋 ∩ Fin)(𝐴𝐵) = 𝑝))
1613, 14, 15syl2anc 585 . 2 ((𝑋𝑉𝐴𝑋𝐵𝑋) → ((𝐴𝐵) ∈ (fi‘𝑋) ↔ ∃𝑝 ∈ (𝒫 𝑋 ∩ Fin)(𝐴𝐵) = 𝑝))
1711, 16mpbird 257 1 ((𝑋𝑉𝐴𝑋𝐵𝑋) → (𝐴𝐵) ∈ (fi‘𝑋))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  w3a 1088   = wceq 1542  wcel 2107  wrex 3074  Vcvv 3448  cin 3914  𝒫 cpw 4565  {cpr 4593   cint 4912  cfv 6501  Fincfn 8890  ficfi 9353
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2708  ax-sep 5261  ax-nul 5268  ax-pow 5325  ax-pr 5389  ax-un 7677
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2815  df-nfc 2890  df-ne 2945  df-ral 3066  df-rex 3075  df-reu 3357  df-rab 3411  df-v 3450  df-sbc 3745  df-dif 3918  df-un 3920  df-in 3922  df-ss 3932  df-pss 3934  df-nul 4288  df-if 4492  df-pw 4567  df-sn 4592  df-pr 4594  df-op 4598  df-uni 4871  df-int 4913  df-br 5111  df-opab 5173  df-mpt 5194  df-tr 5228  df-id 5536  df-eprel 5542  df-po 5550  df-so 5551  df-fr 5593  df-we 5595  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-ord 6325  df-on 6326  df-lim 6327  df-suc 6328  df-iota 6453  df-fun 6503  df-fn 6504  df-f 6505  df-f1 6506  df-fo 6507  df-f1o 6508  df-fv 6509  df-om 7808  df-1o 8417  df-en 8891  df-fin 8894  df-fi 9354
This theorem is referenced by:  neiptoptop  22498  sigapildsyslem  32800
  Copyright terms: Public domain W3C validator