![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > inelfi | Structured version Visualization version GIF version |
Description: The intersection of two sets is a finite intersection. (Contributed by Thierry Arnoux, 6-Jan-2017.) |
Ref | Expression |
---|---|
inelfi | ⊢ ((𝑋 ∈ 𝑉 ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (𝐴 ∩ 𝐵) ∈ (fi‘𝑋)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | prelpwi 5458 | . . . . 5 ⊢ ((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → {𝐴, 𝐵} ∈ 𝒫 𝑋) | |
2 | 1 | 3adant1 1129 | . . . 4 ⊢ ((𝑋 ∈ 𝑉 ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → {𝐴, 𝐵} ∈ 𝒫 𝑋) |
3 | prfi 9361 | . . . . 5 ⊢ {𝐴, 𝐵} ∈ Fin | |
4 | 3 | a1i 11 | . . . 4 ⊢ ((𝑋 ∈ 𝑉 ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → {𝐴, 𝐵} ∈ Fin) |
5 | 2, 4 | elind 4210 | . . 3 ⊢ ((𝑋 ∈ 𝑉 ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → {𝐴, 𝐵} ∈ (𝒫 𝑋 ∩ Fin)) |
6 | intprg 4986 | . . . . 5 ⊢ ((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → ∩ {𝐴, 𝐵} = (𝐴 ∩ 𝐵)) | |
7 | 6 | 3adant1 1129 | . . . 4 ⊢ ((𝑋 ∈ 𝑉 ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → ∩ {𝐴, 𝐵} = (𝐴 ∩ 𝐵)) |
8 | 7 | eqcomd 2741 | . . 3 ⊢ ((𝑋 ∈ 𝑉 ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (𝐴 ∩ 𝐵) = ∩ {𝐴, 𝐵}) |
9 | inteq 4954 | . . . 4 ⊢ (𝑝 = {𝐴, 𝐵} → ∩ 𝑝 = ∩ {𝐴, 𝐵}) | |
10 | 9 | rspceeqv 3645 | . . 3 ⊢ (({𝐴, 𝐵} ∈ (𝒫 𝑋 ∩ Fin) ∧ (𝐴 ∩ 𝐵) = ∩ {𝐴, 𝐵}) → ∃𝑝 ∈ (𝒫 𝑋 ∩ Fin)(𝐴 ∩ 𝐵) = ∩ 𝑝) |
11 | 5, 8, 10 | syl2anc 584 | . 2 ⊢ ((𝑋 ∈ 𝑉 ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → ∃𝑝 ∈ (𝒫 𝑋 ∩ Fin)(𝐴 ∩ 𝐵) = ∩ 𝑝) |
12 | inex1g 5325 | . . . 4 ⊢ (𝐴 ∈ 𝑋 → (𝐴 ∩ 𝐵) ∈ V) | |
13 | 12 | 3ad2ant2 1133 | . . 3 ⊢ ((𝑋 ∈ 𝑉 ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (𝐴 ∩ 𝐵) ∈ V) |
14 | simp1 1135 | . . 3 ⊢ ((𝑋 ∈ 𝑉 ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → 𝑋 ∈ 𝑉) | |
15 | elfi 9451 | . . 3 ⊢ (((𝐴 ∩ 𝐵) ∈ V ∧ 𝑋 ∈ 𝑉) → ((𝐴 ∩ 𝐵) ∈ (fi‘𝑋) ↔ ∃𝑝 ∈ (𝒫 𝑋 ∩ Fin)(𝐴 ∩ 𝐵) = ∩ 𝑝)) | |
16 | 13, 14, 15 | syl2anc 584 | . 2 ⊢ ((𝑋 ∈ 𝑉 ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → ((𝐴 ∩ 𝐵) ∈ (fi‘𝑋) ↔ ∃𝑝 ∈ (𝒫 𝑋 ∩ Fin)(𝐴 ∩ 𝐵) = ∩ 𝑝)) |
17 | 11, 16 | mpbird 257 | 1 ⊢ ((𝑋 ∈ 𝑉 ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (𝐴 ∩ 𝐵) ∈ (fi‘𝑋)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∧ w3a 1086 = wceq 1537 ∈ wcel 2106 ∃wrex 3068 Vcvv 3478 ∩ cin 3962 𝒫 cpw 4605 {cpr 4633 ∩ cint 4951 ‘cfv 6563 Fincfn 8984 ficfi 9448 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-11 2155 ax-12 2175 ax-ext 2706 ax-sep 5302 ax-nul 5312 ax-pow 5371 ax-pr 5438 ax-un 7754 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-nf 1781 df-sb 2063 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2727 df-clel 2814 df-nfc 2890 df-ne 2939 df-ral 3060 df-rex 3069 df-rab 3434 df-v 3480 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-pss 3983 df-nul 4340 df-if 4532 df-pw 4607 df-sn 4632 df-pr 4634 df-op 4638 df-uni 4913 df-int 4952 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5583 df-eprel 5589 df-po 5597 df-so 5598 df-fr 5641 df-we 5643 df-xp 5695 df-rel 5696 df-cnv 5697 df-co 5698 df-dm 5699 df-rn 5700 df-ord 6389 df-on 6390 df-lim 6391 df-suc 6392 df-iota 6516 df-fun 6565 df-fn 6566 df-f 6567 df-f1 6568 df-fo 6569 df-f1o 6570 df-fv 6571 df-om 7888 df-1o 8505 df-2o 8506 df-en 8985 df-fin 8988 df-fi 9449 |
This theorem is referenced by: neiptoptop 23155 sigapildsyslem 34142 |
Copyright terms: Public domain | W3C validator |