![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > inelfi | Structured version Visualization version GIF version |
Description: The intersection of two sets is a finite intersection. (Contributed by Thierry Arnoux, 6-Jan-2017.) |
Ref | Expression |
---|---|
inelfi | ⊢ ((𝑋 ∈ 𝑉 ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (𝐴 ∩ 𝐵) ∈ (fi‘𝑋)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | prelpwi 5190 | . . . . 5 ⊢ ((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → {𝐴, 𝐵} ∈ 𝒫 𝑋) | |
2 | 1 | 3adant1 1110 | . . . 4 ⊢ ((𝑋 ∈ 𝑉 ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → {𝐴, 𝐵} ∈ 𝒫 𝑋) |
3 | prfi 8582 | . . . . 5 ⊢ {𝐴, 𝐵} ∈ Fin | |
4 | 3 | a1i 11 | . . . 4 ⊢ ((𝑋 ∈ 𝑉 ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → {𝐴, 𝐵} ∈ Fin) |
5 | 2, 4 | elind 4053 | . . 3 ⊢ ((𝑋 ∈ 𝑉 ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → {𝐴, 𝐵} ∈ (𝒫 𝑋 ∩ Fin)) |
6 | intprg 4777 | . . . . 5 ⊢ ((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → ∩ {𝐴, 𝐵} = (𝐴 ∩ 𝐵)) | |
7 | 6 | 3adant1 1110 | . . . 4 ⊢ ((𝑋 ∈ 𝑉 ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → ∩ {𝐴, 𝐵} = (𝐴 ∩ 𝐵)) |
8 | 7 | eqcomd 2778 | . . 3 ⊢ ((𝑋 ∈ 𝑉 ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (𝐴 ∩ 𝐵) = ∩ {𝐴, 𝐵}) |
9 | inteq 4746 | . . . 4 ⊢ (𝑝 = {𝐴, 𝐵} → ∩ 𝑝 = ∩ {𝐴, 𝐵}) | |
10 | 9 | rspceeqv 3547 | . . 3 ⊢ (({𝐴, 𝐵} ∈ (𝒫 𝑋 ∩ Fin) ∧ (𝐴 ∩ 𝐵) = ∩ {𝐴, 𝐵}) → ∃𝑝 ∈ (𝒫 𝑋 ∩ Fin)(𝐴 ∩ 𝐵) = ∩ 𝑝) |
11 | 5, 8, 10 | syl2anc 576 | . 2 ⊢ ((𝑋 ∈ 𝑉 ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → ∃𝑝 ∈ (𝒫 𝑋 ∩ Fin)(𝐴 ∩ 𝐵) = ∩ 𝑝) |
12 | inex1g 5074 | . . . 4 ⊢ (𝐴 ∈ 𝑋 → (𝐴 ∩ 𝐵) ∈ V) | |
13 | 12 | 3ad2ant2 1114 | . . 3 ⊢ ((𝑋 ∈ 𝑉 ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (𝐴 ∩ 𝐵) ∈ V) |
14 | simp1 1116 | . . 3 ⊢ ((𝑋 ∈ 𝑉 ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → 𝑋 ∈ 𝑉) | |
15 | elfi 8666 | . . 3 ⊢ (((𝐴 ∩ 𝐵) ∈ V ∧ 𝑋 ∈ 𝑉) → ((𝐴 ∩ 𝐵) ∈ (fi‘𝑋) ↔ ∃𝑝 ∈ (𝒫 𝑋 ∩ Fin)(𝐴 ∩ 𝐵) = ∩ 𝑝)) | |
16 | 13, 14, 15 | syl2anc 576 | . 2 ⊢ ((𝑋 ∈ 𝑉 ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → ((𝐴 ∩ 𝐵) ∈ (fi‘𝑋) ↔ ∃𝑝 ∈ (𝒫 𝑋 ∩ Fin)(𝐴 ∩ 𝐵) = ∩ 𝑝)) |
17 | 11, 16 | mpbird 249 | 1 ⊢ ((𝑋 ∈ 𝑉 ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (𝐴 ∩ 𝐵) ∈ (fi‘𝑋)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 198 ∧ w3a 1068 = wceq 1507 ∈ wcel 2050 ∃wrex 3083 Vcvv 3409 ∩ cin 3822 𝒫 cpw 4416 {cpr 4437 ∩ cint 4743 ‘cfv 6182 Fincfn 8300 ficfi 8663 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1758 ax-4 1772 ax-5 1869 ax-6 1928 ax-7 1965 ax-8 2052 ax-9 2059 ax-10 2079 ax-11 2093 ax-12 2106 ax-13 2301 ax-ext 2744 ax-sep 5054 ax-nul 5061 ax-pow 5113 ax-pr 5180 ax-un 7273 |
This theorem depends on definitions: df-bi 199 df-an 388 df-or 834 df-3or 1069 df-3an 1070 df-tru 1510 df-ex 1743 df-nf 1747 df-sb 2016 df-mo 2547 df-eu 2584 df-clab 2753 df-cleq 2765 df-clel 2840 df-nfc 2912 df-ne 2962 df-ral 3087 df-rex 3088 df-reu 3089 df-rab 3091 df-v 3411 df-sbc 3676 df-csb 3781 df-dif 3826 df-un 3828 df-in 3830 df-ss 3837 df-pss 3839 df-nul 4173 df-if 4345 df-pw 4418 df-sn 4436 df-pr 4438 df-tp 4440 df-op 4442 df-uni 4707 df-int 4744 df-iun 4788 df-br 4924 df-opab 4986 df-mpt 5003 df-tr 5025 df-id 5306 df-eprel 5311 df-po 5320 df-so 5321 df-fr 5360 df-we 5362 df-xp 5407 df-rel 5408 df-cnv 5409 df-co 5410 df-dm 5411 df-rn 5412 df-res 5413 df-ima 5414 df-pred 5980 df-ord 6026 df-on 6027 df-lim 6028 df-suc 6029 df-iota 6146 df-fun 6184 df-fn 6185 df-f 6186 df-f1 6187 df-fo 6188 df-f1o 6189 df-fv 6190 df-ov 6973 df-oprab 6974 df-mpo 6975 df-om 7391 df-wrecs 7744 df-recs 7806 df-rdg 7844 df-1o 7899 df-oadd 7903 df-er 8083 df-en 8301 df-fin 8304 df-fi 8664 |
This theorem is referenced by: neiptoptop 21437 sigapildsyslem 31065 |
Copyright terms: Public domain | W3C validator |