| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > inelfi | Structured version Visualization version GIF version | ||
| Description: The intersection of two sets is a finite intersection. (Contributed by Thierry Arnoux, 6-Jan-2017.) |
| Ref | Expression |
|---|---|
| inelfi | ⊢ ((𝑋 ∈ 𝑉 ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (𝐴 ∩ 𝐵) ∈ (fi‘𝑋)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | prelpwi 5388 | . . . . 5 ⊢ ((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → {𝐴, 𝐵} ∈ 𝒫 𝑋) | |
| 2 | 1 | 3adant1 1130 | . . . 4 ⊢ ((𝑋 ∈ 𝑉 ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → {𝐴, 𝐵} ∈ 𝒫 𝑋) |
| 3 | prfi 9208 | . . . . 5 ⊢ {𝐴, 𝐵} ∈ Fin | |
| 4 | 3 | a1i 11 | . . . 4 ⊢ ((𝑋 ∈ 𝑉 ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → {𝐴, 𝐵} ∈ Fin) |
| 5 | 2, 4 | elind 4150 | . . 3 ⊢ ((𝑋 ∈ 𝑉 ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → {𝐴, 𝐵} ∈ (𝒫 𝑋 ∩ Fin)) |
| 6 | intprg 4931 | . . . . 5 ⊢ ((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → ∩ {𝐴, 𝐵} = (𝐴 ∩ 𝐵)) | |
| 7 | 6 | 3adant1 1130 | . . . 4 ⊢ ((𝑋 ∈ 𝑉 ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → ∩ {𝐴, 𝐵} = (𝐴 ∩ 𝐵)) |
| 8 | 7 | eqcomd 2737 | . . 3 ⊢ ((𝑋 ∈ 𝑉 ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (𝐴 ∩ 𝐵) = ∩ {𝐴, 𝐵}) |
| 9 | inteq 4900 | . . . 4 ⊢ (𝑝 = {𝐴, 𝐵} → ∩ 𝑝 = ∩ {𝐴, 𝐵}) | |
| 10 | 9 | rspceeqv 3600 | . . 3 ⊢ (({𝐴, 𝐵} ∈ (𝒫 𝑋 ∩ Fin) ∧ (𝐴 ∩ 𝐵) = ∩ {𝐴, 𝐵}) → ∃𝑝 ∈ (𝒫 𝑋 ∩ Fin)(𝐴 ∩ 𝐵) = ∩ 𝑝) |
| 11 | 5, 8, 10 | syl2anc 584 | . 2 ⊢ ((𝑋 ∈ 𝑉 ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → ∃𝑝 ∈ (𝒫 𝑋 ∩ Fin)(𝐴 ∩ 𝐵) = ∩ 𝑝) |
| 12 | inex1g 5257 | . . . 4 ⊢ (𝐴 ∈ 𝑋 → (𝐴 ∩ 𝐵) ∈ V) | |
| 13 | 12 | 3ad2ant2 1134 | . . 3 ⊢ ((𝑋 ∈ 𝑉 ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (𝐴 ∩ 𝐵) ∈ V) |
| 14 | simp1 1136 | . . 3 ⊢ ((𝑋 ∈ 𝑉 ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → 𝑋 ∈ 𝑉) | |
| 15 | elfi 9297 | . . 3 ⊢ (((𝐴 ∩ 𝐵) ∈ V ∧ 𝑋 ∈ 𝑉) → ((𝐴 ∩ 𝐵) ∈ (fi‘𝑋) ↔ ∃𝑝 ∈ (𝒫 𝑋 ∩ Fin)(𝐴 ∩ 𝐵) = ∩ 𝑝)) | |
| 16 | 13, 14, 15 | syl2anc 584 | . 2 ⊢ ((𝑋 ∈ 𝑉 ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → ((𝐴 ∩ 𝐵) ∈ (fi‘𝑋) ↔ ∃𝑝 ∈ (𝒫 𝑋 ∩ Fin)(𝐴 ∩ 𝐵) = ∩ 𝑝)) |
| 17 | 11, 16 | mpbird 257 | 1 ⊢ ((𝑋 ∈ 𝑉 ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (𝐴 ∩ 𝐵) ∈ (fi‘𝑋)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ w3a 1086 = wceq 1541 ∈ wcel 2111 ∃wrex 3056 Vcvv 3436 ∩ cin 3901 𝒫 cpw 4550 {cpr 4578 ∩ cint 4897 ‘cfv 6481 Fincfn 8869 ficfi 9294 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5234 ax-nul 5244 ax-pow 5303 ax-pr 5370 ax-un 7668 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-pss 3922 df-nul 4284 df-if 4476 df-pw 4552 df-sn 4577 df-pr 4579 df-op 4583 df-uni 4860 df-int 4898 df-br 5092 df-opab 5154 df-mpt 5173 df-tr 5199 df-id 5511 df-eprel 5516 df-po 5524 df-so 5525 df-fr 5569 df-we 5571 df-xp 5622 df-rel 5623 df-cnv 5624 df-co 5625 df-dm 5626 df-rn 5627 df-ord 6309 df-on 6310 df-lim 6311 df-suc 6312 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-om 7797 df-1o 8385 df-2o 8386 df-en 8870 df-fin 8873 df-fi 9295 |
| This theorem is referenced by: neiptoptop 23047 sigapildsyslem 34172 |
| Copyright terms: Public domain | W3C validator |