MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  inelfi Structured version   Visualization version   GIF version

Theorem inelfi 9369
Description: The intersection of two sets is a finite intersection. (Contributed by Thierry Arnoux, 6-Jan-2017.)
Assertion
Ref Expression
inelfi ((𝑋𝑉𝐴𝑋𝐵𝑋) → (𝐴𝐵) ∈ (fi‘𝑋))

Proof of Theorem inelfi
Dummy variable 𝑝 is distinct from all other variables.
StepHypRef Expression
1 prelpwi 5407 . . . . 5 ((𝐴𝑋𝐵𝑋) → {𝐴, 𝐵} ∈ 𝒫 𝑋)
213adant1 1130 . . . 4 ((𝑋𝑉𝐴𝑋𝐵𝑋) → {𝐴, 𝐵} ∈ 𝒫 𝑋)
3 prfi 9274 . . . . 5 {𝐴, 𝐵} ∈ Fin
43a1i 11 . . . 4 ((𝑋𝑉𝐴𝑋𝐵𝑋) → {𝐴, 𝐵} ∈ Fin)
52, 4elind 4163 . . 3 ((𝑋𝑉𝐴𝑋𝐵𝑋) → {𝐴, 𝐵} ∈ (𝒫 𝑋 ∩ Fin))
6 intprg 4945 . . . . 5 ((𝐴𝑋𝐵𝑋) → {𝐴, 𝐵} = (𝐴𝐵))
763adant1 1130 . . . 4 ((𝑋𝑉𝐴𝑋𝐵𝑋) → {𝐴, 𝐵} = (𝐴𝐵))
87eqcomd 2735 . . 3 ((𝑋𝑉𝐴𝑋𝐵𝑋) → (𝐴𝐵) = {𝐴, 𝐵})
9 inteq 4913 . . . 4 (𝑝 = {𝐴, 𝐵} → 𝑝 = {𝐴, 𝐵})
109rspceeqv 3611 . . 3 (({𝐴, 𝐵} ∈ (𝒫 𝑋 ∩ Fin) ∧ (𝐴𝐵) = {𝐴, 𝐵}) → ∃𝑝 ∈ (𝒫 𝑋 ∩ Fin)(𝐴𝐵) = 𝑝)
115, 8, 10syl2anc 584 . 2 ((𝑋𝑉𝐴𝑋𝐵𝑋) → ∃𝑝 ∈ (𝒫 𝑋 ∩ Fin)(𝐴𝐵) = 𝑝)
12 inex1g 5274 . . . 4 (𝐴𝑋 → (𝐴𝐵) ∈ V)
13123ad2ant2 1134 . . 3 ((𝑋𝑉𝐴𝑋𝐵𝑋) → (𝐴𝐵) ∈ V)
14 simp1 1136 . . 3 ((𝑋𝑉𝐴𝑋𝐵𝑋) → 𝑋𝑉)
15 elfi 9364 . . 3 (((𝐴𝐵) ∈ V ∧ 𝑋𝑉) → ((𝐴𝐵) ∈ (fi‘𝑋) ↔ ∃𝑝 ∈ (𝒫 𝑋 ∩ Fin)(𝐴𝐵) = 𝑝))
1613, 14, 15syl2anc 584 . 2 ((𝑋𝑉𝐴𝑋𝐵𝑋) → ((𝐴𝐵) ∈ (fi‘𝑋) ↔ ∃𝑝 ∈ (𝒫 𝑋 ∩ Fin)(𝐴𝐵) = 𝑝))
1711, 16mpbird 257 1 ((𝑋𝑉𝐴𝑋𝐵𝑋) → (𝐴𝐵) ∈ (fi‘𝑋))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  w3a 1086   = wceq 1540  wcel 2109  wrex 3053  Vcvv 3447  cin 3913  𝒫 cpw 4563  {cpr 4591   cint 4910  cfv 6511  Fincfn 8918  ficfi 9361
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3406  df-v 3449  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-int 4911  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-om 7843  df-1o 8434  df-2o 8435  df-en 8919  df-fin 8922  df-fi 9362
This theorem is referenced by:  neiptoptop  23018  sigapildsyslem  34151
  Copyright terms: Public domain W3C validator