![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > inelfi | Structured version Visualization version GIF version |
Description: The intersection of two sets is a finite intersection. (Contributed by Thierry Arnoux, 6-Jan-2017.) |
Ref | Expression |
---|---|
inelfi | ⊢ ((𝑋 ∈ 𝑉 ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (𝐴 ∩ 𝐵) ∈ (fi‘𝑋)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | prelpwi 5043 | . . . . 5 ⊢ ((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → {𝐴, 𝐵} ∈ 𝒫 𝑋) | |
2 | 1 | 3adant1 1124 | . . . 4 ⊢ ((𝑋 ∈ 𝑉 ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → {𝐴, 𝐵} ∈ 𝒫 𝑋) |
3 | prfi 8391 | . . . . 5 ⊢ {𝐴, 𝐵} ∈ Fin | |
4 | 3 | a1i 11 | . . . 4 ⊢ ((𝑋 ∈ 𝑉 ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → {𝐴, 𝐵} ∈ Fin) |
5 | 2, 4 | elind 3949 | . . 3 ⊢ ((𝑋 ∈ 𝑉 ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → {𝐴, 𝐵} ∈ (𝒫 𝑋 ∩ Fin)) |
6 | intprg 4645 | . . . . 5 ⊢ ((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → ∩ {𝐴, 𝐵} = (𝐴 ∩ 𝐵)) | |
7 | 6 | 3adant1 1124 | . . . 4 ⊢ ((𝑋 ∈ 𝑉 ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → ∩ {𝐴, 𝐵} = (𝐴 ∩ 𝐵)) |
8 | 7 | eqcomd 2777 | . . 3 ⊢ ((𝑋 ∈ 𝑉 ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (𝐴 ∩ 𝐵) = ∩ {𝐴, 𝐵}) |
9 | inteq 4614 | . . . . 5 ⊢ (𝑝 = {𝐴, 𝐵} → ∩ 𝑝 = ∩ {𝐴, 𝐵}) | |
10 | 9 | eqeq2d 2781 | . . . 4 ⊢ (𝑝 = {𝐴, 𝐵} → ((𝐴 ∩ 𝐵) = ∩ 𝑝 ↔ (𝐴 ∩ 𝐵) = ∩ {𝐴, 𝐵})) |
11 | 10 | rspcev 3460 | . . 3 ⊢ (({𝐴, 𝐵} ∈ (𝒫 𝑋 ∩ Fin) ∧ (𝐴 ∩ 𝐵) = ∩ {𝐴, 𝐵}) → ∃𝑝 ∈ (𝒫 𝑋 ∩ Fin)(𝐴 ∩ 𝐵) = ∩ 𝑝) |
12 | 5, 8, 11 | syl2anc 573 | . 2 ⊢ ((𝑋 ∈ 𝑉 ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → ∃𝑝 ∈ (𝒫 𝑋 ∩ Fin)(𝐴 ∩ 𝐵) = ∩ 𝑝) |
13 | inex1g 4935 | . . . 4 ⊢ (𝐴 ∈ 𝑋 → (𝐴 ∩ 𝐵) ∈ V) | |
14 | 13 | 3ad2ant2 1128 | . . 3 ⊢ ((𝑋 ∈ 𝑉 ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (𝐴 ∩ 𝐵) ∈ V) |
15 | simp1 1130 | . . 3 ⊢ ((𝑋 ∈ 𝑉 ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → 𝑋 ∈ 𝑉) | |
16 | elfi 8475 | . . 3 ⊢ (((𝐴 ∩ 𝐵) ∈ V ∧ 𝑋 ∈ 𝑉) → ((𝐴 ∩ 𝐵) ∈ (fi‘𝑋) ↔ ∃𝑝 ∈ (𝒫 𝑋 ∩ Fin)(𝐴 ∩ 𝐵) = ∩ 𝑝)) | |
17 | 14, 15, 16 | syl2anc 573 | . 2 ⊢ ((𝑋 ∈ 𝑉 ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → ((𝐴 ∩ 𝐵) ∈ (fi‘𝑋) ↔ ∃𝑝 ∈ (𝒫 𝑋 ∩ Fin)(𝐴 ∩ 𝐵) = ∩ 𝑝)) |
18 | 12, 17 | mpbird 247 | 1 ⊢ ((𝑋 ∈ 𝑉 ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (𝐴 ∩ 𝐵) ∈ (fi‘𝑋)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 196 ∧ w3a 1071 = wceq 1631 ∈ wcel 2145 ∃wrex 3062 Vcvv 3351 ∩ cin 3722 𝒫 cpw 4297 {cpr 4318 ∩ cint 4611 ‘cfv 6031 Fincfn 8109 ficfi 8472 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1870 ax-4 1885 ax-5 1991 ax-6 2057 ax-7 2093 ax-8 2147 ax-9 2154 ax-10 2174 ax-11 2190 ax-12 2203 ax-13 2408 ax-ext 2751 ax-sep 4915 ax-nul 4923 ax-pow 4974 ax-pr 5034 ax-un 7096 |
This theorem depends on definitions: df-bi 197 df-an 383 df-or 837 df-3or 1072 df-3an 1073 df-tru 1634 df-ex 1853 df-nf 1858 df-sb 2050 df-eu 2622 df-mo 2623 df-clab 2758 df-cleq 2764 df-clel 2767 df-nfc 2902 df-ne 2944 df-ral 3066 df-rex 3067 df-reu 3068 df-rab 3070 df-v 3353 df-sbc 3588 df-csb 3683 df-dif 3726 df-un 3728 df-in 3730 df-ss 3737 df-pss 3739 df-nul 4064 df-if 4226 df-pw 4299 df-sn 4317 df-pr 4319 df-tp 4321 df-op 4323 df-uni 4575 df-int 4612 df-iun 4656 df-br 4787 df-opab 4847 df-mpt 4864 df-tr 4887 df-id 5157 df-eprel 5162 df-po 5170 df-so 5171 df-fr 5208 df-we 5210 df-xp 5255 df-rel 5256 df-cnv 5257 df-co 5258 df-dm 5259 df-rn 5260 df-res 5261 df-ima 5262 df-pred 5823 df-ord 5869 df-on 5870 df-lim 5871 df-suc 5872 df-iota 5994 df-fun 6033 df-fn 6034 df-f 6035 df-f1 6036 df-fo 6037 df-f1o 6038 df-fv 6039 df-ov 6796 df-oprab 6797 df-mpt2 6798 df-om 7213 df-wrecs 7559 df-recs 7621 df-rdg 7659 df-1o 7713 df-oadd 7717 df-er 7896 df-en 8110 df-fin 8113 df-fi 8473 |
This theorem is referenced by: neiptoptop 21156 sigapildsyslem 30564 |
Copyright terms: Public domain | W3C validator |