MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dchrabl Structured version   Visualization version   GIF version

Theorem dchrabl 25830
Description: The set of Dirichlet characters is an Abelian group. (Contributed by Mario Carneiro, 19-Apr-2016.)
Hypothesis
Ref Expression
dchrabl.g 𝐺 = (DChr‘𝑁)
Assertion
Ref Expression
dchrabl (𝑁 ∈ ℕ → 𝐺 ∈ Abel)

Proof of Theorem dchrabl
Dummy variables 𝑥 𝑎 𝑏 𝑐 𝑘 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqidd 2822 . 2 (𝑁 ∈ ℕ → (Base‘𝐺) = (Base‘𝐺))
2 eqidd 2822 . 2 (𝑁 ∈ ℕ → (+g𝐺) = (+g𝐺))
3 dchrabl.g . . . 4 𝐺 = (DChr‘𝑁)
4 eqid 2821 . . . 4 (ℤ/nℤ‘𝑁) = (ℤ/nℤ‘𝑁)
5 eqid 2821 . . . 4 (Base‘𝐺) = (Base‘𝐺)
6 eqid 2821 . . . 4 (+g𝐺) = (+g𝐺)
7 simp2 1133 . . . 4 ((𝑁 ∈ ℕ ∧ 𝑥 ∈ (Base‘𝐺) ∧ 𝑦 ∈ (Base‘𝐺)) → 𝑥 ∈ (Base‘𝐺))
8 simp3 1134 . . . 4 ((𝑁 ∈ ℕ ∧ 𝑥 ∈ (Base‘𝐺) ∧ 𝑦 ∈ (Base‘𝐺)) → 𝑦 ∈ (Base‘𝐺))
93, 4, 5, 6, 7, 8dchrmulcl 25825 . . 3 ((𝑁 ∈ ℕ ∧ 𝑥 ∈ (Base‘𝐺) ∧ 𝑦 ∈ (Base‘𝐺)) → (𝑥(+g𝐺)𝑦) ∈ (Base‘𝐺))
10 fvexd 6685 . . . . . 6 ((𝑁 ∈ ℕ ∧ (𝑥 ∈ (Base‘𝐺) ∧ 𝑦 ∈ (Base‘𝐺) ∧ 𝑧 ∈ (Base‘𝐺))) → (Base‘(ℤ/nℤ‘𝑁)) ∈ V)
11 eqid 2821 . . . . . . . 8 (Base‘(ℤ/nℤ‘𝑁)) = (Base‘(ℤ/nℤ‘𝑁))
123, 4, 5, 11, 7dchrf 25818 . . . . . . 7 ((𝑁 ∈ ℕ ∧ 𝑥 ∈ (Base‘𝐺) ∧ 𝑦 ∈ (Base‘𝐺)) → 𝑥:(Base‘(ℤ/nℤ‘𝑁))⟶ℂ)
13123adant3r3 1180 . . . . . 6 ((𝑁 ∈ ℕ ∧ (𝑥 ∈ (Base‘𝐺) ∧ 𝑦 ∈ (Base‘𝐺) ∧ 𝑧 ∈ (Base‘𝐺))) → 𝑥:(Base‘(ℤ/nℤ‘𝑁))⟶ℂ)
143, 4, 5, 11, 8dchrf 25818 . . . . . . 7 ((𝑁 ∈ ℕ ∧ 𝑥 ∈ (Base‘𝐺) ∧ 𝑦 ∈ (Base‘𝐺)) → 𝑦:(Base‘(ℤ/nℤ‘𝑁))⟶ℂ)
15143adant3r3 1180 . . . . . 6 ((𝑁 ∈ ℕ ∧ (𝑥 ∈ (Base‘𝐺) ∧ 𝑦 ∈ (Base‘𝐺) ∧ 𝑧 ∈ (Base‘𝐺))) → 𝑦:(Base‘(ℤ/nℤ‘𝑁))⟶ℂ)
16 simpr3 1192 . . . . . . 7 ((𝑁 ∈ ℕ ∧ (𝑥 ∈ (Base‘𝐺) ∧ 𝑦 ∈ (Base‘𝐺) ∧ 𝑧 ∈ (Base‘𝐺))) → 𝑧 ∈ (Base‘𝐺))
173, 4, 5, 11, 16dchrf 25818 . . . . . 6 ((𝑁 ∈ ℕ ∧ (𝑥 ∈ (Base‘𝐺) ∧ 𝑦 ∈ (Base‘𝐺) ∧ 𝑧 ∈ (Base‘𝐺))) → 𝑧:(Base‘(ℤ/nℤ‘𝑁))⟶ℂ)
18 mulass 10625 . . . . . . 7 ((𝑎 ∈ ℂ ∧ 𝑏 ∈ ℂ ∧ 𝑐 ∈ ℂ) → ((𝑎 · 𝑏) · 𝑐) = (𝑎 · (𝑏 · 𝑐)))
1918adantl 484 . . . . . 6 (((𝑁 ∈ ℕ ∧ (𝑥 ∈ (Base‘𝐺) ∧ 𝑦 ∈ (Base‘𝐺) ∧ 𝑧 ∈ (Base‘𝐺))) ∧ (𝑎 ∈ ℂ ∧ 𝑏 ∈ ℂ ∧ 𝑐 ∈ ℂ)) → ((𝑎 · 𝑏) · 𝑐) = (𝑎 · (𝑏 · 𝑐)))
2010, 13, 15, 17, 19caofass 7443 . . . . 5 ((𝑁 ∈ ℕ ∧ (𝑥 ∈ (Base‘𝐺) ∧ 𝑦 ∈ (Base‘𝐺) ∧ 𝑧 ∈ (Base‘𝐺))) → ((𝑥f · 𝑦) ∘f · 𝑧) = (𝑥f · (𝑦f · 𝑧)))
21 simpr1 1190 . . . . . . 7 ((𝑁 ∈ ℕ ∧ (𝑥 ∈ (Base‘𝐺) ∧ 𝑦 ∈ (Base‘𝐺) ∧ 𝑧 ∈ (Base‘𝐺))) → 𝑥 ∈ (Base‘𝐺))
22 simpr2 1191 . . . . . . 7 ((𝑁 ∈ ℕ ∧ (𝑥 ∈ (Base‘𝐺) ∧ 𝑦 ∈ (Base‘𝐺) ∧ 𝑧 ∈ (Base‘𝐺))) → 𝑦 ∈ (Base‘𝐺))
233, 4, 5, 6, 21, 22dchrmul 25824 . . . . . 6 ((𝑁 ∈ ℕ ∧ (𝑥 ∈ (Base‘𝐺) ∧ 𝑦 ∈ (Base‘𝐺) ∧ 𝑧 ∈ (Base‘𝐺))) → (𝑥(+g𝐺)𝑦) = (𝑥f · 𝑦))
2423oveq1d 7171 . . . . 5 ((𝑁 ∈ ℕ ∧ (𝑥 ∈ (Base‘𝐺) ∧ 𝑦 ∈ (Base‘𝐺) ∧ 𝑧 ∈ (Base‘𝐺))) → ((𝑥(+g𝐺)𝑦) ∘f · 𝑧) = ((𝑥f · 𝑦) ∘f · 𝑧))
253, 4, 5, 6, 22, 16dchrmul 25824 . . . . . 6 ((𝑁 ∈ ℕ ∧ (𝑥 ∈ (Base‘𝐺) ∧ 𝑦 ∈ (Base‘𝐺) ∧ 𝑧 ∈ (Base‘𝐺))) → (𝑦(+g𝐺)𝑧) = (𝑦f · 𝑧))
2625oveq2d 7172 . . . . 5 ((𝑁 ∈ ℕ ∧ (𝑥 ∈ (Base‘𝐺) ∧ 𝑦 ∈ (Base‘𝐺) ∧ 𝑧 ∈ (Base‘𝐺))) → (𝑥f · (𝑦(+g𝐺)𝑧)) = (𝑥f · (𝑦f · 𝑧)))
2720, 24, 263eqtr4d 2866 . . . 4 ((𝑁 ∈ ℕ ∧ (𝑥 ∈ (Base‘𝐺) ∧ 𝑦 ∈ (Base‘𝐺) ∧ 𝑧 ∈ (Base‘𝐺))) → ((𝑥(+g𝐺)𝑦) ∘f · 𝑧) = (𝑥f · (𝑦(+g𝐺)𝑧)))
2893adant3r3 1180 . . . . 5 ((𝑁 ∈ ℕ ∧ (𝑥 ∈ (Base‘𝐺) ∧ 𝑦 ∈ (Base‘𝐺) ∧ 𝑧 ∈ (Base‘𝐺))) → (𝑥(+g𝐺)𝑦) ∈ (Base‘𝐺))
293, 4, 5, 6, 28, 16dchrmul 25824 . . . 4 ((𝑁 ∈ ℕ ∧ (𝑥 ∈ (Base‘𝐺) ∧ 𝑦 ∈ (Base‘𝐺) ∧ 𝑧 ∈ (Base‘𝐺))) → ((𝑥(+g𝐺)𝑦)(+g𝐺)𝑧) = ((𝑥(+g𝐺)𝑦) ∘f · 𝑧))
303, 4, 5, 6, 22, 16dchrmulcl 25825 . . . . 5 ((𝑁 ∈ ℕ ∧ (𝑥 ∈ (Base‘𝐺) ∧ 𝑦 ∈ (Base‘𝐺) ∧ 𝑧 ∈ (Base‘𝐺))) → (𝑦(+g𝐺)𝑧) ∈ (Base‘𝐺))
313, 4, 5, 6, 21, 30dchrmul 25824 . . . 4 ((𝑁 ∈ ℕ ∧ (𝑥 ∈ (Base‘𝐺) ∧ 𝑦 ∈ (Base‘𝐺) ∧ 𝑧 ∈ (Base‘𝐺))) → (𝑥(+g𝐺)(𝑦(+g𝐺)𝑧)) = (𝑥f · (𝑦(+g𝐺)𝑧)))
3227, 29, 313eqtr4d 2866 . . 3 ((𝑁 ∈ ℕ ∧ (𝑥 ∈ (Base‘𝐺) ∧ 𝑦 ∈ (Base‘𝐺) ∧ 𝑧 ∈ (Base‘𝐺))) → ((𝑥(+g𝐺)𝑦)(+g𝐺)𝑧) = (𝑥(+g𝐺)(𝑦(+g𝐺)𝑧)))
33 eqid 2821 . . . 4 (Unit‘(ℤ/nℤ‘𝑁)) = (Unit‘(ℤ/nℤ‘𝑁))
34 eqid 2821 . . . 4 (𝑘 ∈ (Base‘(ℤ/nℤ‘𝑁)) ↦ if(𝑘 ∈ (Unit‘(ℤ/nℤ‘𝑁)), 1, 0)) = (𝑘 ∈ (Base‘(ℤ/nℤ‘𝑁)) ↦ if(𝑘 ∈ (Unit‘(ℤ/nℤ‘𝑁)), 1, 0))
35 id 22 . . . 4 (𝑁 ∈ ℕ → 𝑁 ∈ ℕ)
363, 4, 5, 11, 33, 34, 35dchr1cl 25827 . . 3 (𝑁 ∈ ℕ → (𝑘 ∈ (Base‘(ℤ/nℤ‘𝑁)) ↦ if(𝑘 ∈ (Unit‘(ℤ/nℤ‘𝑁)), 1, 0)) ∈ (Base‘𝐺))
37 simpr 487 . . . 4 ((𝑁 ∈ ℕ ∧ 𝑥 ∈ (Base‘𝐺)) → 𝑥 ∈ (Base‘𝐺))
383, 4, 5, 11, 33, 34, 6, 37dchrmulid2 25828 . . 3 ((𝑁 ∈ ℕ ∧ 𝑥 ∈ (Base‘𝐺)) → ((𝑘 ∈ (Base‘(ℤ/nℤ‘𝑁)) ↦ if(𝑘 ∈ (Unit‘(ℤ/nℤ‘𝑁)), 1, 0))(+g𝐺)𝑥) = 𝑥)
39 eqid 2821 . . . . 5 (𝑘 ∈ (Base‘(ℤ/nℤ‘𝑁)) ↦ if(𝑘 ∈ (Unit‘(ℤ/nℤ‘𝑁)), (1 / (𝑥𝑘)), 0)) = (𝑘 ∈ (Base‘(ℤ/nℤ‘𝑁)) ↦ if(𝑘 ∈ (Unit‘(ℤ/nℤ‘𝑁)), (1 / (𝑥𝑘)), 0))
403, 4, 5, 11, 33, 34, 6, 37, 39dchrinvcl 25829 . . . 4 ((𝑁 ∈ ℕ ∧ 𝑥 ∈ (Base‘𝐺)) → ((𝑘 ∈ (Base‘(ℤ/nℤ‘𝑁)) ↦ if(𝑘 ∈ (Unit‘(ℤ/nℤ‘𝑁)), (1 / (𝑥𝑘)), 0)) ∈ (Base‘𝐺) ∧ ((𝑘 ∈ (Base‘(ℤ/nℤ‘𝑁)) ↦ if(𝑘 ∈ (Unit‘(ℤ/nℤ‘𝑁)), (1 / (𝑥𝑘)), 0))(+g𝐺)𝑥) = (𝑘 ∈ (Base‘(ℤ/nℤ‘𝑁)) ↦ if(𝑘 ∈ (Unit‘(ℤ/nℤ‘𝑁)), 1, 0))))
4140simpld 497 . . 3 ((𝑁 ∈ ℕ ∧ 𝑥 ∈ (Base‘𝐺)) → (𝑘 ∈ (Base‘(ℤ/nℤ‘𝑁)) ↦ if(𝑘 ∈ (Unit‘(ℤ/nℤ‘𝑁)), (1 / (𝑥𝑘)), 0)) ∈ (Base‘𝐺))
4240simprd 498 . . 3 ((𝑁 ∈ ℕ ∧ 𝑥 ∈ (Base‘𝐺)) → ((𝑘 ∈ (Base‘(ℤ/nℤ‘𝑁)) ↦ if(𝑘 ∈ (Unit‘(ℤ/nℤ‘𝑁)), (1 / (𝑥𝑘)), 0))(+g𝐺)𝑥) = (𝑘 ∈ (Base‘(ℤ/nℤ‘𝑁)) ↦ if(𝑘 ∈ (Unit‘(ℤ/nℤ‘𝑁)), 1, 0)))
431, 2, 9, 32, 36, 38, 41, 42isgrpd 18125 . 2 (𝑁 ∈ ℕ → 𝐺 ∈ Grp)
44 fvexd 6685 . . . 4 ((𝑁 ∈ ℕ ∧ 𝑥 ∈ (Base‘𝐺) ∧ 𝑦 ∈ (Base‘𝐺)) → (Base‘(ℤ/nℤ‘𝑁)) ∈ V)
45 mulcom 10623 . . . . 5 ((𝑎 ∈ ℂ ∧ 𝑏 ∈ ℂ) → (𝑎 · 𝑏) = (𝑏 · 𝑎))
4645adantl 484 . . . 4 (((𝑁 ∈ ℕ ∧ 𝑥 ∈ (Base‘𝐺) ∧ 𝑦 ∈ (Base‘𝐺)) ∧ (𝑎 ∈ ℂ ∧ 𝑏 ∈ ℂ)) → (𝑎 · 𝑏) = (𝑏 · 𝑎))
4744, 12, 14, 46caofcom 7441 . . 3 ((𝑁 ∈ ℕ ∧ 𝑥 ∈ (Base‘𝐺) ∧ 𝑦 ∈ (Base‘𝐺)) → (𝑥f · 𝑦) = (𝑦f · 𝑥))
483, 4, 5, 6, 7, 8dchrmul 25824 . . 3 ((𝑁 ∈ ℕ ∧ 𝑥 ∈ (Base‘𝐺) ∧ 𝑦 ∈ (Base‘𝐺)) → (𝑥(+g𝐺)𝑦) = (𝑥f · 𝑦))
493, 4, 5, 6, 8, 7dchrmul 25824 . . 3 ((𝑁 ∈ ℕ ∧ 𝑥 ∈ (Base‘𝐺) ∧ 𝑦 ∈ (Base‘𝐺)) → (𝑦(+g𝐺)𝑥) = (𝑦f · 𝑥))
5047, 48, 493eqtr4d 2866 . 2 ((𝑁 ∈ ℕ ∧ 𝑥 ∈ (Base‘𝐺) ∧ 𝑦 ∈ (Base‘𝐺)) → (𝑥(+g𝐺)𝑦) = (𝑦(+g𝐺)𝑥))
511, 2, 43, 50isabld 18920 1 (𝑁 ∈ ℕ → 𝐺 ∈ Abel)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398  w3a 1083   = wceq 1537  wcel 2114  Vcvv 3494  ifcif 4467  cmpt 5146  wf 6351  cfv 6355  (class class class)co 7156  f cof 7407  cc 10535  0cc0 10537  1c1 10538   · cmul 10542   / cdiv 11297  cn 11638  Basecbs 16483  +gcplusg 16565  Abelcabl 18907  Unitcui 19389  ℤ/nczn 20650  DChrcdchr 25808
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2793  ax-rep 5190  ax-sep 5203  ax-nul 5210  ax-pow 5266  ax-pr 5330  ax-un 7461  ax-cnex 10593  ax-resscn 10594  ax-1cn 10595  ax-icn 10596  ax-addcl 10597  ax-addrcl 10598  ax-mulcl 10599  ax-mulrcl 10600  ax-mulcom 10601  ax-addass 10602  ax-mulass 10603  ax-distr 10604  ax-i2m1 10605  ax-1ne0 10606  ax-1rid 10607  ax-rnegex 10608  ax-rrecex 10609  ax-cnre 10610  ax-pre-lttri 10611  ax-pre-lttrn 10612  ax-pre-ltadd 10613  ax-pre-mulgt0 10614  ax-addf 10616  ax-mulf 10617
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3496  df-sbc 3773  df-csb 3884  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-pss 3954  df-nul 4292  df-if 4468  df-pw 4541  df-sn 4568  df-pr 4570  df-tp 4572  df-op 4574  df-uni 4839  df-int 4877  df-iun 4921  df-br 5067  df-opab 5129  df-mpt 5147  df-tr 5173  df-id 5460  df-eprel 5465  df-po 5474  df-so 5475  df-fr 5514  df-we 5516  df-xp 5561  df-rel 5562  df-cnv 5563  df-co 5564  df-dm 5565  df-rn 5566  df-res 5567  df-ima 5568  df-pred 6148  df-ord 6194  df-on 6195  df-lim 6196  df-suc 6197  df-iota 6314  df-fun 6357  df-fn 6358  df-f 6359  df-f1 6360  df-fo 6361  df-f1o 6362  df-fv 6363  df-riota 7114  df-ov 7159  df-oprab 7160  df-mpo 7161  df-of 7409  df-om 7581  df-1st 7689  df-2nd 7690  df-tpos 7892  df-wrecs 7947  df-recs 8008  df-rdg 8046  df-1o 8102  df-oadd 8106  df-er 8289  df-ec 8291  df-qs 8295  df-map 8408  df-en 8510  df-dom 8511  df-sdom 8512  df-fin 8513  df-sup 8906  df-inf 8907  df-pnf 10677  df-mnf 10678  df-xr 10679  df-ltxr 10680  df-le 10681  df-sub 10872  df-neg 10873  df-div 11298  df-nn 11639  df-2 11701  df-3 11702  df-4 11703  df-5 11704  df-6 11705  df-7 11706  df-8 11707  df-9 11708  df-n0 11899  df-z 11983  df-dec 12100  df-uz 12245  df-fz 12894  df-struct 16485  df-ndx 16486  df-slot 16487  df-base 16489  df-sets 16490  df-ress 16491  df-plusg 16578  df-mulr 16579  df-starv 16580  df-sca 16581  df-vsca 16582  df-ip 16583  df-tset 16584  df-ple 16585  df-ds 16587  df-unif 16588  df-0g 16715  df-imas 16781  df-qus 16782  df-mgm 17852  df-sgrp 17901  df-mnd 17912  df-mhm 17956  df-grp 18106  df-minusg 18107  df-sbg 18108  df-subg 18276  df-nsg 18277  df-eqg 18278  df-cmn 18908  df-abl 18909  df-mgp 19240  df-ur 19252  df-ring 19299  df-cring 19300  df-oppr 19373  df-dvdsr 19391  df-unit 19392  df-invr 19422  df-subrg 19533  df-lmod 19636  df-lss 19704  df-lsp 19744  df-sra 19944  df-rgmod 19945  df-lidl 19946  df-rsp 19947  df-2idl 20005  df-cnfld 20546  df-zring 20618  df-zn 20654  df-dchr 25809
This theorem is referenced by:  dchr1  25833  dchrinv  25837  dchr1re  25839  dchrpt  25843  dchrsum2  25844  sumdchr2  25846  dchrhash  25847  dchr2sum  25849  rpvmasumlem  26063  rpvmasum2  26088  dchrisum0re  26089
  Copyright terms: Public domain W3C validator