MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dchrabl Structured version   Visualization version   GIF version

Theorem dchrabl 27299
Description: The set of Dirichlet characters is an Abelian group. (Contributed by Mario Carneiro, 19-Apr-2016.)
Hypothesis
Ref Expression
dchrabl.g 𝐺 = (DChr‘𝑁)
Assertion
Ref Expression
dchrabl (𝑁 ∈ ℕ → 𝐺 ∈ Abel)

Proof of Theorem dchrabl
Dummy variables 𝑥 𝑎 𝑏 𝑐 𝑘 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqidd 2737 . 2 (𝑁 ∈ ℕ → (Base‘𝐺) = (Base‘𝐺))
2 eqidd 2737 . 2 (𝑁 ∈ ℕ → (+g𝐺) = (+g𝐺))
3 dchrabl.g . . . 4 𝐺 = (DChr‘𝑁)
4 eqid 2736 . . . 4 (ℤ/nℤ‘𝑁) = (ℤ/nℤ‘𝑁)
5 eqid 2736 . . . 4 (Base‘𝐺) = (Base‘𝐺)
6 eqid 2736 . . . 4 (+g𝐺) = (+g𝐺)
7 simp2 1137 . . . 4 ((𝑁 ∈ ℕ ∧ 𝑥 ∈ (Base‘𝐺) ∧ 𝑦 ∈ (Base‘𝐺)) → 𝑥 ∈ (Base‘𝐺))
8 simp3 1138 . . . 4 ((𝑁 ∈ ℕ ∧ 𝑥 ∈ (Base‘𝐺) ∧ 𝑦 ∈ (Base‘𝐺)) → 𝑦 ∈ (Base‘𝐺))
93, 4, 5, 6, 7, 8dchrmulcl 27294 . . 3 ((𝑁 ∈ ℕ ∧ 𝑥 ∈ (Base‘𝐺) ∧ 𝑦 ∈ (Base‘𝐺)) → (𝑥(+g𝐺)𝑦) ∈ (Base‘𝐺))
10 fvexd 6920 . . . . . 6 ((𝑁 ∈ ℕ ∧ (𝑥 ∈ (Base‘𝐺) ∧ 𝑦 ∈ (Base‘𝐺) ∧ 𝑧 ∈ (Base‘𝐺))) → (Base‘(ℤ/nℤ‘𝑁)) ∈ V)
11 eqid 2736 . . . . . . . 8 (Base‘(ℤ/nℤ‘𝑁)) = (Base‘(ℤ/nℤ‘𝑁))
123, 4, 5, 11, 7dchrf 27287 . . . . . . 7 ((𝑁 ∈ ℕ ∧ 𝑥 ∈ (Base‘𝐺) ∧ 𝑦 ∈ (Base‘𝐺)) → 𝑥:(Base‘(ℤ/nℤ‘𝑁))⟶ℂ)
13123adant3r3 1184 . . . . . 6 ((𝑁 ∈ ℕ ∧ (𝑥 ∈ (Base‘𝐺) ∧ 𝑦 ∈ (Base‘𝐺) ∧ 𝑧 ∈ (Base‘𝐺))) → 𝑥:(Base‘(ℤ/nℤ‘𝑁))⟶ℂ)
143, 4, 5, 11, 8dchrf 27287 . . . . . . 7 ((𝑁 ∈ ℕ ∧ 𝑥 ∈ (Base‘𝐺) ∧ 𝑦 ∈ (Base‘𝐺)) → 𝑦:(Base‘(ℤ/nℤ‘𝑁))⟶ℂ)
15143adant3r3 1184 . . . . . 6 ((𝑁 ∈ ℕ ∧ (𝑥 ∈ (Base‘𝐺) ∧ 𝑦 ∈ (Base‘𝐺) ∧ 𝑧 ∈ (Base‘𝐺))) → 𝑦:(Base‘(ℤ/nℤ‘𝑁))⟶ℂ)
16 simpr3 1196 . . . . . . 7 ((𝑁 ∈ ℕ ∧ (𝑥 ∈ (Base‘𝐺) ∧ 𝑦 ∈ (Base‘𝐺) ∧ 𝑧 ∈ (Base‘𝐺))) → 𝑧 ∈ (Base‘𝐺))
173, 4, 5, 11, 16dchrf 27287 . . . . . 6 ((𝑁 ∈ ℕ ∧ (𝑥 ∈ (Base‘𝐺) ∧ 𝑦 ∈ (Base‘𝐺) ∧ 𝑧 ∈ (Base‘𝐺))) → 𝑧:(Base‘(ℤ/nℤ‘𝑁))⟶ℂ)
18 mulass 11244 . . . . . . 7 ((𝑎 ∈ ℂ ∧ 𝑏 ∈ ℂ ∧ 𝑐 ∈ ℂ) → ((𝑎 · 𝑏) · 𝑐) = (𝑎 · (𝑏 · 𝑐)))
1918adantl 481 . . . . . 6 (((𝑁 ∈ ℕ ∧ (𝑥 ∈ (Base‘𝐺) ∧ 𝑦 ∈ (Base‘𝐺) ∧ 𝑧 ∈ (Base‘𝐺))) ∧ (𝑎 ∈ ℂ ∧ 𝑏 ∈ ℂ ∧ 𝑐 ∈ ℂ)) → ((𝑎 · 𝑏) · 𝑐) = (𝑎 · (𝑏 · 𝑐)))
2010, 13, 15, 17, 19caofass 7738 . . . . 5 ((𝑁 ∈ ℕ ∧ (𝑥 ∈ (Base‘𝐺) ∧ 𝑦 ∈ (Base‘𝐺) ∧ 𝑧 ∈ (Base‘𝐺))) → ((𝑥f · 𝑦) ∘f · 𝑧) = (𝑥f · (𝑦f · 𝑧)))
21 simpr1 1194 . . . . . . 7 ((𝑁 ∈ ℕ ∧ (𝑥 ∈ (Base‘𝐺) ∧ 𝑦 ∈ (Base‘𝐺) ∧ 𝑧 ∈ (Base‘𝐺))) → 𝑥 ∈ (Base‘𝐺))
22 simpr2 1195 . . . . . . 7 ((𝑁 ∈ ℕ ∧ (𝑥 ∈ (Base‘𝐺) ∧ 𝑦 ∈ (Base‘𝐺) ∧ 𝑧 ∈ (Base‘𝐺))) → 𝑦 ∈ (Base‘𝐺))
233, 4, 5, 6, 21, 22dchrmul 27293 . . . . . 6 ((𝑁 ∈ ℕ ∧ (𝑥 ∈ (Base‘𝐺) ∧ 𝑦 ∈ (Base‘𝐺) ∧ 𝑧 ∈ (Base‘𝐺))) → (𝑥(+g𝐺)𝑦) = (𝑥f · 𝑦))
2423oveq1d 7447 . . . . 5 ((𝑁 ∈ ℕ ∧ (𝑥 ∈ (Base‘𝐺) ∧ 𝑦 ∈ (Base‘𝐺) ∧ 𝑧 ∈ (Base‘𝐺))) → ((𝑥(+g𝐺)𝑦) ∘f · 𝑧) = ((𝑥f · 𝑦) ∘f · 𝑧))
253, 4, 5, 6, 22, 16dchrmul 27293 . . . . . 6 ((𝑁 ∈ ℕ ∧ (𝑥 ∈ (Base‘𝐺) ∧ 𝑦 ∈ (Base‘𝐺) ∧ 𝑧 ∈ (Base‘𝐺))) → (𝑦(+g𝐺)𝑧) = (𝑦f · 𝑧))
2625oveq2d 7448 . . . . 5 ((𝑁 ∈ ℕ ∧ (𝑥 ∈ (Base‘𝐺) ∧ 𝑦 ∈ (Base‘𝐺) ∧ 𝑧 ∈ (Base‘𝐺))) → (𝑥f · (𝑦(+g𝐺)𝑧)) = (𝑥f · (𝑦f · 𝑧)))
2720, 24, 263eqtr4d 2786 . . . 4 ((𝑁 ∈ ℕ ∧ (𝑥 ∈ (Base‘𝐺) ∧ 𝑦 ∈ (Base‘𝐺) ∧ 𝑧 ∈ (Base‘𝐺))) → ((𝑥(+g𝐺)𝑦) ∘f · 𝑧) = (𝑥f · (𝑦(+g𝐺)𝑧)))
2893adant3r3 1184 . . . . 5 ((𝑁 ∈ ℕ ∧ (𝑥 ∈ (Base‘𝐺) ∧ 𝑦 ∈ (Base‘𝐺) ∧ 𝑧 ∈ (Base‘𝐺))) → (𝑥(+g𝐺)𝑦) ∈ (Base‘𝐺))
293, 4, 5, 6, 28, 16dchrmul 27293 . . . 4 ((𝑁 ∈ ℕ ∧ (𝑥 ∈ (Base‘𝐺) ∧ 𝑦 ∈ (Base‘𝐺) ∧ 𝑧 ∈ (Base‘𝐺))) → ((𝑥(+g𝐺)𝑦)(+g𝐺)𝑧) = ((𝑥(+g𝐺)𝑦) ∘f · 𝑧))
303, 4, 5, 6, 22, 16dchrmulcl 27294 . . . . 5 ((𝑁 ∈ ℕ ∧ (𝑥 ∈ (Base‘𝐺) ∧ 𝑦 ∈ (Base‘𝐺) ∧ 𝑧 ∈ (Base‘𝐺))) → (𝑦(+g𝐺)𝑧) ∈ (Base‘𝐺))
313, 4, 5, 6, 21, 30dchrmul 27293 . . . 4 ((𝑁 ∈ ℕ ∧ (𝑥 ∈ (Base‘𝐺) ∧ 𝑦 ∈ (Base‘𝐺) ∧ 𝑧 ∈ (Base‘𝐺))) → (𝑥(+g𝐺)(𝑦(+g𝐺)𝑧)) = (𝑥f · (𝑦(+g𝐺)𝑧)))
3227, 29, 313eqtr4d 2786 . . 3 ((𝑁 ∈ ℕ ∧ (𝑥 ∈ (Base‘𝐺) ∧ 𝑦 ∈ (Base‘𝐺) ∧ 𝑧 ∈ (Base‘𝐺))) → ((𝑥(+g𝐺)𝑦)(+g𝐺)𝑧) = (𝑥(+g𝐺)(𝑦(+g𝐺)𝑧)))
33 eqid 2736 . . . 4 (Unit‘(ℤ/nℤ‘𝑁)) = (Unit‘(ℤ/nℤ‘𝑁))
34 eqid 2736 . . . 4 (𝑘 ∈ (Base‘(ℤ/nℤ‘𝑁)) ↦ if(𝑘 ∈ (Unit‘(ℤ/nℤ‘𝑁)), 1, 0)) = (𝑘 ∈ (Base‘(ℤ/nℤ‘𝑁)) ↦ if(𝑘 ∈ (Unit‘(ℤ/nℤ‘𝑁)), 1, 0))
35 id 22 . . . 4 (𝑁 ∈ ℕ → 𝑁 ∈ ℕ)
363, 4, 5, 11, 33, 34, 35dchr1cl 27296 . . 3 (𝑁 ∈ ℕ → (𝑘 ∈ (Base‘(ℤ/nℤ‘𝑁)) ↦ if(𝑘 ∈ (Unit‘(ℤ/nℤ‘𝑁)), 1, 0)) ∈ (Base‘𝐺))
37 simpr 484 . . . 4 ((𝑁 ∈ ℕ ∧ 𝑥 ∈ (Base‘𝐺)) → 𝑥 ∈ (Base‘𝐺))
383, 4, 5, 11, 33, 34, 6, 37dchrmullid 27297 . . 3 ((𝑁 ∈ ℕ ∧ 𝑥 ∈ (Base‘𝐺)) → ((𝑘 ∈ (Base‘(ℤ/nℤ‘𝑁)) ↦ if(𝑘 ∈ (Unit‘(ℤ/nℤ‘𝑁)), 1, 0))(+g𝐺)𝑥) = 𝑥)
39 eqid 2736 . . . . 5 (𝑘 ∈ (Base‘(ℤ/nℤ‘𝑁)) ↦ if(𝑘 ∈ (Unit‘(ℤ/nℤ‘𝑁)), (1 / (𝑥𝑘)), 0)) = (𝑘 ∈ (Base‘(ℤ/nℤ‘𝑁)) ↦ if(𝑘 ∈ (Unit‘(ℤ/nℤ‘𝑁)), (1 / (𝑥𝑘)), 0))
403, 4, 5, 11, 33, 34, 6, 37, 39dchrinvcl 27298 . . . 4 ((𝑁 ∈ ℕ ∧ 𝑥 ∈ (Base‘𝐺)) → ((𝑘 ∈ (Base‘(ℤ/nℤ‘𝑁)) ↦ if(𝑘 ∈ (Unit‘(ℤ/nℤ‘𝑁)), (1 / (𝑥𝑘)), 0)) ∈ (Base‘𝐺) ∧ ((𝑘 ∈ (Base‘(ℤ/nℤ‘𝑁)) ↦ if(𝑘 ∈ (Unit‘(ℤ/nℤ‘𝑁)), (1 / (𝑥𝑘)), 0))(+g𝐺)𝑥) = (𝑘 ∈ (Base‘(ℤ/nℤ‘𝑁)) ↦ if(𝑘 ∈ (Unit‘(ℤ/nℤ‘𝑁)), 1, 0))))
4140simpld 494 . . 3 ((𝑁 ∈ ℕ ∧ 𝑥 ∈ (Base‘𝐺)) → (𝑘 ∈ (Base‘(ℤ/nℤ‘𝑁)) ↦ if(𝑘 ∈ (Unit‘(ℤ/nℤ‘𝑁)), (1 / (𝑥𝑘)), 0)) ∈ (Base‘𝐺))
4240simprd 495 . . 3 ((𝑁 ∈ ℕ ∧ 𝑥 ∈ (Base‘𝐺)) → ((𝑘 ∈ (Base‘(ℤ/nℤ‘𝑁)) ↦ if(𝑘 ∈ (Unit‘(ℤ/nℤ‘𝑁)), (1 / (𝑥𝑘)), 0))(+g𝐺)𝑥) = (𝑘 ∈ (Base‘(ℤ/nℤ‘𝑁)) ↦ if(𝑘 ∈ (Unit‘(ℤ/nℤ‘𝑁)), 1, 0)))
431, 2, 9, 32, 36, 38, 41, 42isgrpd 18977 . 2 (𝑁 ∈ ℕ → 𝐺 ∈ Grp)
44 fvexd 6920 . . . 4 ((𝑁 ∈ ℕ ∧ 𝑥 ∈ (Base‘𝐺) ∧ 𝑦 ∈ (Base‘𝐺)) → (Base‘(ℤ/nℤ‘𝑁)) ∈ V)
45 mulcom 11242 . . . . 5 ((𝑎 ∈ ℂ ∧ 𝑏 ∈ ℂ) → (𝑎 · 𝑏) = (𝑏 · 𝑎))
4645adantl 481 . . . 4 (((𝑁 ∈ ℕ ∧ 𝑥 ∈ (Base‘𝐺) ∧ 𝑦 ∈ (Base‘𝐺)) ∧ (𝑎 ∈ ℂ ∧ 𝑏 ∈ ℂ)) → (𝑎 · 𝑏) = (𝑏 · 𝑎))
4744, 12, 14, 46caofcom 7735 . . 3 ((𝑁 ∈ ℕ ∧ 𝑥 ∈ (Base‘𝐺) ∧ 𝑦 ∈ (Base‘𝐺)) → (𝑥f · 𝑦) = (𝑦f · 𝑥))
483, 4, 5, 6, 7, 8dchrmul 27293 . . 3 ((𝑁 ∈ ℕ ∧ 𝑥 ∈ (Base‘𝐺) ∧ 𝑦 ∈ (Base‘𝐺)) → (𝑥(+g𝐺)𝑦) = (𝑥f · 𝑦))
493, 4, 5, 6, 8, 7dchrmul 27293 . . 3 ((𝑁 ∈ ℕ ∧ 𝑥 ∈ (Base‘𝐺) ∧ 𝑦 ∈ (Base‘𝐺)) → (𝑦(+g𝐺)𝑥) = (𝑦f · 𝑥))
5047, 48, 493eqtr4d 2786 . 2 ((𝑁 ∈ ℕ ∧ 𝑥 ∈ (Base‘𝐺) ∧ 𝑦 ∈ (Base‘𝐺)) → (𝑥(+g𝐺)𝑦) = (𝑦(+g𝐺)𝑥))
511, 2, 43, 50isabld 19814 1 (𝑁 ∈ ℕ → 𝐺 ∈ Abel)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1539  wcel 2107  Vcvv 3479  ifcif 4524  cmpt 5224  wf 6556  cfv 6560  (class class class)co 7432  f cof 7696  cc 11154  0cc0 11156  1c1 11157   · cmul 11161   / cdiv 11921  cn 12267  Basecbs 17248  +gcplusg 17298  Abelcabl 19800  Unitcui 20356  ℤ/nczn 21514  DChrcdchr 27277
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2707  ax-rep 5278  ax-sep 5295  ax-nul 5305  ax-pow 5364  ax-pr 5431  ax-un 7756  ax-cnex 11212  ax-resscn 11213  ax-1cn 11214  ax-icn 11215  ax-addcl 11216  ax-addrcl 11217  ax-mulcl 11218  ax-mulrcl 11219  ax-mulcom 11220  ax-addass 11221  ax-mulass 11222  ax-distr 11223  ax-i2m1 11224  ax-1ne0 11225  ax-1rid 11226  ax-rnegex 11227  ax-rrecex 11228  ax-cnre 11229  ax-pre-lttri 11230  ax-pre-lttrn 11231  ax-pre-ltadd 11232  ax-pre-mulgt0 11233  ax-addf 11235  ax-mulf 11236
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2728  df-clel 2815  df-nfc 2891  df-ne 2940  df-nel 3046  df-ral 3061  df-rex 3070  df-rmo 3379  df-reu 3380  df-rab 3436  df-v 3481  df-sbc 3788  df-csb 3899  df-dif 3953  df-un 3955  df-in 3957  df-ss 3967  df-pss 3970  df-nul 4333  df-if 4525  df-pw 4601  df-sn 4626  df-pr 4628  df-tp 4630  df-op 4632  df-uni 4907  df-int 4946  df-iun 4992  df-br 5143  df-opab 5205  df-mpt 5225  df-tr 5259  df-id 5577  df-eprel 5583  df-po 5591  df-so 5592  df-fr 5636  df-we 5638  df-xp 5690  df-rel 5691  df-cnv 5692  df-co 5693  df-dm 5694  df-rn 5695  df-res 5696  df-ima 5697  df-pred 6320  df-ord 6386  df-on 6387  df-lim 6388  df-suc 6389  df-iota 6513  df-fun 6562  df-fn 6563  df-f 6564  df-f1 6565  df-fo 6566  df-f1o 6567  df-fv 6568  df-riota 7389  df-ov 7435  df-oprab 7436  df-mpo 7437  df-of 7698  df-om 7889  df-1st 8015  df-2nd 8016  df-tpos 8252  df-frecs 8307  df-wrecs 8338  df-recs 8412  df-rdg 8451  df-1o 8507  df-er 8746  df-ec 8748  df-qs 8752  df-map 8869  df-en 8987  df-dom 8988  df-sdom 8989  df-fin 8990  df-sup 9483  df-inf 9484  df-pnf 11298  df-mnf 11299  df-xr 11300  df-ltxr 11301  df-le 11302  df-sub 11495  df-neg 11496  df-div 11922  df-nn 12268  df-2 12330  df-3 12331  df-4 12332  df-5 12333  df-6 12334  df-7 12335  df-8 12336  df-9 12337  df-n0 12529  df-z 12616  df-dec 12736  df-uz 12880  df-fz 13549  df-struct 17185  df-sets 17202  df-slot 17220  df-ndx 17232  df-base 17249  df-ress 17276  df-plusg 17311  df-mulr 17312  df-starv 17313  df-sca 17314  df-vsca 17315  df-ip 17316  df-tset 17317  df-ple 17318  df-ds 17320  df-unif 17321  df-0g 17487  df-imas 17554  df-qus 17555  df-mgm 18654  df-sgrp 18733  df-mnd 18749  df-mhm 18797  df-grp 18955  df-minusg 18956  df-sbg 18957  df-subg 19142  df-nsg 19143  df-eqg 19144  df-cmn 19801  df-abl 19802  df-mgp 20139  df-rng 20151  df-ur 20180  df-ring 20233  df-cring 20234  df-oppr 20335  df-dvdsr 20358  df-unit 20359  df-invr 20389  df-subrng 20547  df-subrg 20571  df-lmod 20861  df-lss 20931  df-lsp 20971  df-sra 21173  df-rgmod 21174  df-lidl 21219  df-rsp 21220  df-2idl 21261  df-cnfld 21366  df-zring 21459  df-zn 21518  df-dchr 27278
This theorem is referenced by:  dchr1  27302  dchrinv  27306  dchr1re  27308  dchrpt  27312  dchrsum2  27313  sumdchr2  27315  dchrhash  27316  dchr2sum  27318  rpvmasumlem  27532  rpvmasum2  27557  dchrisum0re  27558
  Copyright terms: Public domain W3C validator