Step | Hyp | Ref
| Expression |
1 | | eqidd 2733 |
. 2
β’ (π β β β
(BaseβπΊ) =
(BaseβπΊ)) |
2 | | eqidd 2733 |
. 2
β’ (π β β β
(+gβπΊ) =
(+gβπΊ)) |
3 | | dchrabl.g |
. . . 4
β’ πΊ = (DChrβπ) |
4 | | eqid 2732 |
. . . 4
β’
(β€/nβ€βπ) = (β€/nβ€βπ) |
5 | | eqid 2732 |
. . . 4
β’
(BaseβπΊ) =
(BaseβπΊ) |
6 | | eqid 2732 |
. . . 4
β’
(+gβπΊ) = (+gβπΊ) |
7 | | simp2 1137 |
. . . 4
β’ ((π β β β§ π₯ β (BaseβπΊ) β§ π¦ β (BaseβπΊ)) β π₯ β (BaseβπΊ)) |
8 | | simp3 1138 |
. . . 4
β’ ((π β β β§ π₯ β (BaseβπΊ) β§ π¦ β (BaseβπΊ)) β π¦ β (BaseβπΊ)) |
9 | 3, 4, 5, 6, 7, 8 | dchrmulcl 26749 |
. . 3
β’ ((π β β β§ π₯ β (BaseβπΊ) β§ π¦ β (BaseβπΊ)) β (π₯(+gβπΊ)π¦) β (BaseβπΊ)) |
10 | | fvexd 6906 |
. . . . . 6
β’ ((π β β β§ (π₯ β (BaseβπΊ) β§ π¦ β (BaseβπΊ) β§ π§ β (BaseβπΊ))) β
(Baseβ(β€/nβ€βπ)) β V) |
11 | | eqid 2732 |
. . . . . . . 8
β’
(Baseβ(β€/nβ€βπ)) =
(Baseβ(β€/nβ€βπ)) |
12 | 3, 4, 5, 11, 7 | dchrf 26742 |
. . . . . . 7
β’ ((π β β β§ π₯ β (BaseβπΊ) β§ π¦ β (BaseβπΊ)) β π₯:(Baseβ(β€/nβ€βπ))βΆβ) |
13 | 12 | 3adant3r3 1184 |
. . . . . 6
β’ ((π β β β§ (π₯ β (BaseβπΊ) β§ π¦ β (BaseβπΊ) β§ π§ β (BaseβπΊ))) β π₯:(Baseβ(β€/nβ€βπ))βΆβ) |
14 | 3, 4, 5, 11, 8 | dchrf 26742 |
. . . . . . 7
β’ ((π β β β§ π₯ β (BaseβπΊ) β§ π¦ β (BaseβπΊ)) β π¦:(Baseβ(β€/nβ€βπ))βΆβ) |
15 | 14 | 3adant3r3 1184 |
. . . . . 6
β’ ((π β β β§ (π₯ β (BaseβπΊ) β§ π¦ β (BaseβπΊ) β§ π§ β (BaseβπΊ))) β π¦:(Baseβ(β€/nβ€βπ))βΆβ) |
16 | | simpr3 1196 |
. . . . . . 7
β’ ((π β β β§ (π₯ β (BaseβπΊ) β§ π¦ β (BaseβπΊ) β§ π§ β (BaseβπΊ))) β π§ β (BaseβπΊ)) |
17 | 3, 4, 5, 11, 16 | dchrf 26742 |
. . . . . 6
β’ ((π β β β§ (π₯ β (BaseβπΊ) β§ π¦ β (BaseβπΊ) β§ π§ β (BaseβπΊ))) β π§:(Baseβ(β€/nβ€βπ))βΆβ) |
18 | | mulass 11197 |
. . . . . . 7
β’ ((π β β β§ π β β β§ π β β) β ((π Β· π) Β· π) = (π Β· (π Β· π))) |
19 | 18 | adantl 482 |
. . . . . 6
β’ (((π β β β§ (π₯ β (BaseβπΊ) β§ π¦ β (BaseβπΊ) β§ π§ β (BaseβπΊ))) β§ (π β β β§ π β β β§ π β β)) β ((π Β· π) Β· π) = (π Β· (π Β· π))) |
20 | 10, 13, 15, 17, 19 | caofass 7706 |
. . . . 5
β’ ((π β β β§ (π₯ β (BaseβπΊ) β§ π¦ β (BaseβπΊ) β§ π§ β (BaseβπΊ))) β ((π₯ βf Β· π¦) βf Β·
π§) = (π₯ βf Β· (π¦ βf Β·
π§))) |
21 | | simpr1 1194 |
. . . . . . 7
β’ ((π β β β§ (π₯ β (BaseβπΊ) β§ π¦ β (BaseβπΊ) β§ π§ β (BaseβπΊ))) β π₯ β (BaseβπΊ)) |
22 | | simpr2 1195 |
. . . . . . 7
β’ ((π β β β§ (π₯ β (BaseβπΊ) β§ π¦ β (BaseβπΊ) β§ π§ β (BaseβπΊ))) β π¦ β (BaseβπΊ)) |
23 | 3, 4, 5, 6, 21, 22 | dchrmul 26748 |
. . . . . 6
β’ ((π β β β§ (π₯ β (BaseβπΊ) β§ π¦ β (BaseβπΊ) β§ π§ β (BaseβπΊ))) β (π₯(+gβπΊ)π¦) = (π₯ βf Β· π¦)) |
24 | 23 | oveq1d 7423 |
. . . . 5
β’ ((π β β β§ (π₯ β (BaseβπΊ) β§ π¦ β (BaseβπΊ) β§ π§ β (BaseβπΊ))) β ((π₯(+gβπΊ)π¦) βf Β· π§) = ((π₯ βf Β· π¦) βf Β·
π§)) |
25 | 3, 4, 5, 6, 22, 16 | dchrmul 26748 |
. . . . . 6
β’ ((π β β β§ (π₯ β (BaseβπΊ) β§ π¦ β (BaseβπΊ) β§ π§ β (BaseβπΊ))) β (π¦(+gβπΊ)π§) = (π¦ βf Β· π§)) |
26 | 25 | oveq2d 7424 |
. . . . 5
β’ ((π β β β§ (π₯ β (BaseβπΊ) β§ π¦ β (BaseβπΊ) β§ π§ β (BaseβπΊ))) β (π₯ βf Β· (π¦(+gβπΊ)π§)) = (π₯ βf Β· (π¦ βf Β·
π§))) |
27 | 20, 24, 26 | 3eqtr4d 2782 |
. . . 4
β’ ((π β β β§ (π₯ β (BaseβπΊ) β§ π¦ β (BaseβπΊ) β§ π§ β (BaseβπΊ))) β ((π₯(+gβπΊ)π¦) βf Β· π§) = (π₯ βf Β· (π¦(+gβπΊ)π§))) |
28 | 9 | 3adant3r3 1184 |
. . . . 5
β’ ((π β β β§ (π₯ β (BaseβπΊ) β§ π¦ β (BaseβπΊ) β§ π§ β (BaseβπΊ))) β (π₯(+gβπΊ)π¦) β (BaseβπΊ)) |
29 | 3, 4, 5, 6, 28, 16 | dchrmul 26748 |
. . . 4
β’ ((π β β β§ (π₯ β (BaseβπΊ) β§ π¦ β (BaseβπΊ) β§ π§ β (BaseβπΊ))) β ((π₯(+gβπΊ)π¦)(+gβπΊ)π§) = ((π₯(+gβπΊ)π¦) βf Β· π§)) |
30 | 3, 4, 5, 6, 22, 16 | dchrmulcl 26749 |
. . . . 5
β’ ((π β β β§ (π₯ β (BaseβπΊ) β§ π¦ β (BaseβπΊ) β§ π§ β (BaseβπΊ))) β (π¦(+gβπΊ)π§) β (BaseβπΊ)) |
31 | 3, 4, 5, 6, 21, 30 | dchrmul 26748 |
. . . 4
β’ ((π β β β§ (π₯ β (BaseβπΊ) β§ π¦ β (BaseβπΊ) β§ π§ β (BaseβπΊ))) β (π₯(+gβπΊ)(π¦(+gβπΊ)π§)) = (π₯ βf Β· (π¦(+gβπΊ)π§))) |
32 | 27, 29, 31 | 3eqtr4d 2782 |
. . 3
β’ ((π β β β§ (π₯ β (BaseβπΊ) β§ π¦ β (BaseβπΊ) β§ π§ β (BaseβπΊ))) β ((π₯(+gβπΊ)π¦)(+gβπΊ)π§) = (π₯(+gβπΊ)(π¦(+gβπΊ)π§))) |
33 | | eqid 2732 |
. . . 4
β’
(Unitβ(β€/nβ€βπ)) =
(Unitβ(β€/nβ€βπ)) |
34 | | eqid 2732 |
. . . 4
β’ (π β
(Baseβ(β€/nβ€βπ)) β¦ if(π β
(Unitβ(β€/nβ€βπ)), 1, 0)) = (π β
(Baseβ(β€/nβ€βπ)) β¦ if(π β
(Unitβ(β€/nβ€βπ)), 1, 0)) |
35 | | id 22 |
. . . 4
β’ (π β β β π β
β) |
36 | 3, 4, 5, 11, 33, 34, 35 | dchr1cl 26751 |
. . 3
β’ (π β β β (π β
(Baseβ(β€/nβ€βπ)) β¦ if(π β
(Unitβ(β€/nβ€βπ)), 1, 0)) β (BaseβπΊ)) |
37 | | simpr 485 |
. . . 4
β’ ((π β β β§ π₯ β (BaseβπΊ)) β π₯ β (BaseβπΊ)) |
38 | 3, 4, 5, 11, 33, 34, 6, 37 | dchrmullid 26752 |
. . 3
β’ ((π β β β§ π₯ β (BaseβπΊ)) β ((π β
(Baseβ(β€/nβ€βπ)) β¦ if(π β
(Unitβ(β€/nβ€βπ)), 1, 0))(+gβπΊ)π₯) = π₯) |
39 | | eqid 2732 |
. . . . 5
β’ (π β
(Baseβ(β€/nβ€βπ)) β¦ if(π β
(Unitβ(β€/nβ€βπ)), (1 / (π₯βπ)), 0)) = (π β
(Baseβ(β€/nβ€βπ)) β¦ if(π β
(Unitβ(β€/nβ€βπ)), (1 / (π₯βπ)), 0)) |
40 | 3, 4, 5, 11, 33, 34, 6, 37, 39 | dchrinvcl 26753 |
. . . 4
β’ ((π β β β§ π₯ β (BaseβπΊ)) β ((π β
(Baseβ(β€/nβ€βπ)) β¦ if(π β
(Unitβ(β€/nβ€βπ)), (1 / (π₯βπ)), 0)) β (BaseβπΊ) β§ ((π β
(Baseβ(β€/nβ€βπ)) β¦ if(π β
(Unitβ(β€/nβ€βπ)), (1 / (π₯βπ)), 0))(+gβπΊ)π₯) = (π β
(Baseβ(β€/nβ€βπ)) β¦ if(π β
(Unitβ(β€/nβ€βπ)), 1, 0)))) |
41 | 40 | simpld 495 |
. . 3
β’ ((π β β β§ π₯ β (BaseβπΊ)) β (π β
(Baseβ(β€/nβ€βπ)) β¦ if(π β
(Unitβ(β€/nβ€βπ)), (1 / (π₯βπ)), 0)) β (BaseβπΊ)) |
42 | 40 | simprd 496 |
. . 3
β’ ((π β β β§ π₯ β (BaseβπΊ)) β ((π β
(Baseβ(β€/nβ€βπ)) β¦ if(π β
(Unitβ(β€/nβ€βπ)), (1 / (π₯βπ)), 0))(+gβπΊ)π₯) = (π β
(Baseβ(β€/nβ€βπ)) β¦ if(π β
(Unitβ(β€/nβ€βπ)), 1, 0))) |
43 | 1, 2, 9, 32, 36, 38, 41, 42 | isgrpd 18843 |
. 2
β’ (π β β β πΊ β Grp) |
44 | | fvexd 6906 |
. . . 4
β’ ((π β β β§ π₯ β (BaseβπΊ) β§ π¦ β (BaseβπΊ)) β
(Baseβ(β€/nβ€βπ)) β V) |
45 | | mulcom 11195 |
. . . . 5
β’ ((π β β β§ π β β) β (π Β· π) = (π Β· π)) |
46 | 45 | adantl 482 |
. . . 4
β’ (((π β β β§ π₯ β (BaseβπΊ) β§ π¦ β (BaseβπΊ)) β§ (π β β β§ π β β)) β (π Β· π) = (π Β· π)) |
47 | 44, 12, 14, 46 | caofcom 7704 |
. . 3
β’ ((π β β β§ π₯ β (BaseβπΊ) β§ π¦ β (BaseβπΊ)) β (π₯ βf Β· π¦) = (π¦ βf Β· π₯)) |
48 | 3, 4, 5, 6, 7, 8 | dchrmul 26748 |
. . 3
β’ ((π β β β§ π₯ β (BaseβπΊ) β§ π¦ β (BaseβπΊ)) β (π₯(+gβπΊ)π¦) = (π₯ βf Β· π¦)) |
49 | 3, 4, 5, 6, 8, 7 | dchrmul 26748 |
. . 3
β’ ((π β β β§ π₯ β (BaseβπΊ) β§ π¦ β (BaseβπΊ)) β (π¦(+gβπΊ)π₯) = (π¦ βf Β· π₯)) |
50 | 47, 48, 49 | 3eqtr4d 2782 |
. 2
β’ ((π β β β§ π₯ β (BaseβπΊ) β§ π¦ β (BaseβπΊ)) β (π₯(+gβπΊ)π¦) = (π¦(+gβπΊ)π₯)) |
51 | 1, 2, 43, 50 | isabld 19662 |
1
β’ (π β β β πΊ β Abel) |