MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dchrabl Structured version   Visualization version   GIF version

Theorem dchrabl 27185
Description: The set of Dirichlet characters is an Abelian group. (Contributed by Mario Carneiro, 19-Apr-2016.)
Hypothesis
Ref Expression
dchrabl.g 𝐺 = (DChr‘𝑁)
Assertion
Ref Expression
dchrabl (𝑁 ∈ ℕ → 𝐺 ∈ Abel)

Proof of Theorem dchrabl
Dummy variables 𝑥 𝑎 𝑏 𝑐 𝑘 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqidd 2731 . 2 (𝑁 ∈ ℕ → (Base‘𝐺) = (Base‘𝐺))
2 eqidd 2731 . 2 (𝑁 ∈ ℕ → (+g𝐺) = (+g𝐺))
3 dchrabl.g . . . 4 𝐺 = (DChr‘𝑁)
4 eqid 2730 . . . 4 (ℤ/nℤ‘𝑁) = (ℤ/nℤ‘𝑁)
5 eqid 2730 . . . 4 (Base‘𝐺) = (Base‘𝐺)
6 eqid 2730 . . . 4 (+g𝐺) = (+g𝐺)
7 simp2 1137 . . . 4 ((𝑁 ∈ ℕ ∧ 𝑥 ∈ (Base‘𝐺) ∧ 𝑦 ∈ (Base‘𝐺)) → 𝑥 ∈ (Base‘𝐺))
8 simp3 1138 . . . 4 ((𝑁 ∈ ℕ ∧ 𝑥 ∈ (Base‘𝐺) ∧ 𝑦 ∈ (Base‘𝐺)) → 𝑦 ∈ (Base‘𝐺))
93, 4, 5, 6, 7, 8dchrmulcl 27180 . . 3 ((𝑁 ∈ ℕ ∧ 𝑥 ∈ (Base‘𝐺) ∧ 𝑦 ∈ (Base‘𝐺)) → (𝑥(+g𝐺)𝑦) ∈ (Base‘𝐺))
10 fvexd 6832 . . . . . 6 ((𝑁 ∈ ℕ ∧ (𝑥 ∈ (Base‘𝐺) ∧ 𝑦 ∈ (Base‘𝐺) ∧ 𝑧 ∈ (Base‘𝐺))) → (Base‘(ℤ/nℤ‘𝑁)) ∈ V)
11 eqid 2730 . . . . . . . 8 (Base‘(ℤ/nℤ‘𝑁)) = (Base‘(ℤ/nℤ‘𝑁))
123, 4, 5, 11, 7dchrf 27173 . . . . . . 7 ((𝑁 ∈ ℕ ∧ 𝑥 ∈ (Base‘𝐺) ∧ 𝑦 ∈ (Base‘𝐺)) → 𝑥:(Base‘(ℤ/nℤ‘𝑁))⟶ℂ)
13123adant3r3 1185 . . . . . 6 ((𝑁 ∈ ℕ ∧ (𝑥 ∈ (Base‘𝐺) ∧ 𝑦 ∈ (Base‘𝐺) ∧ 𝑧 ∈ (Base‘𝐺))) → 𝑥:(Base‘(ℤ/nℤ‘𝑁))⟶ℂ)
143, 4, 5, 11, 8dchrf 27173 . . . . . . 7 ((𝑁 ∈ ℕ ∧ 𝑥 ∈ (Base‘𝐺) ∧ 𝑦 ∈ (Base‘𝐺)) → 𝑦:(Base‘(ℤ/nℤ‘𝑁))⟶ℂ)
15143adant3r3 1185 . . . . . 6 ((𝑁 ∈ ℕ ∧ (𝑥 ∈ (Base‘𝐺) ∧ 𝑦 ∈ (Base‘𝐺) ∧ 𝑧 ∈ (Base‘𝐺))) → 𝑦:(Base‘(ℤ/nℤ‘𝑁))⟶ℂ)
16 simpr3 1197 . . . . . . 7 ((𝑁 ∈ ℕ ∧ (𝑥 ∈ (Base‘𝐺) ∧ 𝑦 ∈ (Base‘𝐺) ∧ 𝑧 ∈ (Base‘𝐺))) → 𝑧 ∈ (Base‘𝐺))
173, 4, 5, 11, 16dchrf 27173 . . . . . 6 ((𝑁 ∈ ℕ ∧ (𝑥 ∈ (Base‘𝐺) ∧ 𝑦 ∈ (Base‘𝐺) ∧ 𝑧 ∈ (Base‘𝐺))) → 𝑧:(Base‘(ℤ/nℤ‘𝑁))⟶ℂ)
18 mulass 11086 . . . . . . 7 ((𝑎 ∈ ℂ ∧ 𝑏 ∈ ℂ ∧ 𝑐 ∈ ℂ) → ((𝑎 · 𝑏) · 𝑐) = (𝑎 · (𝑏 · 𝑐)))
1918adantl 481 . . . . . 6 (((𝑁 ∈ ℕ ∧ (𝑥 ∈ (Base‘𝐺) ∧ 𝑦 ∈ (Base‘𝐺) ∧ 𝑧 ∈ (Base‘𝐺))) ∧ (𝑎 ∈ ℂ ∧ 𝑏 ∈ ℂ ∧ 𝑐 ∈ ℂ)) → ((𝑎 · 𝑏) · 𝑐) = (𝑎 · (𝑏 · 𝑐)))
2010, 13, 15, 17, 19caofass 7645 . . . . 5 ((𝑁 ∈ ℕ ∧ (𝑥 ∈ (Base‘𝐺) ∧ 𝑦 ∈ (Base‘𝐺) ∧ 𝑧 ∈ (Base‘𝐺))) → ((𝑥f · 𝑦) ∘f · 𝑧) = (𝑥f · (𝑦f · 𝑧)))
21 simpr1 1195 . . . . . . 7 ((𝑁 ∈ ℕ ∧ (𝑥 ∈ (Base‘𝐺) ∧ 𝑦 ∈ (Base‘𝐺) ∧ 𝑧 ∈ (Base‘𝐺))) → 𝑥 ∈ (Base‘𝐺))
22 simpr2 1196 . . . . . . 7 ((𝑁 ∈ ℕ ∧ (𝑥 ∈ (Base‘𝐺) ∧ 𝑦 ∈ (Base‘𝐺) ∧ 𝑧 ∈ (Base‘𝐺))) → 𝑦 ∈ (Base‘𝐺))
233, 4, 5, 6, 21, 22dchrmul 27179 . . . . . 6 ((𝑁 ∈ ℕ ∧ (𝑥 ∈ (Base‘𝐺) ∧ 𝑦 ∈ (Base‘𝐺) ∧ 𝑧 ∈ (Base‘𝐺))) → (𝑥(+g𝐺)𝑦) = (𝑥f · 𝑦))
2423oveq1d 7356 . . . . 5 ((𝑁 ∈ ℕ ∧ (𝑥 ∈ (Base‘𝐺) ∧ 𝑦 ∈ (Base‘𝐺) ∧ 𝑧 ∈ (Base‘𝐺))) → ((𝑥(+g𝐺)𝑦) ∘f · 𝑧) = ((𝑥f · 𝑦) ∘f · 𝑧))
253, 4, 5, 6, 22, 16dchrmul 27179 . . . . . 6 ((𝑁 ∈ ℕ ∧ (𝑥 ∈ (Base‘𝐺) ∧ 𝑦 ∈ (Base‘𝐺) ∧ 𝑧 ∈ (Base‘𝐺))) → (𝑦(+g𝐺)𝑧) = (𝑦f · 𝑧))
2625oveq2d 7357 . . . . 5 ((𝑁 ∈ ℕ ∧ (𝑥 ∈ (Base‘𝐺) ∧ 𝑦 ∈ (Base‘𝐺) ∧ 𝑧 ∈ (Base‘𝐺))) → (𝑥f · (𝑦(+g𝐺)𝑧)) = (𝑥f · (𝑦f · 𝑧)))
2720, 24, 263eqtr4d 2775 . . . 4 ((𝑁 ∈ ℕ ∧ (𝑥 ∈ (Base‘𝐺) ∧ 𝑦 ∈ (Base‘𝐺) ∧ 𝑧 ∈ (Base‘𝐺))) → ((𝑥(+g𝐺)𝑦) ∘f · 𝑧) = (𝑥f · (𝑦(+g𝐺)𝑧)))
2893adant3r3 1185 . . . . 5 ((𝑁 ∈ ℕ ∧ (𝑥 ∈ (Base‘𝐺) ∧ 𝑦 ∈ (Base‘𝐺) ∧ 𝑧 ∈ (Base‘𝐺))) → (𝑥(+g𝐺)𝑦) ∈ (Base‘𝐺))
293, 4, 5, 6, 28, 16dchrmul 27179 . . . 4 ((𝑁 ∈ ℕ ∧ (𝑥 ∈ (Base‘𝐺) ∧ 𝑦 ∈ (Base‘𝐺) ∧ 𝑧 ∈ (Base‘𝐺))) → ((𝑥(+g𝐺)𝑦)(+g𝐺)𝑧) = ((𝑥(+g𝐺)𝑦) ∘f · 𝑧))
303, 4, 5, 6, 22, 16dchrmulcl 27180 . . . . 5 ((𝑁 ∈ ℕ ∧ (𝑥 ∈ (Base‘𝐺) ∧ 𝑦 ∈ (Base‘𝐺) ∧ 𝑧 ∈ (Base‘𝐺))) → (𝑦(+g𝐺)𝑧) ∈ (Base‘𝐺))
313, 4, 5, 6, 21, 30dchrmul 27179 . . . 4 ((𝑁 ∈ ℕ ∧ (𝑥 ∈ (Base‘𝐺) ∧ 𝑦 ∈ (Base‘𝐺) ∧ 𝑧 ∈ (Base‘𝐺))) → (𝑥(+g𝐺)(𝑦(+g𝐺)𝑧)) = (𝑥f · (𝑦(+g𝐺)𝑧)))
3227, 29, 313eqtr4d 2775 . . 3 ((𝑁 ∈ ℕ ∧ (𝑥 ∈ (Base‘𝐺) ∧ 𝑦 ∈ (Base‘𝐺) ∧ 𝑧 ∈ (Base‘𝐺))) → ((𝑥(+g𝐺)𝑦)(+g𝐺)𝑧) = (𝑥(+g𝐺)(𝑦(+g𝐺)𝑧)))
33 eqid 2730 . . . 4 (Unit‘(ℤ/nℤ‘𝑁)) = (Unit‘(ℤ/nℤ‘𝑁))
34 eqid 2730 . . . 4 (𝑘 ∈ (Base‘(ℤ/nℤ‘𝑁)) ↦ if(𝑘 ∈ (Unit‘(ℤ/nℤ‘𝑁)), 1, 0)) = (𝑘 ∈ (Base‘(ℤ/nℤ‘𝑁)) ↦ if(𝑘 ∈ (Unit‘(ℤ/nℤ‘𝑁)), 1, 0))
35 id 22 . . . 4 (𝑁 ∈ ℕ → 𝑁 ∈ ℕ)
363, 4, 5, 11, 33, 34, 35dchr1cl 27182 . . 3 (𝑁 ∈ ℕ → (𝑘 ∈ (Base‘(ℤ/nℤ‘𝑁)) ↦ if(𝑘 ∈ (Unit‘(ℤ/nℤ‘𝑁)), 1, 0)) ∈ (Base‘𝐺))
37 simpr 484 . . . 4 ((𝑁 ∈ ℕ ∧ 𝑥 ∈ (Base‘𝐺)) → 𝑥 ∈ (Base‘𝐺))
383, 4, 5, 11, 33, 34, 6, 37dchrmullid 27183 . . 3 ((𝑁 ∈ ℕ ∧ 𝑥 ∈ (Base‘𝐺)) → ((𝑘 ∈ (Base‘(ℤ/nℤ‘𝑁)) ↦ if(𝑘 ∈ (Unit‘(ℤ/nℤ‘𝑁)), 1, 0))(+g𝐺)𝑥) = 𝑥)
39 eqid 2730 . . . . 5 (𝑘 ∈ (Base‘(ℤ/nℤ‘𝑁)) ↦ if(𝑘 ∈ (Unit‘(ℤ/nℤ‘𝑁)), (1 / (𝑥𝑘)), 0)) = (𝑘 ∈ (Base‘(ℤ/nℤ‘𝑁)) ↦ if(𝑘 ∈ (Unit‘(ℤ/nℤ‘𝑁)), (1 / (𝑥𝑘)), 0))
403, 4, 5, 11, 33, 34, 6, 37, 39dchrinvcl 27184 . . . 4 ((𝑁 ∈ ℕ ∧ 𝑥 ∈ (Base‘𝐺)) → ((𝑘 ∈ (Base‘(ℤ/nℤ‘𝑁)) ↦ if(𝑘 ∈ (Unit‘(ℤ/nℤ‘𝑁)), (1 / (𝑥𝑘)), 0)) ∈ (Base‘𝐺) ∧ ((𝑘 ∈ (Base‘(ℤ/nℤ‘𝑁)) ↦ if(𝑘 ∈ (Unit‘(ℤ/nℤ‘𝑁)), (1 / (𝑥𝑘)), 0))(+g𝐺)𝑥) = (𝑘 ∈ (Base‘(ℤ/nℤ‘𝑁)) ↦ if(𝑘 ∈ (Unit‘(ℤ/nℤ‘𝑁)), 1, 0))))
4140simpld 494 . . 3 ((𝑁 ∈ ℕ ∧ 𝑥 ∈ (Base‘𝐺)) → (𝑘 ∈ (Base‘(ℤ/nℤ‘𝑁)) ↦ if(𝑘 ∈ (Unit‘(ℤ/nℤ‘𝑁)), (1 / (𝑥𝑘)), 0)) ∈ (Base‘𝐺))
4240simprd 495 . . 3 ((𝑁 ∈ ℕ ∧ 𝑥 ∈ (Base‘𝐺)) → ((𝑘 ∈ (Base‘(ℤ/nℤ‘𝑁)) ↦ if(𝑘 ∈ (Unit‘(ℤ/nℤ‘𝑁)), (1 / (𝑥𝑘)), 0))(+g𝐺)𝑥) = (𝑘 ∈ (Base‘(ℤ/nℤ‘𝑁)) ↦ if(𝑘 ∈ (Unit‘(ℤ/nℤ‘𝑁)), 1, 0)))
431, 2, 9, 32, 36, 38, 41, 42isgrpd 18863 . 2 (𝑁 ∈ ℕ → 𝐺 ∈ Grp)
44 fvexd 6832 . . . 4 ((𝑁 ∈ ℕ ∧ 𝑥 ∈ (Base‘𝐺) ∧ 𝑦 ∈ (Base‘𝐺)) → (Base‘(ℤ/nℤ‘𝑁)) ∈ V)
45 mulcom 11084 . . . . 5 ((𝑎 ∈ ℂ ∧ 𝑏 ∈ ℂ) → (𝑎 · 𝑏) = (𝑏 · 𝑎))
4645adantl 481 . . . 4 (((𝑁 ∈ ℕ ∧ 𝑥 ∈ (Base‘𝐺) ∧ 𝑦 ∈ (Base‘𝐺)) ∧ (𝑎 ∈ ℂ ∧ 𝑏 ∈ ℂ)) → (𝑎 · 𝑏) = (𝑏 · 𝑎))
4744, 12, 14, 46caofcom 7642 . . 3 ((𝑁 ∈ ℕ ∧ 𝑥 ∈ (Base‘𝐺) ∧ 𝑦 ∈ (Base‘𝐺)) → (𝑥f · 𝑦) = (𝑦f · 𝑥))
483, 4, 5, 6, 7, 8dchrmul 27179 . . 3 ((𝑁 ∈ ℕ ∧ 𝑥 ∈ (Base‘𝐺) ∧ 𝑦 ∈ (Base‘𝐺)) → (𝑥(+g𝐺)𝑦) = (𝑥f · 𝑦))
493, 4, 5, 6, 8, 7dchrmul 27179 . . 3 ((𝑁 ∈ ℕ ∧ 𝑥 ∈ (Base‘𝐺) ∧ 𝑦 ∈ (Base‘𝐺)) → (𝑦(+g𝐺)𝑥) = (𝑦f · 𝑥))
5047, 48, 493eqtr4d 2775 . 2 ((𝑁 ∈ ℕ ∧ 𝑥 ∈ (Base‘𝐺) ∧ 𝑦 ∈ (Base‘𝐺)) → (𝑥(+g𝐺)𝑦) = (𝑦(+g𝐺)𝑥))
511, 2, 43, 50isabld 19700 1 (𝑁 ∈ ℕ → 𝐺 ∈ Abel)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1541  wcel 2110  Vcvv 3434  ifcif 4473  cmpt 5170  wf 6473  cfv 6477  (class class class)co 7341  f cof 7603  cc 10996  0cc0 10998  1c1 10999   · cmul 11003   / cdiv 11766  cn 12117  Basecbs 17112  +gcplusg 17153  Abelcabl 19686  Unitcui 20266  ℤ/nczn 21432  DChrcdchr 27163
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2112  ax-9 2120  ax-10 2143  ax-11 2159  ax-12 2179  ax-ext 2702  ax-rep 5215  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7663  ax-cnex 11054  ax-resscn 11055  ax-1cn 11056  ax-icn 11057  ax-addcl 11058  ax-addrcl 11059  ax-mulcl 11060  ax-mulrcl 11061  ax-mulcom 11062  ax-addass 11063  ax-mulass 11064  ax-distr 11065  ax-i2m1 11066  ax-1ne0 11067  ax-1rid 11068  ax-rnegex 11069  ax-rrecex 11070  ax-cnre 11071  ax-pre-lttri 11072  ax-pre-lttrn 11073  ax-pre-ltadd 11074  ax-pre-mulgt0 11075  ax-addf 11077  ax-mulf 11078
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rmo 3344  df-reu 3345  df-rab 3394  df-v 3436  df-sbc 3740  df-csb 3849  df-dif 3903  df-un 3905  df-in 3907  df-ss 3917  df-pss 3920  df-nul 4282  df-if 4474  df-pw 4550  df-sn 4575  df-pr 4577  df-tp 4579  df-op 4581  df-uni 4858  df-int 4896  df-iun 4941  df-br 5090  df-opab 5152  df-mpt 5171  df-tr 5197  df-id 5509  df-eprel 5514  df-po 5522  df-so 5523  df-fr 5567  df-we 5569  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-pred 6244  df-ord 6305  df-on 6306  df-lim 6307  df-suc 6308  df-iota 6433  df-fun 6479  df-fn 6480  df-f 6481  df-f1 6482  df-fo 6483  df-f1o 6484  df-fv 6485  df-riota 7298  df-ov 7344  df-oprab 7345  df-mpo 7346  df-of 7605  df-om 7792  df-1st 7916  df-2nd 7917  df-tpos 8151  df-frecs 8206  df-wrecs 8237  df-recs 8286  df-rdg 8324  df-1o 8380  df-er 8617  df-ec 8619  df-qs 8623  df-map 8747  df-en 8865  df-dom 8866  df-sdom 8867  df-fin 8868  df-sup 9321  df-inf 9322  df-pnf 11140  df-mnf 11141  df-xr 11142  df-ltxr 11143  df-le 11144  df-sub 11338  df-neg 11339  df-div 11767  df-nn 12118  df-2 12180  df-3 12181  df-4 12182  df-5 12183  df-6 12184  df-7 12185  df-8 12186  df-9 12187  df-n0 12374  df-z 12461  df-dec 12581  df-uz 12725  df-fz 13400  df-struct 17050  df-sets 17067  df-slot 17085  df-ndx 17097  df-base 17113  df-ress 17134  df-plusg 17166  df-mulr 17167  df-starv 17168  df-sca 17169  df-vsca 17170  df-ip 17171  df-tset 17172  df-ple 17173  df-ds 17175  df-unif 17176  df-0g 17337  df-imas 17404  df-qus 17405  df-mgm 18540  df-sgrp 18619  df-mnd 18635  df-mhm 18683  df-grp 18841  df-minusg 18842  df-sbg 18843  df-subg 19028  df-nsg 19029  df-eqg 19030  df-cmn 19687  df-abl 19688  df-mgp 20052  df-rng 20064  df-ur 20093  df-ring 20146  df-cring 20147  df-oppr 20248  df-dvdsr 20268  df-unit 20269  df-invr 20299  df-subrng 20454  df-subrg 20478  df-lmod 20788  df-lss 20858  df-lsp 20898  df-sra 21100  df-rgmod 21101  df-lidl 21138  df-rsp 21139  df-2idl 21180  df-cnfld 21285  df-zring 21377  df-zn 21436  df-dchr 27164
This theorem is referenced by:  dchr1  27188  dchrinv  27192  dchr1re  27194  dchrpt  27198  dchrsum2  27199  sumdchr2  27201  dchrhash  27202  dchr2sum  27204  rpvmasumlem  27418  rpvmasum2  27443  dchrisum0re  27444
  Copyright terms: Public domain W3C validator