| Step | Hyp | Ref
| Expression |
| 1 | | eqidd 2737 |
. 2
⊢ (𝑁 ∈ ℕ →
(Base‘𝐺) =
(Base‘𝐺)) |
| 2 | | eqidd 2737 |
. 2
⊢ (𝑁 ∈ ℕ →
(+g‘𝐺) =
(+g‘𝐺)) |
| 3 | | dchrabl.g |
. . . 4
⊢ 𝐺 = (DChr‘𝑁) |
| 4 | | eqid 2736 |
. . . 4
⊢
(ℤ/nℤ‘𝑁) = (ℤ/nℤ‘𝑁) |
| 5 | | eqid 2736 |
. . . 4
⊢
(Base‘𝐺) =
(Base‘𝐺) |
| 6 | | eqid 2736 |
. . . 4
⊢
(+g‘𝐺) = (+g‘𝐺) |
| 7 | | simp2 1137 |
. . . 4
⊢ ((𝑁 ∈ ℕ ∧ 𝑥 ∈ (Base‘𝐺) ∧ 𝑦 ∈ (Base‘𝐺)) → 𝑥 ∈ (Base‘𝐺)) |
| 8 | | simp3 1138 |
. . . 4
⊢ ((𝑁 ∈ ℕ ∧ 𝑥 ∈ (Base‘𝐺) ∧ 𝑦 ∈ (Base‘𝐺)) → 𝑦 ∈ (Base‘𝐺)) |
| 9 | 3, 4, 5, 6, 7, 8 | dchrmulcl 27217 |
. . 3
⊢ ((𝑁 ∈ ℕ ∧ 𝑥 ∈ (Base‘𝐺) ∧ 𝑦 ∈ (Base‘𝐺)) → (𝑥(+g‘𝐺)𝑦) ∈ (Base‘𝐺)) |
| 10 | | fvexd 6896 |
. . . . . 6
⊢ ((𝑁 ∈ ℕ ∧ (𝑥 ∈ (Base‘𝐺) ∧ 𝑦 ∈ (Base‘𝐺) ∧ 𝑧 ∈ (Base‘𝐺))) →
(Base‘(ℤ/nℤ‘𝑁)) ∈ V) |
| 11 | | eqid 2736 |
. . . . . . . 8
⊢
(Base‘(ℤ/nℤ‘𝑁)) =
(Base‘(ℤ/nℤ‘𝑁)) |
| 12 | 3, 4, 5, 11, 7 | dchrf 27210 |
. . . . . . 7
⊢ ((𝑁 ∈ ℕ ∧ 𝑥 ∈ (Base‘𝐺) ∧ 𝑦 ∈ (Base‘𝐺)) → 𝑥:(Base‘(ℤ/nℤ‘𝑁))⟶ℂ) |
| 13 | 12 | 3adant3r3 1185 |
. . . . . 6
⊢ ((𝑁 ∈ ℕ ∧ (𝑥 ∈ (Base‘𝐺) ∧ 𝑦 ∈ (Base‘𝐺) ∧ 𝑧 ∈ (Base‘𝐺))) → 𝑥:(Base‘(ℤ/nℤ‘𝑁))⟶ℂ) |
| 14 | 3, 4, 5, 11, 8 | dchrf 27210 |
. . . . . . 7
⊢ ((𝑁 ∈ ℕ ∧ 𝑥 ∈ (Base‘𝐺) ∧ 𝑦 ∈ (Base‘𝐺)) → 𝑦:(Base‘(ℤ/nℤ‘𝑁))⟶ℂ) |
| 15 | 14 | 3adant3r3 1185 |
. . . . . 6
⊢ ((𝑁 ∈ ℕ ∧ (𝑥 ∈ (Base‘𝐺) ∧ 𝑦 ∈ (Base‘𝐺) ∧ 𝑧 ∈ (Base‘𝐺))) → 𝑦:(Base‘(ℤ/nℤ‘𝑁))⟶ℂ) |
| 16 | | simpr3 1197 |
. . . . . . 7
⊢ ((𝑁 ∈ ℕ ∧ (𝑥 ∈ (Base‘𝐺) ∧ 𝑦 ∈ (Base‘𝐺) ∧ 𝑧 ∈ (Base‘𝐺))) → 𝑧 ∈ (Base‘𝐺)) |
| 17 | 3, 4, 5, 11, 16 | dchrf 27210 |
. . . . . 6
⊢ ((𝑁 ∈ ℕ ∧ (𝑥 ∈ (Base‘𝐺) ∧ 𝑦 ∈ (Base‘𝐺) ∧ 𝑧 ∈ (Base‘𝐺))) → 𝑧:(Base‘(ℤ/nℤ‘𝑁))⟶ℂ) |
| 18 | | mulass 11222 |
. . . . . . 7
⊢ ((𝑎 ∈ ℂ ∧ 𝑏 ∈ ℂ ∧ 𝑐 ∈ ℂ) → ((𝑎 · 𝑏) · 𝑐) = (𝑎 · (𝑏 · 𝑐))) |
| 19 | 18 | adantl 481 |
. . . . . 6
⊢ (((𝑁 ∈ ℕ ∧ (𝑥 ∈ (Base‘𝐺) ∧ 𝑦 ∈ (Base‘𝐺) ∧ 𝑧 ∈ (Base‘𝐺))) ∧ (𝑎 ∈ ℂ ∧ 𝑏 ∈ ℂ ∧ 𝑐 ∈ ℂ)) → ((𝑎 · 𝑏) · 𝑐) = (𝑎 · (𝑏 · 𝑐))) |
| 20 | 10, 13, 15, 17, 19 | caofass 7716 |
. . . . 5
⊢ ((𝑁 ∈ ℕ ∧ (𝑥 ∈ (Base‘𝐺) ∧ 𝑦 ∈ (Base‘𝐺) ∧ 𝑧 ∈ (Base‘𝐺))) → ((𝑥 ∘f · 𝑦) ∘f ·
𝑧) = (𝑥 ∘f · (𝑦 ∘f ·
𝑧))) |
| 21 | | simpr1 1195 |
. . . . . . 7
⊢ ((𝑁 ∈ ℕ ∧ (𝑥 ∈ (Base‘𝐺) ∧ 𝑦 ∈ (Base‘𝐺) ∧ 𝑧 ∈ (Base‘𝐺))) → 𝑥 ∈ (Base‘𝐺)) |
| 22 | | simpr2 1196 |
. . . . . . 7
⊢ ((𝑁 ∈ ℕ ∧ (𝑥 ∈ (Base‘𝐺) ∧ 𝑦 ∈ (Base‘𝐺) ∧ 𝑧 ∈ (Base‘𝐺))) → 𝑦 ∈ (Base‘𝐺)) |
| 23 | 3, 4, 5, 6, 21, 22 | dchrmul 27216 |
. . . . . 6
⊢ ((𝑁 ∈ ℕ ∧ (𝑥 ∈ (Base‘𝐺) ∧ 𝑦 ∈ (Base‘𝐺) ∧ 𝑧 ∈ (Base‘𝐺))) → (𝑥(+g‘𝐺)𝑦) = (𝑥 ∘f · 𝑦)) |
| 24 | 23 | oveq1d 7425 |
. . . . 5
⊢ ((𝑁 ∈ ℕ ∧ (𝑥 ∈ (Base‘𝐺) ∧ 𝑦 ∈ (Base‘𝐺) ∧ 𝑧 ∈ (Base‘𝐺))) → ((𝑥(+g‘𝐺)𝑦) ∘f · 𝑧) = ((𝑥 ∘f · 𝑦) ∘f ·
𝑧)) |
| 25 | 3, 4, 5, 6, 22, 16 | dchrmul 27216 |
. . . . . 6
⊢ ((𝑁 ∈ ℕ ∧ (𝑥 ∈ (Base‘𝐺) ∧ 𝑦 ∈ (Base‘𝐺) ∧ 𝑧 ∈ (Base‘𝐺))) → (𝑦(+g‘𝐺)𝑧) = (𝑦 ∘f · 𝑧)) |
| 26 | 25 | oveq2d 7426 |
. . . . 5
⊢ ((𝑁 ∈ ℕ ∧ (𝑥 ∈ (Base‘𝐺) ∧ 𝑦 ∈ (Base‘𝐺) ∧ 𝑧 ∈ (Base‘𝐺))) → (𝑥 ∘f · (𝑦(+g‘𝐺)𝑧)) = (𝑥 ∘f · (𝑦 ∘f ·
𝑧))) |
| 27 | 20, 24, 26 | 3eqtr4d 2781 |
. . . 4
⊢ ((𝑁 ∈ ℕ ∧ (𝑥 ∈ (Base‘𝐺) ∧ 𝑦 ∈ (Base‘𝐺) ∧ 𝑧 ∈ (Base‘𝐺))) → ((𝑥(+g‘𝐺)𝑦) ∘f · 𝑧) = (𝑥 ∘f · (𝑦(+g‘𝐺)𝑧))) |
| 28 | 9 | 3adant3r3 1185 |
. . . . 5
⊢ ((𝑁 ∈ ℕ ∧ (𝑥 ∈ (Base‘𝐺) ∧ 𝑦 ∈ (Base‘𝐺) ∧ 𝑧 ∈ (Base‘𝐺))) → (𝑥(+g‘𝐺)𝑦) ∈ (Base‘𝐺)) |
| 29 | 3, 4, 5, 6, 28, 16 | dchrmul 27216 |
. . . 4
⊢ ((𝑁 ∈ ℕ ∧ (𝑥 ∈ (Base‘𝐺) ∧ 𝑦 ∈ (Base‘𝐺) ∧ 𝑧 ∈ (Base‘𝐺))) → ((𝑥(+g‘𝐺)𝑦)(+g‘𝐺)𝑧) = ((𝑥(+g‘𝐺)𝑦) ∘f · 𝑧)) |
| 30 | 3, 4, 5, 6, 22, 16 | dchrmulcl 27217 |
. . . . 5
⊢ ((𝑁 ∈ ℕ ∧ (𝑥 ∈ (Base‘𝐺) ∧ 𝑦 ∈ (Base‘𝐺) ∧ 𝑧 ∈ (Base‘𝐺))) → (𝑦(+g‘𝐺)𝑧) ∈ (Base‘𝐺)) |
| 31 | 3, 4, 5, 6, 21, 30 | dchrmul 27216 |
. . . 4
⊢ ((𝑁 ∈ ℕ ∧ (𝑥 ∈ (Base‘𝐺) ∧ 𝑦 ∈ (Base‘𝐺) ∧ 𝑧 ∈ (Base‘𝐺))) → (𝑥(+g‘𝐺)(𝑦(+g‘𝐺)𝑧)) = (𝑥 ∘f · (𝑦(+g‘𝐺)𝑧))) |
| 32 | 27, 29, 31 | 3eqtr4d 2781 |
. . 3
⊢ ((𝑁 ∈ ℕ ∧ (𝑥 ∈ (Base‘𝐺) ∧ 𝑦 ∈ (Base‘𝐺) ∧ 𝑧 ∈ (Base‘𝐺))) → ((𝑥(+g‘𝐺)𝑦)(+g‘𝐺)𝑧) = (𝑥(+g‘𝐺)(𝑦(+g‘𝐺)𝑧))) |
| 33 | | eqid 2736 |
. . . 4
⊢
(Unit‘(ℤ/nℤ‘𝑁)) =
(Unit‘(ℤ/nℤ‘𝑁)) |
| 34 | | eqid 2736 |
. . . 4
⊢ (𝑘 ∈
(Base‘(ℤ/nℤ‘𝑁)) ↦ if(𝑘 ∈
(Unit‘(ℤ/nℤ‘𝑁)), 1, 0)) = (𝑘 ∈
(Base‘(ℤ/nℤ‘𝑁)) ↦ if(𝑘 ∈
(Unit‘(ℤ/nℤ‘𝑁)), 1, 0)) |
| 35 | | id 22 |
. . . 4
⊢ (𝑁 ∈ ℕ → 𝑁 ∈
ℕ) |
| 36 | 3, 4, 5, 11, 33, 34, 35 | dchr1cl 27219 |
. . 3
⊢ (𝑁 ∈ ℕ → (𝑘 ∈
(Base‘(ℤ/nℤ‘𝑁)) ↦ if(𝑘 ∈
(Unit‘(ℤ/nℤ‘𝑁)), 1, 0)) ∈ (Base‘𝐺)) |
| 37 | | simpr 484 |
. . . 4
⊢ ((𝑁 ∈ ℕ ∧ 𝑥 ∈ (Base‘𝐺)) → 𝑥 ∈ (Base‘𝐺)) |
| 38 | 3, 4, 5, 11, 33, 34, 6, 37 | dchrmullid 27220 |
. . 3
⊢ ((𝑁 ∈ ℕ ∧ 𝑥 ∈ (Base‘𝐺)) → ((𝑘 ∈
(Base‘(ℤ/nℤ‘𝑁)) ↦ if(𝑘 ∈
(Unit‘(ℤ/nℤ‘𝑁)), 1, 0))(+g‘𝐺)𝑥) = 𝑥) |
| 39 | | eqid 2736 |
. . . . 5
⊢ (𝑘 ∈
(Base‘(ℤ/nℤ‘𝑁)) ↦ if(𝑘 ∈
(Unit‘(ℤ/nℤ‘𝑁)), (1 / (𝑥‘𝑘)), 0)) = (𝑘 ∈
(Base‘(ℤ/nℤ‘𝑁)) ↦ if(𝑘 ∈
(Unit‘(ℤ/nℤ‘𝑁)), (1 / (𝑥‘𝑘)), 0)) |
| 40 | 3, 4, 5, 11, 33, 34, 6, 37, 39 | dchrinvcl 27221 |
. . . 4
⊢ ((𝑁 ∈ ℕ ∧ 𝑥 ∈ (Base‘𝐺)) → ((𝑘 ∈
(Base‘(ℤ/nℤ‘𝑁)) ↦ if(𝑘 ∈
(Unit‘(ℤ/nℤ‘𝑁)), (1 / (𝑥‘𝑘)), 0)) ∈ (Base‘𝐺) ∧ ((𝑘 ∈
(Base‘(ℤ/nℤ‘𝑁)) ↦ if(𝑘 ∈
(Unit‘(ℤ/nℤ‘𝑁)), (1 / (𝑥‘𝑘)), 0))(+g‘𝐺)𝑥) = (𝑘 ∈
(Base‘(ℤ/nℤ‘𝑁)) ↦ if(𝑘 ∈
(Unit‘(ℤ/nℤ‘𝑁)), 1, 0)))) |
| 41 | 40 | simpld 494 |
. . 3
⊢ ((𝑁 ∈ ℕ ∧ 𝑥 ∈ (Base‘𝐺)) → (𝑘 ∈
(Base‘(ℤ/nℤ‘𝑁)) ↦ if(𝑘 ∈
(Unit‘(ℤ/nℤ‘𝑁)), (1 / (𝑥‘𝑘)), 0)) ∈ (Base‘𝐺)) |
| 42 | 40 | simprd 495 |
. . 3
⊢ ((𝑁 ∈ ℕ ∧ 𝑥 ∈ (Base‘𝐺)) → ((𝑘 ∈
(Base‘(ℤ/nℤ‘𝑁)) ↦ if(𝑘 ∈
(Unit‘(ℤ/nℤ‘𝑁)), (1 / (𝑥‘𝑘)), 0))(+g‘𝐺)𝑥) = (𝑘 ∈
(Base‘(ℤ/nℤ‘𝑁)) ↦ if(𝑘 ∈
(Unit‘(ℤ/nℤ‘𝑁)), 1, 0))) |
| 43 | 1, 2, 9, 32, 36, 38, 41, 42 | isgrpd 18946 |
. 2
⊢ (𝑁 ∈ ℕ → 𝐺 ∈ Grp) |
| 44 | | fvexd 6896 |
. . . 4
⊢ ((𝑁 ∈ ℕ ∧ 𝑥 ∈ (Base‘𝐺) ∧ 𝑦 ∈ (Base‘𝐺)) →
(Base‘(ℤ/nℤ‘𝑁)) ∈ V) |
| 45 | | mulcom 11220 |
. . . . 5
⊢ ((𝑎 ∈ ℂ ∧ 𝑏 ∈ ℂ) → (𝑎 · 𝑏) = (𝑏 · 𝑎)) |
| 46 | 45 | adantl 481 |
. . . 4
⊢ (((𝑁 ∈ ℕ ∧ 𝑥 ∈ (Base‘𝐺) ∧ 𝑦 ∈ (Base‘𝐺)) ∧ (𝑎 ∈ ℂ ∧ 𝑏 ∈ ℂ)) → (𝑎 · 𝑏) = (𝑏 · 𝑎)) |
| 47 | 44, 12, 14, 46 | caofcom 7713 |
. . 3
⊢ ((𝑁 ∈ ℕ ∧ 𝑥 ∈ (Base‘𝐺) ∧ 𝑦 ∈ (Base‘𝐺)) → (𝑥 ∘f · 𝑦) = (𝑦 ∘f · 𝑥)) |
| 48 | 3, 4, 5, 6, 7, 8 | dchrmul 27216 |
. . 3
⊢ ((𝑁 ∈ ℕ ∧ 𝑥 ∈ (Base‘𝐺) ∧ 𝑦 ∈ (Base‘𝐺)) → (𝑥(+g‘𝐺)𝑦) = (𝑥 ∘f · 𝑦)) |
| 49 | 3, 4, 5, 6, 8, 7 | dchrmul 27216 |
. . 3
⊢ ((𝑁 ∈ ℕ ∧ 𝑥 ∈ (Base‘𝐺) ∧ 𝑦 ∈ (Base‘𝐺)) → (𝑦(+g‘𝐺)𝑥) = (𝑦 ∘f · 𝑥)) |
| 50 | 47, 48, 49 | 3eqtr4d 2781 |
. 2
⊢ ((𝑁 ∈ ℕ ∧ 𝑥 ∈ (Base‘𝐺) ∧ 𝑦 ∈ (Base‘𝐺)) → (𝑥(+g‘𝐺)𝑦) = (𝑦(+g‘𝐺)𝑥)) |
| 51 | 1, 2, 43, 50 | isabld 19781 |
1
⊢ (𝑁 ∈ ℕ → 𝐺 ∈ Abel) |