MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  subgabl Structured version   Visualization version   GIF version

Theorem subgabl 19352
Description: A subgroup of an abelian group is also abelian. (Contributed by Mario Carneiro, 3-Dec-2014.)
Hypothesis
Ref Expression
subgabl.h 𝐻 = (𝐺s 𝑆)
Assertion
Ref Expression
subgabl ((𝐺 ∈ Abel ∧ 𝑆 ∈ (SubGrp‘𝐺)) → 𝐻 ∈ Abel)

Proof of Theorem subgabl
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 subgabl.h . . . 4 𝐻 = (𝐺s 𝑆)
21subgbas 18674 . . 3 (𝑆 ∈ (SubGrp‘𝐺) → 𝑆 = (Base‘𝐻))
32adantl 481 . 2 ((𝐺 ∈ Abel ∧ 𝑆 ∈ (SubGrp‘𝐺)) → 𝑆 = (Base‘𝐻))
4 eqid 2738 . . . 4 (+g𝐺) = (+g𝐺)
51, 4ressplusg 16926 . . 3 (𝑆 ∈ (SubGrp‘𝐺) → (+g𝐺) = (+g𝐻))
65adantl 481 . 2 ((𝐺 ∈ Abel ∧ 𝑆 ∈ (SubGrp‘𝐺)) → (+g𝐺) = (+g𝐻))
71subggrp 18673 . . 3 (𝑆 ∈ (SubGrp‘𝐺) → 𝐻 ∈ Grp)
87adantl 481 . 2 ((𝐺 ∈ Abel ∧ 𝑆 ∈ (SubGrp‘𝐺)) → 𝐻 ∈ Grp)
9 simp1l 1195 . . 3 (((𝐺 ∈ Abel ∧ 𝑆 ∈ (SubGrp‘𝐺)) ∧ 𝑥𝑆𝑦𝑆) → 𝐺 ∈ Abel)
10 simp1r 1196 . . . . 5 (((𝐺 ∈ Abel ∧ 𝑆 ∈ (SubGrp‘𝐺)) ∧ 𝑥𝑆𝑦𝑆) → 𝑆 ∈ (SubGrp‘𝐺))
11 eqid 2738 . . . . . 6 (Base‘𝐺) = (Base‘𝐺)
1211subgss 18671 . . . . 5 (𝑆 ∈ (SubGrp‘𝐺) → 𝑆 ⊆ (Base‘𝐺))
1310, 12syl 17 . . . 4 (((𝐺 ∈ Abel ∧ 𝑆 ∈ (SubGrp‘𝐺)) ∧ 𝑥𝑆𝑦𝑆) → 𝑆 ⊆ (Base‘𝐺))
14 simp2 1135 . . . 4 (((𝐺 ∈ Abel ∧ 𝑆 ∈ (SubGrp‘𝐺)) ∧ 𝑥𝑆𝑦𝑆) → 𝑥𝑆)
1513, 14sseldd 3918 . . 3 (((𝐺 ∈ Abel ∧ 𝑆 ∈ (SubGrp‘𝐺)) ∧ 𝑥𝑆𝑦𝑆) → 𝑥 ∈ (Base‘𝐺))
16 simp3 1136 . . . 4 (((𝐺 ∈ Abel ∧ 𝑆 ∈ (SubGrp‘𝐺)) ∧ 𝑥𝑆𝑦𝑆) → 𝑦𝑆)
1713, 16sseldd 3918 . . 3 (((𝐺 ∈ Abel ∧ 𝑆 ∈ (SubGrp‘𝐺)) ∧ 𝑥𝑆𝑦𝑆) → 𝑦 ∈ (Base‘𝐺))
1811, 4ablcom 19319 . . 3 ((𝐺 ∈ Abel ∧ 𝑥 ∈ (Base‘𝐺) ∧ 𝑦 ∈ (Base‘𝐺)) → (𝑥(+g𝐺)𝑦) = (𝑦(+g𝐺)𝑥))
199, 15, 17, 18syl3anc 1369 . 2 (((𝐺 ∈ Abel ∧ 𝑆 ∈ (SubGrp‘𝐺)) ∧ 𝑥𝑆𝑦𝑆) → (𝑥(+g𝐺)𝑦) = (𝑦(+g𝐺)𝑥))
203, 6, 8, 19isabld 19315 1 ((𝐺 ∈ Abel ∧ 𝑆 ∈ (SubGrp‘𝐺)) → 𝐻 ∈ Abel)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1085   = wceq 1539  wcel 2108  wss 3883  cfv 6418  (class class class)co 7255  Basecbs 16840  s cress 16867  +gcplusg 16888  Grpcgrp 18492  SubGrpcsubg 18664  Abelcabl 19302
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-om 7688  df-2nd 7805  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-er 8456  df-en 8692  df-dom 8693  df-sdom 8694  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-nn 11904  df-2 11966  df-sets 16793  df-slot 16811  df-ndx 16823  df-base 16841  df-ress 16868  df-plusg 16901  df-grp 18495  df-subg 18667  df-cmn 19303  df-abl 19304
This theorem is referenced by:  pgpfaclem2  19600  pgpfaclem3  19601  ablfaclem3  19605  efabl  25611  lidlabl  45370
  Copyright terms: Public domain W3C validator