| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > lmodabl | Structured version Visualization version GIF version | ||
| Description: A left module is an abelian group (of vectors, under addition). (Contributed by NM, 8-Dec-2013.) (Revised by Mario Carneiro, 25-Jun-2014.) |
| Ref | Expression |
|---|---|
| lmodabl | ⊢ (𝑊 ∈ LMod → 𝑊 ∈ Abel) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqidd 2736 | . 2 ⊢ (𝑊 ∈ LMod → (Base‘𝑊) = (Base‘𝑊)) | |
| 2 | eqidd 2736 | . 2 ⊢ (𝑊 ∈ LMod → (+g‘𝑊) = (+g‘𝑊)) | |
| 3 | lmodgrp 20822 | . 2 ⊢ (𝑊 ∈ LMod → 𝑊 ∈ Grp) | |
| 4 | eqid 2735 | . . 3 ⊢ (Base‘𝑊) = (Base‘𝑊) | |
| 5 | eqid 2735 | . . 3 ⊢ (+g‘𝑊) = (+g‘𝑊) | |
| 6 | 4, 5 | lmodcom 20863 | . 2 ⊢ ((𝑊 ∈ LMod ∧ 𝑥 ∈ (Base‘𝑊) ∧ 𝑦 ∈ (Base‘𝑊)) → (𝑥(+g‘𝑊)𝑦) = (𝑦(+g‘𝑊)𝑥)) |
| 7 | 1, 2, 3, 6 | isabld 19774 | 1 ⊢ (𝑊 ∈ LMod → 𝑊 ∈ Abel) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2108 ‘cfv 6530 Basecbs 17226 +gcplusg 17269 Abelcabl 19760 LModclmod 20815 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-sep 5266 ax-nul 5276 ax-pow 5335 ax-pr 5402 ax-un 7727 ax-cnex 11183 ax-resscn 11184 ax-1cn 11185 ax-icn 11186 ax-addcl 11187 ax-addrcl 11188 ax-mulcl 11189 ax-mulrcl 11190 ax-mulcom 11191 ax-addass 11192 ax-mulass 11193 ax-distr 11194 ax-i2m1 11195 ax-1ne0 11196 ax-1rid 11197 ax-rnegex 11198 ax-rrecex 11199 ax-cnre 11200 ax-pre-lttri 11201 ax-pre-lttrn 11202 ax-pre-ltadd 11203 ax-pre-mulgt0 11204 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-nel 3037 df-ral 3052 df-rex 3061 df-rmo 3359 df-reu 3360 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-pss 3946 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-iun 4969 df-br 5120 df-opab 5182 df-mpt 5202 df-tr 5230 df-id 5548 df-eprel 5553 df-po 5561 df-so 5562 df-fr 5606 df-we 5608 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-pred 6290 df-ord 6355 df-on 6356 df-lim 6357 df-suc 6358 df-iota 6483 df-fun 6532 df-fn 6533 df-f 6534 df-f1 6535 df-fo 6536 df-f1o 6537 df-fv 6538 df-riota 7360 df-ov 7406 df-oprab 7407 df-mpo 7408 df-om 7860 df-2nd 7987 df-frecs 8278 df-wrecs 8309 df-recs 8383 df-rdg 8422 df-er 8717 df-en 8958 df-dom 8959 df-sdom 8960 df-pnf 11269 df-mnf 11270 df-xr 11271 df-ltxr 11272 df-le 11273 df-sub 11466 df-neg 11467 df-nn 12239 df-2 12301 df-sets 17181 df-slot 17199 df-ndx 17211 df-base 17227 df-plusg 17282 df-0g 17453 df-mgm 18616 df-sgrp 18695 df-mnd 18711 df-grp 18917 df-minusg 18918 df-cmn 19761 df-abl 19762 df-mgp 20099 df-ur 20140 df-ring 20193 df-lmod 20817 |
| This theorem is referenced by: lmodcmn 20865 lmodnegadd 20866 lmodvsubadd 20868 lmodvaddsub4 20869 lssvancl1 20900 invlmhm 20998 lmhmplusg 21000 lsmcl 21039 lspprabs 21051 pj1lmhm 21056 pj1lmhm2 21057 lvecindp 21097 lvecindp2 21098 lsmcv 21100 zlmlmod 21481 pjdm2 21669 pjf2 21672 pjfo 21673 ocvpj 21675 frlmsslsp 21754 nlmtlm 24631 ngpocelbl 24641 nmhmplusg 24694 clmabl 25018 cvsi 25079 minveclem2 25376 pjthlem2 25388 ttgcontlem1 28810 quslmod 33319 quslmhm 33320 lindsunlem 33610 qusdimsum 33614 fedgmullem2 33616 bj-modssabl 37244 lcvexchlem3 39000 lcvexchlem4 39001 lcvexchlem5 39002 lsatcvatlem 39013 lsatcvat 39014 lsatcvat3 39016 l1cvat 39019 lshpsmreu 39073 lshpkrlem5 39078 dia2dimlem5 41033 dihjatc3 41278 dihmeetlem9N 41280 dihjatcclem1 41383 dihjat 41388 lclkrlem2b 41473 baerlem3lem1 41672 baerlem5alem1 41673 baerlem5blem1 41674 baerlem3lem2 41675 baerlem5alem2 41676 baerlem5blem2 41677 hdmaprnlem7N 41820 isnumbasgrplem3 43076 gsumlsscl 48303 |
| Copyright terms: Public domain | W3C validator |