| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > lmodabl | Structured version Visualization version GIF version | ||
| Description: A left module is an abelian group (of vectors, under addition). (Contributed by NM, 8-Dec-2013.) (Revised by Mario Carneiro, 25-Jun-2014.) |
| Ref | Expression |
|---|---|
| lmodabl | ⊢ (𝑊 ∈ LMod → 𝑊 ∈ Abel) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqidd 2730 | . 2 ⊢ (𝑊 ∈ LMod → (Base‘𝑊) = (Base‘𝑊)) | |
| 2 | eqidd 2730 | . 2 ⊢ (𝑊 ∈ LMod → (+g‘𝑊) = (+g‘𝑊)) | |
| 3 | lmodgrp 20773 | . 2 ⊢ (𝑊 ∈ LMod → 𝑊 ∈ Grp) | |
| 4 | eqid 2729 | . . 3 ⊢ (Base‘𝑊) = (Base‘𝑊) | |
| 5 | eqid 2729 | . . 3 ⊢ (+g‘𝑊) = (+g‘𝑊) | |
| 6 | 4, 5 | lmodcom 20814 | . 2 ⊢ ((𝑊 ∈ LMod ∧ 𝑥 ∈ (Base‘𝑊) ∧ 𝑦 ∈ (Base‘𝑊)) → (𝑥(+g‘𝑊)𝑦) = (𝑦(+g‘𝑊)𝑥)) |
| 7 | 1, 2, 3, 6 | isabld 19725 | 1 ⊢ (𝑊 ∈ LMod → 𝑊 ∈ Abel) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2109 ‘cfv 6511 Basecbs 17179 +gcplusg 17220 Abelcabl 19711 LModclmod 20766 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 ax-cnex 11124 ax-resscn 11125 ax-1cn 11126 ax-icn 11127 ax-addcl 11128 ax-addrcl 11129 ax-mulcl 11130 ax-mulrcl 11131 ax-mulcom 11132 ax-addass 11133 ax-mulass 11134 ax-distr 11135 ax-i2m1 11136 ax-1ne0 11137 ax-1rid 11138 ax-rnegex 11139 ax-rrecex 11140 ax-cnre 11141 ax-pre-lttri 11142 ax-pre-lttrn 11143 ax-pre-ltadd 11144 ax-pre-mulgt0 11145 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3354 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-pss 3934 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-iun 4957 df-br 5108 df-opab 5170 df-mpt 5189 df-tr 5215 df-id 5533 df-eprel 5538 df-po 5546 df-so 5547 df-fr 5591 df-we 5593 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-pred 6274 df-ord 6335 df-on 6336 df-lim 6337 df-suc 6338 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-riota 7344 df-ov 7390 df-oprab 7391 df-mpo 7392 df-om 7843 df-2nd 7969 df-frecs 8260 df-wrecs 8291 df-recs 8340 df-rdg 8378 df-er 8671 df-en 8919 df-dom 8920 df-sdom 8921 df-pnf 11210 df-mnf 11211 df-xr 11212 df-ltxr 11213 df-le 11214 df-sub 11407 df-neg 11408 df-nn 12187 df-2 12249 df-sets 17134 df-slot 17152 df-ndx 17164 df-base 17180 df-plusg 17233 df-0g 17404 df-mgm 18567 df-sgrp 18646 df-mnd 18662 df-grp 18868 df-minusg 18869 df-cmn 19712 df-abl 19713 df-mgp 20050 df-ur 20091 df-ring 20144 df-lmod 20768 |
| This theorem is referenced by: lmodcmn 20816 lmodnegadd 20817 lmodvsubadd 20819 lmodvaddsub4 20820 lssvancl1 20851 invlmhm 20949 lmhmplusg 20951 lsmcl 20990 lspprabs 21002 pj1lmhm 21007 pj1lmhm2 21008 lvecindp 21048 lvecindp2 21049 lsmcv 21051 zlmlmod 21432 pjdm2 21620 pjf2 21623 pjfo 21624 ocvpj 21626 frlmsslsp 21705 nlmtlm 24582 ngpocelbl 24592 nmhmplusg 24645 clmabl 24969 cvsi 25030 minveclem2 25326 pjthlem2 25338 ttgcontlem1 28812 quslmod 33329 quslmhm 33330 lindsunlem 33620 qusdimsum 33624 fedgmullem2 33626 bj-modssabl 37268 lcvexchlem3 39029 lcvexchlem4 39030 lcvexchlem5 39031 lsatcvatlem 39042 lsatcvat 39043 lsatcvat3 39045 l1cvat 39048 lshpsmreu 39102 lshpkrlem5 39107 dia2dimlem5 41062 dihjatc3 41307 dihmeetlem9N 41309 dihjatcclem1 41412 dihjat 41417 lclkrlem2b 41502 baerlem3lem1 41701 baerlem5alem1 41702 baerlem5blem1 41703 baerlem3lem2 41704 baerlem5alem2 41705 baerlem5blem2 41706 hdmaprnlem7N 41849 isnumbasgrplem3 43094 gsumlsscl 48368 |
| Copyright terms: Public domain | W3C validator |