Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  erngdvlem2N Structured version   Visualization version   GIF version

Theorem erngdvlem2N 37002
Description: Lemma for eringring 37005. (Contributed by NM, 6-Aug-2013.) (New usage is discouraged.)
Hypotheses
Ref Expression
ernggrp.h 𝐻 = (LHyp‘𝐾)
ernggrp.d 𝐷 = ((EDRing‘𝐾)‘𝑊)
erngdv.b 𝐵 = (Base‘𝐾)
erngdv.t 𝑇 = ((LTrn‘𝐾)‘𝑊)
erngdv.e 𝐸 = ((TEndo‘𝐾)‘𝑊)
erngdv.p 𝑃 = (𝑎𝐸, 𝑏𝐸 ↦ (𝑓𝑇 ↦ ((𝑎𝑓) ∘ (𝑏𝑓))))
erngdv.o 0 = (𝑓𝑇 ↦ ( I ↾ 𝐵))
erngdv.i 𝐼 = (𝑎𝐸 ↦ (𝑓𝑇(𝑎𝑓)))
Assertion
Ref Expression
erngdvlem2N ((𝐾 ∈ HL ∧ 𝑊𝐻) → 𝐷 ∈ Abel)
Distinct variable groups:   𝐵,𝑓   𝑎,𝑏,𝐸   𝑓,𝑎,𝐾,𝑏   𝑓,𝐻   𝑇,𝑎,𝑏,𝑓   𝑊,𝑎,𝑏,𝑓
Allowed substitution hints:   𝐵(𝑎,𝑏)   𝐷(𝑓,𝑎,𝑏)   𝑃(𝑓,𝑎,𝑏)   𝐸(𝑓)   𝐻(𝑎,𝑏)   𝐼(𝑓,𝑎,𝑏)   0 (𝑓,𝑎,𝑏)

Proof of Theorem erngdvlem2N
Dummy variables 𝑡 𝑠 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ernggrp.h . . . 4 𝐻 = (LHyp‘𝐾)
2 erngdv.t . . . 4 𝑇 = ((LTrn‘𝐾)‘𝑊)
3 erngdv.e . . . 4 𝐸 = ((TEndo‘𝐾)‘𝑊)
4 ernggrp.d . . . 4 𝐷 = ((EDRing‘𝐾)‘𝑊)
5 eqid 2797 . . . 4 (Base‘𝐷) = (Base‘𝐷)
61, 2, 3, 4, 5erngbase 36814 . . 3 ((𝐾 ∈ HL ∧ 𝑊𝐻) → (Base‘𝐷) = 𝐸)
76eqcomd 2803 . 2 ((𝐾 ∈ HL ∧ 𝑊𝐻) → 𝐸 = (Base‘𝐷))
8 eqid 2797 . . . 4 (+g𝐷) = (+g𝐷)
91, 2, 3, 4, 8erngfplus 36815 . . 3 ((𝐾 ∈ HL ∧ 𝑊𝐻) → (+g𝐷) = (𝑎𝐸, 𝑏𝐸 ↦ (𝑓𝑇 ↦ ((𝑎𝑓) ∘ (𝑏𝑓)))))
10 erngdv.p . . 3 𝑃 = (𝑎𝐸, 𝑏𝐸 ↦ (𝑓𝑇 ↦ ((𝑎𝑓) ∘ (𝑏𝑓))))
119, 10syl6reqr 2850 . 2 ((𝐾 ∈ HL ∧ 𝑊𝐻) → 𝑃 = (+g𝐷))
12 erngdv.b . . 3 𝐵 = (Base‘𝐾)
13 erngdv.o . . 3 0 = (𝑓𝑇 ↦ ( I ↾ 𝐵))
14 erngdv.i . . 3 𝐼 = (𝑎𝐸 ↦ (𝑓𝑇(𝑎𝑓)))
151, 4, 12, 2, 3, 10, 13, 14erngdvlem1 37001 . 2 ((𝐾 ∈ HL ∧ 𝑊𝐻) → 𝐷 ∈ Grp)
161, 2, 3, 10tendoplcom 36795 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑠𝐸𝑡𝐸) → (𝑠𝑃𝑡) = (𝑡𝑃𝑠))
177, 11, 15, 16isabld 18518 1 ((𝐾 ∈ HL ∧ 𝑊𝐻) → 𝐷 ∈ Abel)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 385   = wceq 1653  wcel 2157  cmpt 4920   I cid 5217  ccnv 5309  cres 5312  ccom 5314  cfv 6099  cmpt2 6878  Basecbs 16181  +gcplusg 16264  Abelcabl 18506  HLchlt 35363  LHypclh 35997  LTrncltrn 36114  TEndoctendo 36765  EDRingcedring 36766
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1891  ax-4 1905  ax-5 2006  ax-6 2072  ax-7 2107  ax-8 2159  ax-9 2166  ax-10 2185  ax-11 2200  ax-12 2213  ax-13 2354  ax-ext 2775  ax-rep 4962  ax-sep 4973  ax-nul 4981  ax-pow 5033  ax-pr 5095  ax-un 7181  ax-cnex 10278  ax-resscn 10279  ax-1cn 10280  ax-icn 10281  ax-addcl 10282  ax-addrcl 10283  ax-mulcl 10284  ax-mulrcl 10285  ax-mulcom 10286  ax-addass 10287  ax-mulass 10288  ax-distr 10289  ax-i2m1 10290  ax-1ne0 10291  ax-1rid 10292  ax-rnegex 10293  ax-rrecex 10294  ax-cnre 10295  ax-pre-lttri 10296  ax-pre-lttrn 10297  ax-pre-ltadd 10298  ax-pre-mulgt0 10299  ax-riotaBAD 34966
This theorem depends on definitions:  df-bi 199  df-an 386  df-or 875  df-3or 1109  df-3an 1110  df-tru 1657  df-ex 1876  df-nf 1880  df-sb 2065  df-mo 2590  df-eu 2607  df-clab 2784  df-cleq 2790  df-clel 2793  df-nfc 2928  df-ne 2970  df-nel 3073  df-ral 3092  df-rex 3093  df-reu 3094  df-rmo 3095  df-rab 3096  df-v 3385  df-sbc 3632  df-csb 3727  df-dif 3770  df-un 3772  df-in 3774  df-ss 3781  df-pss 3783  df-nul 4114  df-if 4276  df-pw 4349  df-sn 4367  df-pr 4369  df-tp 4371  df-op 4373  df-uni 4627  df-int 4666  df-iun 4710  df-iin 4711  df-br 4842  df-opab 4904  df-mpt 4921  df-tr 4944  df-id 5218  df-eprel 5223  df-po 5231  df-so 5232  df-fr 5269  df-we 5271  df-xp 5316  df-rel 5317  df-cnv 5318  df-co 5319  df-dm 5320  df-rn 5321  df-res 5322  df-ima 5323  df-pred 5896  df-ord 5942  df-on 5943  df-lim 5944  df-suc 5945  df-iota 6062  df-fun 6101  df-fn 6102  df-f 6103  df-f1 6104  df-fo 6105  df-f1o 6106  df-fv 6107  df-riota 6837  df-ov 6879  df-oprab 6880  df-mpt2 6881  df-om 7298  df-1st 7399  df-2nd 7400  df-undef 7635  df-wrecs 7643  df-recs 7705  df-rdg 7743  df-1o 7797  df-oadd 7801  df-er 7980  df-map 8095  df-en 8194  df-dom 8195  df-sdom 8196  df-fin 8197  df-pnf 10363  df-mnf 10364  df-xr 10365  df-ltxr 10366  df-le 10367  df-sub 10556  df-neg 10557  df-nn 11311  df-2 11372  df-3 11373  df-n0 11577  df-z 11663  df-uz 11927  df-fz 12577  df-struct 16183  df-ndx 16184  df-slot 16185  df-base 16187  df-plusg 16277  df-mulr 16278  df-0g 16414  df-proset 17240  df-poset 17258  df-plt 17270  df-lub 17286  df-glb 17287  df-join 17288  df-meet 17289  df-p0 17351  df-p1 17352  df-lat 17358  df-clat 17420  df-mgm 17554  df-sgrp 17596  df-mnd 17607  df-grp 17738  df-cmn 18507  df-abl 18508  df-oposet 35189  df-ol 35191  df-oml 35192  df-covers 35279  df-ats 35280  df-atl 35311  df-cvlat 35335  df-hlat 35364  df-llines 35511  df-lplanes 35512  df-lvols 35513  df-lines 35514  df-psubsp 35516  df-pmap 35517  df-padd 35809  df-lhyp 36001  df-laut 36002  df-ldil 36117  df-ltrn 36118  df-trl 36172  df-tendo 36768  df-edring 36770
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator