| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > erngdvlem2N | Structured version Visualization version GIF version | ||
| Description: Lemma for eringring 40993. (Contributed by NM, 6-Aug-2013.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| ernggrp.h | ⊢ 𝐻 = (LHyp‘𝐾) |
| ernggrp.d | ⊢ 𝐷 = ((EDRing‘𝐾)‘𝑊) |
| erngdv.b | ⊢ 𝐵 = (Base‘𝐾) |
| erngdv.t | ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) |
| erngdv.e | ⊢ 𝐸 = ((TEndo‘𝐾)‘𝑊) |
| erngdv.p | ⊢ 𝑃 = (𝑎 ∈ 𝐸, 𝑏 ∈ 𝐸 ↦ (𝑓 ∈ 𝑇 ↦ ((𝑎‘𝑓) ∘ (𝑏‘𝑓)))) |
| erngdv.o | ⊢ 0 = (𝑓 ∈ 𝑇 ↦ ( I ↾ 𝐵)) |
| erngdv.i | ⊢ 𝐼 = (𝑎 ∈ 𝐸 ↦ (𝑓 ∈ 𝑇 ↦ ◡(𝑎‘𝑓))) |
| Ref | Expression |
|---|---|
| erngdvlem2N | ⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → 𝐷 ∈ Abel) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ernggrp.h | . . . 4 ⊢ 𝐻 = (LHyp‘𝐾) | |
| 2 | erngdv.t | . . . 4 ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) | |
| 3 | erngdv.e | . . . 4 ⊢ 𝐸 = ((TEndo‘𝐾)‘𝑊) | |
| 4 | ernggrp.d | . . . 4 ⊢ 𝐷 = ((EDRing‘𝐾)‘𝑊) | |
| 5 | eqid 2730 | . . . 4 ⊢ (Base‘𝐷) = (Base‘𝐷) | |
| 6 | 1, 2, 3, 4, 5 | erngbase 40802 | . . 3 ⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → (Base‘𝐷) = 𝐸) |
| 7 | 6 | eqcomd 2736 | . 2 ⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → 𝐸 = (Base‘𝐷)) |
| 8 | erngdv.p | . . 3 ⊢ 𝑃 = (𝑎 ∈ 𝐸, 𝑏 ∈ 𝐸 ↦ (𝑓 ∈ 𝑇 ↦ ((𝑎‘𝑓) ∘ (𝑏‘𝑓)))) | |
| 9 | eqid 2730 | . . . 4 ⊢ (+g‘𝐷) = (+g‘𝐷) | |
| 10 | 1, 2, 3, 4, 9 | erngfplus 40803 | . . 3 ⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → (+g‘𝐷) = (𝑎 ∈ 𝐸, 𝑏 ∈ 𝐸 ↦ (𝑓 ∈ 𝑇 ↦ ((𝑎‘𝑓) ∘ (𝑏‘𝑓))))) |
| 11 | 8, 10 | eqtr4id 2784 | . 2 ⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → 𝑃 = (+g‘𝐷)) |
| 12 | erngdv.b | . . 3 ⊢ 𝐵 = (Base‘𝐾) | |
| 13 | erngdv.o | . . 3 ⊢ 0 = (𝑓 ∈ 𝑇 ↦ ( I ↾ 𝐵)) | |
| 14 | erngdv.i | . . 3 ⊢ 𝐼 = (𝑎 ∈ 𝐸 ↦ (𝑓 ∈ 𝑇 ↦ ◡(𝑎‘𝑓))) | |
| 15 | 1, 4, 12, 2, 3, 8, 13, 14 | erngdvlem1 40989 | . 2 ⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → 𝐷 ∈ Grp) |
| 16 | 1, 2, 3, 8 | tendoplcom 40783 | . 2 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑠 ∈ 𝐸 ∧ 𝑡 ∈ 𝐸) → (𝑠𝑃𝑡) = (𝑡𝑃𝑠)) |
| 17 | 7, 11, 15, 16 | isabld 19732 | 1 ⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → 𝐷 ∈ Abel) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ↦ cmpt 5191 I cid 5535 ◡ccnv 5640 ↾ cres 5643 ∘ ccom 5645 ‘cfv 6514 ∈ cmpo 7392 Basecbs 17186 +gcplusg 17227 Abelcabl 19718 HLchlt 39350 LHypclh 39985 LTrncltrn 40102 TEndoctendo 40753 EDRingcedring 40754 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-rep 5237 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 ax-cnex 11131 ax-resscn 11132 ax-1cn 11133 ax-icn 11134 ax-addcl 11135 ax-addrcl 11136 ax-mulcl 11137 ax-mulrcl 11138 ax-mulcom 11139 ax-addass 11140 ax-mulass 11141 ax-distr 11142 ax-i2m1 11143 ax-1ne0 11144 ax-1rid 11145 ax-rnegex 11146 ax-rrecex 11147 ax-cnre 11148 ax-pre-lttri 11149 ax-pre-lttrn 11150 ax-pre-ltadd 11151 ax-pre-mulgt0 11152 ax-riotaBAD 38953 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-nel 3031 df-ral 3046 df-rex 3055 df-rmo 3356 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-pss 3937 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-tp 4597 df-op 4599 df-uni 4875 df-iun 4960 df-iin 4961 df-br 5111 df-opab 5173 df-mpt 5192 df-tr 5218 df-id 5536 df-eprel 5541 df-po 5549 df-so 5550 df-fr 5594 df-we 5596 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-pred 6277 df-ord 6338 df-on 6339 df-lim 6340 df-suc 6341 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-fv 6522 df-riota 7347 df-ov 7393 df-oprab 7394 df-mpo 7395 df-om 7846 df-1st 7971 df-2nd 7972 df-undef 8255 df-frecs 8263 df-wrecs 8294 df-recs 8343 df-rdg 8381 df-1o 8437 df-er 8674 df-map 8804 df-en 8922 df-dom 8923 df-sdom 8924 df-fin 8925 df-pnf 11217 df-mnf 11218 df-xr 11219 df-ltxr 11220 df-le 11221 df-sub 11414 df-neg 11415 df-nn 12194 df-2 12256 df-3 12257 df-n0 12450 df-z 12537 df-uz 12801 df-fz 13476 df-struct 17124 df-slot 17159 df-ndx 17171 df-base 17187 df-plusg 17240 df-mulr 17241 df-0g 17411 df-proset 18262 df-poset 18281 df-plt 18296 df-lub 18312 df-glb 18313 df-join 18314 df-meet 18315 df-p0 18391 df-p1 18392 df-lat 18398 df-clat 18465 df-mgm 18574 df-sgrp 18653 df-mnd 18669 df-grp 18875 df-cmn 19719 df-abl 19720 df-oposet 39176 df-ol 39178 df-oml 39179 df-covers 39266 df-ats 39267 df-atl 39298 df-cvlat 39322 df-hlat 39351 df-llines 39499 df-lplanes 39500 df-lvols 39501 df-lines 39502 df-psubsp 39504 df-pmap 39505 df-padd 39797 df-lhyp 39989 df-laut 39990 df-ldil 40105 df-ltrn 40106 df-trl 40160 df-tendo 40756 df-edring 40758 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |