| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > erngdvlem2N | Structured version Visualization version GIF version | ||
| Description: Lemma for eringring 41101. (Contributed by NM, 6-Aug-2013.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| ernggrp.h | ⊢ 𝐻 = (LHyp‘𝐾) |
| ernggrp.d | ⊢ 𝐷 = ((EDRing‘𝐾)‘𝑊) |
| erngdv.b | ⊢ 𝐵 = (Base‘𝐾) |
| erngdv.t | ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) |
| erngdv.e | ⊢ 𝐸 = ((TEndo‘𝐾)‘𝑊) |
| erngdv.p | ⊢ 𝑃 = (𝑎 ∈ 𝐸, 𝑏 ∈ 𝐸 ↦ (𝑓 ∈ 𝑇 ↦ ((𝑎‘𝑓) ∘ (𝑏‘𝑓)))) |
| erngdv.o | ⊢ 0 = (𝑓 ∈ 𝑇 ↦ ( I ↾ 𝐵)) |
| erngdv.i | ⊢ 𝐼 = (𝑎 ∈ 𝐸 ↦ (𝑓 ∈ 𝑇 ↦ ◡(𝑎‘𝑓))) |
| Ref | Expression |
|---|---|
| erngdvlem2N | ⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → 𝐷 ∈ Abel) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ernggrp.h | . . . 4 ⊢ 𝐻 = (LHyp‘𝐾) | |
| 2 | erngdv.t | . . . 4 ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) | |
| 3 | erngdv.e | . . . 4 ⊢ 𝐸 = ((TEndo‘𝐾)‘𝑊) | |
| 4 | ernggrp.d | . . . 4 ⊢ 𝐷 = ((EDRing‘𝐾)‘𝑊) | |
| 5 | eqid 2731 | . . . 4 ⊢ (Base‘𝐷) = (Base‘𝐷) | |
| 6 | 1, 2, 3, 4, 5 | erngbase 40910 | . . 3 ⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → (Base‘𝐷) = 𝐸) |
| 7 | 6 | eqcomd 2737 | . 2 ⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → 𝐸 = (Base‘𝐷)) |
| 8 | erngdv.p | . . 3 ⊢ 𝑃 = (𝑎 ∈ 𝐸, 𝑏 ∈ 𝐸 ↦ (𝑓 ∈ 𝑇 ↦ ((𝑎‘𝑓) ∘ (𝑏‘𝑓)))) | |
| 9 | eqid 2731 | . . . 4 ⊢ (+g‘𝐷) = (+g‘𝐷) | |
| 10 | 1, 2, 3, 4, 9 | erngfplus 40911 | . . 3 ⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → (+g‘𝐷) = (𝑎 ∈ 𝐸, 𝑏 ∈ 𝐸 ↦ (𝑓 ∈ 𝑇 ↦ ((𝑎‘𝑓) ∘ (𝑏‘𝑓))))) |
| 11 | 8, 10 | eqtr4id 2785 | . 2 ⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → 𝑃 = (+g‘𝐷)) |
| 12 | erngdv.b | . . 3 ⊢ 𝐵 = (Base‘𝐾) | |
| 13 | erngdv.o | . . 3 ⊢ 0 = (𝑓 ∈ 𝑇 ↦ ( I ↾ 𝐵)) | |
| 14 | erngdv.i | . . 3 ⊢ 𝐼 = (𝑎 ∈ 𝐸 ↦ (𝑓 ∈ 𝑇 ↦ ◡(𝑎‘𝑓))) | |
| 15 | 1, 4, 12, 2, 3, 8, 13, 14 | erngdvlem1 41097 | . 2 ⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → 𝐷 ∈ Grp) |
| 16 | 1, 2, 3, 8 | tendoplcom 40891 | . 2 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑠 ∈ 𝐸 ∧ 𝑡 ∈ 𝐸) → (𝑠𝑃𝑡) = (𝑡𝑃𝑠)) |
| 17 | 7, 11, 15, 16 | isabld 19707 | 1 ⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → 𝐷 ∈ Abel) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2111 ↦ cmpt 5170 I cid 5508 ◡ccnv 5613 ↾ cres 5616 ∘ ccom 5618 ‘cfv 6481 ∈ cmpo 7348 Basecbs 17120 +gcplusg 17161 Abelcabl 19693 HLchlt 39459 LHypclh 40093 LTrncltrn 40210 TEndoctendo 40861 EDRingcedring 40862 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5215 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 ax-un 7668 ax-cnex 11062 ax-resscn 11063 ax-1cn 11064 ax-icn 11065 ax-addcl 11066 ax-addrcl 11067 ax-mulcl 11068 ax-mulrcl 11069 ax-mulcom 11070 ax-addass 11071 ax-mulass 11072 ax-distr 11073 ax-i2m1 11074 ax-1ne0 11075 ax-1rid 11076 ax-rnegex 11077 ax-rrecex 11078 ax-cnre 11079 ax-pre-lttri 11080 ax-pre-lttrn 11081 ax-pre-ltadd 11082 ax-pre-mulgt0 11083 ax-riotaBAD 39062 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3917 df-nul 4281 df-if 4473 df-pw 4549 df-sn 4574 df-pr 4576 df-tp 4578 df-op 4580 df-uni 4857 df-iun 4941 df-iin 4942 df-br 5090 df-opab 5152 df-mpt 5171 df-tr 5197 df-id 5509 df-eprel 5514 df-po 5522 df-so 5523 df-fr 5567 df-we 5569 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-pred 6248 df-ord 6309 df-on 6310 df-lim 6311 df-suc 6312 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-riota 7303 df-ov 7349 df-oprab 7350 df-mpo 7351 df-om 7797 df-1st 7921 df-2nd 7922 df-undef 8203 df-frecs 8211 df-wrecs 8242 df-recs 8291 df-rdg 8329 df-1o 8385 df-er 8622 df-map 8752 df-en 8870 df-dom 8871 df-sdom 8872 df-fin 8873 df-pnf 11148 df-mnf 11149 df-xr 11150 df-ltxr 11151 df-le 11152 df-sub 11346 df-neg 11347 df-nn 12126 df-2 12188 df-3 12189 df-n0 12382 df-z 12469 df-uz 12733 df-fz 13408 df-struct 17058 df-slot 17093 df-ndx 17105 df-base 17121 df-plusg 17174 df-mulr 17175 df-0g 17345 df-proset 18200 df-poset 18219 df-plt 18234 df-lub 18250 df-glb 18251 df-join 18252 df-meet 18253 df-p0 18329 df-p1 18330 df-lat 18338 df-clat 18405 df-mgm 18548 df-sgrp 18627 df-mnd 18643 df-grp 18849 df-cmn 19694 df-abl 19695 df-oposet 39285 df-ol 39287 df-oml 39288 df-covers 39375 df-ats 39376 df-atl 39407 df-cvlat 39431 df-hlat 39460 df-llines 39607 df-lplanes 39608 df-lvols 39609 df-lines 39610 df-psubsp 39612 df-pmap 39613 df-padd 39905 df-lhyp 40097 df-laut 40098 df-ldil 40213 df-ltrn 40214 df-trl 40268 df-tendo 40864 df-edring 40866 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |