![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > erngdvlem2N | Structured version Visualization version GIF version |
Description: Lemma for eringring 37005. (Contributed by NM, 6-Aug-2013.) (New usage is discouraged.) |
Ref | Expression |
---|---|
ernggrp.h | ⊢ 𝐻 = (LHyp‘𝐾) |
ernggrp.d | ⊢ 𝐷 = ((EDRing‘𝐾)‘𝑊) |
erngdv.b | ⊢ 𝐵 = (Base‘𝐾) |
erngdv.t | ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) |
erngdv.e | ⊢ 𝐸 = ((TEndo‘𝐾)‘𝑊) |
erngdv.p | ⊢ 𝑃 = (𝑎 ∈ 𝐸, 𝑏 ∈ 𝐸 ↦ (𝑓 ∈ 𝑇 ↦ ((𝑎‘𝑓) ∘ (𝑏‘𝑓)))) |
erngdv.o | ⊢ 0 = (𝑓 ∈ 𝑇 ↦ ( I ↾ 𝐵)) |
erngdv.i | ⊢ 𝐼 = (𝑎 ∈ 𝐸 ↦ (𝑓 ∈ 𝑇 ↦ ◡(𝑎‘𝑓))) |
Ref | Expression |
---|---|
erngdvlem2N | ⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → 𝐷 ∈ Abel) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ernggrp.h | . . . 4 ⊢ 𝐻 = (LHyp‘𝐾) | |
2 | erngdv.t | . . . 4 ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) | |
3 | erngdv.e | . . . 4 ⊢ 𝐸 = ((TEndo‘𝐾)‘𝑊) | |
4 | ernggrp.d | . . . 4 ⊢ 𝐷 = ((EDRing‘𝐾)‘𝑊) | |
5 | eqid 2797 | . . . 4 ⊢ (Base‘𝐷) = (Base‘𝐷) | |
6 | 1, 2, 3, 4, 5 | erngbase 36814 | . . 3 ⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → (Base‘𝐷) = 𝐸) |
7 | 6 | eqcomd 2803 | . 2 ⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → 𝐸 = (Base‘𝐷)) |
8 | eqid 2797 | . . . 4 ⊢ (+g‘𝐷) = (+g‘𝐷) | |
9 | 1, 2, 3, 4, 8 | erngfplus 36815 | . . 3 ⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → (+g‘𝐷) = (𝑎 ∈ 𝐸, 𝑏 ∈ 𝐸 ↦ (𝑓 ∈ 𝑇 ↦ ((𝑎‘𝑓) ∘ (𝑏‘𝑓))))) |
10 | erngdv.p | . . 3 ⊢ 𝑃 = (𝑎 ∈ 𝐸, 𝑏 ∈ 𝐸 ↦ (𝑓 ∈ 𝑇 ↦ ((𝑎‘𝑓) ∘ (𝑏‘𝑓)))) | |
11 | 9, 10 | syl6reqr 2850 | . 2 ⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → 𝑃 = (+g‘𝐷)) |
12 | erngdv.b | . . 3 ⊢ 𝐵 = (Base‘𝐾) | |
13 | erngdv.o | . . 3 ⊢ 0 = (𝑓 ∈ 𝑇 ↦ ( I ↾ 𝐵)) | |
14 | erngdv.i | . . 3 ⊢ 𝐼 = (𝑎 ∈ 𝐸 ↦ (𝑓 ∈ 𝑇 ↦ ◡(𝑎‘𝑓))) | |
15 | 1, 4, 12, 2, 3, 10, 13, 14 | erngdvlem1 37001 | . 2 ⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → 𝐷 ∈ Grp) |
16 | 1, 2, 3, 10 | tendoplcom 36795 | . 2 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑠 ∈ 𝐸 ∧ 𝑡 ∈ 𝐸) → (𝑠𝑃𝑡) = (𝑡𝑃𝑠)) |
17 | 7, 11, 15, 16 | isabld 18518 | 1 ⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → 𝐷 ∈ Abel) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 385 = wceq 1653 ∈ wcel 2157 ↦ cmpt 4920 I cid 5217 ◡ccnv 5309 ↾ cres 5312 ∘ ccom 5314 ‘cfv 6099 ↦ cmpt2 6878 Basecbs 16181 +gcplusg 16264 Abelcabl 18506 HLchlt 35363 LHypclh 35997 LTrncltrn 36114 TEndoctendo 36765 EDRingcedring 36766 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1891 ax-4 1905 ax-5 2006 ax-6 2072 ax-7 2107 ax-8 2159 ax-9 2166 ax-10 2185 ax-11 2200 ax-12 2213 ax-13 2354 ax-ext 2775 ax-rep 4962 ax-sep 4973 ax-nul 4981 ax-pow 5033 ax-pr 5095 ax-un 7181 ax-cnex 10278 ax-resscn 10279 ax-1cn 10280 ax-icn 10281 ax-addcl 10282 ax-addrcl 10283 ax-mulcl 10284 ax-mulrcl 10285 ax-mulcom 10286 ax-addass 10287 ax-mulass 10288 ax-distr 10289 ax-i2m1 10290 ax-1ne0 10291 ax-1rid 10292 ax-rnegex 10293 ax-rrecex 10294 ax-cnre 10295 ax-pre-lttri 10296 ax-pre-lttrn 10297 ax-pre-ltadd 10298 ax-pre-mulgt0 10299 ax-riotaBAD 34966 |
This theorem depends on definitions: df-bi 199 df-an 386 df-or 875 df-3or 1109 df-3an 1110 df-tru 1657 df-ex 1876 df-nf 1880 df-sb 2065 df-mo 2590 df-eu 2607 df-clab 2784 df-cleq 2790 df-clel 2793 df-nfc 2928 df-ne 2970 df-nel 3073 df-ral 3092 df-rex 3093 df-reu 3094 df-rmo 3095 df-rab 3096 df-v 3385 df-sbc 3632 df-csb 3727 df-dif 3770 df-un 3772 df-in 3774 df-ss 3781 df-pss 3783 df-nul 4114 df-if 4276 df-pw 4349 df-sn 4367 df-pr 4369 df-tp 4371 df-op 4373 df-uni 4627 df-int 4666 df-iun 4710 df-iin 4711 df-br 4842 df-opab 4904 df-mpt 4921 df-tr 4944 df-id 5218 df-eprel 5223 df-po 5231 df-so 5232 df-fr 5269 df-we 5271 df-xp 5316 df-rel 5317 df-cnv 5318 df-co 5319 df-dm 5320 df-rn 5321 df-res 5322 df-ima 5323 df-pred 5896 df-ord 5942 df-on 5943 df-lim 5944 df-suc 5945 df-iota 6062 df-fun 6101 df-fn 6102 df-f 6103 df-f1 6104 df-fo 6105 df-f1o 6106 df-fv 6107 df-riota 6837 df-ov 6879 df-oprab 6880 df-mpt2 6881 df-om 7298 df-1st 7399 df-2nd 7400 df-undef 7635 df-wrecs 7643 df-recs 7705 df-rdg 7743 df-1o 7797 df-oadd 7801 df-er 7980 df-map 8095 df-en 8194 df-dom 8195 df-sdom 8196 df-fin 8197 df-pnf 10363 df-mnf 10364 df-xr 10365 df-ltxr 10366 df-le 10367 df-sub 10556 df-neg 10557 df-nn 11311 df-2 11372 df-3 11373 df-n0 11577 df-z 11663 df-uz 11927 df-fz 12577 df-struct 16183 df-ndx 16184 df-slot 16185 df-base 16187 df-plusg 16277 df-mulr 16278 df-0g 16414 df-proset 17240 df-poset 17258 df-plt 17270 df-lub 17286 df-glb 17287 df-join 17288 df-meet 17289 df-p0 17351 df-p1 17352 df-lat 17358 df-clat 17420 df-mgm 17554 df-sgrp 17596 df-mnd 17607 df-grp 17738 df-cmn 18507 df-abl 18508 df-oposet 35189 df-ol 35191 df-oml 35192 df-covers 35279 df-ats 35280 df-atl 35311 df-cvlat 35335 df-hlat 35364 df-llines 35511 df-lplanes 35512 df-lvols 35513 df-lines 35514 df-psubsp 35516 df-pmap 35517 df-padd 35809 df-lhyp 36001 df-laut 36002 df-ldil 36117 df-ltrn 36118 df-trl 36172 df-tendo 36768 df-edring 36770 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |