MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  gex2abl Structured version   Visualization version   GIF version

Theorem gex2abl 19758
Description: A group with exponent 2 (or 1) is abelian. (Contributed by Mario Carneiro, 24-Apr-2016.)
Hypotheses
Ref Expression
gexex.1 𝑋 = (Base‘𝐺)
gexex.2 𝐸 = (gEx‘𝐺)
Assertion
Ref Expression
gex2abl ((𝐺 ∈ Grp ∧ 𝐸 ∥ 2) → 𝐺 ∈ Abel)

Proof of Theorem gex2abl
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 gexex.1 . . 3 𝑋 = (Base‘𝐺)
21a1i 11 . 2 ((𝐺 ∈ Grp ∧ 𝐸 ∥ 2) → 𝑋 = (Base‘𝐺))
3 eqidd 2732 . 2 ((𝐺 ∈ Grp ∧ 𝐸 ∥ 2) → (+g𝐺) = (+g𝐺))
4 simpl 482 . 2 ((𝐺 ∈ Grp ∧ 𝐸 ∥ 2) → 𝐺 ∈ Grp)
5 simp1l 1198 . . . . . . . . 9 (((𝐺 ∈ Grp ∧ 𝐸 ∥ 2) ∧ 𝑥𝑋𝑦𝑋) → 𝐺 ∈ Grp)
6 simp2 1137 . . . . . . . . 9 (((𝐺 ∈ Grp ∧ 𝐸 ∥ 2) ∧ 𝑥𝑋𝑦𝑋) → 𝑥𝑋)
7 simp3 1138 . . . . . . . . 9 (((𝐺 ∈ Grp ∧ 𝐸 ∥ 2) ∧ 𝑥𝑋𝑦𝑋) → 𝑦𝑋)
8 eqid 2731 . . . . . . . . . 10 (+g𝐺) = (+g𝐺)
91, 8grpass 18850 . . . . . . . . 9 ((𝐺 ∈ Grp ∧ (𝑥𝑋𝑦𝑋𝑦𝑋)) → ((𝑥(+g𝐺)𝑦)(+g𝐺)𝑦) = (𝑥(+g𝐺)(𝑦(+g𝐺)𝑦)))
105, 6, 7, 7, 9syl13anc 1374 . . . . . . . 8 (((𝐺 ∈ Grp ∧ 𝐸 ∥ 2) ∧ 𝑥𝑋𝑦𝑋) → ((𝑥(+g𝐺)𝑦)(+g𝐺)𝑦) = (𝑥(+g𝐺)(𝑦(+g𝐺)𝑦)))
11 eqid 2731 . . . . . . . . . . . 12 (.g𝐺) = (.g𝐺)
121, 11, 8mulg2 18991 . . . . . . . . . . 11 (𝑦𝑋 → (2(.g𝐺)𝑦) = (𝑦(+g𝐺)𝑦))
137, 12syl 17 . . . . . . . . . 10 (((𝐺 ∈ Grp ∧ 𝐸 ∥ 2) ∧ 𝑥𝑋𝑦𝑋) → (2(.g𝐺)𝑦) = (𝑦(+g𝐺)𝑦))
14 simp1r 1199 . . . . . . . . . . 11 (((𝐺 ∈ Grp ∧ 𝐸 ∥ 2) ∧ 𝑥𝑋𝑦𝑋) → 𝐸 ∥ 2)
15 gexex.2 . . . . . . . . . . . 12 𝐸 = (gEx‘𝐺)
16 eqid 2731 . . . . . . . . . . . 12 (0g𝐺) = (0g𝐺)
171, 15, 11, 16gexdvdsi 19490 . . . . . . . . . . 11 ((𝐺 ∈ Grp ∧ 𝑦𝑋𝐸 ∥ 2) → (2(.g𝐺)𝑦) = (0g𝐺))
185, 7, 14, 17syl3anc 1373 . . . . . . . . . 10 (((𝐺 ∈ Grp ∧ 𝐸 ∥ 2) ∧ 𝑥𝑋𝑦𝑋) → (2(.g𝐺)𝑦) = (0g𝐺))
1913, 18eqtr3d 2768 . . . . . . . . 9 (((𝐺 ∈ Grp ∧ 𝐸 ∥ 2) ∧ 𝑥𝑋𝑦𝑋) → (𝑦(+g𝐺)𝑦) = (0g𝐺))
2019oveq2d 7357 . . . . . . . 8 (((𝐺 ∈ Grp ∧ 𝐸 ∥ 2) ∧ 𝑥𝑋𝑦𝑋) → (𝑥(+g𝐺)(𝑦(+g𝐺)𝑦)) = (𝑥(+g𝐺)(0g𝐺)))
211, 8, 16grprid 18876 . . . . . . . . 9 ((𝐺 ∈ Grp ∧ 𝑥𝑋) → (𝑥(+g𝐺)(0g𝐺)) = 𝑥)
225, 6, 21syl2anc 584 . . . . . . . 8 (((𝐺 ∈ Grp ∧ 𝐸 ∥ 2) ∧ 𝑥𝑋𝑦𝑋) → (𝑥(+g𝐺)(0g𝐺)) = 𝑥)
2310, 20, 223eqtrd 2770 . . . . . . 7 (((𝐺 ∈ Grp ∧ 𝐸 ∥ 2) ∧ 𝑥𝑋𝑦𝑋) → ((𝑥(+g𝐺)𝑦)(+g𝐺)𝑦) = 𝑥)
2423oveq1d 7356 . . . . . 6 (((𝐺 ∈ Grp ∧ 𝐸 ∥ 2) ∧ 𝑥𝑋𝑦𝑋) → (((𝑥(+g𝐺)𝑦)(+g𝐺)𝑦)(+g𝐺)𝑥) = (𝑥(+g𝐺)𝑥))
251, 11, 8mulg2 18991 . . . . . . 7 (𝑥𝑋 → (2(.g𝐺)𝑥) = (𝑥(+g𝐺)𝑥))
266, 25syl 17 . . . . . 6 (((𝐺 ∈ Grp ∧ 𝐸 ∥ 2) ∧ 𝑥𝑋𝑦𝑋) → (2(.g𝐺)𝑥) = (𝑥(+g𝐺)𝑥))
271, 15, 11, 16gexdvdsi 19490 . . . . . . 7 ((𝐺 ∈ Grp ∧ 𝑥𝑋𝐸 ∥ 2) → (2(.g𝐺)𝑥) = (0g𝐺))
285, 6, 14, 27syl3anc 1373 . . . . . 6 (((𝐺 ∈ Grp ∧ 𝐸 ∥ 2) ∧ 𝑥𝑋𝑦𝑋) → (2(.g𝐺)𝑥) = (0g𝐺))
2924, 26, 283eqtr2d 2772 . . . . 5 (((𝐺 ∈ Grp ∧ 𝐸 ∥ 2) ∧ 𝑥𝑋𝑦𝑋) → (((𝑥(+g𝐺)𝑦)(+g𝐺)𝑦)(+g𝐺)𝑥) = (0g𝐺))
301, 8grpcl 18849 . . . . . . 7 ((𝐺 ∈ Grp ∧ 𝑥𝑋𝑦𝑋) → (𝑥(+g𝐺)𝑦) ∈ 𝑋)
315, 6, 7, 30syl3anc 1373 . . . . . 6 (((𝐺 ∈ Grp ∧ 𝐸 ∥ 2) ∧ 𝑥𝑋𝑦𝑋) → (𝑥(+g𝐺)𝑦) ∈ 𝑋)
321, 15, 11, 16gexdvdsi 19490 . . . . . 6 ((𝐺 ∈ Grp ∧ (𝑥(+g𝐺)𝑦) ∈ 𝑋𝐸 ∥ 2) → (2(.g𝐺)(𝑥(+g𝐺)𝑦)) = (0g𝐺))
335, 31, 14, 32syl3anc 1373 . . . . 5 (((𝐺 ∈ Grp ∧ 𝐸 ∥ 2) ∧ 𝑥𝑋𝑦𝑋) → (2(.g𝐺)(𝑥(+g𝐺)𝑦)) = (0g𝐺))
341, 11, 8mulg2 18991 . . . . . 6 ((𝑥(+g𝐺)𝑦) ∈ 𝑋 → (2(.g𝐺)(𝑥(+g𝐺)𝑦)) = ((𝑥(+g𝐺)𝑦)(+g𝐺)(𝑥(+g𝐺)𝑦)))
3531, 34syl 17 . . . . 5 (((𝐺 ∈ Grp ∧ 𝐸 ∥ 2) ∧ 𝑥𝑋𝑦𝑋) → (2(.g𝐺)(𝑥(+g𝐺)𝑦)) = ((𝑥(+g𝐺)𝑦)(+g𝐺)(𝑥(+g𝐺)𝑦)))
3629, 33, 353eqtr2d 2772 . . . 4 (((𝐺 ∈ Grp ∧ 𝐸 ∥ 2) ∧ 𝑥𝑋𝑦𝑋) → (((𝑥(+g𝐺)𝑦)(+g𝐺)𝑦)(+g𝐺)𝑥) = ((𝑥(+g𝐺)𝑦)(+g𝐺)(𝑥(+g𝐺)𝑦)))
371, 8grpass 18850 . . . . 5 ((𝐺 ∈ Grp ∧ ((𝑥(+g𝐺)𝑦) ∈ 𝑋𝑦𝑋𝑥𝑋)) → (((𝑥(+g𝐺)𝑦)(+g𝐺)𝑦)(+g𝐺)𝑥) = ((𝑥(+g𝐺)𝑦)(+g𝐺)(𝑦(+g𝐺)𝑥)))
385, 31, 7, 6, 37syl13anc 1374 . . . 4 (((𝐺 ∈ Grp ∧ 𝐸 ∥ 2) ∧ 𝑥𝑋𝑦𝑋) → (((𝑥(+g𝐺)𝑦)(+g𝐺)𝑦)(+g𝐺)𝑥) = ((𝑥(+g𝐺)𝑦)(+g𝐺)(𝑦(+g𝐺)𝑥)))
3936, 38eqtr3d 2768 . . 3 (((𝐺 ∈ Grp ∧ 𝐸 ∥ 2) ∧ 𝑥𝑋𝑦𝑋) → ((𝑥(+g𝐺)𝑦)(+g𝐺)(𝑥(+g𝐺)𝑦)) = ((𝑥(+g𝐺)𝑦)(+g𝐺)(𝑦(+g𝐺)𝑥)))
401, 8grpcl 18849 . . . . 5 ((𝐺 ∈ Grp ∧ 𝑦𝑋𝑥𝑋) → (𝑦(+g𝐺)𝑥) ∈ 𝑋)
415, 7, 6, 40syl3anc 1373 . . . 4 (((𝐺 ∈ Grp ∧ 𝐸 ∥ 2) ∧ 𝑥𝑋𝑦𝑋) → (𝑦(+g𝐺)𝑥) ∈ 𝑋)
421, 8grplcan 18908 . . . 4 ((𝐺 ∈ Grp ∧ ((𝑥(+g𝐺)𝑦) ∈ 𝑋 ∧ (𝑦(+g𝐺)𝑥) ∈ 𝑋 ∧ (𝑥(+g𝐺)𝑦) ∈ 𝑋)) → (((𝑥(+g𝐺)𝑦)(+g𝐺)(𝑥(+g𝐺)𝑦)) = ((𝑥(+g𝐺)𝑦)(+g𝐺)(𝑦(+g𝐺)𝑥)) ↔ (𝑥(+g𝐺)𝑦) = (𝑦(+g𝐺)𝑥)))
435, 31, 41, 31, 42syl13anc 1374 . . 3 (((𝐺 ∈ Grp ∧ 𝐸 ∥ 2) ∧ 𝑥𝑋𝑦𝑋) → (((𝑥(+g𝐺)𝑦)(+g𝐺)(𝑥(+g𝐺)𝑦)) = ((𝑥(+g𝐺)𝑦)(+g𝐺)(𝑦(+g𝐺)𝑥)) ↔ (𝑥(+g𝐺)𝑦) = (𝑦(+g𝐺)𝑥)))
4439, 43mpbid 232 . 2 (((𝐺 ∈ Grp ∧ 𝐸 ∥ 2) ∧ 𝑥𝑋𝑦𝑋) → (𝑥(+g𝐺)𝑦) = (𝑦(+g𝐺)𝑥))
452, 3, 4, 44isabld 19702 1 ((𝐺 ∈ Grp ∧ 𝐸 ∥ 2) → 𝐺 ∈ Abel)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1541  wcel 2111   class class class wbr 5086  cfv 6476  (class class class)co 7341  2c2 12175  cdvds 16158  Basecbs 17115  +gcplusg 17156  0gc0g 17338  Grpcgrp 18841  .gcmg 18975  gExcgex 19432  Abelcabl 19688
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5229  ax-nul 5239  ax-pow 5298  ax-pr 5365  ax-un 7663  ax-cnex 11057  ax-resscn 11058  ax-1cn 11059  ax-icn 11060  ax-addcl 11061  ax-addrcl 11062  ax-mulcl 11063  ax-mulrcl 11064  ax-mulcom 11065  ax-addass 11066  ax-mulass 11067  ax-distr 11068  ax-i2m1 11069  ax-1ne0 11070  ax-1rid 11071  ax-rnegex 11072  ax-rrecex 11073  ax-cnre 11074  ax-pre-lttri 11075  ax-pre-lttrn 11076  ax-pre-ltadd 11077  ax-pre-mulgt0 11078
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4279  df-if 4471  df-pw 4547  df-sn 4572  df-pr 4574  df-op 4578  df-uni 4855  df-iun 4938  df-br 5087  df-opab 5149  df-mpt 5168  df-tr 5194  df-id 5506  df-eprel 5511  df-po 5519  df-so 5520  df-fr 5564  df-we 5566  df-xp 5617  df-rel 5618  df-cnv 5619  df-co 5620  df-dm 5621  df-rn 5622  df-res 5623  df-ima 5624  df-pred 6243  df-ord 6304  df-on 6305  df-lim 6306  df-suc 6307  df-iota 6432  df-fun 6478  df-fn 6479  df-f 6480  df-f1 6481  df-fo 6482  df-f1o 6483  df-fv 6484  df-riota 7298  df-ov 7344  df-oprab 7345  df-mpo 7346  df-om 7792  df-1st 7916  df-2nd 7917  df-frecs 8206  df-wrecs 8237  df-recs 8286  df-rdg 8324  df-er 8617  df-en 8865  df-dom 8866  df-sdom 8867  df-sup 9321  df-inf 9322  df-pnf 11143  df-mnf 11144  df-xr 11145  df-ltxr 11146  df-le 11147  df-sub 11341  df-neg 11342  df-nn 12121  df-2 12183  df-n0 12377  df-z 12464  df-uz 12728  df-fz 13403  df-seq 13904  df-dvds 16159  df-0g 17340  df-mgm 18543  df-sgrp 18622  df-mnd 18638  df-grp 18844  df-minusg 18845  df-mulg 18976  df-gex 19436  df-cmn 19689  df-abl 19690
This theorem is referenced by:  lt6abl  19802
  Copyright terms: Public domain W3C validator