MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  gex2abl Structured version   Visualization version   GIF version

Theorem gex2abl 19832
Description: A group with exponent 2 (or 1) is abelian. (Contributed by Mario Carneiro, 24-Apr-2016.)
Hypotheses
Ref Expression
gexex.1 𝑋 = (Base‘𝐺)
gexex.2 𝐸 = (gEx‘𝐺)
Assertion
Ref Expression
gex2abl ((𝐺 ∈ Grp ∧ 𝐸 ∥ 2) → 𝐺 ∈ Abel)

Proof of Theorem gex2abl
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 gexex.1 . . 3 𝑋 = (Base‘𝐺)
21a1i 11 . 2 ((𝐺 ∈ Grp ∧ 𝐸 ∥ 2) → 𝑋 = (Base‘𝐺))
3 eqidd 2736 . 2 ((𝐺 ∈ Grp ∧ 𝐸 ∥ 2) → (+g𝐺) = (+g𝐺))
4 simpl 482 . 2 ((𝐺 ∈ Grp ∧ 𝐸 ∥ 2) → 𝐺 ∈ Grp)
5 simp1l 1198 . . . . . . . . 9 (((𝐺 ∈ Grp ∧ 𝐸 ∥ 2) ∧ 𝑥𝑋𝑦𝑋) → 𝐺 ∈ Grp)
6 simp2 1137 . . . . . . . . 9 (((𝐺 ∈ Grp ∧ 𝐸 ∥ 2) ∧ 𝑥𝑋𝑦𝑋) → 𝑥𝑋)
7 simp3 1138 . . . . . . . . 9 (((𝐺 ∈ Grp ∧ 𝐸 ∥ 2) ∧ 𝑥𝑋𝑦𝑋) → 𝑦𝑋)
8 eqid 2735 . . . . . . . . . 10 (+g𝐺) = (+g𝐺)
91, 8grpass 18925 . . . . . . . . 9 ((𝐺 ∈ Grp ∧ (𝑥𝑋𝑦𝑋𝑦𝑋)) → ((𝑥(+g𝐺)𝑦)(+g𝐺)𝑦) = (𝑥(+g𝐺)(𝑦(+g𝐺)𝑦)))
105, 6, 7, 7, 9syl13anc 1374 . . . . . . . 8 (((𝐺 ∈ Grp ∧ 𝐸 ∥ 2) ∧ 𝑥𝑋𝑦𝑋) → ((𝑥(+g𝐺)𝑦)(+g𝐺)𝑦) = (𝑥(+g𝐺)(𝑦(+g𝐺)𝑦)))
11 eqid 2735 . . . . . . . . . . . 12 (.g𝐺) = (.g𝐺)
121, 11, 8mulg2 19066 . . . . . . . . . . 11 (𝑦𝑋 → (2(.g𝐺)𝑦) = (𝑦(+g𝐺)𝑦))
137, 12syl 17 . . . . . . . . . 10 (((𝐺 ∈ Grp ∧ 𝐸 ∥ 2) ∧ 𝑥𝑋𝑦𝑋) → (2(.g𝐺)𝑦) = (𝑦(+g𝐺)𝑦))
14 simp1r 1199 . . . . . . . . . . 11 (((𝐺 ∈ Grp ∧ 𝐸 ∥ 2) ∧ 𝑥𝑋𝑦𝑋) → 𝐸 ∥ 2)
15 gexex.2 . . . . . . . . . . . 12 𝐸 = (gEx‘𝐺)
16 eqid 2735 . . . . . . . . . . . 12 (0g𝐺) = (0g𝐺)
171, 15, 11, 16gexdvdsi 19564 . . . . . . . . . . 11 ((𝐺 ∈ Grp ∧ 𝑦𝑋𝐸 ∥ 2) → (2(.g𝐺)𝑦) = (0g𝐺))
185, 7, 14, 17syl3anc 1373 . . . . . . . . . 10 (((𝐺 ∈ Grp ∧ 𝐸 ∥ 2) ∧ 𝑥𝑋𝑦𝑋) → (2(.g𝐺)𝑦) = (0g𝐺))
1913, 18eqtr3d 2772 . . . . . . . . 9 (((𝐺 ∈ Grp ∧ 𝐸 ∥ 2) ∧ 𝑥𝑋𝑦𝑋) → (𝑦(+g𝐺)𝑦) = (0g𝐺))
2019oveq2d 7421 . . . . . . . 8 (((𝐺 ∈ Grp ∧ 𝐸 ∥ 2) ∧ 𝑥𝑋𝑦𝑋) → (𝑥(+g𝐺)(𝑦(+g𝐺)𝑦)) = (𝑥(+g𝐺)(0g𝐺)))
211, 8, 16grprid 18951 . . . . . . . . 9 ((𝐺 ∈ Grp ∧ 𝑥𝑋) → (𝑥(+g𝐺)(0g𝐺)) = 𝑥)
225, 6, 21syl2anc 584 . . . . . . . 8 (((𝐺 ∈ Grp ∧ 𝐸 ∥ 2) ∧ 𝑥𝑋𝑦𝑋) → (𝑥(+g𝐺)(0g𝐺)) = 𝑥)
2310, 20, 223eqtrd 2774 . . . . . . 7 (((𝐺 ∈ Grp ∧ 𝐸 ∥ 2) ∧ 𝑥𝑋𝑦𝑋) → ((𝑥(+g𝐺)𝑦)(+g𝐺)𝑦) = 𝑥)
2423oveq1d 7420 . . . . . 6 (((𝐺 ∈ Grp ∧ 𝐸 ∥ 2) ∧ 𝑥𝑋𝑦𝑋) → (((𝑥(+g𝐺)𝑦)(+g𝐺)𝑦)(+g𝐺)𝑥) = (𝑥(+g𝐺)𝑥))
251, 11, 8mulg2 19066 . . . . . . 7 (𝑥𝑋 → (2(.g𝐺)𝑥) = (𝑥(+g𝐺)𝑥))
266, 25syl 17 . . . . . 6 (((𝐺 ∈ Grp ∧ 𝐸 ∥ 2) ∧ 𝑥𝑋𝑦𝑋) → (2(.g𝐺)𝑥) = (𝑥(+g𝐺)𝑥))
271, 15, 11, 16gexdvdsi 19564 . . . . . . 7 ((𝐺 ∈ Grp ∧ 𝑥𝑋𝐸 ∥ 2) → (2(.g𝐺)𝑥) = (0g𝐺))
285, 6, 14, 27syl3anc 1373 . . . . . 6 (((𝐺 ∈ Grp ∧ 𝐸 ∥ 2) ∧ 𝑥𝑋𝑦𝑋) → (2(.g𝐺)𝑥) = (0g𝐺))
2924, 26, 283eqtr2d 2776 . . . . 5 (((𝐺 ∈ Grp ∧ 𝐸 ∥ 2) ∧ 𝑥𝑋𝑦𝑋) → (((𝑥(+g𝐺)𝑦)(+g𝐺)𝑦)(+g𝐺)𝑥) = (0g𝐺))
301, 8grpcl 18924 . . . . . . 7 ((𝐺 ∈ Grp ∧ 𝑥𝑋𝑦𝑋) → (𝑥(+g𝐺)𝑦) ∈ 𝑋)
315, 6, 7, 30syl3anc 1373 . . . . . 6 (((𝐺 ∈ Grp ∧ 𝐸 ∥ 2) ∧ 𝑥𝑋𝑦𝑋) → (𝑥(+g𝐺)𝑦) ∈ 𝑋)
321, 15, 11, 16gexdvdsi 19564 . . . . . 6 ((𝐺 ∈ Grp ∧ (𝑥(+g𝐺)𝑦) ∈ 𝑋𝐸 ∥ 2) → (2(.g𝐺)(𝑥(+g𝐺)𝑦)) = (0g𝐺))
335, 31, 14, 32syl3anc 1373 . . . . 5 (((𝐺 ∈ Grp ∧ 𝐸 ∥ 2) ∧ 𝑥𝑋𝑦𝑋) → (2(.g𝐺)(𝑥(+g𝐺)𝑦)) = (0g𝐺))
341, 11, 8mulg2 19066 . . . . . 6 ((𝑥(+g𝐺)𝑦) ∈ 𝑋 → (2(.g𝐺)(𝑥(+g𝐺)𝑦)) = ((𝑥(+g𝐺)𝑦)(+g𝐺)(𝑥(+g𝐺)𝑦)))
3531, 34syl 17 . . . . 5 (((𝐺 ∈ Grp ∧ 𝐸 ∥ 2) ∧ 𝑥𝑋𝑦𝑋) → (2(.g𝐺)(𝑥(+g𝐺)𝑦)) = ((𝑥(+g𝐺)𝑦)(+g𝐺)(𝑥(+g𝐺)𝑦)))
3629, 33, 353eqtr2d 2776 . . . 4 (((𝐺 ∈ Grp ∧ 𝐸 ∥ 2) ∧ 𝑥𝑋𝑦𝑋) → (((𝑥(+g𝐺)𝑦)(+g𝐺)𝑦)(+g𝐺)𝑥) = ((𝑥(+g𝐺)𝑦)(+g𝐺)(𝑥(+g𝐺)𝑦)))
371, 8grpass 18925 . . . . 5 ((𝐺 ∈ Grp ∧ ((𝑥(+g𝐺)𝑦) ∈ 𝑋𝑦𝑋𝑥𝑋)) → (((𝑥(+g𝐺)𝑦)(+g𝐺)𝑦)(+g𝐺)𝑥) = ((𝑥(+g𝐺)𝑦)(+g𝐺)(𝑦(+g𝐺)𝑥)))
385, 31, 7, 6, 37syl13anc 1374 . . . 4 (((𝐺 ∈ Grp ∧ 𝐸 ∥ 2) ∧ 𝑥𝑋𝑦𝑋) → (((𝑥(+g𝐺)𝑦)(+g𝐺)𝑦)(+g𝐺)𝑥) = ((𝑥(+g𝐺)𝑦)(+g𝐺)(𝑦(+g𝐺)𝑥)))
3936, 38eqtr3d 2772 . . 3 (((𝐺 ∈ Grp ∧ 𝐸 ∥ 2) ∧ 𝑥𝑋𝑦𝑋) → ((𝑥(+g𝐺)𝑦)(+g𝐺)(𝑥(+g𝐺)𝑦)) = ((𝑥(+g𝐺)𝑦)(+g𝐺)(𝑦(+g𝐺)𝑥)))
401, 8grpcl 18924 . . . . 5 ((𝐺 ∈ Grp ∧ 𝑦𝑋𝑥𝑋) → (𝑦(+g𝐺)𝑥) ∈ 𝑋)
415, 7, 6, 40syl3anc 1373 . . . 4 (((𝐺 ∈ Grp ∧ 𝐸 ∥ 2) ∧ 𝑥𝑋𝑦𝑋) → (𝑦(+g𝐺)𝑥) ∈ 𝑋)
421, 8grplcan 18983 . . . 4 ((𝐺 ∈ Grp ∧ ((𝑥(+g𝐺)𝑦) ∈ 𝑋 ∧ (𝑦(+g𝐺)𝑥) ∈ 𝑋 ∧ (𝑥(+g𝐺)𝑦) ∈ 𝑋)) → (((𝑥(+g𝐺)𝑦)(+g𝐺)(𝑥(+g𝐺)𝑦)) = ((𝑥(+g𝐺)𝑦)(+g𝐺)(𝑦(+g𝐺)𝑥)) ↔ (𝑥(+g𝐺)𝑦) = (𝑦(+g𝐺)𝑥)))
435, 31, 41, 31, 42syl13anc 1374 . . 3 (((𝐺 ∈ Grp ∧ 𝐸 ∥ 2) ∧ 𝑥𝑋𝑦𝑋) → (((𝑥(+g𝐺)𝑦)(+g𝐺)(𝑥(+g𝐺)𝑦)) = ((𝑥(+g𝐺)𝑦)(+g𝐺)(𝑦(+g𝐺)𝑥)) ↔ (𝑥(+g𝐺)𝑦) = (𝑦(+g𝐺)𝑥)))
4439, 43mpbid 232 . 2 (((𝐺 ∈ Grp ∧ 𝐸 ∥ 2) ∧ 𝑥𝑋𝑦𝑋) → (𝑥(+g𝐺)𝑦) = (𝑦(+g𝐺)𝑥))
452, 3, 4, 44isabld 19776 1 ((𝐺 ∈ Grp ∧ 𝐸 ∥ 2) → 𝐺 ∈ Abel)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2108   class class class wbr 5119  cfv 6531  (class class class)co 7405  2c2 12295  cdvds 16272  Basecbs 17228  +gcplusg 17271  0gc0g 17453  Grpcgrp 18916  .gcmg 19050  gExcgex 19506  Abelcabl 19762
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7729  ax-cnex 11185  ax-resscn 11186  ax-1cn 11187  ax-icn 11188  ax-addcl 11189  ax-addrcl 11190  ax-mulcl 11191  ax-mulrcl 11192  ax-mulcom 11193  ax-addass 11194  ax-mulass 11195  ax-distr 11196  ax-i2m1 11197  ax-1ne0 11198  ax-1rid 11199  ax-rnegex 11200  ax-rrecex 11201  ax-cnre 11202  ax-pre-lttri 11203  ax-pre-lttrn 11204  ax-pre-ltadd 11205  ax-pre-mulgt0 11206
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-nel 3037  df-ral 3052  df-rex 3061  df-rmo 3359  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-pss 3946  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-iun 4969  df-br 5120  df-opab 5182  df-mpt 5202  df-tr 5230  df-id 5548  df-eprel 5553  df-po 5561  df-so 5562  df-fr 5606  df-we 5608  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-pred 6290  df-ord 6355  df-on 6356  df-lim 6357  df-suc 6358  df-iota 6484  df-fun 6533  df-fn 6534  df-f 6535  df-f1 6536  df-fo 6537  df-f1o 6538  df-fv 6539  df-riota 7362  df-ov 7408  df-oprab 7409  df-mpo 7410  df-om 7862  df-1st 7988  df-2nd 7989  df-frecs 8280  df-wrecs 8311  df-recs 8385  df-rdg 8424  df-er 8719  df-en 8960  df-dom 8961  df-sdom 8962  df-sup 9454  df-inf 9455  df-pnf 11271  df-mnf 11272  df-xr 11273  df-ltxr 11274  df-le 11275  df-sub 11468  df-neg 11469  df-nn 12241  df-2 12303  df-n0 12502  df-z 12589  df-uz 12853  df-fz 13525  df-seq 14020  df-dvds 16273  df-0g 17455  df-mgm 18618  df-sgrp 18697  df-mnd 18713  df-grp 18919  df-minusg 18920  df-mulg 19051  df-gex 19510  df-cmn 19763  df-abl 19764
This theorem is referenced by:  lt6abl  19876
  Copyright terms: Public domain W3C validator