MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  gex2abl Structured version   Visualization version   GIF version

Theorem gex2abl 19869
Description: A group with exponent 2 (or 1) is abelian. (Contributed by Mario Carneiro, 24-Apr-2016.)
Hypotheses
Ref Expression
gexex.1 𝑋 = (Base‘𝐺)
gexex.2 𝐸 = (gEx‘𝐺)
Assertion
Ref Expression
gex2abl ((𝐺 ∈ Grp ∧ 𝐸 ∥ 2) → 𝐺 ∈ Abel)

Proof of Theorem gex2abl
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 gexex.1 . . 3 𝑋 = (Base‘𝐺)
21a1i 11 . 2 ((𝐺 ∈ Grp ∧ 𝐸 ∥ 2) → 𝑋 = (Base‘𝐺))
3 eqidd 2738 . 2 ((𝐺 ∈ Grp ∧ 𝐸 ∥ 2) → (+g𝐺) = (+g𝐺))
4 simpl 482 . 2 ((𝐺 ∈ Grp ∧ 𝐸 ∥ 2) → 𝐺 ∈ Grp)
5 simp1l 1198 . . . . . . . . 9 (((𝐺 ∈ Grp ∧ 𝐸 ∥ 2) ∧ 𝑥𝑋𝑦𝑋) → 𝐺 ∈ Grp)
6 simp2 1138 . . . . . . . . 9 (((𝐺 ∈ Grp ∧ 𝐸 ∥ 2) ∧ 𝑥𝑋𝑦𝑋) → 𝑥𝑋)
7 simp3 1139 . . . . . . . . 9 (((𝐺 ∈ Grp ∧ 𝐸 ∥ 2) ∧ 𝑥𝑋𝑦𝑋) → 𝑦𝑋)
8 eqid 2737 . . . . . . . . . 10 (+g𝐺) = (+g𝐺)
91, 8grpass 18960 . . . . . . . . 9 ((𝐺 ∈ Grp ∧ (𝑥𝑋𝑦𝑋𝑦𝑋)) → ((𝑥(+g𝐺)𝑦)(+g𝐺)𝑦) = (𝑥(+g𝐺)(𝑦(+g𝐺)𝑦)))
105, 6, 7, 7, 9syl13anc 1374 . . . . . . . 8 (((𝐺 ∈ Grp ∧ 𝐸 ∥ 2) ∧ 𝑥𝑋𝑦𝑋) → ((𝑥(+g𝐺)𝑦)(+g𝐺)𝑦) = (𝑥(+g𝐺)(𝑦(+g𝐺)𝑦)))
11 eqid 2737 . . . . . . . . . . . 12 (.g𝐺) = (.g𝐺)
121, 11, 8mulg2 19101 . . . . . . . . . . 11 (𝑦𝑋 → (2(.g𝐺)𝑦) = (𝑦(+g𝐺)𝑦))
137, 12syl 17 . . . . . . . . . 10 (((𝐺 ∈ Grp ∧ 𝐸 ∥ 2) ∧ 𝑥𝑋𝑦𝑋) → (2(.g𝐺)𝑦) = (𝑦(+g𝐺)𝑦))
14 simp1r 1199 . . . . . . . . . . 11 (((𝐺 ∈ Grp ∧ 𝐸 ∥ 2) ∧ 𝑥𝑋𝑦𝑋) → 𝐸 ∥ 2)
15 gexex.2 . . . . . . . . . . . 12 𝐸 = (gEx‘𝐺)
16 eqid 2737 . . . . . . . . . . . 12 (0g𝐺) = (0g𝐺)
171, 15, 11, 16gexdvdsi 19601 . . . . . . . . . . 11 ((𝐺 ∈ Grp ∧ 𝑦𝑋𝐸 ∥ 2) → (2(.g𝐺)𝑦) = (0g𝐺))
185, 7, 14, 17syl3anc 1373 . . . . . . . . . 10 (((𝐺 ∈ Grp ∧ 𝐸 ∥ 2) ∧ 𝑥𝑋𝑦𝑋) → (2(.g𝐺)𝑦) = (0g𝐺))
1913, 18eqtr3d 2779 . . . . . . . . 9 (((𝐺 ∈ Grp ∧ 𝐸 ∥ 2) ∧ 𝑥𝑋𝑦𝑋) → (𝑦(+g𝐺)𝑦) = (0g𝐺))
2019oveq2d 7447 . . . . . . . 8 (((𝐺 ∈ Grp ∧ 𝐸 ∥ 2) ∧ 𝑥𝑋𝑦𝑋) → (𝑥(+g𝐺)(𝑦(+g𝐺)𝑦)) = (𝑥(+g𝐺)(0g𝐺)))
211, 8, 16grprid 18986 . . . . . . . . 9 ((𝐺 ∈ Grp ∧ 𝑥𝑋) → (𝑥(+g𝐺)(0g𝐺)) = 𝑥)
225, 6, 21syl2anc 584 . . . . . . . 8 (((𝐺 ∈ Grp ∧ 𝐸 ∥ 2) ∧ 𝑥𝑋𝑦𝑋) → (𝑥(+g𝐺)(0g𝐺)) = 𝑥)
2310, 20, 223eqtrd 2781 . . . . . . 7 (((𝐺 ∈ Grp ∧ 𝐸 ∥ 2) ∧ 𝑥𝑋𝑦𝑋) → ((𝑥(+g𝐺)𝑦)(+g𝐺)𝑦) = 𝑥)
2423oveq1d 7446 . . . . . 6 (((𝐺 ∈ Grp ∧ 𝐸 ∥ 2) ∧ 𝑥𝑋𝑦𝑋) → (((𝑥(+g𝐺)𝑦)(+g𝐺)𝑦)(+g𝐺)𝑥) = (𝑥(+g𝐺)𝑥))
251, 11, 8mulg2 19101 . . . . . . 7 (𝑥𝑋 → (2(.g𝐺)𝑥) = (𝑥(+g𝐺)𝑥))
266, 25syl 17 . . . . . 6 (((𝐺 ∈ Grp ∧ 𝐸 ∥ 2) ∧ 𝑥𝑋𝑦𝑋) → (2(.g𝐺)𝑥) = (𝑥(+g𝐺)𝑥))
271, 15, 11, 16gexdvdsi 19601 . . . . . . 7 ((𝐺 ∈ Grp ∧ 𝑥𝑋𝐸 ∥ 2) → (2(.g𝐺)𝑥) = (0g𝐺))
285, 6, 14, 27syl3anc 1373 . . . . . 6 (((𝐺 ∈ Grp ∧ 𝐸 ∥ 2) ∧ 𝑥𝑋𝑦𝑋) → (2(.g𝐺)𝑥) = (0g𝐺))
2924, 26, 283eqtr2d 2783 . . . . 5 (((𝐺 ∈ Grp ∧ 𝐸 ∥ 2) ∧ 𝑥𝑋𝑦𝑋) → (((𝑥(+g𝐺)𝑦)(+g𝐺)𝑦)(+g𝐺)𝑥) = (0g𝐺))
301, 8grpcl 18959 . . . . . . 7 ((𝐺 ∈ Grp ∧ 𝑥𝑋𝑦𝑋) → (𝑥(+g𝐺)𝑦) ∈ 𝑋)
315, 6, 7, 30syl3anc 1373 . . . . . 6 (((𝐺 ∈ Grp ∧ 𝐸 ∥ 2) ∧ 𝑥𝑋𝑦𝑋) → (𝑥(+g𝐺)𝑦) ∈ 𝑋)
321, 15, 11, 16gexdvdsi 19601 . . . . . 6 ((𝐺 ∈ Grp ∧ (𝑥(+g𝐺)𝑦) ∈ 𝑋𝐸 ∥ 2) → (2(.g𝐺)(𝑥(+g𝐺)𝑦)) = (0g𝐺))
335, 31, 14, 32syl3anc 1373 . . . . 5 (((𝐺 ∈ Grp ∧ 𝐸 ∥ 2) ∧ 𝑥𝑋𝑦𝑋) → (2(.g𝐺)(𝑥(+g𝐺)𝑦)) = (0g𝐺))
341, 11, 8mulg2 19101 . . . . . 6 ((𝑥(+g𝐺)𝑦) ∈ 𝑋 → (2(.g𝐺)(𝑥(+g𝐺)𝑦)) = ((𝑥(+g𝐺)𝑦)(+g𝐺)(𝑥(+g𝐺)𝑦)))
3531, 34syl 17 . . . . 5 (((𝐺 ∈ Grp ∧ 𝐸 ∥ 2) ∧ 𝑥𝑋𝑦𝑋) → (2(.g𝐺)(𝑥(+g𝐺)𝑦)) = ((𝑥(+g𝐺)𝑦)(+g𝐺)(𝑥(+g𝐺)𝑦)))
3629, 33, 353eqtr2d 2783 . . . 4 (((𝐺 ∈ Grp ∧ 𝐸 ∥ 2) ∧ 𝑥𝑋𝑦𝑋) → (((𝑥(+g𝐺)𝑦)(+g𝐺)𝑦)(+g𝐺)𝑥) = ((𝑥(+g𝐺)𝑦)(+g𝐺)(𝑥(+g𝐺)𝑦)))
371, 8grpass 18960 . . . . 5 ((𝐺 ∈ Grp ∧ ((𝑥(+g𝐺)𝑦) ∈ 𝑋𝑦𝑋𝑥𝑋)) → (((𝑥(+g𝐺)𝑦)(+g𝐺)𝑦)(+g𝐺)𝑥) = ((𝑥(+g𝐺)𝑦)(+g𝐺)(𝑦(+g𝐺)𝑥)))
385, 31, 7, 6, 37syl13anc 1374 . . . 4 (((𝐺 ∈ Grp ∧ 𝐸 ∥ 2) ∧ 𝑥𝑋𝑦𝑋) → (((𝑥(+g𝐺)𝑦)(+g𝐺)𝑦)(+g𝐺)𝑥) = ((𝑥(+g𝐺)𝑦)(+g𝐺)(𝑦(+g𝐺)𝑥)))
3936, 38eqtr3d 2779 . . 3 (((𝐺 ∈ Grp ∧ 𝐸 ∥ 2) ∧ 𝑥𝑋𝑦𝑋) → ((𝑥(+g𝐺)𝑦)(+g𝐺)(𝑥(+g𝐺)𝑦)) = ((𝑥(+g𝐺)𝑦)(+g𝐺)(𝑦(+g𝐺)𝑥)))
401, 8grpcl 18959 . . . . 5 ((𝐺 ∈ Grp ∧ 𝑦𝑋𝑥𝑋) → (𝑦(+g𝐺)𝑥) ∈ 𝑋)
415, 7, 6, 40syl3anc 1373 . . . 4 (((𝐺 ∈ Grp ∧ 𝐸 ∥ 2) ∧ 𝑥𝑋𝑦𝑋) → (𝑦(+g𝐺)𝑥) ∈ 𝑋)
421, 8grplcan 19018 . . . 4 ((𝐺 ∈ Grp ∧ ((𝑥(+g𝐺)𝑦) ∈ 𝑋 ∧ (𝑦(+g𝐺)𝑥) ∈ 𝑋 ∧ (𝑥(+g𝐺)𝑦) ∈ 𝑋)) → (((𝑥(+g𝐺)𝑦)(+g𝐺)(𝑥(+g𝐺)𝑦)) = ((𝑥(+g𝐺)𝑦)(+g𝐺)(𝑦(+g𝐺)𝑥)) ↔ (𝑥(+g𝐺)𝑦) = (𝑦(+g𝐺)𝑥)))
435, 31, 41, 31, 42syl13anc 1374 . . 3 (((𝐺 ∈ Grp ∧ 𝐸 ∥ 2) ∧ 𝑥𝑋𝑦𝑋) → (((𝑥(+g𝐺)𝑦)(+g𝐺)(𝑥(+g𝐺)𝑦)) = ((𝑥(+g𝐺)𝑦)(+g𝐺)(𝑦(+g𝐺)𝑥)) ↔ (𝑥(+g𝐺)𝑦) = (𝑦(+g𝐺)𝑥)))
4439, 43mpbid 232 . 2 (((𝐺 ∈ Grp ∧ 𝐸 ∥ 2) ∧ 𝑥𝑋𝑦𝑋) → (𝑥(+g𝐺)𝑦) = (𝑦(+g𝐺)𝑥))
452, 3, 4, 44isabld 19813 1 ((𝐺 ∈ Grp ∧ 𝐸 ∥ 2) → 𝐺 ∈ Abel)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1087   = wceq 1540  wcel 2108   class class class wbr 5143  cfv 6561  (class class class)co 7431  2c2 12321  cdvds 16290  Basecbs 17247  +gcplusg 17297  0gc0g 17484  Grpcgrp 18951  .gcmg 19085  gExcgex 19543  Abelcabl 19799
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755  ax-cnex 11211  ax-resscn 11212  ax-1cn 11213  ax-icn 11214  ax-addcl 11215  ax-addrcl 11216  ax-mulcl 11217  ax-mulrcl 11218  ax-mulcom 11219  ax-addass 11220  ax-mulass 11221  ax-distr 11222  ax-i2m1 11223  ax-1ne0 11224  ax-1rid 11225  ax-rnegex 11226  ax-rrecex 11227  ax-cnre 11228  ax-pre-lttri 11229  ax-pre-lttrn 11230  ax-pre-ltadd 11231  ax-pre-mulgt0 11232
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3380  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-pss 3971  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-iun 4993  df-br 5144  df-opab 5206  df-mpt 5226  df-tr 5260  df-id 5578  df-eprel 5584  df-po 5592  df-so 5593  df-fr 5637  df-we 5639  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-pred 6321  df-ord 6387  df-on 6388  df-lim 6389  df-suc 6390  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-1st 8014  df-2nd 8015  df-frecs 8306  df-wrecs 8337  df-recs 8411  df-rdg 8450  df-er 8745  df-en 8986  df-dom 8987  df-sdom 8988  df-sup 9482  df-inf 9483  df-pnf 11297  df-mnf 11298  df-xr 11299  df-ltxr 11300  df-le 11301  df-sub 11494  df-neg 11495  df-nn 12267  df-2 12329  df-n0 12527  df-z 12614  df-uz 12879  df-fz 13548  df-seq 14043  df-dvds 16291  df-0g 17486  df-mgm 18653  df-sgrp 18732  df-mnd 18748  df-grp 18954  df-minusg 18955  df-mulg 19086  df-gex 19547  df-cmn 19800  df-abl 19801
This theorem is referenced by:  lt6abl  19913
  Copyright terms: Public domain W3C validator