MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  gex2abl Structured version   Visualization version   GIF version

Theorem gex2abl 19090
Description: A group with exponent 2 (or 1) is abelian. (Contributed by Mario Carneiro, 24-Apr-2016.)
Hypotheses
Ref Expression
gexex.1 𝑋 = (Base‘𝐺)
gexex.2 𝐸 = (gEx‘𝐺)
Assertion
Ref Expression
gex2abl ((𝐺 ∈ Grp ∧ 𝐸 ∥ 2) → 𝐺 ∈ Abel)

Proof of Theorem gex2abl
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 gexex.1 . . 3 𝑋 = (Base‘𝐺)
21a1i 11 . 2 ((𝐺 ∈ Grp ∧ 𝐸 ∥ 2) → 𝑋 = (Base‘𝐺))
3 eqidd 2739 . 2 ((𝐺 ∈ Grp ∧ 𝐸 ∥ 2) → (+g𝐺) = (+g𝐺))
4 simpl 486 . 2 ((𝐺 ∈ Grp ∧ 𝐸 ∥ 2) → 𝐺 ∈ Grp)
5 simp1l 1198 . . . . . . . . 9 (((𝐺 ∈ Grp ∧ 𝐸 ∥ 2) ∧ 𝑥𝑋𝑦𝑋) → 𝐺 ∈ Grp)
6 simp2 1138 . . . . . . . . 9 (((𝐺 ∈ Grp ∧ 𝐸 ∥ 2) ∧ 𝑥𝑋𝑦𝑋) → 𝑥𝑋)
7 simp3 1139 . . . . . . . . 9 (((𝐺 ∈ Grp ∧ 𝐸 ∥ 2) ∧ 𝑥𝑋𝑦𝑋) → 𝑦𝑋)
8 eqid 2738 . . . . . . . . . 10 (+g𝐺) = (+g𝐺)
91, 8grpass 18228 . . . . . . . . 9 ((𝐺 ∈ Grp ∧ (𝑥𝑋𝑦𝑋𝑦𝑋)) → ((𝑥(+g𝐺)𝑦)(+g𝐺)𝑦) = (𝑥(+g𝐺)(𝑦(+g𝐺)𝑦)))
105, 6, 7, 7, 9syl13anc 1373 . . . . . . . 8 (((𝐺 ∈ Grp ∧ 𝐸 ∥ 2) ∧ 𝑥𝑋𝑦𝑋) → ((𝑥(+g𝐺)𝑦)(+g𝐺)𝑦) = (𝑥(+g𝐺)(𝑦(+g𝐺)𝑦)))
11 eqid 2738 . . . . . . . . . . . 12 (.g𝐺) = (.g𝐺)
121, 11, 8mulg2 18355 . . . . . . . . . . 11 (𝑦𝑋 → (2(.g𝐺)𝑦) = (𝑦(+g𝐺)𝑦))
137, 12syl 17 . . . . . . . . . 10 (((𝐺 ∈ Grp ∧ 𝐸 ∥ 2) ∧ 𝑥𝑋𝑦𝑋) → (2(.g𝐺)𝑦) = (𝑦(+g𝐺)𝑦))
14 simp1r 1199 . . . . . . . . . . 11 (((𝐺 ∈ Grp ∧ 𝐸 ∥ 2) ∧ 𝑥𝑋𝑦𝑋) → 𝐸 ∥ 2)
15 gexex.2 . . . . . . . . . . . 12 𝐸 = (gEx‘𝐺)
16 eqid 2738 . . . . . . . . . . . 12 (0g𝐺) = (0g𝐺)
171, 15, 11, 16gexdvdsi 18826 . . . . . . . . . . 11 ((𝐺 ∈ Grp ∧ 𝑦𝑋𝐸 ∥ 2) → (2(.g𝐺)𝑦) = (0g𝐺))
185, 7, 14, 17syl3anc 1372 . . . . . . . . . 10 (((𝐺 ∈ Grp ∧ 𝐸 ∥ 2) ∧ 𝑥𝑋𝑦𝑋) → (2(.g𝐺)𝑦) = (0g𝐺))
1913, 18eqtr3d 2775 . . . . . . . . 9 (((𝐺 ∈ Grp ∧ 𝐸 ∥ 2) ∧ 𝑥𝑋𝑦𝑋) → (𝑦(+g𝐺)𝑦) = (0g𝐺))
2019oveq2d 7186 . . . . . . . 8 (((𝐺 ∈ Grp ∧ 𝐸 ∥ 2) ∧ 𝑥𝑋𝑦𝑋) → (𝑥(+g𝐺)(𝑦(+g𝐺)𝑦)) = (𝑥(+g𝐺)(0g𝐺)))
211, 8, 16grprid 18252 . . . . . . . . 9 ((𝐺 ∈ Grp ∧ 𝑥𝑋) → (𝑥(+g𝐺)(0g𝐺)) = 𝑥)
225, 6, 21syl2anc 587 . . . . . . . 8 (((𝐺 ∈ Grp ∧ 𝐸 ∥ 2) ∧ 𝑥𝑋𝑦𝑋) → (𝑥(+g𝐺)(0g𝐺)) = 𝑥)
2310, 20, 223eqtrd 2777 . . . . . . 7 (((𝐺 ∈ Grp ∧ 𝐸 ∥ 2) ∧ 𝑥𝑋𝑦𝑋) → ((𝑥(+g𝐺)𝑦)(+g𝐺)𝑦) = 𝑥)
2423oveq1d 7185 . . . . . 6 (((𝐺 ∈ Grp ∧ 𝐸 ∥ 2) ∧ 𝑥𝑋𝑦𝑋) → (((𝑥(+g𝐺)𝑦)(+g𝐺)𝑦)(+g𝐺)𝑥) = (𝑥(+g𝐺)𝑥))
251, 11, 8mulg2 18355 . . . . . . 7 (𝑥𝑋 → (2(.g𝐺)𝑥) = (𝑥(+g𝐺)𝑥))
266, 25syl 17 . . . . . 6 (((𝐺 ∈ Grp ∧ 𝐸 ∥ 2) ∧ 𝑥𝑋𝑦𝑋) → (2(.g𝐺)𝑥) = (𝑥(+g𝐺)𝑥))
271, 15, 11, 16gexdvdsi 18826 . . . . . . 7 ((𝐺 ∈ Grp ∧ 𝑥𝑋𝐸 ∥ 2) → (2(.g𝐺)𝑥) = (0g𝐺))
285, 6, 14, 27syl3anc 1372 . . . . . 6 (((𝐺 ∈ Grp ∧ 𝐸 ∥ 2) ∧ 𝑥𝑋𝑦𝑋) → (2(.g𝐺)𝑥) = (0g𝐺))
2924, 26, 283eqtr2d 2779 . . . . 5 (((𝐺 ∈ Grp ∧ 𝐸 ∥ 2) ∧ 𝑥𝑋𝑦𝑋) → (((𝑥(+g𝐺)𝑦)(+g𝐺)𝑦)(+g𝐺)𝑥) = (0g𝐺))
301, 8grpcl 18227 . . . . . . 7 ((𝐺 ∈ Grp ∧ 𝑥𝑋𝑦𝑋) → (𝑥(+g𝐺)𝑦) ∈ 𝑋)
315, 6, 7, 30syl3anc 1372 . . . . . 6 (((𝐺 ∈ Grp ∧ 𝐸 ∥ 2) ∧ 𝑥𝑋𝑦𝑋) → (𝑥(+g𝐺)𝑦) ∈ 𝑋)
321, 15, 11, 16gexdvdsi 18826 . . . . . 6 ((𝐺 ∈ Grp ∧ (𝑥(+g𝐺)𝑦) ∈ 𝑋𝐸 ∥ 2) → (2(.g𝐺)(𝑥(+g𝐺)𝑦)) = (0g𝐺))
335, 31, 14, 32syl3anc 1372 . . . . 5 (((𝐺 ∈ Grp ∧ 𝐸 ∥ 2) ∧ 𝑥𝑋𝑦𝑋) → (2(.g𝐺)(𝑥(+g𝐺)𝑦)) = (0g𝐺))
341, 11, 8mulg2 18355 . . . . . 6 ((𝑥(+g𝐺)𝑦) ∈ 𝑋 → (2(.g𝐺)(𝑥(+g𝐺)𝑦)) = ((𝑥(+g𝐺)𝑦)(+g𝐺)(𝑥(+g𝐺)𝑦)))
3531, 34syl 17 . . . . 5 (((𝐺 ∈ Grp ∧ 𝐸 ∥ 2) ∧ 𝑥𝑋𝑦𝑋) → (2(.g𝐺)(𝑥(+g𝐺)𝑦)) = ((𝑥(+g𝐺)𝑦)(+g𝐺)(𝑥(+g𝐺)𝑦)))
3629, 33, 353eqtr2d 2779 . . . 4 (((𝐺 ∈ Grp ∧ 𝐸 ∥ 2) ∧ 𝑥𝑋𝑦𝑋) → (((𝑥(+g𝐺)𝑦)(+g𝐺)𝑦)(+g𝐺)𝑥) = ((𝑥(+g𝐺)𝑦)(+g𝐺)(𝑥(+g𝐺)𝑦)))
371, 8grpass 18228 . . . . 5 ((𝐺 ∈ Grp ∧ ((𝑥(+g𝐺)𝑦) ∈ 𝑋𝑦𝑋𝑥𝑋)) → (((𝑥(+g𝐺)𝑦)(+g𝐺)𝑦)(+g𝐺)𝑥) = ((𝑥(+g𝐺)𝑦)(+g𝐺)(𝑦(+g𝐺)𝑥)))
385, 31, 7, 6, 37syl13anc 1373 . . . 4 (((𝐺 ∈ Grp ∧ 𝐸 ∥ 2) ∧ 𝑥𝑋𝑦𝑋) → (((𝑥(+g𝐺)𝑦)(+g𝐺)𝑦)(+g𝐺)𝑥) = ((𝑥(+g𝐺)𝑦)(+g𝐺)(𝑦(+g𝐺)𝑥)))
3936, 38eqtr3d 2775 . . 3 (((𝐺 ∈ Grp ∧ 𝐸 ∥ 2) ∧ 𝑥𝑋𝑦𝑋) → ((𝑥(+g𝐺)𝑦)(+g𝐺)(𝑥(+g𝐺)𝑦)) = ((𝑥(+g𝐺)𝑦)(+g𝐺)(𝑦(+g𝐺)𝑥)))
401, 8grpcl 18227 . . . . 5 ((𝐺 ∈ Grp ∧ 𝑦𝑋𝑥𝑋) → (𝑦(+g𝐺)𝑥) ∈ 𝑋)
415, 7, 6, 40syl3anc 1372 . . . 4 (((𝐺 ∈ Grp ∧ 𝐸 ∥ 2) ∧ 𝑥𝑋𝑦𝑋) → (𝑦(+g𝐺)𝑥) ∈ 𝑋)
421, 8grplcan 18279 . . . 4 ((𝐺 ∈ Grp ∧ ((𝑥(+g𝐺)𝑦) ∈ 𝑋 ∧ (𝑦(+g𝐺)𝑥) ∈ 𝑋 ∧ (𝑥(+g𝐺)𝑦) ∈ 𝑋)) → (((𝑥(+g𝐺)𝑦)(+g𝐺)(𝑥(+g𝐺)𝑦)) = ((𝑥(+g𝐺)𝑦)(+g𝐺)(𝑦(+g𝐺)𝑥)) ↔ (𝑥(+g𝐺)𝑦) = (𝑦(+g𝐺)𝑥)))
435, 31, 41, 31, 42syl13anc 1373 . . 3 (((𝐺 ∈ Grp ∧ 𝐸 ∥ 2) ∧ 𝑥𝑋𝑦𝑋) → (((𝑥(+g𝐺)𝑦)(+g𝐺)(𝑥(+g𝐺)𝑦)) = ((𝑥(+g𝐺)𝑦)(+g𝐺)(𝑦(+g𝐺)𝑥)) ↔ (𝑥(+g𝐺)𝑦) = (𝑦(+g𝐺)𝑥)))
4439, 43mpbid 235 . 2 (((𝐺 ∈ Grp ∧ 𝐸 ∥ 2) ∧ 𝑥𝑋𝑦𝑋) → (𝑥(+g𝐺)𝑦) = (𝑦(+g𝐺)𝑥))
452, 3, 4, 44isabld 19038 1 ((𝐺 ∈ Grp ∧ 𝐸 ∥ 2) → 𝐺 ∈ Abel)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399  w3a 1088   = wceq 1542  wcel 2114   class class class wbr 5030  cfv 6339  (class class class)co 7170  2c2 11771  cdvds 15699  Basecbs 16586  +gcplusg 16668  0gc0g 16816  Grpcgrp 18219  .gcmg 18342  gExcgex 18771  Abelcabl 19025
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1802  ax-4 1816  ax-5 1917  ax-6 1975  ax-7 2020  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2162  ax-12 2179  ax-ext 2710  ax-sep 5167  ax-nul 5174  ax-pow 5232  ax-pr 5296  ax-un 7479  ax-cnex 10671  ax-resscn 10672  ax-1cn 10673  ax-icn 10674  ax-addcl 10675  ax-addrcl 10676  ax-mulcl 10677  ax-mulrcl 10678  ax-mulcom 10679  ax-addass 10680  ax-mulass 10681  ax-distr 10682  ax-i2m1 10683  ax-1ne0 10684  ax-1rid 10685  ax-rnegex 10686  ax-rrecex 10687  ax-cnre 10688  ax-pre-lttri 10689  ax-pre-lttrn 10690  ax-pre-ltadd 10691  ax-pre-mulgt0 10692
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1787  df-nf 1791  df-sb 2075  df-mo 2540  df-eu 2570  df-clab 2717  df-cleq 2730  df-clel 2811  df-nfc 2881  df-ne 2935  df-nel 3039  df-ral 3058  df-rex 3059  df-reu 3060  df-rmo 3061  df-rab 3062  df-v 3400  df-sbc 3681  df-csb 3791  df-dif 3846  df-un 3848  df-in 3850  df-ss 3860  df-pss 3862  df-nul 4212  df-if 4415  df-pw 4490  df-sn 4517  df-pr 4519  df-tp 4521  df-op 4523  df-uni 4797  df-iun 4883  df-br 5031  df-opab 5093  df-mpt 5111  df-tr 5137  df-id 5429  df-eprel 5434  df-po 5442  df-so 5443  df-fr 5483  df-we 5485  df-xp 5531  df-rel 5532  df-cnv 5533  df-co 5534  df-dm 5535  df-rn 5536  df-res 5537  df-ima 5538  df-pred 6129  df-ord 6175  df-on 6176  df-lim 6177  df-suc 6178  df-iota 6297  df-fun 6341  df-fn 6342  df-f 6343  df-f1 6344  df-fo 6345  df-f1o 6346  df-fv 6347  df-riota 7127  df-ov 7173  df-oprab 7174  df-mpo 7175  df-om 7600  df-1st 7714  df-2nd 7715  df-wrecs 7976  df-recs 8037  df-rdg 8075  df-er 8320  df-en 8556  df-dom 8557  df-sdom 8558  df-sup 8979  df-inf 8980  df-pnf 10755  df-mnf 10756  df-xr 10757  df-ltxr 10758  df-le 10759  df-sub 10950  df-neg 10951  df-nn 11717  df-2 11779  df-n0 11977  df-z 12063  df-uz 12325  df-fz 12982  df-seq 13461  df-dvds 15700  df-0g 16818  df-mgm 17968  df-sgrp 18017  df-mnd 18028  df-grp 18222  df-minusg 18223  df-mulg 18343  df-gex 18775  df-cmn 19026  df-abl 19027
This theorem is referenced by:  lt6abl  19134
  Copyright terms: Public domain W3C validator