Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  erngdvlem2-rN Structured version   Visualization version   GIF version

Theorem erngdvlem2-rN 40394
Description: Lemma for eringring 40389. (Contributed by NM, 6-Aug-2013.) (New usage is discouraged.)
Hypotheses
Ref Expression
ernggrp.h-r 𝐻 = (LHypβ€˜πΎ)
ernggrp.d-r 𝐷 = ((EDRingRβ€˜πΎ)β€˜π‘Š)
ernggrplem.b-r 𝐡 = (Baseβ€˜πΎ)
ernggrplem.t-r 𝑇 = ((LTrnβ€˜πΎ)β€˜π‘Š)
ernggrplem.e-r 𝐸 = ((TEndoβ€˜πΎ)β€˜π‘Š)
ernggrplem.p-r 𝑃 = (π‘Ž ∈ 𝐸, 𝑏 ∈ 𝐸 ↦ (𝑓 ∈ 𝑇 ↦ ((π‘Žβ€˜π‘“) ∘ (π‘β€˜π‘“))))
ernggrplem.o-r 𝑂 = (𝑓 ∈ 𝑇 ↦ ( I β†Ύ 𝐡))
ernggrplem.i-r 𝐼 = (π‘Ž ∈ 𝐸 ↦ (𝑓 ∈ 𝑇 ↦ β—‘(π‘Žβ€˜π‘“)))
Assertion
Ref Expression
erngdvlem2-rN ((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) β†’ 𝐷 ∈ Abel)
Distinct variable groups:   𝐡,𝑓   π‘Ž,𝑏,𝐸   𝑓,π‘Ž,𝐾,𝑏   𝑓,𝐻   𝑇,π‘Ž,𝑏,𝑓   π‘Š,π‘Ž,𝑏,𝑓
Allowed substitution hints:   𝐡(π‘Ž,𝑏)   𝐷(𝑓,π‘Ž,𝑏)   𝑃(𝑓,π‘Ž,𝑏)   𝐸(𝑓)   𝐻(π‘Ž,𝑏)   𝐼(𝑓,π‘Ž,𝑏)   𝑂(𝑓,π‘Ž,𝑏)

Proof of Theorem erngdvlem2-rN
Dummy variables 𝑑 𝑠 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ernggrp.h-r . . . 4 𝐻 = (LHypβ€˜πΎ)
2 ernggrplem.t-r . . . 4 𝑇 = ((LTrnβ€˜πΎ)β€˜π‘Š)
3 ernggrplem.e-r . . . 4 𝐸 = ((TEndoβ€˜πΎ)β€˜π‘Š)
4 ernggrp.d-r . . . 4 𝐷 = ((EDRingRβ€˜πΎ)β€˜π‘Š)
5 eqid 2727 . . . 4 (Baseβ€˜π·) = (Baseβ€˜π·)
61, 2, 3, 4, 5erngbase-rN 40206 . . 3 ((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) β†’ (Baseβ€˜π·) = 𝐸)
76eqcomd 2733 . 2 ((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) β†’ 𝐸 = (Baseβ€˜π·))
8 ernggrplem.p-r . . 3 𝑃 = (π‘Ž ∈ 𝐸, 𝑏 ∈ 𝐸 ↦ (𝑓 ∈ 𝑇 ↦ ((π‘Žβ€˜π‘“) ∘ (π‘β€˜π‘“))))
9 eqid 2727 . . . 4 (+gβ€˜π·) = (+gβ€˜π·)
101, 2, 3, 4, 9erngfplus-rN 40207 . . 3 ((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) β†’ (+gβ€˜π·) = (π‘Ž ∈ 𝐸, 𝑏 ∈ 𝐸 ↦ (𝑓 ∈ 𝑇 ↦ ((π‘Žβ€˜π‘“) ∘ (π‘β€˜π‘“)))))
118, 10eqtr4id 2786 . 2 ((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) β†’ 𝑃 = (+gβ€˜π·))
12 ernggrplem.b-r . . 3 𝐡 = (Baseβ€˜πΎ)
13 ernggrplem.o-r . . 3 𝑂 = (𝑓 ∈ 𝑇 ↦ ( I β†Ύ 𝐡))
14 ernggrplem.i-r . . 3 𝐼 = (π‘Ž ∈ 𝐸 ↦ (𝑓 ∈ 𝑇 ↦ β—‘(π‘Žβ€˜π‘“)))
151, 4, 12, 2, 3, 8, 13, 14erngdvlem1-rN 40393 . 2 ((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) β†’ 𝐷 ∈ Grp)
161, 2, 3, 8tendoplcom 40179 . 2 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ 𝑠 ∈ 𝐸 ∧ 𝑑 ∈ 𝐸) β†’ (𝑠𝑃𝑑) = (𝑑𝑃𝑠))
177, 11, 15, 16isabld 19734 1 ((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) β†’ 𝐷 ∈ Abel)
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ∧ wa 395   = wceq 1534   ∈ wcel 2099   ↦ cmpt 5225   I cid 5569  β—‘ccnv 5671   β†Ύ cres 5674   ∘ ccom 5676  β€˜cfv 6542   ∈ cmpo 7416  Basecbs 17165  +gcplusg 17218  Abelcabl 19720  HLchlt 38746  LHypclh 39381  LTrncltrn 39498  TEndoctendo 40149  EDRingRcedring-rN 40151
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2164  ax-ext 2698  ax-rep 5279  ax-sep 5293  ax-nul 5300  ax-pow 5359  ax-pr 5423  ax-un 7732  ax-cnex 11180  ax-resscn 11181  ax-1cn 11182  ax-icn 11183  ax-addcl 11184  ax-addrcl 11185  ax-mulcl 11186  ax-mulrcl 11187  ax-mulcom 11188  ax-addass 11189  ax-mulass 11190  ax-distr 11191  ax-i2m1 11192  ax-1ne0 11193  ax-1rid 11194  ax-rnegex 11195  ax-rrecex 11196  ax-cnre 11197  ax-pre-lttri 11198  ax-pre-lttrn 11199  ax-pre-ltadd 11200  ax-pre-mulgt0 11201  ax-riotaBAD 38349
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 847  df-3or 1086  df-3an 1087  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2529  df-eu 2558  df-clab 2705  df-cleq 2719  df-clel 2805  df-nfc 2880  df-ne 2936  df-nel 3042  df-ral 3057  df-rex 3066  df-rmo 3371  df-reu 3372  df-rab 3428  df-v 3471  df-sbc 3775  df-csb 3890  df-dif 3947  df-un 3949  df-in 3951  df-ss 3961  df-pss 3963  df-nul 4319  df-if 4525  df-pw 4600  df-sn 4625  df-pr 4627  df-tp 4629  df-op 4631  df-uni 4904  df-iun 4993  df-iin 4994  df-br 5143  df-opab 5205  df-mpt 5226  df-tr 5260  df-id 5570  df-eprel 5576  df-po 5584  df-so 5585  df-fr 5627  df-we 5629  df-xp 5678  df-rel 5679  df-cnv 5680  df-co 5681  df-dm 5682  df-rn 5683  df-res 5684  df-ima 5685  df-pred 6299  df-ord 6366  df-on 6367  df-lim 6368  df-suc 6369  df-iota 6494  df-fun 6544  df-fn 6545  df-f 6546  df-f1 6547  df-fo 6548  df-f1o 6549  df-fv 6550  df-riota 7370  df-ov 7417  df-oprab 7418  df-mpo 7419  df-om 7863  df-1st 7985  df-2nd 7986  df-undef 8270  df-frecs 8278  df-wrecs 8309  df-recs 8383  df-rdg 8422  df-1o 8478  df-er 8716  df-map 8836  df-en 8954  df-dom 8955  df-sdom 8956  df-fin 8957  df-pnf 11266  df-mnf 11267  df-xr 11268  df-ltxr 11269  df-le 11270  df-sub 11462  df-neg 11463  df-nn 12229  df-2 12291  df-3 12292  df-n0 12489  df-z 12575  df-uz 12839  df-fz 13503  df-struct 17101  df-slot 17136  df-ndx 17148  df-base 17166  df-plusg 17231  df-mulr 17232  df-0g 17408  df-proset 18272  df-poset 18290  df-plt 18307  df-lub 18323  df-glb 18324  df-join 18325  df-meet 18326  df-p0 18402  df-p1 18403  df-lat 18409  df-clat 18476  df-mgm 18585  df-sgrp 18664  df-mnd 18680  df-grp 18878  df-cmn 19721  df-abl 19722  df-oposet 38572  df-ol 38574  df-oml 38575  df-covers 38662  df-ats 38663  df-atl 38694  df-cvlat 38718  df-hlat 38747  df-llines 38895  df-lplanes 38896  df-lvols 38897  df-lines 38898  df-psubsp 38900  df-pmap 38901  df-padd 39193  df-lhyp 39385  df-laut 39386  df-ldil 39501  df-ltrn 39502  df-trl 39556  df-tendo 40152  df-edring-rN 40153
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator