| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > erngdvlem2-rN | Structured version Visualization version GIF version | ||
| Description: Lemma for eringring 40981. (Contributed by NM, 6-Aug-2013.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| ernggrp.h-r | ⊢ 𝐻 = (LHyp‘𝐾) |
| ernggrp.d-r | ⊢ 𝐷 = ((EDRingR‘𝐾)‘𝑊) |
| ernggrplem.b-r | ⊢ 𝐵 = (Base‘𝐾) |
| ernggrplem.t-r | ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) |
| ernggrplem.e-r | ⊢ 𝐸 = ((TEndo‘𝐾)‘𝑊) |
| ernggrplem.p-r | ⊢ 𝑃 = (𝑎 ∈ 𝐸, 𝑏 ∈ 𝐸 ↦ (𝑓 ∈ 𝑇 ↦ ((𝑎‘𝑓) ∘ (𝑏‘𝑓)))) |
| ernggrplem.o-r | ⊢ 𝑂 = (𝑓 ∈ 𝑇 ↦ ( I ↾ 𝐵)) |
| ernggrplem.i-r | ⊢ 𝐼 = (𝑎 ∈ 𝐸 ↦ (𝑓 ∈ 𝑇 ↦ ◡(𝑎‘𝑓))) |
| Ref | Expression |
|---|---|
| erngdvlem2-rN | ⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → 𝐷 ∈ Abel) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ernggrp.h-r | . . . 4 ⊢ 𝐻 = (LHyp‘𝐾) | |
| 2 | ernggrplem.t-r | . . . 4 ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) | |
| 3 | ernggrplem.e-r | . . . 4 ⊢ 𝐸 = ((TEndo‘𝐾)‘𝑊) | |
| 4 | ernggrp.d-r | . . . 4 ⊢ 𝐷 = ((EDRingR‘𝐾)‘𝑊) | |
| 5 | eqid 2730 | . . . 4 ⊢ (Base‘𝐷) = (Base‘𝐷) | |
| 6 | 1, 2, 3, 4, 5 | erngbase-rN 40798 | . . 3 ⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → (Base‘𝐷) = 𝐸) |
| 7 | 6 | eqcomd 2736 | . 2 ⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → 𝐸 = (Base‘𝐷)) |
| 8 | ernggrplem.p-r | . . 3 ⊢ 𝑃 = (𝑎 ∈ 𝐸, 𝑏 ∈ 𝐸 ↦ (𝑓 ∈ 𝑇 ↦ ((𝑎‘𝑓) ∘ (𝑏‘𝑓)))) | |
| 9 | eqid 2730 | . . . 4 ⊢ (+g‘𝐷) = (+g‘𝐷) | |
| 10 | 1, 2, 3, 4, 9 | erngfplus-rN 40799 | . . 3 ⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → (+g‘𝐷) = (𝑎 ∈ 𝐸, 𝑏 ∈ 𝐸 ↦ (𝑓 ∈ 𝑇 ↦ ((𝑎‘𝑓) ∘ (𝑏‘𝑓))))) |
| 11 | 8, 10 | eqtr4id 2784 | . 2 ⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → 𝑃 = (+g‘𝐷)) |
| 12 | ernggrplem.b-r | . . 3 ⊢ 𝐵 = (Base‘𝐾) | |
| 13 | ernggrplem.o-r | . . 3 ⊢ 𝑂 = (𝑓 ∈ 𝑇 ↦ ( I ↾ 𝐵)) | |
| 14 | ernggrplem.i-r | . . 3 ⊢ 𝐼 = (𝑎 ∈ 𝐸 ↦ (𝑓 ∈ 𝑇 ↦ ◡(𝑎‘𝑓))) | |
| 15 | 1, 4, 12, 2, 3, 8, 13, 14 | erngdvlem1-rN 40985 | . 2 ⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → 𝐷 ∈ Grp) |
| 16 | 1, 2, 3, 8 | tendoplcom 40771 | . 2 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑠 ∈ 𝐸 ∧ 𝑡 ∈ 𝐸) → (𝑠𝑃𝑡) = (𝑡𝑃𝑠)) |
| 17 | 7, 11, 15, 16 | isabld 19731 | 1 ⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → 𝐷 ∈ Abel) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ↦ cmpt 5190 I cid 5534 ◡ccnv 5639 ↾ cres 5642 ∘ ccom 5644 ‘cfv 6513 ∈ cmpo 7391 Basecbs 17185 +gcplusg 17226 Abelcabl 19717 HLchlt 39338 LHypclh 39973 LTrncltrn 40090 TEndoctendo 40741 EDRingRcedring-rN 40743 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-rep 5236 ax-sep 5253 ax-nul 5263 ax-pow 5322 ax-pr 5389 ax-un 7713 ax-cnex 11130 ax-resscn 11131 ax-1cn 11132 ax-icn 11133 ax-addcl 11134 ax-addrcl 11135 ax-mulcl 11136 ax-mulrcl 11137 ax-mulcom 11138 ax-addass 11139 ax-mulass 11140 ax-distr 11141 ax-i2m1 11142 ax-1ne0 11143 ax-1rid 11144 ax-rnegex 11145 ax-rrecex 11146 ax-cnre 11147 ax-pre-lttri 11148 ax-pre-lttrn 11149 ax-pre-ltadd 11150 ax-pre-mulgt0 11151 ax-riotaBAD 38941 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-nel 3031 df-ral 3046 df-rex 3055 df-rmo 3356 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3756 df-csb 3865 df-dif 3919 df-un 3921 df-in 3923 df-ss 3933 df-pss 3936 df-nul 4299 df-if 4491 df-pw 4567 df-sn 4592 df-pr 4594 df-tp 4596 df-op 4598 df-uni 4874 df-iun 4959 df-iin 4960 df-br 5110 df-opab 5172 df-mpt 5191 df-tr 5217 df-id 5535 df-eprel 5540 df-po 5548 df-so 5549 df-fr 5593 df-we 5595 df-xp 5646 df-rel 5647 df-cnv 5648 df-co 5649 df-dm 5650 df-rn 5651 df-res 5652 df-ima 5653 df-pred 6276 df-ord 6337 df-on 6338 df-lim 6339 df-suc 6340 df-iota 6466 df-fun 6515 df-fn 6516 df-f 6517 df-f1 6518 df-fo 6519 df-f1o 6520 df-fv 6521 df-riota 7346 df-ov 7392 df-oprab 7393 df-mpo 7394 df-om 7845 df-1st 7970 df-2nd 7971 df-undef 8254 df-frecs 8262 df-wrecs 8293 df-recs 8342 df-rdg 8380 df-1o 8436 df-er 8673 df-map 8803 df-en 8921 df-dom 8922 df-sdom 8923 df-fin 8924 df-pnf 11216 df-mnf 11217 df-xr 11218 df-ltxr 11219 df-le 11220 df-sub 11413 df-neg 11414 df-nn 12188 df-2 12250 df-3 12251 df-n0 12449 df-z 12536 df-uz 12800 df-fz 13475 df-struct 17123 df-slot 17158 df-ndx 17170 df-base 17186 df-plusg 17239 df-mulr 17240 df-0g 17410 df-proset 18261 df-poset 18280 df-plt 18295 df-lub 18311 df-glb 18312 df-join 18313 df-meet 18314 df-p0 18390 df-p1 18391 df-lat 18397 df-clat 18464 df-mgm 18573 df-sgrp 18652 df-mnd 18668 df-grp 18874 df-cmn 19718 df-abl 19719 df-oposet 39164 df-ol 39166 df-oml 39167 df-covers 39254 df-ats 39255 df-atl 39286 df-cvlat 39310 df-hlat 39339 df-llines 39487 df-lplanes 39488 df-lvols 39489 df-lines 39490 df-psubsp 39492 df-pmap 39493 df-padd 39785 df-lhyp 39977 df-laut 39978 df-ldil 40093 df-ltrn 40094 df-trl 40148 df-tendo 40744 df-edring-rN 40745 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |