MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  iscmnd Structured version   Visualization version   GIF version

Theorem iscmnd 19827
Description: Properties that determine a commutative monoid. (Contributed by Mario Carneiro, 7-Jan-2015.)
Hypotheses
Ref Expression
iscmnd.b (𝜑𝐵 = (Base‘𝐺))
iscmnd.p (𝜑+ = (+g𝐺))
iscmnd.g (𝜑𝐺 ∈ Mnd)
iscmnd.c ((𝜑𝑥𝐵𝑦𝐵) → (𝑥 + 𝑦) = (𝑦 + 𝑥))
Assertion
Ref Expression
iscmnd (𝜑𝐺 ∈ CMnd)
Distinct variable groups:   𝑥,𝑦,𝐵   𝑥,𝐺,𝑦   𝜑,𝑥,𝑦
Allowed substitution hints:   + (𝑥,𝑦)

Proof of Theorem iscmnd
StepHypRef Expression
1 iscmnd.g . . 3 (𝜑𝐺 ∈ Mnd)
2 iscmnd.c . . . . 5 ((𝜑𝑥𝐵𝑦𝐵) → (𝑥 + 𝑦) = (𝑦 + 𝑥))
323expib 1121 . . . 4 (𝜑 → ((𝑥𝐵𝑦𝐵) → (𝑥 + 𝑦) = (𝑦 + 𝑥)))
43ralrimivv 3198 . . 3 (𝜑 → ∀𝑥𝐵𝑦𝐵 (𝑥 + 𝑦) = (𝑦 + 𝑥))
5 iscmnd.b . . . . 5 (𝜑𝐵 = (Base‘𝐺))
6 iscmnd.p . . . . . . . 8 (𝜑+ = (+g𝐺))
76oveqd 7448 . . . . . . 7 (𝜑 → (𝑥 + 𝑦) = (𝑥(+g𝐺)𝑦))
86oveqd 7448 . . . . . . 7 (𝜑 → (𝑦 + 𝑥) = (𝑦(+g𝐺)𝑥))
97, 8eqeq12d 2751 . . . . . 6 (𝜑 → ((𝑥 + 𝑦) = (𝑦 + 𝑥) ↔ (𝑥(+g𝐺)𝑦) = (𝑦(+g𝐺)𝑥)))
105, 9raleqbidv 3344 . . . . 5 (𝜑 → (∀𝑦𝐵 (𝑥 + 𝑦) = (𝑦 + 𝑥) ↔ ∀𝑦 ∈ (Base‘𝐺)(𝑥(+g𝐺)𝑦) = (𝑦(+g𝐺)𝑥)))
115, 10raleqbidv 3344 . . . 4 (𝜑 → (∀𝑥𝐵𝑦𝐵 (𝑥 + 𝑦) = (𝑦 + 𝑥) ↔ ∀𝑥 ∈ (Base‘𝐺)∀𝑦 ∈ (Base‘𝐺)(𝑥(+g𝐺)𝑦) = (𝑦(+g𝐺)𝑥)))
1211anbi2d 630 . . 3 (𝜑 → ((𝐺 ∈ Mnd ∧ ∀𝑥𝐵𝑦𝐵 (𝑥 + 𝑦) = (𝑦 + 𝑥)) ↔ (𝐺 ∈ Mnd ∧ ∀𝑥 ∈ (Base‘𝐺)∀𝑦 ∈ (Base‘𝐺)(𝑥(+g𝐺)𝑦) = (𝑦(+g𝐺)𝑥))))
131, 4, 12mpbi2and 712 . 2 (𝜑 → (𝐺 ∈ Mnd ∧ ∀𝑥 ∈ (Base‘𝐺)∀𝑦 ∈ (Base‘𝐺)(𝑥(+g𝐺)𝑦) = (𝑦(+g𝐺)𝑥)))
14 eqid 2735 . . 3 (Base‘𝐺) = (Base‘𝐺)
15 eqid 2735 . . 3 (+g𝐺) = (+g𝐺)
1614, 15iscmn 19822 . 2 (𝐺 ∈ CMnd ↔ (𝐺 ∈ Mnd ∧ ∀𝑥 ∈ (Base‘𝐺)∀𝑦 ∈ (Base‘𝐺)(𝑥(+g𝐺)𝑦) = (𝑦(+g𝐺)𝑥)))
1713, 16sylibr 234 1 (𝜑𝐺 ∈ CMnd)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1537  wcel 2106  wral 3059  cfv 6563  (class class class)co 7431  Basecbs 17245  +gcplusg 17298  Mndcmnd 18760  CMndccmn 19813
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-ext 2706
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-sb 2063  df-clab 2713  df-cleq 2727  df-clel 2814  df-ral 3060  df-rex 3069  df-rab 3434  df-v 3480  df-dif 3966  df-un 3968  df-ss 3980  df-nul 4340  df-if 4532  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-br 5149  df-iota 6516  df-fv 6571  df-ov 7434  df-cmn 19815
This theorem is referenced by:  isabld  19828  subcmn  19870  cntrcmnd  19875  prdscmnd  19894  iscrngd  20306  xrsmcmn  21422  psrcrng  22010  0ringcring  33239  idlsrgcmnd  33523  primrootsunit1  42079  2zrngacmnd  48092
  Copyright terms: Public domain W3C validator