![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > iscmnd | Structured version Visualization version GIF version |
Description: Properties that determine a commutative monoid. (Contributed by Mario Carneiro, 7-Jan-2015.) |
Ref | Expression |
---|---|
iscmnd.b | ⊢ (𝜑 → 𝐵 = (Base‘𝐺)) |
iscmnd.p | ⊢ (𝜑 → + = (+g‘𝐺)) |
iscmnd.g | ⊢ (𝜑 → 𝐺 ∈ Mnd) |
iscmnd.c | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) → (𝑥 + 𝑦) = (𝑦 + 𝑥)) |
Ref | Expression |
---|---|
iscmnd | ⊢ (𝜑 → 𝐺 ∈ CMnd) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | iscmnd.g | . . 3 ⊢ (𝜑 → 𝐺 ∈ Mnd) | |
2 | iscmnd.c | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) → (𝑥 + 𝑦) = (𝑦 + 𝑥)) | |
3 | 2 | 3expib 1122 | . . . 4 ⊢ (𝜑 → ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) → (𝑥 + 𝑦) = (𝑦 + 𝑥))) |
4 | 3 | ralrimivv 3206 | . . 3 ⊢ (𝜑 → ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝑥 + 𝑦) = (𝑦 + 𝑥)) |
5 | iscmnd.b | . . . . 5 ⊢ (𝜑 → 𝐵 = (Base‘𝐺)) | |
6 | iscmnd.p | . . . . . . . 8 ⊢ (𝜑 → + = (+g‘𝐺)) | |
7 | 6 | oveqd 7465 | . . . . . . 7 ⊢ (𝜑 → (𝑥 + 𝑦) = (𝑥(+g‘𝐺)𝑦)) |
8 | 6 | oveqd 7465 | . . . . . . 7 ⊢ (𝜑 → (𝑦 + 𝑥) = (𝑦(+g‘𝐺)𝑥)) |
9 | 7, 8 | eqeq12d 2756 | . . . . . 6 ⊢ (𝜑 → ((𝑥 + 𝑦) = (𝑦 + 𝑥) ↔ (𝑥(+g‘𝐺)𝑦) = (𝑦(+g‘𝐺)𝑥))) |
10 | 5, 9 | raleqbidv 3354 | . . . . 5 ⊢ (𝜑 → (∀𝑦 ∈ 𝐵 (𝑥 + 𝑦) = (𝑦 + 𝑥) ↔ ∀𝑦 ∈ (Base‘𝐺)(𝑥(+g‘𝐺)𝑦) = (𝑦(+g‘𝐺)𝑥))) |
11 | 5, 10 | raleqbidv 3354 | . . . 4 ⊢ (𝜑 → (∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝑥 + 𝑦) = (𝑦 + 𝑥) ↔ ∀𝑥 ∈ (Base‘𝐺)∀𝑦 ∈ (Base‘𝐺)(𝑥(+g‘𝐺)𝑦) = (𝑦(+g‘𝐺)𝑥))) |
12 | 11 | anbi2d 629 | . . 3 ⊢ (𝜑 → ((𝐺 ∈ Mnd ∧ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝑥 + 𝑦) = (𝑦 + 𝑥)) ↔ (𝐺 ∈ Mnd ∧ ∀𝑥 ∈ (Base‘𝐺)∀𝑦 ∈ (Base‘𝐺)(𝑥(+g‘𝐺)𝑦) = (𝑦(+g‘𝐺)𝑥)))) |
13 | 1, 4, 12 | mpbi2and 711 | . 2 ⊢ (𝜑 → (𝐺 ∈ Mnd ∧ ∀𝑥 ∈ (Base‘𝐺)∀𝑦 ∈ (Base‘𝐺)(𝑥(+g‘𝐺)𝑦) = (𝑦(+g‘𝐺)𝑥))) |
14 | eqid 2740 | . . 3 ⊢ (Base‘𝐺) = (Base‘𝐺) | |
15 | eqid 2740 | . . 3 ⊢ (+g‘𝐺) = (+g‘𝐺) | |
16 | 14, 15 | iscmn 19831 | . 2 ⊢ (𝐺 ∈ CMnd ↔ (𝐺 ∈ Mnd ∧ ∀𝑥 ∈ (Base‘𝐺)∀𝑦 ∈ (Base‘𝐺)(𝑥(+g‘𝐺)𝑦) = (𝑦(+g‘𝐺)𝑥))) |
17 | 13, 16 | sylibr 234 | 1 ⊢ (𝜑 → 𝐺 ∈ CMnd) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1087 = wceq 1537 ∈ wcel 2108 ∀wral 3067 ‘cfv 6573 (class class class)co 7448 Basecbs 17258 +gcplusg 17311 Mndcmnd 18772 CMndccmn 19822 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-ss 3993 df-nul 4353 df-if 4549 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-br 5167 df-iota 6525 df-fv 6581 df-ov 7451 df-cmn 19824 |
This theorem is referenced by: isabld 19837 subcmn 19879 cntrcmnd 19884 prdscmnd 19903 iscrngd 20315 xrsmcmn 21427 psrcrng 22015 0ringcring 33224 idlsrgcmnd 33508 primrootsunit1 42054 2zrngacmnd 47971 |
Copyright terms: Public domain | W3C validator |