| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > iscmnd | Structured version Visualization version GIF version | ||
| Description: Properties that determine a commutative monoid. (Contributed by Mario Carneiro, 7-Jan-2015.) |
| Ref | Expression |
|---|---|
| iscmnd.b | ⊢ (𝜑 → 𝐵 = (Base‘𝐺)) |
| iscmnd.p | ⊢ (𝜑 → + = (+g‘𝐺)) |
| iscmnd.g | ⊢ (𝜑 → 𝐺 ∈ Mnd) |
| iscmnd.c | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) → (𝑥 + 𝑦) = (𝑦 + 𝑥)) |
| Ref | Expression |
|---|---|
| iscmnd | ⊢ (𝜑 → 𝐺 ∈ CMnd) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | iscmnd.g | . . 3 ⊢ (𝜑 → 𝐺 ∈ Mnd) | |
| 2 | iscmnd.c | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) → (𝑥 + 𝑦) = (𝑦 + 𝑥)) | |
| 3 | 2 | 3expib 1122 | . . . 4 ⊢ (𝜑 → ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) → (𝑥 + 𝑦) = (𝑦 + 𝑥))) |
| 4 | 3 | ralrimivv 3174 | . . 3 ⊢ (𝜑 → ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝑥 + 𝑦) = (𝑦 + 𝑥)) |
| 5 | iscmnd.b | . . . . 5 ⊢ (𝜑 → 𝐵 = (Base‘𝐺)) | |
| 6 | iscmnd.p | . . . . . . . 8 ⊢ (𝜑 → + = (+g‘𝐺)) | |
| 7 | 6 | oveqd 7372 | . . . . . . 7 ⊢ (𝜑 → (𝑥 + 𝑦) = (𝑥(+g‘𝐺)𝑦)) |
| 8 | 6 | oveqd 7372 | . . . . . . 7 ⊢ (𝜑 → (𝑦 + 𝑥) = (𝑦(+g‘𝐺)𝑥)) |
| 9 | 7, 8 | eqeq12d 2749 | . . . . . 6 ⊢ (𝜑 → ((𝑥 + 𝑦) = (𝑦 + 𝑥) ↔ (𝑥(+g‘𝐺)𝑦) = (𝑦(+g‘𝐺)𝑥))) |
| 10 | 5, 9 | raleqbidv 3313 | . . . . 5 ⊢ (𝜑 → (∀𝑦 ∈ 𝐵 (𝑥 + 𝑦) = (𝑦 + 𝑥) ↔ ∀𝑦 ∈ (Base‘𝐺)(𝑥(+g‘𝐺)𝑦) = (𝑦(+g‘𝐺)𝑥))) |
| 11 | 5, 10 | raleqbidv 3313 | . . . 4 ⊢ (𝜑 → (∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝑥 + 𝑦) = (𝑦 + 𝑥) ↔ ∀𝑥 ∈ (Base‘𝐺)∀𝑦 ∈ (Base‘𝐺)(𝑥(+g‘𝐺)𝑦) = (𝑦(+g‘𝐺)𝑥))) |
| 12 | 11 | anbi2d 630 | . . 3 ⊢ (𝜑 → ((𝐺 ∈ Mnd ∧ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝑥 + 𝑦) = (𝑦 + 𝑥)) ↔ (𝐺 ∈ Mnd ∧ ∀𝑥 ∈ (Base‘𝐺)∀𝑦 ∈ (Base‘𝐺)(𝑥(+g‘𝐺)𝑦) = (𝑦(+g‘𝐺)𝑥)))) |
| 13 | 1, 4, 12 | mpbi2and 712 | . 2 ⊢ (𝜑 → (𝐺 ∈ Mnd ∧ ∀𝑥 ∈ (Base‘𝐺)∀𝑦 ∈ (Base‘𝐺)(𝑥(+g‘𝐺)𝑦) = (𝑦(+g‘𝐺)𝑥))) |
| 14 | eqid 2733 | . . 3 ⊢ (Base‘𝐺) = (Base‘𝐺) | |
| 15 | eqid 2733 | . . 3 ⊢ (+g‘𝐺) = (+g‘𝐺) | |
| 16 | 14, 15 | iscmn 19709 | . 2 ⊢ (𝐺 ∈ CMnd ↔ (𝐺 ∈ Mnd ∧ ∀𝑥 ∈ (Base‘𝐺)∀𝑦 ∈ (Base‘𝐺)(𝑥(+g‘𝐺)𝑦) = (𝑦(+g‘𝐺)𝑥))) |
| 17 | 13, 16 | sylibr 234 | 1 ⊢ (𝜑 → 𝐺 ∈ CMnd) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1541 ∈ wcel 2113 ∀wral 3048 ‘cfv 6489 (class class class)co 7355 Basecbs 17127 +gcplusg 17168 Mndcmnd 18650 CMndccmn 19700 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-ext 2705 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2712 df-cleq 2725 df-clel 2808 df-ral 3049 df-rex 3058 df-rab 3397 df-v 3439 df-dif 3901 df-un 3903 df-ss 3915 df-nul 4283 df-if 4477 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4861 df-br 5096 df-iota 6445 df-fv 6497 df-ov 7358 df-cmn 19702 |
| This theorem is referenced by: isabld 19715 subcmn 19757 cntrcmnd 19762 prdscmnd 19781 iscrngd 20218 xrsmcmn 21337 psrcrng 21918 0ringcring 33262 idlsrgcmnd 33524 primrootsunit1 42263 2zrngacmnd 48410 |
| Copyright terms: Public domain | W3C validator |