![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > iscmnd | Structured version Visualization version GIF version |
Description: Properties that determine a commutative monoid. (Contributed by Mario Carneiro, 7-Jan-2015.) |
Ref | Expression |
---|---|
iscmnd.b | ⊢ (𝜑 → 𝐵 = (Base‘𝐺)) |
iscmnd.p | ⊢ (𝜑 → + = (+g‘𝐺)) |
iscmnd.g | ⊢ (𝜑 → 𝐺 ∈ Mnd) |
iscmnd.c | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) → (𝑥 + 𝑦) = (𝑦 + 𝑥)) |
Ref | Expression |
---|---|
iscmnd | ⊢ (𝜑 → 𝐺 ∈ CMnd) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | iscmnd.g | . . 3 ⊢ (𝜑 → 𝐺 ∈ Mnd) | |
2 | iscmnd.c | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) → (𝑥 + 𝑦) = (𝑦 + 𝑥)) | |
3 | 2 | 3expib 1121 | . . . 4 ⊢ (𝜑 → ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) → (𝑥 + 𝑦) = (𝑦 + 𝑥))) |
4 | 3 | ralrimivv 3198 | . . 3 ⊢ (𝜑 → ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝑥 + 𝑦) = (𝑦 + 𝑥)) |
5 | iscmnd.b | . . . . 5 ⊢ (𝜑 → 𝐵 = (Base‘𝐺)) | |
6 | iscmnd.p | . . . . . . . 8 ⊢ (𝜑 → + = (+g‘𝐺)) | |
7 | 6 | oveqd 7448 | . . . . . . 7 ⊢ (𝜑 → (𝑥 + 𝑦) = (𝑥(+g‘𝐺)𝑦)) |
8 | 6 | oveqd 7448 | . . . . . . 7 ⊢ (𝜑 → (𝑦 + 𝑥) = (𝑦(+g‘𝐺)𝑥)) |
9 | 7, 8 | eqeq12d 2751 | . . . . . 6 ⊢ (𝜑 → ((𝑥 + 𝑦) = (𝑦 + 𝑥) ↔ (𝑥(+g‘𝐺)𝑦) = (𝑦(+g‘𝐺)𝑥))) |
10 | 5, 9 | raleqbidv 3344 | . . . . 5 ⊢ (𝜑 → (∀𝑦 ∈ 𝐵 (𝑥 + 𝑦) = (𝑦 + 𝑥) ↔ ∀𝑦 ∈ (Base‘𝐺)(𝑥(+g‘𝐺)𝑦) = (𝑦(+g‘𝐺)𝑥))) |
11 | 5, 10 | raleqbidv 3344 | . . . 4 ⊢ (𝜑 → (∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝑥 + 𝑦) = (𝑦 + 𝑥) ↔ ∀𝑥 ∈ (Base‘𝐺)∀𝑦 ∈ (Base‘𝐺)(𝑥(+g‘𝐺)𝑦) = (𝑦(+g‘𝐺)𝑥))) |
12 | 11 | anbi2d 630 | . . 3 ⊢ (𝜑 → ((𝐺 ∈ Mnd ∧ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝑥 + 𝑦) = (𝑦 + 𝑥)) ↔ (𝐺 ∈ Mnd ∧ ∀𝑥 ∈ (Base‘𝐺)∀𝑦 ∈ (Base‘𝐺)(𝑥(+g‘𝐺)𝑦) = (𝑦(+g‘𝐺)𝑥)))) |
13 | 1, 4, 12 | mpbi2and 712 | . 2 ⊢ (𝜑 → (𝐺 ∈ Mnd ∧ ∀𝑥 ∈ (Base‘𝐺)∀𝑦 ∈ (Base‘𝐺)(𝑥(+g‘𝐺)𝑦) = (𝑦(+g‘𝐺)𝑥))) |
14 | eqid 2735 | . . 3 ⊢ (Base‘𝐺) = (Base‘𝐺) | |
15 | eqid 2735 | . . 3 ⊢ (+g‘𝐺) = (+g‘𝐺) | |
16 | 14, 15 | iscmn 19822 | . 2 ⊢ (𝐺 ∈ CMnd ↔ (𝐺 ∈ Mnd ∧ ∀𝑥 ∈ (Base‘𝐺)∀𝑦 ∈ (Base‘𝐺)(𝑥(+g‘𝐺)𝑦) = (𝑦(+g‘𝐺)𝑥))) |
17 | 13, 16 | sylibr 234 | 1 ⊢ (𝜑 → 𝐺 ∈ CMnd) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1537 ∈ wcel 2106 ∀wral 3059 ‘cfv 6563 (class class class)co 7431 Basecbs 17245 +gcplusg 17298 Mndcmnd 18760 CMndccmn 19813 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-ext 2706 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-sb 2063 df-clab 2713 df-cleq 2727 df-clel 2814 df-ral 3060 df-rex 3069 df-rab 3434 df-v 3480 df-dif 3966 df-un 3968 df-ss 3980 df-nul 4340 df-if 4532 df-sn 4632 df-pr 4634 df-op 4638 df-uni 4913 df-br 5149 df-iota 6516 df-fv 6571 df-ov 7434 df-cmn 19815 |
This theorem is referenced by: isabld 19828 subcmn 19870 cntrcmnd 19875 prdscmnd 19894 iscrngd 20306 xrsmcmn 21422 psrcrng 22010 0ringcring 33239 idlsrgcmnd 33523 primrootsunit1 42079 2zrngacmnd 48092 |
Copyright terms: Public domain | W3C validator |