MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  iscmnd Structured version   Visualization version   GIF version

Theorem iscmnd 18690
Description: Properties that determine a commutative monoid. (Contributed by Mario Carneiro, 7-Jan-2015.)
Hypotheses
Ref Expression
iscmnd.b (𝜑𝐵 = (Base‘𝐺))
iscmnd.p (𝜑+ = (+g𝐺))
iscmnd.g (𝜑𝐺 ∈ Mnd)
iscmnd.c ((𝜑𝑥𝐵𝑦𝐵) → (𝑥 + 𝑦) = (𝑦 + 𝑥))
Assertion
Ref Expression
iscmnd (𝜑𝐺 ∈ CMnd)
Distinct variable groups:   𝑥,𝑦,𝐵   𝑥,𝐺,𝑦   𝜑,𝑥,𝑦
Allowed substitution hints:   + (𝑥,𝑦)

Proof of Theorem iscmnd
StepHypRef Expression
1 iscmnd.g . . 3 (𝜑𝐺 ∈ Mnd)
2 iscmnd.c . . . . 5 ((𝜑𝑥𝐵𝑦𝐵) → (𝑥 + 𝑦) = (𝑦 + 𝑥))
323expib 1103 . . . 4 (𝜑 → ((𝑥𝐵𝑦𝐵) → (𝑥 + 𝑦) = (𝑦 + 𝑥)))
43ralrimivv 3142 . . 3 (𝜑 → ∀𝑥𝐵𝑦𝐵 (𝑥 + 𝑦) = (𝑦 + 𝑥))
5 iscmnd.b . . . . 5 (𝜑𝐵 = (Base‘𝐺))
6 iscmnd.p . . . . . . . 8 (𝜑+ = (+g𝐺))
76oveqd 6999 . . . . . . 7 (𝜑 → (𝑥 + 𝑦) = (𝑥(+g𝐺)𝑦))
86oveqd 6999 . . . . . . 7 (𝜑 → (𝑦 + 𝑥) = (𝑦(+g𝐺)𝑥))
97, 8eqeq12d 2795 . . . . . 6 (𝜑 → ((𝑥 + 𝑦) = (𝑦 + 𝑥) ↔ (𝑥(+g𝐺)𝑦) = (𝑦(+g𝐺)𝑥)))
105, 9raleqbidv 3343 . . . . 5 (𝜑 → (∀𝑦𝐵 (𝑥 + 𝑦) = (𝑦 + 𝑥) ↔ ∀𝑦 ∈ (Base‘𝐺)(𝑥(+g𝐺)𝑦) = (𝑦(+g𝐺)𝑥)))
115, 10raleqbidv 3343 . . . 4 (𝜑 → (∀𝑥𝐵𝑦𝐵 (𝑥 + 𝑦) = (𝑦 + 𝑥) ↔ ∀𝑥 ∈ (Base‘𝐺)∀𝑦 ∈ (Base‘𝐺)(𝑥(+g𝐺)𝑦) = (𝑦(+g𝐺)𝑥)))
1211anbi2d 620 . . 3 (𝜑 → ((𝐺 ∈ Mnd ∧ ∀𝑥𝐵𝑦𝐵 (𝑥 + 𝑦) = (𝑦 + 𝑥)) ↔ (𝐺 ∈ Mnd ∧ ∀𝑥 ∈ (Base‘𝐺)∀𝑦 ∈ (Base‘𝐺)(𝑥(+g𝐺)𝑦) = (𝑦(+g𝐺)𝑥))))
131, 4, 12mpbi2and 700 . 2 (𝜑 → (𝐺 ∈ Mnd ∧ ∀𝑥 ∈ (Base‘𝐺)∀𝑦 ∈ (Base‘𝐺)(𝑥(+g𝐺)𝑦) = (𝑦(+g𝐺)𝑥)))
14 eqid 2780 . . 3 (Base‘𝐺) = (Base‘𝐺)
15 eqid 2780 . . 3 (+g𝐺) = (+g𝐺)
1614, 15iscmn 18685 . 2 (𝐺 ∈ CMnd ↔ (𝐺 ∈ Mnd ∧ ∀𝑥 ∈ (Base‘𝐺)∀𝑦 ∈ (Base‘𝐺)(𝑥(+g𝐺)𝑦) = (𝑦(+g𝐺)𝑥)))
1713, 16sylibr 226 1 (𝜑𝐺 ∈ CMnd)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 387  w3a 1069   = wceq 1508  wcel 2051  wral 3090  cfv 6193  (class class class)co 6982  Basecbs 16345  +gcplusg 16427  Mndcmnd 17774  CMndccmn 18678
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1759  ax-4 1773  ax-5 1870  ax-6 1929  ax-7 1966  ax-8 2053  ax-9 2060  ax-10 2080  ax-11 2094  ax-12 2107  ax-ext 2752
This theorem depends on definitions:  df-bi 199  df-an 388  df-or 835  df-3an 1071  df-tru 1511  df-ex 1744  df-nf 1748  df-sb 2017  df-clab 2761  df-cleq 2773  df-clel 2848  df-nfc 2920  df-ral 3095  df-rex 3096  df-rab 3099  df-v 3419  df-dif 3834  df-un 3836  df-in 3838  df-ss 3845  df-nul 4182  df-if 4354  df-sn 4445  df-pr 4447  df-op 4451  df-uni 4718  df-br 4935  df-iota 6157  df-fv 6201  df-ov 6985  df-cmn 18680
This theorem is referenced by:  isabld  18691  subcmn  18727  prdscmnd  18749  iscrngd  19071  psrcrng  19919  xrsmcmn  20285  cntrcmnd  30565  2zrngacmnd  43612
  Copyright terms: Public domain W3C validator