![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > tgrpabl | Structured version Visualization version GIF version |
Description: The translation group is an Abelian group. Lemma G of [Crawley] p. 116. (Contributed by NM, 6-Jun-2013.) |
Ref | Expression |
---|---|
tgrpgrp.h | ⊢ 𝐻 = (LHyp‘𝐾) |
tgrpgrp.g | ⊢ 𝐺 = ((TGrp‘𝐾)‘𝑊) |
Ref | Expression |
---|---|
tgrpabl | ⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → 𝐺 ∈ Abel) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | tgrpgrp.h | . . . 4 ⊢ 𝐻 = (LHyp‘𝐾) | |
2 | eqid 2726 | . . . 4 ⊢ ((LTrn‘𝐾)‘𝑊) = ((LTrn‘𝐾)‘𝑊) | |
3 | tgrpgrp.g | . . . 4 ⊢ 𝐺 = ((TGrp‘𝐾)‘𝑊) | |
4 | eqid 2726 | . . . 4 ⊢ (Base‘𝐺) = (Base‘𝐺) | |
5 | 1, 2, 3, 4 | tgrpbase 40129 | . . 3 ⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → (Base‘𝐺) = ((LTrn‘𝐾)‘𝑊)) |
6 | 5 | eqcomd 2732 | . 2 ⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → ((LTrn‘𝐾)‘𝑊) = (Base‘𝐺)) |
7 | eqidd 2727 | . 2 ⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → (+g‘𝐺) = (+g‘𝐺)) | |
8 | 1, 3 | tgrpgrp 40133 | . 2 ⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → 𝐺 ∈ Grp) |
9 | 1, 2 | ltrncom 40121 | . . 3 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑓 ∈ ((LTrn‘𝐾)‘𝑊) ∧ 𝑔 ∈ ((LTrn‘𝐾)‘𝑊)) → (𝑓 ∘ 𝑔) = (𝑔 ∘ 𝑓)) |
10 | eqid 2726 | . . . . . 6 ⊢ (+g‘𝐺) = (+g‘𝐺) | |
11 | 1, 2, 3, 10 | tgrpov 40131 | . . . . 5 ⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ∧ (𝑓 ∈ ((LTrn‘𝐾)‘𝑊) ∧ 𝑔 ∈ ((LTrn‘𝐾)‘𝑊))) → (𝑓(+g‘𝐺)𝑔) = (𝑓 ∘ 𝑔)) |
12 | 11 | 3expa 1115 | . . . 4 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑓 ∈ ((LTrn‘𝐾)‘𝑊) ∧ 𝑔 ∈ ((LTrn‘𝐾)‘𝑊))) → (𝑓(+g‘𝐺)𝑔) = (𝑓 ∘ 𝑔)) |
13 | 12 | 3impb 1112 | . . 3 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑓 ∈ ((LTrn‘𝐾)‘𝑊) ∧ 𝑔 ∈ ((LTrn‘𝐾)‘𝑊)) → (𝑓(+g‘𝐺)𝑔) = (𝑓 ∘ 𝑔)) |
14 | 1, 2, 3, 10 | tgrpov 40131 | . . . . . 6 ⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ∧ (𝑔 ∈ ((LTrn‘𝐾)‘𝑊) ∧ 𝑓 ∈ ((LTrn‘𝐾)‘𝑊))) → (𝑔(+g‘𝐺)𝑓) = (𝑔 ∘ 𝑓)) |
15 | 14 | 3expa 1115 | . . . . 5 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑔 ∈ ((LTrn‘𝐾)‘𝑊) ∧ 𝑓 ∈ ((LTrn‘𝐾)‘𝑊))) → (𝑔(+g‘𝐺)𝑓) = (𝑔 ∘ 𝑓)) |
16 | 15 | 3impb 1112 | . . . 4 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑔 ∈ ((LTrn‘𝐾)‘𝑊) ∧ 𝑓 ∈ ((LTrn‘𝐾)‘𝑊)) → (𝑔(+g‘𝐺)𝑓) = (𝑔 ∘ 𝑓)) |
17 | 16 | 3com23 1123 | . . 3 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑓 ∈ ((LTrn‘𝐾)‘𝑊) ∧ 𝑔 ∈ ((LTrn‘𝐾)‘𝑊)) → (𝑔(+g‘𝐺)𝑓) = (𝑔 ∘ 𝑓)) |
18 | 9, 13, 17 | 3eqtr4d 2776 | . 2 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑓 ∈ ((LTrn‘𝐾)‘𝑊) ∧ 𝑔 ∈ ((LTrn‘𝐾)‘𝑊)) → (𝑓(+g‘𝐺)𝑔) = (𝑔(+g‘𝐺)𝑓)) |
19 | 6, 7, 8, 18 | isabld 19712 | 1 ⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → 𝐺 ∈ Abel) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1084 = wceq 1533 ∈ wcel 2098 ∘ ccom 5673 ‘cfv 6536 (class class class)co 7404 Basecbs 17150 +gcplusg 17203 Abelcabl 19698 HLchlt 38732 LHypclh 39367 LTrncltrn 39484 TGrpctgrp 40125 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2697 ax-rep 5278 ax-sep 5292 ax-nul 5299 ax-pow 5356 ax-pr 5420 ax-un 7721 ax-cnex 11165 ax-resscn 11166 ax-1cn 11167 ax-icn 11168 ax-addcl 11169 ax-addrcl 11170 ax-mulcl 11171 ax-mulrcl 11172 ax-mulcom 11173 ax-addass 11174 ax-mulass 11175 ax-distr 11176 ax-i2m1 11177 ax-1ne0 11178 ax-1rid 11179 ax-rnegex 11180 ax-rrecex 11181 ax-cnre 11182 ax-pre-lttri 11183 ax-pre-lttrn 11184 ax-pre-ltadd 11185 ax-pre-mulgt0 11186 ax-riotaBAD 38335 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2704 df-cleq 2718 df-clel 2804 df-nfc 2879 df-ne 2935 df-nel 3041 df-ral 3056 df-rex 3065 df-rmo 3370 df-reu 3371 df-rab 3427 df-v 3470 df-sbc 3773 df-csb 3889 df-dif 3946 df-un 3948 df-in 3950 df-ss 3960 df-pss 3962 df-nul 4318 df-if 4524 df-pw 4599 df-sn 4624 df-pr 4626 df-op 4630 df-uni 4903 df-iun 4992 df-iin 4993 df-br 5142 df-opab 5204 df-mpt 5225 df-tr 5259 df-id 5567 df-eprel 5573 df-po 5581 df-so 5582 df-fr 5624 df-we 5626 df-xp 5675 df-rel 5676 df-cnv 5677 df-co 5678 df-dm 5679 df-rn 5680 df-res 5681 df-ima 5682 df-pred 6293 df-ord 6360 df-on 6361 df-lim 6362 df-suc 6363 df-iota 6488 df-fun 6538 df-fn 6539 df-f 6540 df-f1 6541 df-fo 6542 df-f1o 6543 df-fv 6544 df-riota 7360 df-ov 7407 df-oprab 7408 df-mpo 7409 df-om 7852 df-1st 7971 df-2nd 7972 df-undef 8256 df-frecs 8264 df-wrecs 8295 df-recs 8369 df-rdg 8408 df-1o 8464 df-er 8702 df-map 8821 df-en 8939 df-dom 8940 df-sdom 8941 df-fin 8942 df-pnf 11251 df-mnf 11252 df-xr 11253 df-ltxr 11254 df-le 11255 df-sub 11447 df-neg 11448 df-nn 12214 df-2 12276 df-n0 12474 df-z 12560 df-uz 12824 df-fz 13488 df-struct 17086 df-slot 17121 df-ndx 17133 df-base 17151 df-plusg 17216 df-0g 17393 df-proset 18257 df-poset 18275 df-plt 18292 df-lub 18308 df-glb 18309 df-join 18310 df-meet 18311 df-p0 18387 df-p1 18388 df-lat 18394 df-clat 18461 df-mgm 18570 df-sgrp 18649 df-mnd 18665 df-grp 18863 df-cmn 19699 df-abl 19700 df-oposet 38558 df-ol 38560 df-oml 38561 df-covers 38648 df-ats 38649 df-atl 38680 df-cvlat 38704 df-hlat 38733 df-llines 38881 df-lplanes 38882 df-lvols 38883 df-lines 38884 df-psubsp 38886 df-pmap 38887 df-padd 39179 df-lhyp 39371 df-laut 39372 df-ldil 39487 df-ltrn 39488 df-trl 39542 df-tgrp 40126 |
This theorem is referenced by: dvaabl 40407 |
Copyright terms: Public domain | W3C validator |