![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > tgrpabl | Structured version Visualization version GIF version |
Description: The translation group is an Abelian group. Lemma G of [Crawley] p. 116. (Contributed by NM, 6-Jun-2013.) |
Ref | Expression |
---|---|
tgrpgrp.h | ⊢ 𝐻 = (LHyp‘𝐾) |
tgrpgrp.g | ⊢ 𝐺 = ((TGrp‘𝐾)‘𝑊) |
Ref | Expression |
---|---|
tgrpabl | ⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → 𝐺 ∈ Abel) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | tgrpgrp.h | . . . 4 ⊢ 𝐻 = (LHyp‘𝐾) | |
2 | eqid 2728 | . . . 4 ⊢ ((LTrn‘𝐾)‘𝑊) = ((LTrn‘𝐾)‘𝑊) | |
3 | tgrpgrp.g | . . . 4 ⊢ 𝐺 = ((TGrp‘𝐾)‘𝑊) | |
4 | eqid 2728 | . . . 4 ⊢ (Base‘𝐺) = (Base‘𝐺) | |
5 | 1, 2, 3, 4 | tgrpbase 40251 | . . 3 ⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → (Base‘𝐺) = ((LTrn‘𝐾)‘𝑊)) |
6 | 5 | eqcomd 2734 | . 2 ⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → ((LTrn‘𝐾)‘𝑊) = (Base‘𝐺)) |
7 | eqidd 2729 | . 2 ⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → (+g‘𝐺) = (+g‘𝐺)) | |
8 | 1, 3 | tgrpgrp 40255 | . 2 ⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → 𝐺 ∈ Grp) |
9 | 1, 2 | ltrncom 40243 | . . 3 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑓 ∈ ((LTrn‘𝐾)‘𝑊) ∧ 𝑔 ∈ ((LTrn‘𝐾)‘𝑊)) → (𝑓 ∘ 𝑔) = (𝑔 ∘ 𝑓)) |
10 | eqid 2728 | . . . . . 6 ⊢ (+g‘𝐺) = (+g‘𝐺) | |
11 | 1, 2, 3, 10 | tgrpov 40253 | . . . . 5 ⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ∧ (𝑓 ∈ ((LTrn‘𝐾)‘𝑊) ∧ 𝑔 ∈ ((LTrn‘𝐾)‘𝑊))) → (𝑓(+g‘𝐺)𝑔) = (𝑓 ∘ 𝑔)) |
12 | 11 | 3expa 1115 | . . . 4 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑓 ∈ ((LTrn‘𝐾)‘𝑊) ∧ 𝑔 ∈ ((LTrn‘𝐾)‘𝑊))) → (𝑓(+g‘𝐺)𝑔) = (𝑓 ∘ 𝑔)) |
13 | 12 | 3impb 1112 | . . 3 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑓 ∈ ((LTrn‘𝐾)‘𝑊) ∧ 𝑔 ∈ ((LTrn‘𝐾)‘𝑊)) → (𝑓(+g‘𝐺)𝑔) = (𝑓 ∘ 𝑔)) |
14 | 1, 2, 3, 10 | tgrpov 40253 | . . . . . 6 ⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ∧ (𝑔 ∈ ((LTrn‘𝐾)‘𝑊) ∧ 𝑓 ∈ ((LTrn‘𝐾)‘𝑊))) → (𝑔(+g‘𝐺)𝑓) = (𝑔 ∘ 𝑓)) |
15 | 14 | 3expa 1115 | . . . . 5 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑔 ∈ ((LTrn‘𝐾)‘𝑊) ∧ 𝑓 ∈ ((LTrn‘𝐾)‘𝑊))) → (𝑔(+g‘𝐺)𝑓) = (𝑔 ∘ 𝑓)) |
16 | 15 | 3impb 1112 | . . . 4 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑔 ∈ ((LTrn‘𝐾)‘𝑊) ∧ 𝑓 ∈ ((LTrn‘𝐾)‘𝑊)) → (𝑔(+g‘𝐺)𝑓) = (𝑔 ∘ 𝑓)) |
17 | 16 | 3com23 1123 | . . 3 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑓 ∈ ((LTrn‘𝐾)‘𝑊) ∧ 𝑔 ∈ ((LTrn‘𝐾)‘𝑊)) → (𝑔(+g‘𝐺)𝑓) = (𝑔 ∘ 𝑓)) |
18 | 9, 13, 17 | 3eqtr4d 2778 | . 2 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑓 ∈ ((LTrn‘𝐾)‘𝑊) ∧ 𝑔 ∈ ((LTrn‘𝐾)‘𝑊)) → (𝑓(+g‘𝐺)𝑔) = (𝑔(+g‘𝐺)𝑓)) |
19 | 6, 7, 8, 18 | isabld 19757 | 1 ⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → 𝐺 ∈ Abel) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 394 ∧ w3a 1084 = wceq 1533 ∈ wcel 2098 ∘ ccom 5686 ‘cfv 6553 (class class class)co 7426 Basecbs 17187 +gcplusg 17240 Abelcabl 19743 HLchlt 38854 LHypclh 39489 LTrncltrn 39606 TGrpctgrp 40247 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2699 ax-rep 5289 ax-sep 5303 ax-nul 5310 ax-pow 5369 ax-pr 5433 ax-un 7746 ax-cnex 11202 ax-resscn 11203 ax-1cn 11204 ax-icn 11205 ax-addcl 11206 ax-addrcl 11207 ax-mulcl 11208 ax-mulrcl 11209 ax-mulcom 11210 ax-addass 11211 ax-mulass 11212 ax-distr 11213 ax-i2m1 11214 ax-1ne0 11215 ax-1rid 11216 ax-rnegex 11217 ax-rrecex 11218 ax-cnre 11219 ax-pre-lttri 11220 ax-pre-lttrn 11221 ax-pre-ltadd 11222 ax-pre-mulgt0 11223 ax-riotaBAD 38457 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2529 df-eu 2558 df-clab 2706 df-cleq 2720 df-clel 2806 df-nfc 2881 df-ne 2938 df-nel 3044 df-ral 3059 df-rex 3068 df-rmo 3374 df-reu 3375 df-rab 3431 df-v 3475 df-sbc 3779 df-csb 3895 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-pss 3968 df-nul 4327 df-if 4533 df-pw 4608 df-sn 4633 df-pr 4635 df-op 4639 df-uni 4913 df-iun 5002 df-iin 5003 df-br 5153 df-opab 5215 df-mpt 5236 df-tr 5270 df-id 5580 df-eprel 5586 df-po 5594 df-so 5595 df-fr 5637 df-we 5639 df-xp 5688 df-rel 5689 df-cnv 5690 df-co 5691 df-dm 5692 df-rn 5693 df-res 5694 df-ima 5695 df-pred 6310 df-ord 6377 df-on 6378 df-lim 6379 df-suc 6380 df-iota 6505 df-fun 6555 df-fn 6556 df-f 6557 df-f1 6558 df-fo 6559 df-f1o 6560 df-fv 6561 df-riota 7382 df-ov 7429 df-oprab 7430 df-mpo 7431 df-om 7877 df-1st 7999 df-2nd 8000 df-undef 8285 df-frecs 8293 df-wrecs 8324 df-recs 8398 df-rdg 8437 df-1o 8493 df-er 8731 df-map 8853 df-en 8971 df-dom 8972 df-sdom 8973 df-fin 8974 df-pnf 11288 df-mnf 11289 df-xr 11290 df-ltxr 11291 df-le 11292 df-sub 11484 df-neg 11485 df-nn 12251 df-2 12313 df-n0 12511 df-z 12597 df-uz 12861 df-fz 13525 df-struct 17123 df-slot 17158 df-ndx 17170 df-base 17188 df-plusg 17253 df-0g 17430 df-proset 18294 df-poset 18312 df-plt 18329 df-lub 18345 df-glb 18346 df-join 18347 df-meet 18348 df-p0 18424 df-p1 18425 df-lat 18431 df-clat 18498 df-mgm 18607 df-sgrp 18686 df-mnd 18702 df-grp 18900 df-cmn 19744 df-abl 19745 df-oposet 38680 df-ol 38682 df-oml 38683 df-covers 38770 df-ats 38771 df-atl 38802 df-cvlat 38826 df-hlat 38855 df-llines 39003 df-lplanes 39004 df-lvols 39005 df-lines 39006 df-psubsp 39008 df-pmap 39009 df-padd 39301 df-lhyp 39493 df-laut 39494 df-ldil 39609 df-ltrn 39610 df-trl 39664 df-tgrp 40248 |
This theorem is referenced by: dvaabl 40529 |
Copyright terms: Public domain | W3C validator |