Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  mendassa Structured version   Visualization version   GIF version

Theorem mendassa 41921
Description: The module endomorphism algebra is an algebra. (Contributed by Mario Carneiro, 22-Sep-2015.)
Hypotheses
Ref Expression
mendassa.a 𝐴 = (MEndoβ€˜π‘€)
mendassa.s 𝑆 = (Scalarβ€˜π‘€)
Assertion
Ref Expression
mendassa ((𝑀 ∈ LMod ∧ 𝑆 ∈ CRing) β†’ 𝐴 ∈ AssAlg)

Proof of Theorem mendassa
Dummy variables π‘₯ 𝑦 𝑧 𝑣 𝑀 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 mendassa.a . . . 4 𝐴 = (MEndoβ€˜π‘€)
21mendbas 41911 . . 3 (𝑀 LMHom 𝑀) = (Baseβ€˜π΄)
32a1i 11 . 2 ((𝑀 ∈ LMod ∧ 𝑆 ∈ CRing) β†’ (𝑀 LMHom 𝑀) = (Baseβ€˜π΄))
4 mendassa.s . . . 4 𝑆 = (Scalarβ€˜π‘€)
51, 4mendsca 41916 . . 3 𝑆 = (Scalarβ€˜π΄)
65a1i 11 . 2 ((𝑀 ∈ LMod ∧ 𝑆 ∈ CRing) β†’ 𝑆 = (Scalarβ€˜π΄))
7 eqidd 2733 . 2 ((𝑀 ∈ LMod ∧ 𝑆 ∈ CRing) β†’ (Baseβ€˜π‘†) = (Baseβ€˜π‘†))
8 eqidd 2733 . 2 ((𝑀 ∈ LMod ∧ 𝑆 ∈ CRing) β†’ ( ·𝑠 β€˜π΄) = ( ·𝑠 β€˜π΄))
9 eqidd 2733 . 2 ((𝑀 ∈ LMod ∧ 𝑆 ∈ CRing) β†’ (.rβ€˜π΄) = (.rβ€˜π΄))
101, 4mendlmod 41920 . 2 ((𝑀 ∈ LMod ∧ 𝑆 ∈ CRing) β†’ 𝐴 ∈ LMod)
111mendring 41919 . . 3 (𝑀 ∈ LMod β†’ 𝐴 ∈ Ring)
1211adantr 481 . 2 ((𝑀 ∈ LMod ∧ 𝑆 ∈ CRing) β†’ 𝐴 ∈ Ring)
13 simpr3 1196 . . . . . . 7 (((𝑀 ∈ LMod ∧ 𝑆 ∈ CRing) ∧ (π‘₯ ∈ (Baseβ€˜π‘†) ∧ 𝑦 ∈ (𝑀 LMHom 𝑀) ∧ 𝑧 ∈ (𝑀 LMHom 𝑀))) β†’ 𝑧 ∈ (𝑀 LMHom 𝑀))
14 eqid 2732 . . . . . . . 8 (Baseβ€˜π‘€) = (Baseβ€˜π‘€)
1514, 14lmhmf 20637 . . . . . . 7 (𝑧 ∈ (𝑀 LMHom 𝑀) β†’ 𝑧:(Baseβ€˜π‘€)⟢(Baseβ€˜π‘€))
1613, 15syl 17 . . . . . 6 (((𝑀 ∈ LMod ∧ 𝑆 ∈ CRing) ∧ (π‘₯ ∈ (Baseβ€˜π‘†) ∧ 𝑦 ∈ (𝑀 LMHom 𝑀) ∧ 𝑧 ∈ (𝑀 LMHom 𝑀))) β†’ 𝑧:(Baseβ€˜π‘€)⟢(Baseβ€˜π‘€))
1716ffvelcdmda 7083 . . . . 5 ((((𝑀 ∈ LMod ∧ 𝑆 ∈ CRing) ∧ (π‘₯ ∈ (Baseβ€˜π‘†) ∧ 𝑦 ∈ (𝑀 LMHom 𝑀) ∧ 𝑧 ∈ (𝑀 LMHom 𝑀))) ∧ 𝑣 ∈ (Baseβ€˜π‘€)) β†’ (π‘§β€˜π‘£) ∈ (Baseβ€˜π‘€))
1816feqmptd 6957 . . . . 5 (((𝑀 ∈ LMod ∧ 𝑆 ∈ CRing) ∧ (π‘₯ ∈ (Baseβ€˜π‘†) ∧ 𝑦 ∈ (𝑀 LMHom 𝑀) ∧ 𝑧 ∈ (𝑀 LMHom 𝑀))) β†’ 𝑧 = (𝑣 ∈ (Baseβ€˜π‘€) ↦ (π‘§β€˜π‘£)))
19 simpr1 1194 . . . . . . 7 (((𝑀 ∈ LMod ∧ 𝑆 ∈ CRing) ∧ (π‘₯ ∈ (Baseβ€˜π‘†) ∧ 𝑦 ∈ (𝑀 LMHom 𝑀) ∧ 𝑧 ∈ (𝑀 LMHom 𝑀))) β†’ π‘₯ ∈ (Baseβ€˜π‘†))
20 simpr2 1195 . . . . . . 7 (((𝑀 ∈ LMod ∧ 𝑆 ∈ CRing) ∧ (π‘₯ ∈ (Baseβ€˜π‘†) ∧ 𝑦 ∈ (𝑀 LMHom 𝑀) ∧ 𝑧 ∈ (𝑀 LMHom 𝑀))) β†’ 𝑦 ∈ (𝑀 LMHom 𝑀))
21 eqid 2732 . . . . . . . 8 ( ·𝑠 β€˜π‘€) = ( ·𝑠 β€˜π‘€)
22 eqid 2732 . . . . . . . 8 (Baseβ€˜π‘†) = (Baseβ€˜π‘†)
23 eqid 2732 . . . . . . . 8 ( ·𝑠 β€˜π΄) = ( ·𝑠 β€˜π΄)
241, 21, 2, 4, 22, 14, 23mendvsca 41918 . . . . . . 7 ((π‘₯ ∈ (Baseβ€˜π‘†) ∧ 𝑦 ∈ (𝑀 LMHom 𝑀)) β†’ (π‘₯( ·𝑠 β€˜π΄)𝑦) = (((Baseβ€˜π‘€) Γ— {π‘₯}) ∘f ( ·𝑠 β€˜π‘€)𝑦))
2519, 20, 24syl2anc 584 . . . . . 6 (((𝑀 ∈ LMod ∧ 𝑆 ∈ CRing) ∧ (π‘₯ ∈ (Baseβ€˜π‘†) ∧ 𝑦 ∈ (𝑀 LMHom 𝑀) ∧ 𝑧 ∈ (𝑀 LMHom 𝑀))) β†’ (π‘₯( ·𝑠 β€˜π΄)𝑦) = (((Baseβ€˜π‘€) Γ— {π‘₯}) ∘f ( ·𝑠 β€˜π‘€)𝑦))
26 fvexd 6903 . . . . . . 7 (((𝑀 ∈ LMod ∧ 𝑆 ∈ CRing) ∧ (π‘₯ ∈ (Baseβ€˜π‘†) ∧ 𝑦 ∈ (𝑀 LMHom 𝑀) ∧ 𝑧 ∈ (𝑀 LMHom 𝑀))) β†’ (Baseβ€˜π‘€) ∈ V)
27 simplr1 1215 . . . . . . 7 ((((𝑀 ∈ LMod ∧ 𝑆 ∈ CRing) ∧ (π‘₯ ∈ (Baseβ€˜π‘†) ∧ 𝑦 ∈ (𝑀 LMHom 𝑀) ∧ 𝑧 ∈ (𝑀 LMHom 𝑀))) ∧ 𝑀 ∈ (Baseβ€˜π‘€)) β†’ π‘₯ ∈ (Baseβ€˜π‘†))
28 fvexd 6903 . . . . . . 7 ((((𝑀 ∈ LMod ∧ 𝑆 ∈ CRing) ∧ (π‘₯ ∈ (Baseβ€˜π‘†) ∧ 𝑦 ∈ (𝑀 LMHom 𝑀) ∧ 𝑧 ∈ (𝑀 LMHom 𝑀))) ∧ 𝑀 ∈ (Baseβ€˜π‘€)) β†’ (π‘¦β€˜π‘€) ∈ V)
29 fconstmpt 5736 . . . . . . . 8 ((Baseβ€˜π‘€) Γ— {π‘₯}) = (𝑀 ∈ (Baseβ€˜π‘€) ↦ π‘₯)
3029a1i 11 . . . . . . 7 (((𝑀 ∈ LMod ∧ 𝑆 ∈ CRing) ∧ (π‘₯ ∈ (Baseβ€˜π‘†) ∧ 𝑦 ∈ (𝑀 LMHom 𝑀) ∧ 𝑧 ∈ (𝑀 LMHom 𝑀))) β†’ ((Baseβ€˜π‘€) Γ— {π‘₯}) = (𝑀 ∈ (Baseβ€˜π‘€) ↦ π‘₯))
3114, 14lmhmf 20637 . . . . . . . . 9 (𝑦 ∈ (𝑀 LMHom 𝑀) β†’ 𝑦:(Baseβ€˜π‘€)⟢(Baseβ€˜π‘€))
3220, 31syl 17 . . . . . . . 8 (((𝑀 ∈ LMod ∧ 𝑆 ∈ CRing) ∧ (π‘₯ ∈ (Baseβ€˜π‘†) ∧ 𝑦 ∈ (𝑀 LMHom 𝑀) ∧ 𝑧 ∈ (𝑀 LMHom 𝑀))) β†’ 𝑦:(Baseβ€˜π‘€)⟢(Baseβ€˜π‘€))
3332feqmptd 6957 . . . . . . 7 (((𝑀 ∈ LMod ∧ 𝑆 ∈ CRing) ∧ (π‘₯ ∈ (Baseβ€˜π‘†) ∧ 𝑦 ∈ (𝑀 LMHom 𝑀) ∧ 𝑧 ∈ (𝑀 LMHom 𝑀))) β†’ 𝑦 = (𝑀 ∈ (Baseβ€˜π‘€) ↦ (π‘¦β€˜π‘€)))
3426, 27, 28, 30, 33offval2 7686 . . . . . 6 (((𝑀 ∈ LMod ∧ 𝑆 ∈ CRing) ∧ (π‘₯ ∈ (Baseβ€˜π‘†) ∧ 𝑦 ∈ (𝑀 LMHom 𝑀) ∧ 𝑧 ∈ (𝑀 LMHom 𝑀))) β†’ (((Baseβ€˜π‘€) Γ— {π‘₯}) ∘f ( ·𝑠 β€˜π‘€)𝑦) = (𝑀 ∈ (Baseβ€˜π‘€) ↦ (π‘₯( ·𝑠 β€˜π‘€)(π‘¦β€˜π‘€))))
3525, 34eqtrd 2772 . . . . 5 (((𝑀 ∈ LMod ∧ 𝑆 ∈ CRing) ∧ (π‘₯ ∈ (Baseβ€˜π‘†) ∧ 𝑦 ∈ (𝑀 LMHom 𝑀) ∧ 𝑧 ∈ (𝑀 LMHom 𝑀))) β†’ (π‘₯( ·𝑠 β€˜π΄)𝑦) = (𝑀 ∈ (Baseβ€˜π‘€) ↦ (π‘₯( ·𝑠 β€˜π‘€)(π‘¦β€˜π‘€))))
36 fveq2 6888 . . . . . 6 (𝑀 = (π‘§β€˜π‘£) β†’ (π‘¦β€˜π‘€) = (π‘¦β€˜(π‘§β€˜π‘£)))
3736oveq2d 7421 . . . . 5 (𝑀 = (π‘§β€˜π‘£) β†’ (π‘₯( ·𝑠 β€˜π‘€)(π‘¦β€˜π‘€)) = (π‘₯( ·𝑠 β€˜π‘€)(π‘¦β€˜(π‘§β€˜π‘£))))
3817, 18, 35, 37fmptco 7123 . . . 4 (((𝑀 ∈ LMod ∧ 𝑆 ∈ CRing) ∧ (π‘₯ ∈ (Baseβ€˜π‘†) ∧ 𝑦 ∈ (𝑀 LMHom 𝑀) ∧ 𝑧 ∈ (𝑀 LMHom 𝑀))) β†’ ((π‘₯( ·𝑠 β€˜π΄)𝑦) ∘ 𝑧) = (𝑣 ∈ (Baseβ€˜π‘€) ↦ (π‘₯( ·𝑠 β€˜π‘€)(π‘¦β€˜(π‘§β€˜π‘£)))))
39 simplr1 1215 . . . . 5 ((((𝑀 ∈ LMod ∧ 𝑆 ∈ CRing) ∧ (π‘₯ ∈ (Baseβ€˜π‘†) ∧ 𝑦 ∈ (𝑀 LMHom 𝑀) ∧ 𝑧 ∈ (𝑀 LMHom 𝑀))) ∧ 𝑣 ∈ (Baseβ€˜π‘€)) β†’ π‘₯ ∈ (Baseβ€˜π‘†))
40 fvexd 6903 . . . . 5 ((((𝑀 ∈ LMod ∧ 𝑆 ∈ CRing) ∧ (π‘₯ ∈ (Baseβ€˜π‘†) ∧ 𝑦 ∈ (𝑀 LMHom 𝑀) ∧ 𝑧 ∈ (𝑀 LMHom 𝑀))) ∧ 𝑣 ∈ (Baseβ€˜π‘€)) β†’ (π‘¦β€˜(π‘§β€˜π‘£)) ∈ V)
41 fconstmpt 5736 . . . . . 6 ((Baseβ€˜π‘€) Γ— {π‘₯}) = (𝑣 ∈ (Baseβ€˜π‘€) ↦ π‘₯)
4241a1i 11 . . . . 5 (((𝑀 ∈ LMod ∧ 𝑆 ∈ CRing) ∧ (π‘₯ ∈ (Baseβ€˜π‘†) ∧ 𝑦 ∈ (𝑀 LMHom 𝑀) ∧ 𝑧 ∈ (𝑀 LMHom 𝑀))) β†’ ((Baseβ€˜π‘€) Γ— {π‘₯}) = (𝑣 ∈ (Baseβ€˜π‘€) ↦ π‘₯))
43 eqid 2732 . . . . . . . 8 (.rβ€˜π΄) = (.rβ€˜π΄)
441, 2, 43mendmulr 41915 . . . . . . 7 ((𝑦 ∈ (𝑀 LMHom 𝑀) ∧ 𝑧 ∈ (𝑀 LMHom 𝑀)) β†’ (𝑦(.rβ€˜π΄)𝑧) = (𝑦 ∘ 𝑧))
4520, 13, 44syl2anc 584 . . . . . 6 (((𝑀 ∈ LMod ∧ 𝑆 ∈ CRing) ∧ (π‘₯ ∈ (Baseβ€˜π‘†) ∧ 𝑦 ∈ (𝑀 LMHom 𝑀) ∧ 𝑧 ∈ (𝑀 LMHom 𝑀))) β†’ (𝑦(.rβ€˜π΄)𝑧) = (𝑦 ∘ 𝑧))
46 fcompt 7127 . . . . . . 7 ((𝑦:(Baseβ€˜π‘€)⟢(Baseβ€˜π‘€) ∧ 𝑧:(Baseβ€˜π‘€)⟢(Baseβ€˜π‘€)) β†’ (𝑦 ∘ 𝑧) = (𝑣 ∈ (Baseβ€˜π‘€) ↦ (π‘¦β€˜(π‘§β€˜π‘£))))
4732, 16, 46syl2anc 584 . . . . . 6 (((𝑀 ∈ LMod ∧ 𝑆 ∈ CRing) ∧ (π‘₯ ∈ (Baseβ€˜π‘†) ∧ 𝑦 ∈ (𝑀 LMHom 𝑀) ∧ 𝑧 ∈ (𝑀 LMHom 𝑀))) β†’ (𝑦 ∘ 𝑧) = (𝑣 ∈ (Baseβ€˜π‘€) ↦ (π‘¦β€˜(π‘§β€˜π‘£))))
4845, 47eqtrd 2772 . . . . 5 (((𝑀 ∈ LMod ∧ 𝑆 ∈ CRing) ∧ (π‘₯ ∈ (Baseβ€˜π‘†) ∧ 𝑦 ∈ (𝑀 LMHom 𝑀) ∧ 𝑧 ∈ (𝑀 LMHom 𝑀))) β†’ (𝑦(.rβ€˜π΄)𝑧) = (𝑣 ∈ (Baseβ€˜π‘€) ↦ (π‘¦β€˜(π‘§β€˜π‘£))))
4926, 39, 40, 42, 48offval2 7686 . . . 4 (((𝑀 ∈ LMod ∧ 𝑆 ∈ CRing) ∧ (π‘₯ ∈ (Baseβ€˜π‘†) ∧ 𝑦 ∈ (𝑀 LMHom 𝑀) ∧ 𝑧 ∈ (𝑀 LMHom 𝑀))) β†’ (((Baseβ€˜π‘€) Γ— {π‘₯}) ∘f ( ·𝑠 β€˜π‘€)(𝑦(.rβ€˜π΄)𝑧)) = (𝑣 ∈ (Baseβ€˜π‘€) ↦ (π‘₯( ·𝑠 β€˜π‘€)(π‘¦β€˜(π‘§β€˜π‘£)))))
5038, 49eqtr4d 2775 . . 3 (((𝑀 ∈ LMod ∧ 𝑆 ∈ CRing) ∧ (π‘₯ ∈ (Baseβ€˜π‘†) ∧ 𝑦 ∈ (𝑀 LMHom 𝑀) ∧ 𝑧 ∈ (𝑀 LMHom 𝑀))) β†’ ((π‘₯( ·𝑠 β€˜π΄)𝑦) ∘ 𝑧) = (((Baseβ€˜π‘€) Γ— {π‘₯}) ∘f ( ·𝑠 β€˜π‘€)(𝑦(.rβ€˜π΄)𝑧)))
5110adantr 481 . . . . 5 (((𝑀 ∈ LMod ∧ 𝑆 ∈ CRing) ∧ (π‘₯ ∈ (Baseβ€˜π‘†) ∧ 𝑦 ∈ (𝑀 LMHom 𝑀) ∧ 𝑧 ∈ (𝑀 LMHom 𝑀))) β†’ 𝐴 ∈ LMod)
522, 5, 23, 22lmodvscl 20481 . . . . 5 ((𝐴 ∈ LMod ∧ π‘₯ ∈ (Baseβ€˜π‘†) ∧ 𝑦 ∈ (𝑀 LMHom 𝑀)) β†’ (π‘₯( ·𝑠 β€˜π΄)𝑦) ∈ (𝑀 LMHom 𝑀))
5351, 19, 20, 52syl3anc 1371 . . . 4 (((𝑀 ∈ LMod ∧ 𝑆 ∈ CRing) ∧ (π‘₯ ∈ (Baseβ€˜π‘†) ∧ 𝑦 ∈ (𝑀 LMHom 𝑀) ∧ 𝑧 ∈ (𝑀 LMHom 𝑀))) β†’ (π‘₯( ·𝑠 β€˜π΄)𝑦) ∈ (𝑀 LMHom 𝑀))
541, 2, 43mendmulr 41915 . . . 4 (((π‘₯( ·𝑠 β€˜π΄)𝑦) ∈ (𝑀 LMHom 𝑀) ∧ 𝑧 ∈ (𝑀 LMHom 𝑀)) β†’ ((π‘₯( ·𝑠 β€˜π΄)𝑦)(.rβ€˜π΄)𝑧) = ((π‘₯( ·𝑠 β€˜π΄)𝑦) ∘ 𝑧))
5553, 13, 54syl2anc 584 . . 3 (((𝑀 ∈ LMod ∧ 𝑆 ∈ CRing) ∧ (π‘₯ ∈ (Baseβ€˜π‘†) ∧ 𝑦 ∈ (𝑀 LMHom 𝑀) ∧ 𝑧 ∈ (𝑀 LMHom 𝑀))) β†’ ((π‘₯( ·𝑠 β€˜π΄)𝑦)(.rβ€˜π΄)𝑧) = ((π‘₯( ·𝑠 β€˜π΄)𝑦) ∘ 𝑧))
5612adantr 481 . . . . 5 (((𝑀 ∈ LMod ∧ 𝑆 ∈ CRing) ∧ (π‘₯ ∈ (Baseβ€˜π‘†) ∧ 𝑦 ∈ (𝑀 LMHom 𝑀) ∧ 𝑧 ∈ (𝑀 LMHom 𝑀))) β†’ 𝐴 ∈ Ring)
572, 43ringcl 20066 . . . . 5 ((𝐴 ∈ Ring ∧ 𝑦 ∈ (𝑀 LMHom 𝑀) ∧ 𝑧 ∈ (𝑀 LMHom 𝑀)) β†’ (𝑦(.rβ€˜π΄)𝑧) ∈ (𝑀 LMHom 𝑀))
5856, 20, 13, 57syl3anc 1371 . . . 4 (((𝑀 ∈ LMod ∧ 𝑆 ∈ CRing) ∧ (π‘₯ ∈ (Baseβ€˜π‘†) ∧ 𝑦 ∈ (𝑀 LMHom 𝑀) ∧ 𝑧 ∈ (𝑀 LMHom 𝑀))) β†’ (𝑦(.rβ€˜π΄)𝑧) ∈ (𝑀 LMHom 𝑀))
591, 21, 2, 4, 22, 14, 23mendvsca 41918 . . . 4 ((π‘₯ ∈ (Baseβ€˜π‘†) ∧ (𝑦(.rβ€˜π΄)𝑧) ∈ (𝑀 LMHom 𝑀)) β†’ (π‘₯( ·𝑠 β€˜π΄)(𝑦(.rβ€˜π΄)𝑧)) = (((Baseβ€˜π‘€) Γ— {π‘₯}) ∘f ( ·𝑠 β€˜π‘€)(𝑦(.rβ€˜π΄)𝑧)))
6019, 58, 59syl2anc 584 . . 3 (((𝑀 ∈ LMod ∧ 𝑆 ∈ CRing) ∧ (π‘₯ ∈ (Baseβ€˜π‘†) ∧ 𝑦 ∈ (𝑀 LMHom 𝑀) ∧ 𝑧 ∈ (𝑀 LMHom 𝑀))) β†’ (π‘₯( ·𝑠 β€˜π΄)(𝑦(.rβ€˜π΄)𝑧)) = (((Baseβ€˜π‘€) Γ— {π‘₯}) ∘f ( ·𝑠 β€˜π‘€)(𝑦(.rβ€˜π΄)𝑧)))
6150, 55, 603eqtr4d 2782 . 2 (((𝑀 ∈ LMod ∧ 𝑆 ∈ CRing) ∧ (π‘₯ ∈ (Baseβ€˜π‘†) ∧ 𝑦 ∈ (𝑀 LMHom 𝑀) ∧ 𝑧 ∈ (𝑀 LMHom 𝑀))) β†’ ((π‘₯( ·𝑠 β€˜π΄)𝑦)(.rβ€˜π΄)𝑧) = (π‘₯( ·𝑠 β€˜π΄)(𝑦(.rβ€˜π΄)𝑧)))
62 simplr2 1216 . . . . . 6 ((((𝑀 ∈ LMod ∧ 𝑆 ∈ CRing) ∧ (π‘₯ ∈ (Baseβ€˜π‘†) ∧ 𝑦 ∈ (𝑀 LMHom 𝑀) ∧ 𝑧 ∈ (𝑀 LMHom 𝑀))) ∧ 𝑣 ∈ (Baseβ€˜π‘€)) β†’ 𝑦 ∈ (𝑀 LMHom 𝑀))
634, 22, 14, 21, 21lmhmlin 20638 . . . . . 6 ((𝑦 ∈ (𝑀 LMHom 𝑀) ∧ π‘₯ ∈ (Baseβ€˜π‘†) ∧ (π‘§β€˜π‘£) ∈ (Baseβ€˜π‘€)) β†’ (π‘¦β€˜(π‘₯( ·𝑠 β€˜π‘€)(π‘§β€˜π‘£))) = (π‘₯( ·𝑠 β€˜π‘€)(π‘¦β€˜(π‘§β€˜π‘£))))
6462, 39, 17, 63syl3anc 1371 . . . . 5 ((((𝑀 ∈ LMod ∧ 𝑆 ∈ CRing) ∧ (π‘₯ ∈ (Baseβ€˜π‘†) ∧ 𝑦 ∈ (𝑀 LMHom 𝑀) ∧ 𝑧 ∈ (𝑀 LMHom 𝑀))) ∧ 𝑣 ∈ (Baseβ€˜π‘€)) β†’ (π‘¦β€˜(π‘₯( ·𝑠 β€˜π‘€)(π‘§β€˜π‘£))) = (π‘₯( ·𝑠 β€˜π‘€)(π‘¦β€˜(π‘§β€˜π‘£))))
6564mpteq2dva 5247 . . . 4 (((𝑀 ∈ LMod ∧ 𝑆 ∈ CRing) ∧ (π‘₯ ∈ (Baseβ€˜π‘†) ∧ 𝑦 ∈ (𝑀 LMHom 𝑀) ∧ 𝑧 ∈ (𝑀 LMHom 𝑀))) β†’ (𝑣 ∈ (Baseβ€˜π‘€) ↦ (π‘¦β€˜(π‘₯( ·𝑠 β€˜π‘€)(π‘§β€˜π‘£)))) = (𝑣 ∈ (Baseβ€˜π‘€) ↦ (π‘₯( ·𝑠 β€˜π‘€)(π‘¦β€˜(π‘§β€˜π‘£)))))
66 simplll 773 . . . . . 6 ((((𝑀 ∈ LMod ∧ 𝑆 ∈ CRing) ∧ (π‘₯ ∈ (Baseβ€˜π‘†) ∧ 𝑦 ∈ (𝑀 LMHom 𝑀) ∧ 𝑧 ∈ (𝑀 LMHom 𝑀))) ∧ 𝑣 ∈ (Baseβ€˜π‘€)) β†’ 𝑀 ∈ LMod)
6714, 4, 21, 22lmodvscl 20481 . . . . . 6 ((𝑀 ∈ LMod ∧ π‘₯ ∈ (Baseβ€˜π‘†) ∧ (π‘§β€˜π‘£) ∈ (Baseβ€˜π‘€)) β†’ (π‘₯( ·𝑠 β€˜π‘€)(π‘§β€˜π‘£)) ∈ (Baseβ€˜π‘€))
6866, 39, 17, 67syl3anc 1371 . . . . 5 ((((𝑀 ∈ LMod ∧ 𝑆 ∈ CRing) ∧ (π‘₯ ∈ (Baseβ€˜π‘†) ∧ 𝑦 ∈ (𝑀 LMHom 𝑀) ∧ 𝑧 ∈ (𝑀 LMHom 𝑀))) ∧ 𝑣 ∈ (Baseβ€˜π‘€)) β†’ (π‘₯( ·𝑠 β€˜π‘€)(π‘§β€˜π‘£)) ∈ (Baseβ€˜π‘€))
691, 21, 2, 4, 22, 14, 23mendvsca 41918 . . . . . . 7 ((π‘₯ ∈ (Baseβ€˜π‘†) ∧ 𝑧 ∈ (𝑀 LMHom 𝑀)) β†’ (π‘₯( ·𝑠 β€˜π΄)𝑧) = (((Baseβ€˜π‘€) Γ— {π‘₯}) ∘f ( ·𝑠 β€˜π‘€)𝑧))
7019, 13, 69syl2anc 584 . . . . . 6 (((𝑀 ∈ LMod ∧ 𝑆 ∈ CRing) ∧ (π‘₯ ∈ (Baseβ€˜π‘†) ∧ 𝑦 ∈ (𝑀 LMHom 𝑀) ∧ 𝑧 ∈ (𝑀 LMHom 𝑀))) β†’ (π‘₯( ·𝑠 β€˜π΄)𝑧) = (((Baseβ€˜π‘€) Γ— {π‘₯}) ∘f ( ·𝑠 β€˜π‘€)𝑧))
71 fvexd 6903 . . . . . . 7 ((((𝑀 ∈ LMod ∧ 𝑆 ∈ CRing) ∧ (π‘₯ ∈ (Baseβ€˜π‘†) ∧ 𝑦 ∈ (𝑀 LMHom 𝑀) ∧ 𝑧 ∈ (𝑀 LMHom 𝑀))) ∧ 𝑣 ∈ (Baseβ€˜π‘€)) β†’ (π‘§β€˜π‘£) ∈ V)
7226, 39, 71, 42, 18offval2 7686 . . . . . 6 (((𝑀 ∈ LMod ∧ 𝑆 ∈ CRing) ∧ (π‘₯ ∈ (Baseβ€˜π‘†) ∧ 𝑦 ∈ (𝑀 LMHom 𝑀) ∧ 𝑧 ∈ (𝑀 LMHom 𝑀))) β†’ (((Baseβ€˜π‘€) Γ— {π‘₯}) ∘f ( ·𝑠 β€˜π‘€)𝑧) = (𝑣 ∈ (Baseβ€˜π‘€) ↦ (π‘₯( ·𝑠 β€˜π‘€)(π‘§β€˜π‘£))))
7370, 72eqtrd 2772 . . . . 5 (((𝑀 ∈ LMod ∧ 𝑆 ∈ CRing) ∧ (π‘₯ ∈ (Baseβ€˜π‘†) ∧ 𝑦 ∈ (𝑀 LMHom 𝑀) ∧ 𝑧 ∈ (𝑀 LMHom 𝑀))) β†’ (π‘₯( ·𝑠 β€˜π΄)𝑧) = (𝑣 ∈ (Baseβ€˜π‘€) ↦ (π‘₯( ·𝑠 β€˜π‘€)(π‘§β€˜π‘£))))
74 fveq2 6888 . . . . 5 (𝑀 = (π‘₯( ·𝑠 β€˜π‘€)(π‘§β€˜π‘£)) β†’ (π‘¦β€˜π‘€) = (π‘¦β€˜(π‘₯( ·𝑠 β€˜π‘€)(π‘§β€˜π‘£))))
7568, 73, 33, 74fmptco 7123 . . . 4 (((𝑀 ∈ LMod ∧ 𝑆 ∈ CRing) ∧ (π‘₯ ∈ (Baseβ€˜π‘†) ∧ 𝑦 ∈ (𝑀 LMHom 𝑀) ∧ 𝑧 ∈ (𝑀 LMHom 𝑀))) β†’ (𝑦 ∘ (π‘₯( ·𝑠 β€˜π΄)𝑧)) = (𝑣 ∈ (Baseβ€˜π‘€) ↦ (π‘¦β€˜(π‘₯( ·𝑠 β€˜π‘€)(π‘§β€˜π‘£)))))
7665, 75, 493eqtr4d 2782 . . 3 (((𝑀 ∈ LMod ∧ 𝑆 ∈ CRing) ∧ (π‘₯ ∈ (Baseβ€˜π‘†) ∧ 𝑦 ∈ (𝑀 LMHom 𝑀) ∧ 𝑧 ∈ (𝑀 LMHom 𝑀))) β†’ (𝑦 ∘ (π‘₯( ·𝑠 β€˜π΄)𝑧)) = (((Baseβ€˜π‘€) Γ— {π‘₯}) ∘f ( ·𝑠 β€˜π‘€)(𝑦(.rβ€˜π΄)𝑧)))
772, 5, 23, 22lmodvscl 20481 . . . . 5 ((𝐴 ∈ LMod ∧ π‘₯ ∈ (Baseβ€˜π‘†) ∧ 𝑧 ∈ (𝑀 LMHom 𝑀)) β†’ (π‘₯( ·𝑠 β€˜π΄)𝑧) ∈ (𝑀 LMHom 𝑀))
7851, 19, 13, 77syl3anc 1371 . . . 4 (((𝑀 ∈ LMod ∧ 𝑆 ∈ CRing) ∧ (π‘₯ ∈ (Baseβ€˜π‘†) ∧ 𝑦 ∈ (𝑀 LMHom 𝑀) ∧ 𝑧 ∈ (𝑀 LMHom 𝑀))) β†’ (π‘₯( ·𝑠 β€˜π΄)𝑧) ∈ (𝑀 LMHom 𝑀))
791, 2, 43mendmulr 41915 . . . 4 ((𝑦 ∈ (𝑀 LMHom 𝑀) ∧ (π‘₯( ·𝑠 β€˜π΄)𝑧) ∈ (𝑀 LMHom 𝑀)) β†’ (𝑦(.rβ€˜π΄)(π‘₯( ·𝑠 β€˜π΄)𝑧)) = (𝑦 ∘ (π‘₯( ·𝑠 β€˜π΄)𝑧)))
8020, 78, 79syl2anc 584 . . 3 (((𝑀 ∈ LMod ∧ 𝑆 ∈ CRing) ∧ (π‘₯ ∈ (Baseβ€˜π‘†) ∧ 𝑦 ∈ (𝑀 LMHom 𝑀) ∧ 𝑧 ∈ (𝑀 LMHom 𝑀))) β†’ (𝑦(.rβ€˜π΄)(π‘₯( ·𝑠 β€˜π΄)𝑧)) = (𝑦 ∘ (π‘₯( ·𝑠 β€˜π΄)𝑧)))
8176, 80, 603eqtr4d 2782 . 2 (((𝑀 ∈ LMod ∧ 𝑆 ∈ CRing) ∧ (π‘₯ ∈ (Baseβ€˜π‘†) ∧ 𝑦 ∈ (𝑀 LMHom 𝑀) ∧ 𝑧 ∈ (𝑀 LMHom 𝑀))) β†’ (𝑦(.rβ€˜π΄)(π‘₯( ·𝑠 β€˜π΄)𝑧)) = (π‘₯( ·𝑠 β€˜π΄)(𝑦(.rβ€˜π΄)𝑧)))
823, 6, 7, 8, 9, 10, 12, 61, 81isassad 21410 1 ((𝑀 ∈ LMod ∧ 𝑆 ∈ CRing) β†’ 𝐴 ∈ AssAlg)
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ∧ wa 396   ∧ w3a 1087   = wceq 1541   ∈ wcel 2106  Vcvv 3474  {csn 4627   ↦ cmpt 5230   Γ— cxp 5673   ∘ ccom 5679  βŸΆwf 6536  β€˜cfv 6540  (class class class)co 7405   ∘f cof 7664  Basecbs 17140  .rcmulr 17194  Scalarcsca 17196   ·𝑠 cvsca 17197  Ringcrg 20049  CRingccrg 20050  LModclmod 20463   LMHom clmhm 20622  AssAlgcasa 21396  MEndocmend 41902
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-rep 5284  ax-sep 5298  ax-nul 5305  ax-pow 5362  ax-pr 5426  ax-un 7721  ax-cnex 11162  ax-resscn 11163  ax-1cn 11164  ax-icn 11165  ax-addcl 11166  ax-addrcl 11167  ax-mulcl 11168  ax-mulrcl 11169  ax-mulcom 11170  ax-addass 11171  ax-mulass 11172  ax-distr 11173  ax-i2m1 11174  ax-1ne0 11175  ax-1rid 11176  ax-rnegex 11177  ax-rrecex 11178  ax-cnre 11179  ax-pre-lttri 11180  ax-pre-lttrn 11181  ax-pre-ltadd 11182  ax-pre-mulgt0 11183
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3376  df-reu 3377  df-rab 3433  df-v 3476  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3966  df-nul 4322  df-if 4528  df-pw 4603  df-sn 4628  df-pr 4630  df-tp 4632  df-op 4634  df-uni 4908  df-iun 4998  df-br 5148  df-opab 5210  df-mpt 5231  df-tr 5265  df-id 5573  df-eprel 5579  df-po 5587  df-so 5588  df-fr 5630  df-we 5632  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-res 5687  df-ima 5688  df-pred 6297  df-ord 6364  df-on 6365  df-lim 6366  df-suc 6367  df-iota 6492  df-fun 6542  df-fn 6543  df-f 6544  df-f1 6545  df-fo 6546  df-f1o 6547  df-fv 6548  df-riota 7361  df-ov 7408  df-oprab 7409  df-mpo 7410  df-of 7666  df-om 7852  df-1st 7971  df-2nd 7972  df-frecs 8262  df-wrecs 8293  df-recs 8367  df-rdg 8406  df-1o 8462  df-er 8699  df-map 8818  df-en 8936  df-dom 8937  df-sdom 8938  df-fin 8939  df-pnf 11246  df-mnf 11247  df-xr 11248  df-ltxr 11249  df-le 11250  df-sub 11442  df-neg 11443  df-nn 12209  df-2 12271  df-3 12272  df-4 12273  df-5 12274  df-6 12275  df-n0 12469  df-z 12555  df-uz 12819  df-fz 13481  df-struct 17076  df-sets 17093  df-slot 17111  df-ndx 17123  df-base 17141  df-plusg 17206  df-mulr 17207  df-sca 17209  df-vsca 17210  df-0g 17383  df-mgm 18557  df-sgrp 18606  df-mnd 18622  df-mhm 18667  df-grp 18818  df-minusg 18819  df-ghm 19084  df-cmn 19644  df-abl 19645  df-mgp 19982  df-ur 19999  df-ring 20051  df-cring 20052  df-lmod 20465  df-lmhm 20625  df-assa 21399  df-mend 41903
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator