Step | Hyp | Ref
| Expression |
1 | | mendassa.a |
. . . 4
β’ π΄ = (MEndoβπ) |
2 | 1 | mendbas 41911 |
. . 3
β’ (π LMHom π) = (Baseβπ΄) |
3 | 2 | a1i 11 |
. 2
β’ ((π β LMod β§ π β CRing) β (π LMHom π) = (Baseβπ΄)) |
4 | | mendassa.s |
. . . 4
β’ π = (Scalarβπ) |
5 | 1, 4 | mendsca 41916 |
. . 3
β’ π = (Scalarβπ΄) |
6 | 5 | a1i 11 |
. 2
β’ ((π β LMod β§ π β CRing) β π = (Scalarβπ΄)) |
7 | | eqidd 2733 |
. 2
β’ ((π β LMod β§ π β CRing) β
(Baseβπ) =
(Baseβπ)) |
8 | | eqidd 2733 |
. 2
β’ ((π β LMod β§ π β CRing) β (
Β·π βπ΄) = ( Β·π
βπ΄)) |
9 | | eqidd 2733 |
. 2
β’ ((π β LMod β§ π β CRing) β
(.rβπ΄) =
(.rβπ΄)) |
10 | 1, 4 | mendlmod 41920 |
. 2
β’ ((π β LMod β§ π β CRing) β π΄ β LMod) |
11 | 1 | mendring 41919 |
. . 3
β’ (π β LMod β π΄ β Ring) |
12 | 11 | adantr 481 |
. 2
β’ ((π β LMod β§ π β CRing) β π΄ β Ring) |
13 | | simpr3 1196 |
. . . . . . 7
β’ (((π β LMod β§ π β CRing) β§ (π₯ β (Baseβπ) β§ π¦ β (π LMHom π) β§ π§ β (π LMHom π))) β π§ β (π LMHom π)) |
14 | | eqid 2732 |
. . . . . . . 8
β’
(Baseβπ) =
(Baseβπ) |
15 | 14, 14 | lmhmf 20637 |
. . . . . . 7
β’ (π§ β (π LMHom π) β π§:(Baseβπ)βΆ(Baseβπ)) |
16 | 13, 15 | syl 17 |
. . . . . 6
β’ (((π β LMod β§ π β CRing) β§ (π₯ β (Baseβπ) β§ π¦ β (π LMHom π) β§ π§ β (π LMHom π))) β π§:(Baseβπ)βΆ(Baseβπ)) |
17 | 16 | ffvelcdmda 7083 |
. . . . 5
β’ ((((π β LMod β§ π β CRing) β§ (π₯ β (Baseβπ) β§ π¦ β (π LMHom π) β§ π§ β (π LMHom π))) β§ π£ β (Baseβπ)) β (π§βπ£) β (Baseβπ)) |
18 | 16 | feqmptd 6957 |
. . . . 5
β’ (((π β LMod β§ π β CRing) β§ (π₯ β (Baseβπ) β§ π¦ β (π LMHom π) β§ π§ β (π LMHom π))) β π§ = (π£ β (Baseβπ) β¦ (π§βπ£))) |
19 | | simpr1 1194 |
. . . . . . 7
β’ (((π β LMod β§ π β CRing) β§ (π₯ β (Baseβπ) β§ π¦ β (π LMHom π) β§ π§ β (π LMHom π))) β π₯ β (Baseβπ)) |
20 | | simpr2 1195 |
. . . . . . 7
β’ (((π β LMod β§ π β CRing) β§ (π₯ β (Baseβπ) β§ π¦ β (π LMHom π) β§ π§ β (π LMHom π))) β π¦ β (π LMHom π)) |
21 | | eqid 2732 |
. . . . . . . 8
β’ (
Β·π βπ) = ( Β·π
βπ) |
22 | | eqid 2732 |
. . . . . . . 8
β’
(Baseβπ) =
(Baseβπ) |
23 | | eqid 2732 |
. . . . . . . 8
β’ (
Β·π βπ΄) = ( Β·π
βπ΄) |
24 | 1, 21, 2, 4, 22, 14, 23 | mendvsca 41918 |
. . . . . . 7
β’ ((π₯ β (Baseβπ) β§ π¦ β (π LMHom π)) β (π₯( Β·π
βπ΄)π¦) = (((Baseβπ) Γ {π₯}) βf (
Β·π βπ)π¦)) |
25 | 19, 20, 24 | syl2anc 584 |
. . . . . 6
β’ (((π β LMod β§ π β CRing) β§ (π₯ β (Baseβπ) β§ π¦ β (π LMHom π) β§ π§ β (π LMHom π))) β (π₯( Β·π
βπ΄)π¦) = (((Baseβπ) Γ {π₯}) βf (
Β·π βπ)π¦)) |
26 | | fvexd 6903 |
. . . . . . 7
β’ (((π β LMod β§ π β CRing) β§ (π₯ β (Baseβπ) β§ π¦ β (π LMHom π) β§ π§ β (π LMHom π))) β (Baseβπ) β V) |
27 | | simplr1 1215 |
. . . . . . 7
β’ ((((π β LMod β§ π β CRing) β§ (π₯ β (Baseβπ) β§ π¦ β (π LMHom π) β§ π§ β (π LMHom π))) β§ π€ β (Baseβπ)) β π₯ β (Baseβπ)) |
28 | | fvexd 6903 |
. . . . . . 7
β’ ((((π β LMod β§ π β CRing) β§ (π₯ β (Baseβπ) β§ π¦ β (π LMHom π) β§ π§ β (π LMHom π))) β§ π€ β (Baseβπ)) β (π¦βπ€) β V) |
29 | | fconstmpt 5736 |
. . . . . . . 8
β’
((Baseβπ)
Γ {π₯}) = (π€ β (Baseβπ) β¦ π₯) |
30 | 29 | a1i 11 |
. . . . . . 7
β’ (((π β LMod β§ π β CRing) β§ (π₯ β (Baseβπ) β§ π¦ β (π LMHom π) β§ π§ β (π LMHom π))) β ((Baseβπ) Γ {π₯}) = (π€ β (Baseβπ) β¦ π₯)) |
31 | 14, 14 | lmhmf 20637 |
. . . . . . . . 9
β’ (π¦ β (π LMHom π) β π¦:(Baseβπ)βΆ(Baseβπ)) |
32 | 20, 31 | syl 17 |
. . . . . . . 8
β’ (((π β LMod β§ π β CRing) β§ (π₯ β (Baseβπ) β§ π¦ β (π LMHom π) β§ π§ β (π LMHom π))) β π¦:(Baseβπ)βΆ(Baseβπ)) |
33 | 32 | feqmptd 6957 |
. . . . . . 7
β’ (((π β LMod β§ π β CRing) β§ (π₯ β (Baseβπ) β§ π¦ β (π LMHom π) β§ π§ β (π LMHom π))) β π¦ = (π€ β (Baseβπ) β¦ (π¦βπ€))) |
34 | 26, 27, 28, 30, 33 | offval2 7686 |
. . . . . 6
β’ (((π β LMod β§ π β CRing) β§ (π₯ β (Baseβπ) β§ π¦ β (π LMHom π) β§ π§ β (π LMHom π))) β (((Baseβπ) Γ {π₯}) βf (
Β·π βπ)π¦) = (π€ β (Baseβπ) β¦ (π₯( Β·π
βπ)(π¦βπ€)))) |
35 | 25, 34 | eqtrd 2772 |
. . . . 5
β’ (((π β LMod β§ π β CRing) β§ (π₯ β (Baseβπ) β§ π¦ β (π LMHom π) β§ π§ β (π LMHom π))) β (π₯( Β·π
βπ΄)π¦) = (π€ β (Baseβπ) β¦ (π₯( Β·π
βπ)(π¦βπ€)))) |
36 | | fveq2 6888 |
. . . . . 6
β’ (π€ = (π§βπ£) β (π¦βπ€) = (π¦β(π§βπ£))) |
37 | 36 | oveq2d 7421 |
. . . . 5
β’ (π€ = (π§βπ£) β (π₯( Β·π
βπ)(π¦βπ€)) = (π₯( Β·π
βπ)(π¦β(π§βπ£)))) |
38 | 17, 18, 35, 37 | fmptco 7123 |
. . . 4
β’ (((π β LMod β§ π β CRing) β§ (π₯ β (Baseβπ) β§ π¦ β (π LMHom π) β§ π§ β (π LMHom π))) β ((π₯( Β·π
βπ΄)π¦) β π§) = (π£ β (Baseβπ) β¦ (π₯( Β·π
βπ)(π¦β(π§βπ£))))) |
39 | | simplr1 1215 |
. . . . 5
β’ ((((π β LMod β§ π β CRing) β§ (π₯ β (Baseβπ) β§ π¦ β (π LMHom π) β§ π§ β (π LMHom π))) β§ π£ β (Baseβπ)) β π₯ β (Baseβπ)) |
40 | | fvexd 6903 |
. . . . 5
β’ ((((π β LMod β§ π β CRing) β§ (π₯ β (Baseβπ) β§ π¦ β (π LMHom π) β§ π§ β (π LMHom π))) β§ π£ β (Baseβπ)) β (π¦β(π§βπ£)) β V) |
41 | | fconstmpt 5736 |
. . . . . 6
β’
((Baseβπ)
Γ {π₯}) = (π£ β (Baseβπ) β¦ π₯) |
42 | 41 | a1i 11 |
. . . . 5
β’ (((π β LMod β§ π β CRing) β§ (π₯ β (Baseβπ) β§ π¦ β (π LMHom π) β§ π§ β (π LMHom π))) β ((Baseβπ) Γ {π₯}) = (π£ β (Baseβπ) β¦ π₯)) |
43 | | eqid 2732 |
. . . . . . . 8
β’
(.rβπ΄) = (.rβπ΄) |
44 | 1, 2, 43 | mendmulr 41915 |
. . . . . . 7
β’ ((π¦ β (π LMHom π) β§ π§ β (π LMHom π)) β (π¦(.rβπ΄)π§) = (π¦ β π§)) |
45 | 20, 13, 44 | syl2anc 584 |
. . . . . 6
β’ (((π β LMod β§ π β CRing) β§ (π₯ β (Baseβπ) β§ π¦ β (π LMHom π) β§ π§ β (π LMHom π))) β (π¦(.rβπ΄)π§) = (π¦ β π§)) |
46 | | fcompt 7127 |
. . . . . . 7
β’ ((π¦:(Baseβπ)βΆ(Baseβπ) β§ π§:(Baseβπ)βΆ(Baseβπ)) β (π¦ β π§) = (π£ β (Baseβπ) β¦ (π¦β(π§βπ£)))) |
47 | 32, 16, 46 | syl2anc 584 |
. . . . . 6
β’ (((π β LMod β§ π β CRing) β§ (π₯ β (Baseβπ) β§ π¦ β (π LMHom π) β§ π§ β (π LMHom π))) β (π¦ β π§) = (π£ β (Baseβπ) β¦ (π¦β(π§βπ£)))) |
48 | 45, 47 | eqtrd 2772 |
. . . . 5
β’ (((π β LMod β§ π β CRing) β§ (π₯ β (Baseβπ) β§ π¦ β (π LMHom π) β§ π§ β (π LMHom π))) β (π¦(.rβπ΄)π§) = (π£ β (Baseβπ) β¦ (π¦β(π§βπ£)))) |
49 | 26, 39, 40, 42, 48 | offval2 7686 |
. . . 4
β’ (((π β LMod β§ π β CRing) β§ (π₯ β (Baseβπ) β§ π¦ β (π LMHom π) β§ π§ β (π LMHom π))) β (((Baseβπ) Γ {π₯}) βf (
Β·π βπ)(π¦(.rβπ΄)π§)) = (π£ β (Baseβπ) β¦ (π₯( Β·π
βπ)(π¦β(π§βπ£))))) |
50 | 38, 49 | eqtr4d 2775 |
. . 3
β’ (((π β LMod β§ π β CRing) β§ (π₯ β (Baseβπ) β§ π¦ β (π LMHom π) β§ π§ β (π LMHom π))) β ((π₯( Β·π
βπ΄)π¦) β π§) = (((Baseβπ) Γ {π₯}) βf (
Β·π βπ)(π¦(.rβπ΄)π§))) |
51 | 10 | adantr 481 |
. . . . 5
β’ (((π β LMod β§ π β CRing) β§ (π₯ β (Baseβπ) β§ π¦ β (π LMHom π) β§ π§ β (π LMHom π))) β π΄ β LMod) |
52 | 2, 5, 23, 22 | lmodvscl 20481 |
. . . . 5
β’ ((π΄ β LMod β§ π₯ β (Baseβπ) β§ π¦ β (π LMHom π)) β (π₯( Β·π
βπ΄)π¦) β (π LMHom π)) |
53 | 51, 19, 20, 52 | syl3anc 1371 |
. . . 4
β’ (((π β LMod β§ π β CRing) β§ (π₯ β (Baseβπ) β§ π¦ β (π LMHom π) β§ π§ β (π LMHom π))) β (π₯( Β·π
βπ΄)π¦) β (π LMHom π)) |
54 | 1, 2, 43 | mendmulr 41915 |
. . . 4
β’ (((π₯(
Β·π βπ΄)π¦) β (π LMHom π) β§ π§ β (π LMHom π)) β ((π₯( Β·π
βπ΄)π¦)(.rβπ΄)π§) = ((π₯( Β·π
βπ΄)π¦) β π§)) |
55 | 53, 13, 54 | syl2anc 584 |
. . 3
β’ (((π β LMod β§ π β CRing) β§ (π₯ β (Baseβπ) β§ π¦ β (π LMHom π) β§ π§ β (π LMHom π))) β ((π₯( Β·π
βπ΄)π¦)(.rβπ΄)π§) = ((π₯( Β·π
βπ΄)π¦) β π§)) |
56 | 12 | adantr 481 |
. . . . 5
β’ (((π β LMod β§ π β CRing) β§ (π₯ β (Baseβπ) β§ π¦ β (π LMHom π) β§ π§ β (π LMHom π))) β π΄ β Ring) |
57 | 2, 43 | ringcl 20066 |
. . . . 5
β’ ((π΄ β Ring β§ π¦ β (π LMHom π) β§ π§ β (π LMHom π)) β (π¦(.rβπ΄)π§) β (π LMHom π)) |
58 | 56, 20, 13, 57 | syl3anc 1371 |
. . . 4
β’ (((π β LMod β§ π β CRing) β§ (π₯ β (Baseβπ) β§ π¦ β (π LMHom π) β§ π§ β (π LMHom π))) β (π¦(.rβπ΄)π§) β (π LMHom π)) |
59 | 1, 21, 2, 4, 22, 14, 23 | mendvsca 41918 |
. . . 4
β’ ((π₯ β (Baseβπ) β§ (π¦(.rβπ΄)π§) β (π LMHom π)) β (π₯( Β·π
βπ΄)(π¦(.rβπ΄)π§)) = (((Baseβπ) Γ {π₯}) βf (
Β·π βπ)(π¦(.rβπ΄)π§))) |
60 | 19, 58, 59 | syl2anc 584 |
. . 3
β’ (((π β LMod β§ π β CRing) β§ (π₯ β (Baseβπ) β§ π¦ β (π LMHom π) β§ π§ β (π LMHom π))) β (π₯( Β·π
βπ΄)(π¦(.rβπ΄)π§)) = (((Baseβπ) Γ {π₯}) βf (
Β·π βπ)(π¦(.rβπ΄)π§))) |
61 | 50, 55, 60 | 3eqtr4d 2782 |
. 2
β’ (((π β LMod β§ π β CRing) β§ (π₯ β (Baseβπ) β§ π¦ β (π LMHom π) β§ π§ β (π LMHom π))) β ((π₯( Β·π
βπ΄)π¦)(.rβπ΄)π§) = (π₯( Β·π
βπ΄)(π¦(.rβπ΄)π§))) |
62 | | simplr2 1216 |
. . . . . 6
β’ ((((π β LMod β§ π β CRing) β§ (π₯ β (Baseβπ) β§ π¦ β (π LMHom π) β§ π§ β (π LMHom π))) β§ π£ β (Baseβπ)) β π¦ β (π LMHom π)) |
63 | 4, 22, 14, 21, 21 | lmhmlin 20638 |
. . . . . 6
β’ ((π¦ β (π LMHom π) β§ π₯ β (Baseβπ) β§ (π§βπ£) β (Baseβπ)) β (π¦β(π₯( Β·π
βπ)(π§βπ£))) = (π₯( Β·π
βπ)(π¦β(π§βπ£)))) |
64 | 62, 39, 17, 63 | syl3anc 1371 |
. . . . 5
β’ ((((π β LMod β§ π β CRing) β§ (π₯ β (Baseβπ) β§ π¦ β (π LMHom π) β§ π§ β (π LMHom π))) β§ π£ β (Baseβπ)) β (π¦β(π₯( Β·π
βπ)(π§βπ£))) = (π₯( Β·π
βπ)(π¦β(π§βπ£)))) |
65 | 64 | mpteq2dva 5247 |
. . . 4
β’ (((π β LMod β§ π β CRing) β§ (π₯ β (Baseβπ) β§ π¦ β (π LMHom π) β§ π§ β (π LMHom π))) β (π£ β (Baseβπ) β¦ (π¦β(π₯( Β·π
βπ)(π§βπ£)))) = (π£ β (Baseβπ) β¦ (π₯( Β·π
βπ)(π¦β(π§βπ£))))) |
66 | | simplll 773 |
. . . . . 6
β’ ((((π β LMod β§ π β CRing) β§ (π₯ β (Baseβπ) β§ π¦ β (π LMHom π) β§ π§ β (π LMHom π))) β§ π£ β (Baseβπ)) β π β LMod) |
67 | 14, 4, 21, 22 | lmodvscl 20481 |
. . . . . 6
β’ ((π β LMod β§ π₯ β (Baseβπ) β§ (π§βπ£) β (Baseβπ)) β (π₯( Β·π
βπ)(π§βπ£)) β (Baseβπ)) |
68 | 66, 39, 17, 67 | syl3anc 1371 |
. . . . 5
β’ ((((π β LMod β§ π β CRing) β§ (π₯ β (Baseβπ) β§ π¦ β (π LMHom π) β§ π§ β (π LMHom π))) β§ π£ β (Baseβπ)) β (π₯( Β·π
βπ)(π§βπ£)) β (Baseβπ)) |
69 | 1, 21, 2, 4, 22, 14, 23 | mendvsca 41918 |
. . . . . . 7
β’ ((π₯ β (Baseβπ) β§ π§ β (π LMHom π)) β (π₯( Β·π
βπ΄)π§) = (((Baseβπ) Γ {π₯}) βf (
Β·π βπ)π§)) |
70 | 19, 13, 69 | syl2anc 584 |
. . . . . 6
β’ (((π β LMod β§ π β CRing) β§ (π₯ β (Baseβπ) β§ π¦ β (π LMHom π) β§ π§ β (π LMHom π))) β (π₯( Β·π
βπ΄)π§) = (((Baseβπ) Γ {π₯}) βf (
Β·π βπ)π§)) |
71 | | fvexd 6903 |
. . . . . . 7
β’ ((((π β LMod β§ π β CRing) β§ (π₯ β (Baseβπ) β§ π¦ β (π LMHom π) β§ π§ β (π LMHom π))) β§ π£ β (Baseβπ)) β (π§βπ£) β V) |
72 | 26, 39, 71, 42, 18 | offval2 7686 |
. . . . . 6
β’ (((π β LMod β§ π β CRing) β§ (π₯ β (Baseβπ) β§ π¦ β (π LMHom π) β§ π§ β (π LMHom π))) β (((Baseβπ) Γ {π₯}) βf (
Β·π βπ)π§) = (π£ β (Baseβπ) β¦ (π₯( Β·π
βπ)(π§βπ£)))) |
73 | 70, 72 | eqtrd 2772 |
. . . . 5
β’ (((π β LMod β§ π β CRing) β§ (π₯ β (Baseβπ) β§ π¦ β (π LMHom π) β§ π§ β (π LMHom π))) β (π₯( Β·π
βπ΄)π§) = (π£ β (Baseβπ) β¦ (π₯( Β·π
βπ)(π§βπ£)))) |
74 | | fveq2 6888 |
. . . . 5
β’ (π€ = (π₯( Β·π
βπ)(π§βπ£)) β (π¦βπ€) = (π¦β(π₯( Β·π
βπ)(π§βπ£)))) |
75 | 68, 73, 33, 74 | fmptco 7123 |
. . . 4
β’ (((π β LMod β§ π β CRing) β§ (π₯ β (Baseβπ) β§ π¦ β (π LMHom π) β§ π§ β (π LMHom π))) β (π¦ β (π₯( Β·π
βπ΄)π§)) = (π£ β (Baseβπ) β¦ (π¦β(π₯( Β·π
βπ)(π§βπ£))))) |
76 | 65, 75, 49 | 3eqtr4d 2782 |
. . 3
β’ (((π β LMod β§ π β CRing) β§ (π₯ β (Baseβπ) β§ π¦ β (π LMHom π) β§ π§ β (π LMHom π))) β (π¦ β (π₯( Β·π
βπ΄)π§)) = (((Baseβπ) Γ {π₯}) βf (
Β·π βπ)(π¦(.rβπ΄)π§))) |
77 | 2, 5, 23, 22 | lmodvscl 20481 |
. . . . 5
β’ ((π΄ β LMod β§ π₯ β (Baseβπ) β§ π§ β (π LMHom π)) β (π₯( Β·π
βπ΄)π§) β (π LMHom π)) |
78 | 51, 19, 13, 77 | syl3anc 1371 |
. . . 4
β’ (((π β LMod β§ π β CRing) β§ (π₯ β (Baseβπ) β§ π¦ β (π LMHom π) β§ π§ β (π LMHom π))) β (π₯( Β·π
βπ΄)π§) β (π LMHom π)) |
79 | 1, 2, 43 | mendmulr 41915 |
. . . 4
β’ ((π¦ β (π LMHom π) β§ (π₯( Β·π
βπ΄)π§) β (π LMHom π)) β (π¦(.rβπ΄)(π₯( Β·π
βπ΄)π§)) = (π¦ β (π₯( Β·π
βπ΄)π§))) |
80 | 20, 78, 79 | syl2anc 584 |
. . 3
β’ (((π β LMod β§ π β CRing) β§ (π₯ β (Baseβπ) β§ π¦ β (π LMHom π) β§ π§ β (π LMHom π))) β (π¦(.rβπ΄)(π₯( Β·π
βπ΄)π§)) = (π¦ β (π₯( Β·π
βπ΄)π§))) |
81 | 76, 80, 60 | 3eqtr4d 2782 |
. 2
β’ (((π β LMod β§ π β CRing) β§ (π₯ β (Baseβπ) β§ π¦ β (π LMHom π) β§ π§ β (π LMHom π))) β (π¦(.rβπ΄)(π₯( Β·π
βπ΄)π§)) = (π₯( Β·π
βπ΄)(π¦(.rβπ΄)π§))) |
82 | 3, 6, 7, 8, 9, 10,
12, 61, 81 | isassad 21410 |
1
β’ ((π β LMod β§ π β CRing) β π΄ β AssAlg) |