| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > zlmassa | Structured version Visualization version GIF version | ||
| Description: The ℤ-module operation turns a ring into an associative algebra over ℤ. Also see zlmlmod 21465. (Contributed by Mario Carneiro, 2-Oct-2015.) |
| Ref | Expression |
|---|---|
| zlmassa.w | ⊢ 𝑊 = (ℤMod‘𝐺) |
| Ref | Expression |
|---|---|
| zlmassa | ⊢ (𝐺 ∈ Ring ↔ 𝑊 ∈ AssAlg) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | zlmassa.w | . . . . 5 ⊢ 𝑊 = (ℤMod‘𝐺) | |
| 2 | eqid 2731 | . . . . 5 ⊢ (Base‘𝐺) = (Base‘𝐺) | |
| 3 | 1, 2 | zlmbas 21460 | . . . 4 ⊢ (Base‘𝐺) = (Base‘𝑊) |
| 4 | 3 | a1i 11 | . . 3 ⊢ (𝐺 ∈ Ring → (Base‘𝐺) = (Base‘𝑊)) |
| 5 | 1 | zlmsca 21463 | . . 3 ⊢ (𝐺 ∈ Ring → ℤring = (Scalar‘𝑊)) |
| 6 | zringbas 21396 | . . . 4 ⊢ ℤ = (Base‘ℤring) | |
| 7 | 6 | a1i 11 | . . 3 ⊢ (𝐺 ∈ Ring → ℤ = (Base‘ℤring)) |
| 8 | eqid 2731 | . . . . 5 ⊢ (.g‘𝐺) = (.g‘𝐺) | |
| 9 | 1, 8 | zlmvsca 21464 | . . . 4 ⊢ (.g‘𝐺) = ( ·𝑠 ‘𝑊) |
| 10 | 9 | a1i 11 | . . 3 ⊢ (𝐺 ∈ Ring → (.g‘𝐺) = ( ·𝑠 ‘𝑊)) |
| 11 | eqid 2731 | . . . . 5 ⊢ (.r‘𝐺) = (.r‘𝐺) | |
| 12 | 1, 11 | zlmmulr 21462 | . . . 4 ⊢ (.r‘𝐺) = (.r‘𝑊) |
| 13 | 12 | a1i 11 | . . 3 ⊢ (𝐺 ∈ Ring → (.r‘𝐺) = (.r‘𝑊)) |
| 14 | ringabl 20205 | . . . 4 ⊢ (𝐺 ∈ Ring → 𝐺 ∈ Abel) | |
| 15 | 1 | zlmlmod 21465 | . . . 4 ⊢ (𝐺 ∈ Abel ↔ 𝑊 ∈ LMod) |
| 16 | 14, 15 | sylib 218 | . . 3 ⊢ (𝐺 ∈ Ring → 𝑊 ∈ LMod) |
| 17 | eqid 2731 | . . . . . 6 ⊢ (+g‘𝐺) = (+g‘𝐺) | |
| 18 | 1, 17 | zlmplusg 21461 | . . . . 5 ⊢ (+g‘𝐺) = (+g‘𝑊) |
| 19 | 3, 18, 12 | ringprop 20214 | . . . 4 ⊢ (𝐺 ∈ Ring ↔ 𝑊 ∈ Ring) |
| 20 | 19 | biimpi 216 | . . 3 ⊢ (𝐺 ∈ Ring → 𝑊 ∈ Ring) |
| 21 | 2, 8, 11 | mulgass2 20233 | . . 3 ⊢ ((𝐺 ∈ Ring ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ (Base‘𝐺) ∧ 𝑧 ∈ (Base‘𝐺))) → ((𝑥(.g‘𝐺)𝑦)(.r‘𝐺)𝑧) = (𝑥(.g‘𝐺)(𝑦(.r‘𝐺)𝑧))) |
| 22 | 2, 8, 11 | mulgass3 20277 | . . 3 ⊢ ((𝐺 ∈ Ring ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ (Base‘𝐺) ∧ 𝑧 ∈ (Base‘𝐺))) → (𝑦(.r‘𝐺)(𝑥(.g‘𝐺)𝑧)) = (𝑥(.g‘𝐺)(𝑦(.r‘𝐺)𝑧))) |
| 23 | 4, 5, 7, 10, 13, 16, 20, 21, 22 | isassad 21808 | . 2 ⊢ (𝐺 ∈ Ring → 𝑊 ∈ AssAlg) |
| 24 | assaring 21804 | . . 3 ⊢ (𝑊 ∈ AssAlg → 𝑊 ∈ Ring) | |
| 25 | 24, 19 | sylibr 234 | . 2 ⊢ (𝑊 ∈ AssAlg → 𝐺 ∈ Ring) |
| 26 | 23, 25 | impbii 209 | 1 ⊢ (𝐺 ∈ Ring ↔ 𝑊 ∈ AssAlg) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 = wceq 1541 ∈ wcel 2111 ‘cfv 6487 ℤcz 12474 Basecbs 17126 +gcplusg 17167 .rcmulr 17168 ·𝑠 cvsca 17171 .gcmg 18986 Abelcabl 19699 Ringcrg 20157 LModclmod 20799 ℤringczring 21389 ℤModczlm 21443 AssAlgcasa 21793 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5236 ax-nul 5246 ax-pow 5305 ax-pr 5372 ax-un 7674 ax-cnex 11068 ax-resscn 11069 ax-1cn 11070 ax-icn 11071 ax-addcl 11072 ax-addrcl 11073 ax-mulcl 11074 ax-mulrcl 11075 ax-mulcom 11076 ax-addass 11077 ax-mulass 11078 ax-distr 11079 ax-i2m1 11080 ax-1ne0 11081 ax-1rid 11082 ax-rnegex 11083 ax-rrecex 11084 ax-cnre 11085 ax-pre-lttri 11086 ax-pre-lttrn 11087 ax-pre-ltadd 11088 ax-pre-mulgt0 11089 ax-addf 11091 ax-mulf 11092 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3917 df-nul 4283 df-if 4475 df-pw 4551 df-sn 4576 df-pr 4578 df-tp 4580 df-op 4582 df-uni 4859 df-iun 4943 df-br 5094 df-opab 5156 df-mpt 5175 df-tr 5201 df-id 5514 df-eprel 5519 df-po 5527 df-so 5528 df-fr 5572 df-we 5574 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-pred 6254 df-ord 6315 df-on 6316 df-lim 6317 df-suc 6318 df-iota 6443 df-fun 6489 df-fn 6490 df-f 6491 df-f1 6492 df-fo 6493 df-f1o 6494 df-fv 6495 df-riota 7309 df-ov 7355 df-oprab 7356 df-mpo 7357 df-om 7803 df-1st 7927 df-2nd 7928 df-tpos 8162 df-frecs 8217 df-wrecs 8248 df-recs 8297 df-rdg 8335 df-1o 8391 df-er 8628 df-en 8876 df-dom 8877 df-sdom 8878 df-fin 8879 df-pnf 11154 df-mnf 11155 df-xr 11156 df-ltxr 11157 df-le 11158 df-sub 11352 df-neg 11353 df-nn 12132 df-2 12194 df-3 12195 df-4 12196 df-5 12197 df-6 12198 df-7 12199 df-8 12200 df-9 12201 df-n0 12388 df-z 12475 df-dec 12595 df-uz 12739 df-fz 13414 df-fzo 13561 df-seq 13915 df-struct 17064 df-sets 17081 df-slot 17099 df-ndx 17111 df-base 17127 df-ress 17148 df-plusg 17180 df-mulr 17181 df-starv 17182 df-sca 17183 df-vsca 17184 df-tset 17186 df-ple 17187 df-ds 17189 df-unif 17190 df-0g 17351 df-mgm 18554 df-sgrp 18633 df-mnd 18649 df-grp 18855 df-minusg 18856 df-mulg 18987 df-subg 19042 df-cmn 19700 df-abl 19701 df-mgp 20065 df-rng 20077 df-ur 20106 df-ring 20159 df-cring 20160 df-oppr 20261 df-subrng 20467 df-subrg 20491 df-lmod 20801 df-cnfld 21298 df-zring 21390 df-zlm 21447 df-assa 21796 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |