MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  zlmassa Structured version   Visualization version   GIF version

Theorem zlmassa 20232
Description: The -module operation turns a ring into an associative algebra over . (Contributed by Mario Carneiro, 2-Oct-2015.)
Hypothesis
Ref Expression
zlmlmod.w 𝑊 = (ℤMod‘𝐺)
Assertion
Ref Expression
zlmassa (𝐺 ∈ Ring ↔ 𝑊 ∈ AssAlg)

Proof of Theorem zlmassa
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 zlmlmod.w . . . . 5 𝑊 = (ℤMod‘𝐺)
2 eqid 2825 . . . . 5 (Base‘𝐺) = (Base‘𝐺)
31, 2zlmbas 20226 . . . 4 (Base‘𝐺) = (Base‘𝑊)
43a1i 11 . . 3 (𝐺 ∈ Ring → (Base‘𝐺) = (Base‘𝑊))
51zlmsca 20229 . . 3 (𝐺 ∈ Ring → ℤring = (Scalar‘𝑊))
6 zringbas 20184 . . . 4 ℤ = (Base‘ℤring)
76a1i 11 . . 3 (𝐺 ∈ Ring → ℤ = (Base‘ℤring))
8 eqid 2825 . . . . 5 (.g𝐺) = (.g𝐺)
91, 8zlmvsca 20230 . . . 4 (.g𝐺) = ( ·𝑠𝑊)
109a1i 11 . . 3 (𝐺 ∈ Ring → (.g𝐺) = ( ·𝑠𝑊))
11 eqid 2825 . . . . 5 (.r𝐺) = (.r𝐺)
121, 11zlmmulr 20228 . . . 4 (.r𝐺) = (.r𝑊)
1312a1i 11 . . 3 (𝐺 ∈ Ring → (.r𝐺) = (.r𝑊))
14 ringabl 18934 . . . 4 (𝐺 ∈ Ring → 𝐺 ∈ Abel)
151zlmlmod 20231 . . . 4 (𝐺 ∈ Abel ↔ 𝑊 ∈ LMod)
1614, 15sylib 210 . . 3 (𝐺 ∈ Ring → 𝑊 ∈ LMod)
17 eqid 2825 . . . . . 6 (+g𝐺) = (+g𝐺)
181, 17zlmplusg 20227 . . . . 5 (+g𝐺) = (+g𝑊)
193, 18, 12ringprop 18938 . . . 4 (𝐺 ∈ Ring ↔ 𝑊 ∈ Ring)
2019biimpi 208 . . 3 (𝐺 ∈ Ring → 𝑊 ∈ Ring)
21 zringcrng 20180 . . . 4 ring ∈ CRing
2221a1i 11 . . 3 (𝐺 ∈ Ring → ℤring ∈ CRing)
232, 8, 11mulgass2 18955 . . 3 ((𝐺 ∈ Ring ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ (Base‘𝐺) ∧ 𝑧 ∈ (Base‘𝐺))) → ((𝑥(.g𝐺)𝑦)(.r𝐺)𝑧) = (𝑥(.g𝐺)(𝑦(.r𝐺)𝑧)))
242, 8, 11mulgass3 18991 . . 3 ((𝐺 ∈ Ring ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ (Base‘𝐺) ∧ 𝑧 ∈ (Base‘𝐺))) → (𝑦(.r𝐺)(𝑥(.g𝐺)𝑧)) = (𝑥(.g𝐺)(𝑦(.r𝐺)𝑧)))
254, 5, 7, 10, 13, 16, 20, 22, 23, 24isassad 19684 . 2 (𝐺 ∈ Ring → 𝑊 ∈ AssAlg)
26 assaring 19681 . . 3 (𝑊 ∈ AssAlg → 𝑊 ∈ Ring)
2726, 19sylibr 226 . 2 (𝑊 ∈ AssAlg → 𝐺 ∈ Ring)
2825, 27impbii 201 1 (𝐺 ∈ Ring ↔ 𝑊 ∈ AssAlg)
Colors of variables: wff setvar class
Syntax hints:  wb 198   = wceq 1658  wcel 2166  cfv 6123  cz 11704  Basecbs 16222  +gcplusg 16305  .rcmulr 16306   ·𝑠 cvsca 16309  .gcmg 17894  Abelcabl 18547  Ringcrg 18901  CRingccrg 18902  LModclmod 19219  AssAlgcasa 19670  ringzring 20178  ℤModczlm 20209
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1896  ax-4 1910  ax-5 2011  ax-6 2077  ax-7 2114  ax-8 2168  ax-9 2175  ax-10 2194  ax-11 2209  ax-12 2222  ax-13 2391  ax-ext 2803  ax-rep 4994  ax-sep 5005  ax-nul 5013  ax-pow 5065  ax-pr 5127  ax-un 7209  ax-inf2 8815  ax-cnex 10308  ax-resscn 10309  ax-1cn 10310  ax-icn 10311  ax-addcl 10312  ax-addrcl 10313  ax-mulcl 10314  ax-mulrcl 10315  ax-mulcom 10316  ax-addass 10317  ax-mulass 10318  ax-distr 10319  ax-i2m1 10320  ax-1ne0 10321  ax-1rid 10322  ax-rnegex 10323  ax-rrecex 10324  ax-cnre 10325  ax-pre-lttri 10326  ax-pre-lttrn 10327  ax-pre-ltadd 10328  ax-pre-mulgt0 10329  ax-addf 10331  ax-mulf 10332
This theorem depends on definitions:  df-bi 199  df-an 387  df-or 881  df-3or 1114  df-3an 1115  df-tru 1662  df-ex 1881  df-nf 1885  df-sb 2070  df-mo 2605  df-eu 2640  df-clab 2812  df-cleq 2818  df-clel 2821  df-nfc 2958  df-ne 3000  df-nel 3103  df-ral 3122  df-rex 3123  df-reu 3124  df-rmo 3125  df-rab 3126  df-v 3416  df-sbc 3663  df-csb 3758  df-dif 3801  df-un 3803  df-in 3805  df-ss 3812  df-pss 3814  df-nul 4145  df-if 4307  df-pw 4380  df-sn 4398  df-pr 4400  df-tp 4402  df-op 4404  df-uni 4659  df-int 4698  df-iun 4742  df-br 4874  df-opab 4936  df-mpt 4953  df-tr 4976  df-id 5250  df-eprel 5255  df-po 5263  df-so 5264  df-fr 5301  df-we 5303  df-xp 5348  df-rel 5349  df-cnv 5350  df-co 5351  df-dm 5352  df-rn 5353  df-res 5354  df-ima 5355  df-pred 5920  df-ord 5966  df-on 5967  df-lim 5968  df-suc 5969  df-iota 6086  df-fun 6125  df-fn 6126  df-f 6127  df-f1 6128  df-fo 6129  df-f1o 6130  df-fv 6131  df-riota 6866  df-ov 6908  df-oprab 6909  df-mpt2 6910  df-om 7327  df-1st 7428  df-2nd 7429  df-tpos 7617  df-wrecs 7672  df-recs 7734  df-rdg 7772  df-1o 7826  df-oadd 7830  df-er 8009  df-en 8223  df-dom 8224  df-sdom 8225  df-fin 8226  df-pnf 10393  df-mnf 10394  df-xr 10395  df-ltxr 10396  df-le 10397  df-sub 10587  df-neg 10588  df-nn 11351  df-2 11414  df-3 11415  df-4 11416  df-5 11417  df-6 11418  df-7 11419  df-8 11420  df-9 11421  df-n0 11619  df-z 11705  df-dec 11822  df-uz 11969  df-fz 12620  df-fzo 12761  df-seq 13096  df-struct 16224  df-ndx 16225  df-slot 16226  df-base 16228  df-sets 16229  df-ress 16230  df-plusg 16318  df-mulr 16319  df-starv 16320  df-sca 16321  df-vsca 16322  df-tset 16324  df-ple 16325  df-ds 16327  df-unif 16328  df-0g 16455  df-mgm 17595  df-sgrp 17637  df-mnd 17648  df-grp 17779  df-minusg 17780  df-mulg 17895  df-subg 17942  df-cmn 18548  df-abl 18549  df-mgp 18844  df-ur 18856  df-ring 18903  df-cring 18904  df-oppr 18977  df-subrg 19134  df-lmod 19221  df-assa 19673  df-cnfld 20107  df-zring 20179  df-zlm 20213
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator