MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  zlmassa Structured version   Visualization version   GIF version

Theorem zlmassa 21833
Description: The -module operation turns a ring into an associative algebra over . Also see zlmlmod 21452. (Contributed by Mario Carneiro, 2-Oct-2015.)
Hypothesis
Ref Expression
zlmassa.w 𝑊 = (ℤMod‘𝐺)
Assertion
Ref Expression
zlmassa (𝐺 ∈ Ring ↔ 𝑊 ∈ AssAlg)

Proof of Theorem zlmassa
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 zlmassa.w . . . . 5 𝑊 = (ℤMod‘𝐺)
2 eqid 2730 . . . . 5 (Base‘𝐺) = (Base‘𝐺)
31, 2zlmbas 21447 . . . 4 (Base‘𝐺) = (Base‘𝑊)
43a1i 11 . . 3 (𝐺 ∈ Ring → (Base‘𝐺) = (Base‘𝑊))
51zlmsca 21450 . . 3 (𝐺 ∈ Ring → ℤring = (Scalar‘𝑊))
6 zringbas 21383 . . . 4 ℤ = (Base‘ℤring)
76a1i 11 . . 3 (𝐺 ∈ Ring → ℤ = (Base‘ℤring))
8 eqid 2730 . . . . 5 (.g𝐺) = (.g𝐺)
91, 8zlmvsca 21451 . . . 4 (.g𝐺) = ( ·𝑠𝑊)
109a1i 11 . . 3 (𝐺 ∈ Ring → (.g𝐺) = ( ·𝑠𝑊))
11 eqid 2730 . . . . 5 (.r𝐺) = (.r𝐺)
121, 11zlmmulr 21449 . . . 4 (.r𝐺) = (.r𝑊)
1312a1i 11 . . 3 (𝐺 ∈ Ring → (.r𝐺) = (.r𝑊))
14 ringabl 20192 . . . 4 (𝐺 ∈ Ring → 𝐺 ∈ Abel)
151zlmlmod 21452 . . . 4 (𝐺 ∈ Abel ↔ 𝑊 ∈ LMod)
1614, 15sylib 218 . . 3 (𝐺 ∈ Ring → 𝑊 ∈ LMod)
17 eqid 2730 . . . . . 6 (+g𝐺) = (+g𝐺)
181, 17zlmplusg 21448 . . . . 5 (+g𝐺) = (+g𝑊)
193, 18, 12ringprop 20201 . . . 4 (𝐺 ∈ Ring ↔ 𝑊 ∈ Ring)
2019biimpi 216 . . 3 (𝐺 ∈ Ring → 𝑊 ∈ Ring)
212, 8, 11mulgass2 20220 . . 3 ((𝐺 ∈ Ring ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ (Base‘𝐺) ∧ 𝑧 ∈ (Base‘𝐺))) → ((𝑥(.g𝐺)𝑦)(.r𝐺)𝑧) = (𝑥(.g𝐺)(𝑦(.r𝐺)𝑧)))
222, 8, 11mulgass3 20264 . . 3 ((𝐺 ∈ Ring ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ (Base‘𝐺) ∧ 𝑧 ∈ (Base‘𝐺))) → (𝑦(.r𝐺)(𝑥(.g𝐺)𝑧)) = (𝑥(.g𝐺)(𝑦(.r𝐺)𝑧)))
234, 5, 7, 10, 13, 16, 20, 21, 22isassad 21795 . 2 (𝐺 ∈ Ring → 𝑊 ∈ AssAlg)
24 assaring 21791 . . 3 (𝑊 ∈ AssAlg → 𝑊 ∈ Ring)
2524, 19sylibr 234 . 2 (𝑊 ∈ AssAlg → 𝐺 ∈ Ring)
2623, 25impbii 209 1 (𝐺 ∈ Ring ↔ 𝑊 ∈ AssAlg)
Colors of variables: wff setvar class
Syntax hints:  wb 206   = wceq 1541  wcel 2110  cfv 6477  cz 12460  Basecbs 17112  +gcplusg 17153  .rcmulr 17154   ·𝑠 cvsca 17157  .gcmg 18972  Abelcabl 19686  Ringcrg 20144  LModclmod 20786  ringczring 21376  ℤModczlm 21430  AssAlgcasa 21780
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2112  ax-9 2120  ax-10 2143  ax-11 2159  ax-12 2179  ax-ext 2702  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7663  ax-cnex 11054  ax-resscn 11055  ax-1cn 11056  ax-icn 11057  ax-addcl 11058  ax-addrcl 11059  ax-mulcl 11060  ax-mulrcl 11061  ax-mulcom 11062  ax-addass 11063  ax-mulass 11064  ax-distr 11065  ax-i2m1 11066  ax-1ne0 11067  ax-1rid 11068  ax-rnegex 11069  ax-rrecex 11070  ax-cnre 11071  ax-pre-lttri 11072  ax-pre-lttrn 11073  ax-pre-ltadd 11074  ax-pre-mulgt0 11075  ax-addf 11077  ax-mulf 11078
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rmo 3344  df-reu 3345  df-rab 3394  df-v 3436  df-sbc 3740  df-csb 3849  df-dif 3903  df-un 3905  df-in 3907  df-ss 3917  df-pss 3920  df-nul 4282  df-if 4474  df-pw 4550  df-sn 4575  df-pr 4577  df-tp 4579  df-op 4581  df-uni 4858  df-iun 4941  df-br 5090  df-opab 5152  df-mpt 5171  df-tr 5197  df-id 5509  df-eprel 5514  df-po 5522  df-so 5523  df-fr 5567  df-we 5569  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-pred 6244  df-ord 6305  df-on 6306  df-lim 6307  df-suc 6308  df-iota 6433  df-fun 6479  df-fn 6480  df-f 6481  df-f1 6482  df-fo 6483  df-f1o 6484  df-fv 6485  df-riota 7298  df-ov 7344  df-oprab 7345  df-mpo 7346  df-om 7792  df-1st 7916  df-2nd 7917  df-tpos 8151  df-frecs 8206  df-wrecs 8237  df-recs 8286  df-rdg 8324  df-1o 8380  df-er 8617  df-en 8865  df-dom 8866  df-sdom 8867  df-fin 8868  df-pnf 11140  df-mnf 11141  df-xr 11142  df-ltxr 11143  df-le 11144  df-sub 11338  df-neg 11339  df-nn 12118  df-2 12180  df-3 12181  df-4 12182  df-5 12183  df-6 12184  df-7 12185  df-8 12186  df-9 12187  df-n0 12374  df-z 12461  df-dec 12581  df-uz 12725  df-fz 13400  df-fzo 13547  df-seq 13901  df-struct 17050  df-sets 17067  df-slot 17085  df-ndx 17097  df-base 17113  df-ress 17134  df-plusg 17166  df-mulr 17167  df-starv 17168  df-sca 17169  df-vsca 17170  df-tset 17172  df-ple 17173  df-ds 17175  df-unif 17176  df-0g 17337  df-mgm 18540  df-sgrp 18619  df-mnd 18635  df-grp 18841  df-minusg 18842  df-mulg 18973  df-subg 19028  df-cmn 19687  df-abl 19688  df-mgp 20052  df-rng 20064  df-ur 20093  df-ring 20146  df-cring 20147  df-oppr 20248  df-subrng 20454  df-subrg 20478  df-lmod 20788  df-cnfld 21285  df-zring 21377  df-zlm 21434  df-assa 21783
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator