MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  zlmassa Structured version   Visualization version   GIF version

Theorem zlmassa 21863
Description: The -module operation turns a ring into an associative algebra over . Also see zlmlmod 21483. (Contributed by Mario Carneiro, 2-Oct-2015.)
Hypothesis
Ref Expression
zlmassa.w 𝑊 = (ℤMod‘𝐺)
Assertion
Ref Expression
zlmassa (𝐺 ∈ Ring ↔ 𝑊 ∈ AssAlg)

Proof of Theorem zlmassa
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 zlmassa.w . . . . 5 𝑊 = (ℤMod‘𝐺)
2 eqid 2735 . . . . 5 (Base‘𝐺) = (Base‘𝐺)
31, 2zlmbas 21478 . . . 4 (Base‘𝐺) = (Base‘𝑊)
43a1i 11 . . 3 (𝐺 ∈ Ring → (Base‘𝐺) = (Base‘𝑊))
51zlmsca 21481 . . 3 (𝐺 ∈ Ring → ℤring = (Scalar‘𝑊))
6 zringbas 21414 . . . 4 ℤ = (Base‘ℤring)
76a1i 11 . . 3 (𝐺 ∈ Ring → ℤ = (Base‘ℤring))
8 eqid 2735 . . . . 5 (.g𝐺) = (.g𝐺)
91, 8zlmvsca 21482 . . . 4 (.g𝐺) = ( ·𝑠𝑊)
109a1i 11 . . 3 (𝐺 ∈ Ring → (.g𝐺) = ( ·𝑠𝑊))
11 eqid 2735 . . . . 5 (.r𝐺) = (.r𝐺)
121, 11zlmmulr 21480 . . . 4 (.r𝐺) = (.r𝑊)
1312a1i 11 . . 3 (𝐺 ∈ Ring → (.r𝐺) = (.r𝑊))
14 ringabl 20241 . . . 4 (𝐺 ∈ Ring → 𝐺 ∈ Abel)
151zlmlmod 21483 . . . 4 (𝐺 ∈ Abel ↔ 𝑊 ∈ LMod)
1614, 15sylib 218 . . 3 (𝐺 ∈ Ring → 𝑊 ∈ LMod)
17 eqid 2735 . . . . . 6 (+g𝐺) = (+g𝐺)
181, 17zlmplusg 21479 . . . . 5 (+g𝐺) = (+g𝑊)
193, 18, 12ringprop 20250 . . . 4 (𝐺 ∈ Ring ↔ 𝑊 ∈ Ring)
2019biimpi 216 . . 3 (𝐺 ∈ Ring → 𝑊 ∈ Ring)
212, 8, 11mulgass2 20269 . . 3 ((𝐺 ∈ Ring ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ (Base‘𝐺) ∧ 𝑧 ∈ (Base‘𝐺))) → ((𝑥(.g𝐺)𝑦)(.r𝐺)𝑧) = (𝑥(.g𝐺)(𝑦(.r𝐺)𝑧)))
222, 8, 11mulgass3 20313 . . 3 ((𝐺 ∈ Ring ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ (Base‘𝐺) ∧ 𝑧 ∈ (Base‘𝐺))) → (𝑦(.r𝐺)(𝑥(.g𝐺)𝑧)) = (𝑥(.g𝐺)(𝑦(.r𝐺)𝑧)))
234, 5, 7, 10, 13, 16, 20, 21, 22isassad 21825 . 2 (𝐺 ∈ Ring → 𝑊 ∈ AssAlg)
24 assaring 21821 . . 3 (𝑊 ∈ AssAlg → 𝑊 ∈ Ring)
2524, 19sylibr 234 . 2 (𝑊 ∈ AssAlg → 𝐺 ∈ Ring)
2623, 25impbii 209 1 (𝐺 ∈ Ring ↔ 𝑊 ∈ AssAlg)
Colors of variables: wff setvar class
Syntax hints:  wb 206   = wceq 1540  wcel 2108  cfv 6531  cz 12588  Basecbs 17228  +gcplusg 17271  .rcmulr 17272   ·𝑠 cvsca 17275  .gcmg 19050  Abelcabl 19762  Ringcrg 20193  LModclmod 20817  ringczring 21407  ℤModczlm 21461  AssAlgcasa 21810
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7729  ax-cnex 11185  ax-resscn 11186  ax-1cn 11187  ax-icn 11188  ax-addcl 11189  ax-addrcl 11190  ax-mulcl 11191  ax-mulrcl 11192  ax-mulcom 11193  ax-addass 11194  ax-mulass 11195  ax-distr 11196  ax-i2m1 11197  ax-1ne0 11198  ax-1rid 11199  ax-rnegex 11200  ax-rrecex 11201  ax-cnre 11202  ax-pre-lttri 11203  ax-pre-lttrn 11204  ax-pre-ltadd 11205  ax-pre-mulgt0 11206  ax-addf 11208  ax-mulf 11209
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-nel 3037  df-ral 3052  df-rex 3061  df-rmo 3359  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-pss 3946  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-tp 4606  df-op 4608  df-uni 4884  df-iun 4969  df-br 5120  df-opab 5182  df-mpt 5202  df-tr 5230  df-id 5548  df-eprel 5553  df-po 5561  df-so 5562  df-fr 5606  df-we 5608  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-pred 6290  df-ord 6355  df-on 6356  df-lim 6357  df-suc 6358  df-iota 6484  df-fun 6533  df-fn 6534  df-f 6535  df-f1 6536  df-fo 6537  df-f1o 6538  df-fv 6539  df-riota 7362  df-ov 7408  df-oprab 7409  df-mpo 7410  df-om 7862  df-1st 7988  df-2nd 7989  df-tpos 8225  df-frecs 8280  df-wrecs 8311  df-recs 8385  df-rdg 8424  df-1o 8480  df-er 8719  df-en 8960  df-dom 8961  df-sdom 8962  df-fin 8963  df-pnf 11271  df-mnf 11272  df-xr 11273  df-ltxr 11274  df-le 11275  df-sub 11468  df-neg 11469  df-nn 12241  df-2 12303  df-3 12304  df-4 12305  df-5 12306  df-6 12307  df-7 12308  df-8 12309  df-9 12310  df-n0 12502  df-z 12589  df-dec 12709  df-uz 12853  df-fz 13525  df-fzo 13672  df-seq 14020  df-struct 17166  df-sets 17183  df-slot 17201  df-ndx 17213  df-base 17229  df-ress 17252  df-plusg 17284  df-mulr 17285  df-starv 17286  df-sca 17287  df-vsca 17288  df-tset 17290  df-ple 17291  df-ds 17293  df-unif 17294  df-0g 17455  df-mgm 18618  df-sgrp 18697  df-mnd 18713  df-grp 18919  df-minusg 18920  df-mulg 19051  df-subg 19106  df-cmn 19763  df-abl 19764  df-mgp 20101  df-rng 20113  df-ur 20142  df-ring 20195  df-cring 20196  df-oppr 20297  df-subrng 20506  df-subrg 20530  df-lmod 20819  df-cnfld 21316  df-zring 21408  df-zlm 21465  df-assa 21813
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator