Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > psrassa | Structured version Visualization version GIF version |
Description: The ring of power series is an associative algebra. (Contributed by Mario Carneiro, 29-Dec-2014.) |
Ref | Expression |
---|---|
psrcnrg.s | ⊢ 𝑆 = (𝐼 mPwSer 𝑅) |
psrcnrg.i | ⊢ (𝜑 → 𝐼 ∈ 𝑉) |
psrcnrg.r | ⊢ (𝜑 → 𝑅 ∈ CRing) |
Ref | Expression |
---|---|
psrassa | ⊢ (𝜑 → 𝑆 ∈ AssAlg) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqidd 2739 | . 2 ⊢ (𝜑 → (Base‘𝑆) = (Base‘𝑆)) | |
2 | psrcnrg.s | . . 3 ⊢ 𝑆 = (𝐼 mPwSer 𝑅) | |
3 | psrcnrg.i | . . 3 ⊢ (𝜑 → 𝐼 ∈ 𝑉) | |
4 | psrcnrg.r | . . 3 ⊢ (𝜑 → 𝑅 ∈ CRing) | |
5 | 2, 3, 4 | psrsca 21158 | . 2 ⊢ (𝜑 → 𝑅 = (Scalar‘𝑆)) |
6 | eqidd 2739 | . 2 ⊢ (𝜑 → (Base‘𝑅) = (Base‘𝑅)) | |
7 | eqidd 2739 | . 2 ⊢ (𝜑 → ( ·𝑠 ‘𝑆) = ( ·𝑠 ‘𝑆)) | |
8 | eqidd 2739 | . 2 ⊢ (𝜑 → (.r‘𝑆) = (.r‘𝑆)) | |
9 | crngring 19795 | . . . 4 ⊢ (𝑅 ∈ CRing → 𝑅 ∈ Ring) | |
10 | 4, 9 | syl 17 | . . 3 ⊢ (𝜑 → 𝑅 ∈ Ring) |
11 | 2, 3, 10 | psrlmod 21170 | . 2 ⊢ (𝜑 → 𝑆 ∈ LMod) |
12 | 2, 3, 10 | psrring 21180 | . 2 ⊢ (𝜑 → 𝑆 ∈ Ring) |
13 | 3 | adantr 481 | . . . 4 ⊢ ((𝜑 ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑆) ∧ 𝑧 ∈ (Base‘𝑆))) → 𝐼 ∈ 𝑉) |
14 | 10 | adantr 481 | . . . 4 ⊢ ((𝜑 ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑆) ∧ 𝑧 ∈ (Base‘𝑆))) → 𝑅 ∈ Ring) |
15 | eqid 2738 | . . . 4 ⊢ {𝑓 ∈ (ℕ0 ↑m 𝐼) ∣ (◡𝑓 “ ℕ) ∈ Fin} = {𝑓 ∈ (ℕ0 ↑m 𝐼) ∣ (◡𝑓 “ ℕ) ∈ Fin} | |
16 | eqid 2738 | . . . 4 ⊢ (.r‘𝑆) = (.r‘𝑆) | |
17 | eqid 2738 | . . . 4 ⊢ (Base‘𝑆) = (Base‘𝑆) | |
18 | simpr2 1194 | . . . 4 ⊢ ((𝜑 ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑆) ∧ 𝑧 ∈ (Base‘𝑆))) → 𝑦 ∈ (Base‘𝑆)) | |
19 | simpr3 1195 | . . . 4 ⊢ ((𝜑 ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑆) ∧ 𝑧 ∈ (Base‘𝑆))) → 𝑧 ∈ (Base‘𝑆)) | |
20 | 4 | adantr 481 | . . . 4 ⊢ ((𝜑 ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑆) ∧ 𝑧 ∈ (Base‘𝑆))) → 𝑅 ∈ CRing) |
21 | eqid 2738 | . . . 4 ⊢ (Base‘𝑅) = (Base‘𝑅) | |
22 | eqid 2738 | . . . 4 ⊢ ( ·𝑠 ‘𝑆) = ( ·𝑠 ‘𝑆) | |
23 | simpr1 1193 | . . . 4 ⊢ ((𝜑 ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑆) ∧ 𝑧 ∈ (Base‘𝑆))) → 𝑥 ∈ (Base‘𝑅)) | |
24 | 2, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23 | psrass23 21179 | . . 3 ⊢ ((𝜑 ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑆) ∧ 𝑧 ∈ (Base‘𝑆))) → (((𝑥( ·𝑠 ‘𝑆)𝑦)(.r‘𝑆)𝑧) = (𝑥( ·𝑠 ‘𝑆)(𝑦(.r‘𝑆)𝑧)) ∧ (𝑦(.r‘𝑆)(𝑥( ·𝑠 ‘𝑆)𝑧)) = (𝑥( ·𝑠 ‘𝑆)(𝑦(.r‘𝑆)𝑧)))) |
25 | 24 | simpld 495 | . 2 ⊢ ((𝜑 ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑆) ∧ 𝑧 ∈ (Base‘𝑆))) → ((𝑥( ·𝑠 ‘𝑆)𝑦)(.r‘𝑆)𝑧) = (𝑥( ·𝑠 ‘𝑆)(𝑦(.r‘𝑆)𝑧))) |
26 | 24 | simprd 496 | . 2 ⊢ ((𝜑 ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑆) ∧ 𝑧 ∈ (Base‘𝑆))) → (𝑦(.r‘𝑆)(𝑥( ·𝑠 ‘𝑆)𝑧)) = (𝑥( ·𝑠 ‘𝑆)(𝑦(.r‘𝑆)𝑧))) |
27 | 1, 5, 6, 7, 8, 11, 12, 4, 25, 26 | isassad 21071 | 1 ⊢ (𝜑 → 𝑆 ∈ AssAlg) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 ∧ w3a 1086 = wceq 1539 ∈ wcel 2106 {crab 3068 ◡ccnv 5588 “ cima 5592 ‘cfv 6433 (class class class)co 7275 ↑m cmap 8615 Fincfn 8733 ℕcn 11973 ℕ0cn0 12233 Basecbs 16912 .rcmulr 16963 ·𝑠 cvsca 16966 Ringcrg 19783 CRingccrg 19784 AssAlgcasa 21057 mPwSer cmps 21107 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-rep 5209 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 ax-un 7588 ax-cnex 10927 ax-resscn 10928 ax-1cn 10929 ax-icn 10930 ax-addcl 10931 ax-addrcl 10932 ax-mulcl 10933 ax-mulrcl 10934 ax-mulcom 10935 ax-addass 10936 ax-mulass 10937 ax-distr 10938 ax-i2m1 10939 ax-1ne0 10940 ax-1rid 10941 ax-rnegex 10942 ax-rrecex 10943 ax-cnre 10944 ax-pre-lttri 10945 ax-pre-lttrn 10946 ax-pre-ltadd 10947 ax-pre-mulgt0 10948 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-nel 3050 df-ral 3069 df-rex 3070 df-rmo 3071 df-reu 3072 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-pss 3906 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-tp 4566 df-op 4568 df-uni 4840 df-int 4880 df-iun 4926 df-iin 4927 df-br 5075 df-opab 5137 df-mpt 5158 df-tr 5192 df-id 5489 df-eprel 5495 df-po 5503 df-so 5504 df-fr 5544 df-se 5545 df-we 5546 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-pred 6202 df-ord 6269 df-on 6270 df-lim 6271 df-suc 6272 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-f1 6438 df-fo 6439 df-f1o 6440 df-fv 6441 df-isom 6442 df-riota 7232 df-ov 7278 df-oprab 7279 df-mpo 7280 df-of 7533 df-ofr 7534 df-om 7713 df-1st 7831 df-2nd 7832 df-supp 7978 df-frecs 8097 df-wrecs 8128 df-recs 8202 df-rdg 8241 df-1o 8297 df-er 8498 df-map 8617 df-pm 8618 df-ixp 8686 df-en 8734 df-dom 8735 df-sdom 8736 df-fin 8737 df-fsupp 9129 df-oi 9269 df-card 9697 df-pnf 11011 df-mnf 11012 df-xr 11013 df-ltxr 11014 df-le 11015 df-sub 11207 df-neg 11208 df-nn 11974 df-2 12036 df-3 12037 df-4 12038 df-5 12039 df-6 12040 df-7 12041 df-8 12042 df-9 12043 df-n0 12234 df-z 12320 df-uz 12583 df-fz 13240 df-fzo 13383 df-seq 13722 df-hash 14045 df-struct 16848 df-sets 16865 df-slot 16883 df-ndx 16895 df-base 16913 df-ress 16942 df-plusg 16975 df-mulr 16976 df-sca 16978 df-vsca 16979 df-tset 16981 df-0g 17152 df-gsum 17153 df-mre 17295 df-mrc 17296 df-acs 17298 df-mgm 18326 df-sgrp 18375 df-mnd 18386 df-mhm 18430 df-submnd 18431 df-grp 18580 df-minusg 18581 df-mulg 18701 df-ghm 18832 df-cntz 18923 df-cmn 19388 df-abl 19389 df-mgp 19721 df-ur 19738 df-ring 19785 df-cring 19786 df-lmod 20125 df-assa 21060 df-psr 21112 |
This theorem is referenced by: mplassa 21227 mplbas2 21243 opsrassa 21267 mplind 21278 evlseu 21293 |
Copyright terms: Public domain | W3C validator |