MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  psrassa Structured version   Visualization version   GIF version

Theorem psrassa 21910
Description: The ring of power series is an associative algebra. (Contributed by Mario Carneiro, 29-Dec-2014.)
Hypotheses
Ref Expression
psrcnrg.s 𝑆 = (𝐼 mPwSer 𝑅)
psrcnrg.i (𝜑𝐼𝑉)
psrcnrg.r (𝜑𝑅 ∈ CRing)
Assertion
Ref Expression
psrassa (𝜑𝑆 ∈ AssAlg)

Proof of Theorem psrassa
Dummy variables 𝑓 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqidd 2732 . 2 (𝜑 → (Base‘𝑆) = (Base‘𝑆))
2 psrcnrg.s . . 3 𝑆 = (𝐼 mPwSer 𝑅)
3 psrcnrg.i . . 3 (𝜑𝐼𝑉)
4 psrcnrg.r . . 3 (𝜑𝑅 ∈ CRing)
52, 3, 4psrsca 21884 . 2 (𝜑𝑅 = (Scalar‘𝑆))
6 eqidd 2732 . 2 (𝜑 → (Base‘𝑅) = (Base‘𝑅))
7 eqidd 2732 . 2 (𝜑 → ( ·𝑠𝑆) = ( ·𝑠𝑆))
8 eqidd 2732 . 2 (𝜑 → (.r𝑆) = (.r𝑆))
94crngringd 20164 . . 3 (𝜑𝑅 ∈ Ring)
102, 3, 9psrlmod 21897 . 2 (𝜑𝑆 ∈ LMod)
112, 3, 9psrring 21907 . 2 (𝜑𝑆 ∈ Ring)
123adantr 480 . . . 4 ((𝜑 ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑆) ∧ 𝑧 ∈ (Base‘𝑆))) → 𝐼𝑉)
139adantr 480 . . . 4 ((𝜑 ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑆) ∧ 𝑧 ∈ (Base‘𝑆))) → 𝑅 ∈ Ring)
14 eqid 2731 . . . 4 {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} = {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}
15 eqid 2731 . . . 4 (.r𝑆) = (.r𝑆)
16 eqid 2731 . . . 4 (Base‘𝑆) = (Base‘𝑆)
17 simpr2 1196 . . . 4 ((𝜑 ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑆) ∧ 𝑧 ∈ (Base‘𝑆))) → 𝑦 ∈ (Base‘𝑆))
18 simpr3 1197 . . . 4 ((𝜑 ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑆) ∧ 𝑧 ∈ (Base‘𝑆))) → 𝑧 ∈ (Base‘𝑆))
194adantr 480 . . . 4 ((𝜑 ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑆) ∧ 𝑧 ∈ (Base‘𝑆))) → 𝑅 ∈ CRing)
20 eqid 2731 . . . 4 (Base‘𝑅) = (Base‘𝑅)
21 eqid 2731 . . . 4 ( ·𝑠𝑆) = ( ·𝑠𝑆)
22 simpr1 1195 . . . 4 ((𝜑 ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑆) ∧ 𝑧 ∈ (Base‘𝑆))) → 𝑥 ∈ (Base‘𝑅))
232, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22psrass23 21906 . . 3 ((𝜑 ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑆) ∧ 𝑧 ∈ (Base‘𝑆))) → (((𝑥( ·𝑠𝑆)𝑦)(.r𝑆)𝑧) = (𝑥( ·𝑠𝑆)(𝑦(.r𝑆)𝑧)) ∧ (𝑦(.r𝑆)(𝑥( ·𝑠𝑆)𝑧)) = (𝑥( ·𝑠𝑆)(𝑦(.r𝑆)𝑧))))
2423simpld 494 . 2 ((𝜑 ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑆) ∧ 𝑧 ∈ (Base‘𝑆))) → ((𝑥( ·𝑠𝑆)𝑦)(.r𝑆)𝑧) = (𝑥( ·𝑠𝑆)(𝑦(.r𝑆)𝑧)))
2523simprd 495 . 2 ((𝜑 ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑆) ∧ 𝑧 ∈ (Base‘𝑆))) → (𝑦(.r𝑆)(𝑥( ·𝑠𝑆)𝑧)) = (𝑥( ·𝑠𝑆)(𝑦(.r𝑆)𝑧)))
261, 5, 6, 7, 8, 10, 11, 24, 25isassad 21802 1 (𝜑𝑆 ∈ AssAlg)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1541  wcel 2111  {crab 3395  ccnv 5613  cima 5617  cfv 6481  (class class class)co 7346  m cmap 8750  Fincfn 8869  cn 12125  0cn0 12381  Basecbs 17120  .rcmulr 17162   ·𝑠 cvsca 17165  Ringcrg 20151  CRingccrg 20152  AssAlgcasa 21787   mPwSer cmps 21841
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5215  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7668  ax-cnex 11062  ax-resscn 11063  ax-1cn 11064  ax-icn 11065  ax-addcl 11066  ax-addrcl 11067  ax-mulcl 11068  ax-mulrcl 11069  ax-mulcom 11070  ax-addass 11071  ax-mulass 11072  ax-distr 11073  ax-i2m1 11074  ax-1ne0 11075  ax-1rid 11076  ax-rnegex 11077  ax-rrecex 11078  ax-cnre 11079  ax-pre-lttri 11080  ax-pre-lttrn 11081  ax-pre-ltadd 11082  ax-pre-mulgt0 11083
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-tp 4578  df-op 4580  df-uni 4857  df-int 4896  df-iun 4941  df-iin 4942  df-br 5090  df-opab 5152  df-mpt 5171  df-tr 5197  df-id 5509  df-eprel 5514  df-po 5522  df-so 5523  df-fr 5567  df-se 5568  df-we 5569  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-isom 6490  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-of 7610  df-ofr 7611  df-om 7797  df-1st 7921  df-2nd 7922  df-supp 8091  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-1o 8385  df-2o 8386  df-er 8622  df-map 8752  df-pm 8753  df-ixp 8822  df-en 8870  df-dom 8871  df-sdom 8872  df-fin 8873  df-fsupp 9246  df-sup 9326  df-oi 9396  df-card 9832  df-pnf 11148  df-mnf 11149  df-xr 11150  df-ltxr 11151  df-le 11152  df-sub 11346  df-neg 11347  df-nn 12126  df-2 12188  df-3 12189  df-4 12190  df-5 12191  df-6 12192  df-7 12193  df-8 12194  df-9 12195  df-n0 12382  df-z 12469  df-dec 12589  df-uz 12733  df-fz 13408  df-fzo 13555  df-seq 13909  df-hash 14238  df-struct 17058  df-sets 17075  df-slot 17093  df-ndx 17105  df-base 17121  df-ress 17142  df-plusg 17174  df-mulr 17175  df-sca 17177  df-vsca 17178  df-ip 17179  df-tset 17180  df-ple 17181  df-ds 17183  df-hom 17185  df-cco 17186  df-0g 17345  df-gsum 17346  df-prds 17351  df-pws 17353  df-mre 17488  df-mrc 17489  df-acs 17491  df-mgm 18548  df-sgrp 18627  df-mnd 18643  df-mhm 18691  df-submnd 18692  df-grp 18849  df-minusg 18850  df-mulg 18981  df-ghm 19125  df-cntz 19229  df-cmn 19694  df-abl 19695  df-mgp 20059  df-rng 20071  df-ur 20100  df-ring 20153  df-cring 20154  df-lmod 20795  df-assa 21790  df-psr 21846
This theorem is referenced by:  mplassa  21959  mplbas2  21977  opsrassa  21995  mplind  22005  evlseu  22018
  Copyright terms: Public domain W3C validator