MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  psrassa Structured version   Visualization version   GIF version

Theorem psrassa 21935
Description: The ring of power series is an associative algebra. (Contributed by Mario Carneiro, 29-Dec-2014.)
Hypotheses
Ref Expression
psrcnrg.s 𝑆 = (𝐼 mPwSer 𝑅)
psrcnrg.i (𝜑𝐼𝑉)
psrcnrg.r (𝜑𝑅 ∈ CRing)
Assertion
Ref Expression
psrassa (𝜑𝑆 ∈ AssAlg)

Proof of Theorem psrassa
Dummy variables 𝑓 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqidd 2726 . 2 (𝜑 → (Base‘𝑆) = (Base‘𝑆))
2 psrcnrg.s . . 3 𝑆 = (𝐼 mPwSer 𝑅)
3 psrcnrg.i . . 3 (𝜑𝐼𝑉)
4 psrcnrg.r . . 3 (𝜑𝑅 ∈ CRing)
52, 3, 4psrsca 21909 . 2 (𝜑𝑅 = (Scalar‘𝑆))
6 eqidd 2726 . 2 (𝜑 → (Base‘𝑅) = (Base‘𝑅))
7 eqidd 2726 . 2 (𝜑 → ( ·𝑠𝑆) = ( ·𝑠𝑆))
8 eqidd 2726 . 2 (𝜑 → (.r𝑆) = (.r𝑆))
94crngringd 20198 . . 3 (𝜑𝑅 ∈ Ring)
102, 3, 9psrlmod 21922 . 2 (𝜑𝑆 ∈ LMod)
112, 3, 9psrring 21932 . 2 (𝜑𝑆 ∈ Ring)
123adantr 479 . . . 4 ((𝜑 ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑆) ∧ 𝑧 ∈ (Base‘𝑆))) → 𝐼𝑉)
139adantr 479 . . . 4 ((𝜑 ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑆) ∧ 𝑧 ∈ (Base‘𝑆))) → 𝑅 ∈ Ring)
14 eqid 2725 . . . 4 {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} = {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}
15 eqid 2725 . . . 4 (.r𝑆) = (.r𝑆)
16 eqid 2725 . . . 4 (Base‘𝑆) = (Base‘𝑆)
17 simpr2 1192 . . . 4 ((𝜑 ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑆) ∧ 𝑧 ∈ (Base‘𝑆))) → 𝑦 ∈ (Base‘𝑆))
18 simpr3 1193 . . . 4 ((𝜑 ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑆) ∧ 𝑧 ∈ (Base‘𝑆))) → 𝑧 ∈ (Base‘𝑆))
194adantr 479 . . . 4 ((𝜑 ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑆) ∧ 𝑧 ∈ (Base‘𝑆))) → 𝑅 ∈ CRing)
20 eqid 2725 . . . 4 (Base‘𝑅) = (Base‘𝑅)
21 eqid 2725 . . . 4 ( ·𝑠𝑆) = ( ·𝑠𝑆)
22 simpr1 1191 . . . 4 ((𝜑 ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑆) ∧ 𝑧 ∈ (Base‘𝑆))) → 𝑥 ∈ (Base‘𝑅))
232, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22psrass23 21931 . . 3 ((𝜑 ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑆) ∧ 𝑧 ∈ (Base‘𝑆))) → (((𝑥( ·𝑠𝑆)𝑦)(.r𝑆)𝑧) = (𝑥( ·𝑠𝑆)(𝑦(.r𝑆)𝑧)) ∧ (𝑦(.r𝑆)(𝑥( ·𝑠𝑆)𝑧)) = (𝑥( ·𝑠𝑆)(𝑦(.r𝑆)𝑧))))
2423simpld 493 . 2 ((𝜑 ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑆) ∧ 𝑧 ∈ (Base‘𝑆))) → ((𝑥( ·𝑠𝑆)𝑦)(.r𝑆)𝑧) = (𝑥( ·𝑠𝑆)(𝑦(.r𝑆)𝑧)))
2523simprd 494 . 2 ((𝜑 ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑆) ∧ 𝑧 ∈ (Base‘𝑆))) → (𝑦(.r𝑆)(𝑥( ·𝑠𝑆)𝑧)) = (𝑥( ·𝑠𝑆)(𝑦(.r𝑆)𝑧)))
261, 5, 6, 7, 8, 10, 11, 24, 25isassad 21815 1 (𝜑𝑆 ∈ AssAlg)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 394  w3a 1084   = wceq 1533  wcel 2098  {crab 3418  ccnv 5677  cima 5681  cfv 6549  (class class class)co 7419  m cmap 8845  Fincfn 8964  cn 12245  0cn0 12505  Basecbs 17183  .rcmulr 17237   ·𝑠 cvsca 17240  Ringcrg 20185  CRingccrg 20186  AssAlgcasa 21801   mPwSer cmps 21854
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2696  ax-rep 5286  ax-sep 5300  ax-nul 5307  ax-pow 5365  ax-pr 5429  ax-un 7741  ax-cnex 11196  ax-resscn 11197  ax-1cn 11198  ax-icn 11199  ax-addcl 11200  ax-addrcl 11201  ax-mulcl 11202  ax-mulrcl 11203  ax-mulcom 11204  ax-addass 11205  ax-mulass 11206  ax-distr 11207  ax-i2m1 11208  ax-1ne0 11209  ax-1rid 11210  ax-rnegex 11211  ax-rrecex 11212  ax-cnre 11213  ax-pre-lttri 11214  ax-pre-lttrn 11215  ax-pre-ltadd 11216  ax-pre-mulgt0 11217
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2703  df-cleq 2717  df-clel 2802  df-nfc 2877  df-ne 2930  df-nel 3036  df-ral 3051  df-rex 3060  df-rmo 3363  df-reu 3364  df-rab 3419  df-v 3463  df-sbc 3774  df-csb 3890  df-dif 3947  df-un 3949  df-in 3951  df-ss 3961  df-pss 3964  df-nul 4323  df-if 4531  df-pw 4606  df-sn 4631  df-pr 4633  df-tp 4635  df-op 4637  df-uni 4910  df-int 4951  df-iun 4999  df-iin 5000  df-br 5150  df-opab 5212  df-mpt 5233  df-tr 5267  df-id 5576  df-eprel 5582  df-po 5590  df-so 5591  df-fr 5633  df-se 5634  df-we 5635  df-xp 5684  df-rel 5685  df-cnv 5686  df-co 5687  df-dm 5688  df-rn 5689  df-res 5690  df-ima 5691  df-pred 6307  df-ord 6374  df-on 6375  df-lim 6376  df-suc 6377  df-iota 6501  df-fun 6551  df-fn 6552  df-f 6553  df-f1 6554  df-fo 6555  df-f1o 6556  df-fv 6557  df-isom 6558  df-riota 7375  df-ov 7422  df-oprab 7423  df-mpo 7424  df-of 7685  df-ofr 7686  df-om 7872  df-1st 7994  df-2nd 7995  df-supp 8166  df-frecs 8287  df-wrecs 8318  df-recs 8392  df-rdg 8431  df-1o 8487  df-er 8725  df-map 8847  df-pm 8848  df-ixp 8917  df-en 8965  df-dom 8966  df-sdom 8967  df-fin 8968  df-fsupp 9388  df-sup 9467  df-oi 9535  df-card 9964  df-pnf 11282  df-mnf 11283  df-xr 11284  df-ltxr 11285  df-le 11286  df-sub 11478  df-neg 11479  df-nn 12246  df-2 12308  df-3 12309  df-4 12310  df-5 12311  df-6 12312  df-7 12313  df-8 12314  df-9 12315  df-n0 12506  df-z 12592  df-dec 12711  df-uz 12856  df-fz 13520  df-fzo 13663  df-seq 14003  df-hash 14326  df-struct 17119  df-sets 17136  df-slot 17154  df-ndx 17166  df-base 17184  df-ress 17213  df-plusg 17249  df-mulr 17250  df-sca 17252  df-vsca 17253  df-ip 17254  df-tset 17255  df-ple 17256  df-ds 17258  df-hom 17260  df-cco 17261  df-0g 17426  df-gsum 17427  df-prds 17432  df-pws 17434  df-mre 17569  df-mrc 17570  df-acs 17572  df-mgm 18603  df-sgrp 18682  df-mnd 18698  df-mhm 18743  df-submnd 18744  df-grp 18901  df-minusg 18902  df-mulg 19032  df-ghm 19176  df-cntz 19280  df-cmn 19749  df-abl 19750  df-mgp 20087  df-rng 20105  df-ur 20134  df-ring 20187  df-cring 20188  df-lmod 20757  df-assa 21804  df-psr 21859
This theorem is referenced by:  mplassa  21984  mplbas2  22002  opsrassa  22026  mplind  22036  evlseu  22051
  Copyright terms: Public domain W3C validator