MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  psrassa Structured version   Visualization version   GIF version

Theorem psrassa 21948
Description: The ring of power series is an associative algebra. (Contributed by Mario Carneiro, 29-Dec-2014.)
Hypotheses
Ref Expression
psrcnrg.s 𝑆 = (𝐼 mPwSer 𝑅)
psrcnrg.i (𝜑𝐼𝑉)
psrcnrg.r (𝜑𝑅 ∈ CRing)
Assertion
Ref Expression
psrassa (𝜑𝑆 ∈ AssAlg)

Proof of Theorem psrassa
Dummy variables 𝑓 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqidd 2735 . 2 (𝜑 → (Base‘𝑆) = (Base‘𝑆))
2 psrcnrg.s . . 3 𝑆 = (𝐼 mPwSer 𝑅)
3 psrcnrg.i . . 3 (𝜑𝐼𝑉)
4 psrcnrg.r . . 3 (𝜑𝑅 ∈ CRing)
52, 3, 4psrsca 21922 . 2 (𝜑𝑅 = (Scalar‘𝑆))
6 eqidd 2735 . 2 (𝜑 → (Base‘𝑅) = (Base‘𝑅))
7 eqidd 2735 . 2 (𝜑 → ( ·𝑠𝑆) = ( ·𝑠𝑆))
8 eqidd 2735 . 2 (𝜑 → (.r𝑆) = (.r𝑆))
94crngringd 20212 . . 3 (𝜑𝑅 ∈ Ring)
102, 3, 9psrlmod 21935 . 2 (𝜑𝑆 ∈ LMod)
112, 3, 9psrring 21945 . 2 (𝜑𝑆 ∈ Ring)
123adantr 480 . . . 4 ((𝜑 ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑆) ∧ 𝑧 ∈ (Base‘𝑆))) → 𝐼𝑉)
139adantr 480 . . . 4 ((𝜑 ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑆) ∧ 𝑧 ∈ (Base‘𝑆))) → 𝑅 ∈ Ring)
14 eqid 2734 . . . 4 {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} = {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}
15 eqid 2734 . . . 4 (.r𝑆) = (.r𝑆)
16 eqid 2734 . . . 4 (Base‘𝑆) = (Base‘𝑆)
17 simpr2 1195 . . . 4 ((𝜑 ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑆) ∧ 𝑧 ∈ (Base‘𝑆))) → 𝑦 ∈ (Base‘𝑆))
18 simpr3 1196 . . . 4 ((𝜑 ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑆) ∧ 𝑧 ∈ (Base‘𝑆))) → 𝑧 ∈ (Base‘𝑆))
194adantr 480 . . . 4 ((𝜑 ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑆) ∧ 𝑧 ∈ (Base‘𝑆))) → 𝑅 ∈ CRing)
20 eqid 2734 . . . 4 (Base‘𝑅) = (Base‘𝑅)
21 eqid 2734 . . . 4 ( ·𝑠𝑆) = ( ·𝑠𝑆)
22 simpr1 1194 . . . 4 ((𝜑 ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑆) ∧ 𝑧 ∈ (Base‘𝑆))) → 𝑥 ∈ (Base‘𝑅))
232, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22psrass23 21944 . . 3 ((𝜑 ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑆) ∧ 𝑧 ∈ (Base‘𝑆))) → (((𝑥( ·𝑠𝑆)𝑦)(.r𝑆)𝑧) = (𝑥( ·𝑠𝑆)(𝑦(.r𝑆)𝑧)) ∧ (𝑦(.r𝑆)(𝑥( ·𝑠𝑆)𝑧)) = (𝑥( ·𝑠𝑆)(𝑦(.r𝑆)𝑧))))
2423simpld 494 . 2 ((𝜑 ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑆) ∧ 𝑧 ∈ (Base‘𝑆))) → ((𝑥( ·𝑠𝑆)𝑦)(.r𝑆)𝑧) = (𝑥( ·𝑠𝑆)(𝑦(.r𝑆)𝑧)))
2523simprd 495 . 2 ((𝜑 ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑆) ∧ 𝑧 ∈ (Base‘𝑆))) → (𝑦(.r𝑆)(𝑥( ·𝑠𝑆)𝑧)) = (𝑥( ·𝑠𝑆)(𝑦(.r𝑆)𝑧)))
261, 5, 6, 7, 8, 10, 11, 24, 25isassad 21840 1 (𝜑𝑆 ∈ AssAlg)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1539  wcel 2107  {crab 3419  ccnv 5664  cima 5668  cfv 6541  (class class class)co 7413  m cmap 8848  Fincfn 8967  cn 12248  0cn0 12509  Basecbs 17230  .rcmulr 17275   ·𝑠 cvsca 17278  Ringcrg 20199  CRingccrg 20200  AssAlgcasa 21825   mPwSer cmps 21879
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2706  ax-rep 5259  ax-sep 5276  ax-nul 5286  ax-pow 5345  ax-pr 5412  ax-un 7737  ax-cnex 11193  ax-resscn 11194  ax-1cn 11195  ax-icn 11196  ax-addcl 11197  ax-addrcl 11198  ax-mulcl 11199  ax-mulrcl 11200  ax-mulcom 11201  ax-addass 11202  ax-mulass 11203  ax-distr 11204  ax-i2m1 11205  ax-1ne0 11206  ax-1rid 11207  ax-rnegex 11208  ax-rrecex 11209  ax-cnre 11210  ax-pre-lttri 11211  ax-pre-lttrn 11212  ax-pre-ltadd 11213  ax-pre-mulgt0 11214
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2726  df-clel 2808  df-nfc 2884  df-ne 2932  df-nel 3036  df-ral 3051  df-rex 3060  df-rmo 3363  df-reu 3364  df-rab 3420  df-v 3465  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-pss 3951  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-tp 4611  df-op 4613  df-uni 4888  df-int 4927  df-iun 4973  df-iin 4974  df-br 5124  df-opab 5186  df-mpt 5206  df-tr 5240  df-id 5558  df-eprel 5564  df-po 5572  df-so 5573  df-fr 5617  df-se 5618  df-we 5619  df-xp 5671  df-rel 5672  df-cnv 5673  df-co 5674  df-dm 5675  df-rn 5676  df-res 5677  df-ima 5678  df-pred 6301  df-ord 6366  df-on 6367  df-lim 6368  df-suc 6369  df-iota 6494  df-fun 6543  df-fn 6544  df-f 6545  df-f1 6546  df-fo 6547  df-f1o 6548  df-fv 6549  df-isom 6550  df-riota 7370  df-ov 7416  df-oprab 7417  df-mpo 7418  df-of 7679  df-ofr 7680  df-om 7870  df-1st 7996  df-2nd 7997  df-supp 8168  df-frecs 8288  df-wrecs 8319  df-recs 8393  df-rdg 8432  df-1o 8488  df-2o 8489  df-er 8727  df-map 8850  df-pm 8851  df-ixp 8920  df-en 8968  df-dom 8969  df-sdom 8970  df-fin 8971  df-fsupp 9384  df-sup 9464  df-oi 9532  df-card 9961  df-pnf 11279  df-mnf 11280  df-xr 11281  df-ltxr 11282  df-le 11283  df-sub 11476  df-neg 11477  df-nn 12249  df-2 12311  df-3 12312  df-4 12313  df-5 12314  df-6 12315  df-7 12316  df-8 12317  df-9 12318  df-n0 12510  df-z 12597  df-dec 12717  df-uz 12861  df-fz 13530  df-fzo 13677  df-seq 14025  df-hash 14353  df-struct 17167  df-sets 17184  df-slot 17202  df-ndx 17214  df-base 17231  df-ress 17254  df-plusg 17287  df-mulr 17288  df-sca 17290  df-vsca 17291  df-ip 17292  df-tset 17293  df-ple 17294  df-ds 17296  df-hom 17298  df-cco 17299  df-0g 17458  df-gsum 17459  df-prds 17464  df-pws 17466  df-mre 17601  df-mrc 17602  df-acs 17604  df-mgm 18623  df-sgrp 18702  df-mnd 18718  df-mhm 18766  df-submnd 18767  df-grp 18924  df-minusg 18925  df-mulg 19056  df-ghm 19201  df-cntz 19305  df-cmn 19769  df-abl 19770  df-mgp 20107  df-rng 20119  df-ur 20148  df-ring 20201  df-cring 20202  df-lmod 20829  df-assa 21828  df-psr 21884
This theorem is referenced by:  mplassa  21997  mplbas2  22015  opsrassa  22033  mplind  22043  evlseu  22056
  Copyright terms: Public domain W3C validator