![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > isclmi | Structured version Visualization version GIF version |
Description: Reverse direction of isclm 25079. (Contributed by Mario Carneiro, 30-Oct-2015.) |
Ref | Expression |
---|---|
clm0.f | ⊢ 𝐹 = (Scalar‘𝑊) |
Ref | Expression |
---|---|
isclmi | ⊢ ((𝑊 ∈ LMod ∧ 𝐹 = (ℂfld ↾s 𝐾) ∧ 𝐾 ∈ (SubRing‘ℂfld)) → 𝑊 ∈ ℂMod) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simp1 1133 | . 2 ⊢ ((𝑊 ∈ LMod ∧ 𝐹 = (ℂfld ↾s 𝐾) ∧ 𝐾 ∈ (SubRing‘ℂfld)) → 𝑊 ∈ LMod) | |
2 | simp2 1134 | . . 3 ⊢ ((𝑊 ∈ LMod ∧ 𝐹 = (ℂfld ↾s 𝐾) ∧ 𝐾 ∈ (SubRing‘ℂfld)) → 𝐹 = (ℂfld ↾s 𝐾)) | |
3 | eqid 2726 | . . . . . . 7 ⊢ (ℂfld ↾s 𝐾) = (ℂfld ↾s 𝐾) | |
4 | 3 | subrgbas 20561 | . . . . . 6 ⊢ (𝐾 ∈ (SubRing‘ℂfld) → 𝐾 = (Base‘(ℂfld ↾s 𝐾))) |
5 | 4 | 3ad2ant3 1132 | . . . . 5 ⊢ ((𝑊 ∈ LMod ∧ 𝐹 = (ℂfld ↾s 𝐾) ∧ 𝐾 ∈ (SubRing‘ℂfld)) → 𝐾 = (Base‘(ℂfld ↾s 𝐾))) |
6 | 2 | fveq2d 6897 | . . . . 5 ⊢ ((𝑊 ∈ LMod ∧ 𝐹 = (ℂfld ↾s 𝐾) ∧ 𝐾 ∈ (SubRing‘ℂfld)) → (Base‘𝐹) = (Base‘(ℂfld ↾s 𝐾))) |
7 | 5, 6 | eqtr4d 2769 | . . . 4 ⊢ ((𝑊 ∈ LMod ∧ 𝐹 = (ℂfld ↾s 𝐾) ∧ 𝐾 ∈ (SubRing‘ℂfld)) → 𝐾 = (Base‘𝐹)) |
8 | 7 | oveq2d 7432 | . . 3 ⊢ ((𝑊 ∈ LMod ∧ 𝐹 = (ℂfld ↾s 𝐾) ∧ 𝐾 ∈ (SubRing‘ℂfld)) → (ℂfld ↾s 𝐾) = (ℂfld ↾s (Base‘𝐹))) |
9 | 2, 8 | eqtrd 2766 | . 2 ⊢ ((𝑊 ∈ LMod ∧ 𝐹 = (ℂfld ↾s 𝐾) ∧ 𝐾 ∈ (SubRing‘ℂfld)) → 𝐹 = (ℂfld ↾s (Base‘𝐹))) |
10 | simp3 1135 | . . 3 ⊢ ((𝑊 ∈ LMod ∧ 𝐹 = (ℂfld ↾s 𝐾) ∧ 𝐾 ∈ (SubRing‘ℂfld)) → 𝐾 ∈ (SubRing‘ℂfld)) | |
11 | 7, 10 | eqeltrrd 2827 | . 2 ⊢ ((𝑊 ∈ LMod ∧ 𝐹 = (ℂfld ↾s 𝐾) ∧ 𝐾 ∈ (SubRing‘ℂfld)) → (Base‘𝐹) ∈ (SubRing‘ℂfld)) |
12 | clm0.f | . . 3 ⊢ 𝐹 = (Scalar‘𝑊) | |
13 | eqid 2726 | . . 3 ⊢ (Base‘𝐹) = (Base‘𝐹) | |
14 | 12, 13 | isclm 25079 | . 2 ⊢ (𝑊 ∈ ℂMod ↔ (𝑊 ∈ LMod ∧ 𝐹 = (ℂfld ↾s (Base‘𝐹)) ∧ (Base‘𝐹) ∈ (SubRing‘ℂfld))) |
15 | 1, 9, 11, 14 | syl3anbrc 1340 | 1 ⊢ ((𝑊 ∈ LMod ∧ 𝐹 = (ℂfld ↾s 𝐾) ∧ 𝐾 ∈ (SubRing‘ℂfld)) → 𝑊 ∈ ℂMod) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ w3a 1084 = wceq 1534 ∈ wcel 2099 ‘cfv 6546 (class class class)co 7416 Basecbs 17208 ↾s cress 17237 Scalarcsca 17264 SubRingcsubrg 20547 LModclmod 20832 ℂfldccnfld 21339 ℂModcclm 25077 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2697 ax-sep 5296 ax-nul 5303 ax-pow 5361 ax-pr 5425 ax-un 7738 ax-cnex 11205 ax-1cn 11207 ax-addcl 11209 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2529 df-eu 2558 df-clab 2704 df-cleq 2718 df-clel 2803 df-nfc 2878 df-ne 2931 df-ral 3052 df-rex 3061 df-reu 3365 df-rab 3420 df-v 3464 df-sbc 3776 df-csb 3892 df-dif 3949 df-un 3951 df-in 3953 df-ss 3963 df-pss 3966 df-nul 4323 df-if 4524 df-pw 4599 df-sn 4624 df-pr 4626 df-op 4630 df-uni 4906 df-iun 4995 df-br 5146 df-opab 5208 df-mpt 5229 df-tr 5263 df-id 5572 df-eprel 5578 df-po 5586 df-so 5587 df-fr 5629 df-we 5631 df-xp 5680 df-rel 5681 df-cnv 5682 df-co 5683 df-dm 5684 df-rn 5685 df-res 5686 df-ima 5687 df-pred 6304 df-ord 6371 df-on 6372 df-lim 6373 df-suc 6374 df-iota 6498 df-fun 6548 df-fn 6549 df-f 6550 df-f1 6551 df-fo 6552 df-f1o 6553 df-fv 6554 df-ov 7419 df-oprab 7420 df-mpo 7421 df-om 7869 df-2nd 7996 df-frecs 8288 df-wrecs 8319 df-recs 8393 df-rdg 8432 df-nn 12259 df-sets 17161 df-slot 17179 df-ndx 17191 df-base 17209 df-ress 17238 df-subg 19113 df-ring 20214 df-subrg 20549 df-clm 25078 |
This theorem is referenced by: zlmclm 25127 cnstrcvs 25156 cncvs 25160 recvs 25161 recvsOLD 25162 qcvs 25163 zclmncvs 25164 |
Copyright terms: Public domain | W3C validator |