![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > isclmi | Structured version Visualization version GIF version |
Description: Reverse direction of isclm 25110. (Contributed by Mario Carneiro, 30-Oct-2015.) |
Ref | Expression |
---|---|
clm0.f | ⊢ 𝐹 = (Scalar‘𝑊) |
Ref | Expression |
---|---|
isclmi | ⊢ ((𝑊 ∈ LMod ∧ 𝐹 = (ℂfld ↾s 𝐾) ∧ 𝐾 ∈ (SubRing‘ℂfld)) → 𝑊 ∈ ℂMod) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simp1 1135 | . 2 ⊢ ((𝑊 ∈ LMod ∧ 𝐹 = (ℂfld ↾s 𝐾) ∧ 𝐾 ∈ (SubRing‘ℂfld)) → 𝑊 ∈ LMod) | |
2 | simp2 1136 | . . 3 ⊢ ((𝑊 ∈ LMod ∧ 𝐹 = (ℂfld ↾s 𝐾) ∧ 𝐾 ∈ (SubRing‘ℂfld)) → 𝐹 = (ℂfld ↾s 𝐾)) | |
3 | eqid 2734 | . . . . . . 7 ⊢ (ℂfld ↾s 𝐾) = (ℂfld ↾s 𝐾) | |
4 | 3 | subrgbas 20597 | . . . . . 6 ⊢ (𝐾 ∈ (SubRing‘ℂfld) → 𝐾 = (Base‘(ℂfld ↾s 𝐾))) |
5 | 4 | 3ad2ant3 1134 | . . . . 5 ⊢ ((𝑊 ∈ LMod ∧ 𝐹 = (ℂfld ↾s 𝐾) ∧ 𝐾 ∈ (SubRing‘ℂfld)) → 𝐾 = (Base‘(ℂfld ↾s 𝐾))) |
6 | 2 | fveq2d 6910 | . . . . 5 ⊢ ((𝑊 ∈ LMod ∧ 𝐹 = (ℂfld ↾s 𝐾) ∧ 𝐾 ∈ (SubRing‘ℂfld)) → (Base‘𝐹) = (Base‘(ℂfld ↾s 𝐾))) |
7 | 5, 6 | eqtr4d 2777 | . . . 4 ⊢ ((𝑊 ∈ LMod ∧ 𝐹 = (ℂfld ↾s 𝐾) ∧ 𝐾 ∈ (SubRing‘ℂfld)) → 𝐾 = (Base‘𝐹)) |
8 | 7 | oveq2d 7446 | . . 3 ⊢ ((𝑊 ∈ LMod ∧ 𝐹 = (ℂfld ↾s 𝐾) ∧ 𝐾 ∈ (SubRing‘ℂfld)) → (ℂfld ↾s 𝐾) = (ℂfld ↾s (Base‘𝐹))) |
9 | 2, 8 | eqtrd 2774 | . 2 ⊢ ((𝑊 ∈ LMod ∧ 𝐹 = (ℂfld ↾s 𝐾) ∧ 𝐾 ∈ (SubRing‘ℂfld)) → 𝐹 = (ℂfld ↾s (Base‘𝐹))) |
10 | simp3 1137 | . . 3 ⊢ ((𝑊 ∈ LMod ∧ 𝐹 = (ℂfld ↾s 𝐾) ∧ 𝐾 ∈ (SubRing‘ℂfld)) → 𝐾 ∈ (SubRing‘ℂfld)) | |
11 | 7, 10 | eqeltrrd 2839 | . 2 ⊢ ((𝑊 ∈ LMod ∧ 𝐹 = (ℂfld ↾s 𝐾) ∧ 𝐾 ∈ (SubRing‘ℂfld)) → (Base‘𝐹) ∈ (SubRing‘ℂfld)) |
12 | clm0.f | . . 3 ⊢ 𝐹 = (Scalar‘𝑊) | |
13 | eqid 2734 | . . 3 ⊢ (Base‘𝐹) = (Base‘𝐹) | |
14 | 12, 13 | isclm 25110 | . 2 ⊢ (𝑊 ∈ ℂMod ↔ (𝑊 ∈ LMod ∧ 𝐹 = (ℂfld ↾s (Base‘𝐹)) ∧ (Base‘𝐹) ∈ (SubRing‘ℂfld))) |
15 | 1, 9, 11, 14 | syl3anbrc 1342 | 1 ⊢ ((𝑊 ∈ LMod ∧ 𝐹 = (ℂfld ↾s 𝐾) ∧ 𝐾 ∈ (SubRing‘ℂfld)) → 𝑊 ∈ ℂMod) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ w3a 1086 = wceq 1536 ∈ wcel 2105 ‘cfv 6562 (class class class)co 7430 Basecbs 17244 ↾s cress 17273 Scalarcsca 17300 SubRingcsubrg 20585 LModclmod 20874 ℂfldccnfld 21381 ℂModcclm 25108 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1791 ax-4 1805 ax-5 1907 ax-6 1964 ax-7 2004 ax-8 2107 ax-9 2115 ax-10 2138 ax-11 2154 ax-12 2174 ax-ext 2705 ax-sep 5301 ax-nul 5311 ax-pow 5370 ax-pr 5437 ax-un 7753 ax-cnex 11208 ax-1cn 11210 ax-addcl 11212 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1539 df-fal 1549 df-ex 1776 df-nf 1780 df-sb 2062 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2726 df-clel 2813 df-nfc 2889 df-ne 2938 df-ral 3059 df-rex 3068 df-reu 3378 df-rab 3433 df-v 3479 df-sbc 3791 df-csb 3908 df-dif 3965 df-un 3967 df-in 3969 df-ss 3979 df-pss 3982 df-nul 4339 df-if 4531 df-pw 4606 df-sn 4631 df-pr 4633 df-op 4637 df-uni 4912 df-iun 4997 df-br 5148 df-opab 5210 df-mpt 5231 df-tr 5265 df-id 5582 df-eprel 5588 df-po 5596 df-so 5597 df-fr 5640 df-we 5642 df-xp 5694 df-rel 5695 df-cnv 5696 df-co 5697 df-dm 5698 df-rn 5699 df-res 5700 df-ima 5701 df-pred 6322 df-ord 6388 df-on 6389 df-lim 6390 df-suc 6391 df-iota 6515 df-fun 6564 df-fn 6565 df-f 6566 df-f1 6567 df-fo 6568 df-f1o 6569 df-fv 6570 df-ov 7433 df-oprab 7434 df-mpo 7435 df-om 7887 df-2nd 8013 df-frecs 8304 df-wrecs 8335 df-recs 8409 df-rdg 8448 df-nn 12264 df-sets 17197 df-slot 17215 df-ndx 17227 df-base 17245 df-ress 17274 df-subg 19153 df-ring 20252 df-subrg 20586 df-clm 25109 |
This theorem is referenced by: zlmclm 25158 cnstrcvs 25187 cncvs 25191 recvs 25192 recvsOLD 25193 qcvs 25194 zclmncvs 25195 |
Copyright terms: Public domain | W3C validator |