| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > isclmi | Structured version Visualization version GIF version | ||
| Description: Reverse direction of isclm 25000. (Contributed by Mario Carneiro, 30-Oct-2015.) |
| Ref | Expression |
|---|---|
| clm0.f | ⊢ 𝐹 = (Scalar‘𝑊) |
| Ref | Expression |
|---|---|
| isclmi | ⊢ ((𝑊 ∈ LMod ∧ 𝐹 = (ℂfld ↾s 𝐾) ∧ 𝐾 ∈ (SubRing‘ℂfld)) → 𝑊 ∈ ℂMod) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simp1 1136 | . 2 ⊢ ((𝑊 ∈ LMod ∧ 𝐹 = (ℂfld ↾s 𝐾) ∧ 𝐾 ∈ (SubRing‘ℂfld)) → 𝑊 ∈ LMod) | |
| 2 | simp2 1137 | . . 3 ⊢ ((𝑊 ∈ LMod ∧ 𝐹 = (ℂfld ↾s 𝐾) ∧ 𝐾 ∈ (SubRing‘ℂfld)) → 𝐹 = (ℂfld ↾s 𝐾)) | |
| 3 | eqid 2734 | . . . . . . 7 ⊢ (ℂfld ↾s 𝐾) = (ℂfld ↾s 𝐾) | |
| 4 | 3 | subrgbas 20526 | . . . . . 6 ⊢ (𝐾 ∈ (SubRing‘ℂfld) → 𝐾 = (Base‘(ℂfld ↾s 𝐾))) |
| 5 | 4 | 3ad2ant3 1135 | . . . . 5 ⊢ ((𝑊 ∈ LMod ∧ 𝐹 = (ℂfld ↾s 𝐾) ∧ 𝐾 ∈ (SubRing‘ℂfld)) → 𝐾 = (Base‘(ℂfld ↾s 𝐾))) |
| 6 | 2 | fveq2d 6876 | . . . . 5 ⊢ ((𝑊 ∈ LMod ∧ 𝐹 = (ℂfld ↾s 𝐾) ∧ 𝐾 ∈ (SubRing‘ℂfld)) → (Base‘𝐹) = (Base‘(ℂfld ↾s 𝐾))) |
| 7 | 5, 6 | eqtr4d 2772 | . . . 4 ⊢ ((𝑊 ∈ LMod ∧ 𝐹 = (ℂfld ↾s 𝐾) ∧ 𝐾 ∈ (SubRing‘ℂfld)) → 𝐾 = (Base‘𝐹)) |
| 8 | 7 | oveq2d 7415 | . . 3 ⊢ ((𝑊 ∈ LMod ∧ 𝐹 = (ℂfld ↾s 𝐾) ∧ 𝐾 ∈ (SubRing‘ℂfld)) → (ℂfld ↾s 𝐾) = (ℂfld ↾s (Base‘𝐹))) |
| 9 | 2, 8 | eqtrd 2769 | . 2 ⊢ ((𝑊 ∈ LMod ∧ 𝐹 = (ℂfld ↾s 𝐾) ∧ 𝐾 ∈ (SubRing‘ℂfld)) → 𝐹 = (ℂfld ↾s (Base‘𝐹))) |
| 10 | simp3 1138 | . . 3 ⊢ ((𝑊 ∈ LMod ∧ 𝐹 = (ℂfld ↾s 𝐾) ∧ 𝐾 ∈ (SubRing‘ℂfld)) → 𝐾 ∈ (SubRing‘ℂfld)) | |
| 11 | 7, 10 | eqeltrrd 2834 | . 2 ⊢ ((𝑊 ∈ LMod ∧ 𝐹 = (ℂfld ↾s 𝐾) ∧ 𝐾 ∈ (SubRing‘ℂfld)) → (Base‘𝐹) ∈ (SubRing‘ℂfld)) |
| 12 | clm0.f | . . 3 ⊢ 𝐹 = (Scalar‘𝑊) | |
| 13 | eqid 2734 | . . 3 ⊢ (Base‘𝐹) = (Base‘𝐹) | |
| 14 | 12, 13 | isclm 25000 | . 2 ⊢ (𝑊 ∈ ℂMod ↔ (𝑊 ∈ LMod ∧ 𝐹 = (ℂfld ↾s (Base‘𝐹)) ∧ (Base‘𝐹) ∈ (SubRing‘ℂfld))) |
| 15 | 1, 9, 11, 14 | syl3anbrc 1343 | 1 ⊢ ((𝑊 ∈ LMod ∧ 𝐹 = (ℂfld ↾s 𝐾) ∧ 𝐾 ∈ (SubRing‘ℂfld)) → 𝑊 ∈ ℂMod) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ w3a 1086 = wceq 1539 ∈ wcel 2107 ‘cfv 6527 (class class class)co 7399 Basecbs 17213 ↾s cress 17236 Scalarcsca 17259 SubRingcsubrg 20514 LModclmod 20802 ℂfldccnfld 21300 ℂModcclm 24998 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-sep 5263 ax-nul 5273 ax-pow 5332 ax-pr 5399 ax-un 7723 ax-cnex 11177 ax-1cn 11179 ax-addcl 11181 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-ne 2932 df-ral 3051 df-rex 3060 df-reu 3358 df-rab 3414 df-v 3459 df-sbc 3764 df-csb 3873 df-dif 3927 df-un 3929 df-in 3931 df-ss 3941 df-pss 3944 df-nul 4307 df-if 4499 df-pw 4575 df-sn 4600 df-pr 4602 df-op 4606 df-uni 4881 df-iun 4966 df-br 5117 df-opab 5179 df-mpt 5199 df-tr 5227 df-id 5545 df-eprel 5550 df-po 5558 df-so 5559 df-fr 5603 df-we 5605 df-xp 5657 df-rel 5658 df-cnv 5659 df-co 5660 df-dm 5661 df-rn 5662 df-res 5663 df-ima 5664 df-pred 6287 df-ord 6352 df-on 6353 df-lim 6354 df-suc 6355 df-iota 6480 df-fun 6529 df-fn 6530 df-f 6531 df-f1 6532 df-fo 6533 df-f1o 6534 df-fv 6535 df-ov 7402 df-oprab 7403 df-mpo 7404 df-om 7856 df-2nd 7983 df-frecs 8274 df-wrecs 8305 df-recs 8379 df-rdg 8418 df-nn 12233 df-sets 17168 df-slot 17186 df-ndx 17198 df-base 17214 df-ress 17237 df-subg 19091 df-ring 20180 df-subrg 20515 df-clm 24999 |
| This theorem is referenced by: zlmclm 25048 cnstrcvs 25077 cncvs 25081 recvs 25082 recvsOLD 25083 qcvs 25084 zclmncvs 25085 |
| Copyright terms: Public domain | W3C validator |