MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isclmi Structured version   Visualization version   GIF version

Theorem isclmi 25028
Description: Reverse direction of isclm 25015. (Contributed by Mario Carneiro, 30-Oct-2015.)
Hypothesis
Ref Expression
clm0.f 𝐹 = (Scalar‘𝑊)
Assertion
Ref Expression
isclmi ((𝑊 ∈ LMod ∧ 𝐹 = (ℂflds 𝐾) ∧ 𝐾 ∈ (SubRing‘ℂfld)) → 𝑊 ∈ ℂMod)

Proof of Theorem isclmi
StepHypRef Expression
1 simp1 1136 . 2 ((𝑊 ∈ LMod ∧ 𝐹 = (ℂflds 𝐾) ∧ 𝐾 ∈ (SubRing‘ℂfld)) → 𝑊 ∈ LMod)
2 simp2 1137 . . 3 ((𝑊 ∈ LMod ∧ 𝐹 = (ℂflds 𝐾) ∧ 𝐾 ∈ (SubRing‘ℂfld)) → 𝐹 = (ℂflds 𝐾))
3 eqid 2735 . . . . . . 7 (ℂflds 𝐾) = (ℂflds 𝐾)
43subrgbas 20541 . . . . . 6 (𝐾 ∈ (SubRing‘ℂfld) → 𝐾 = (Base‘(ℂflds 𝐾)))
543ad2ant3 1135 . . . . 5 ((𝑊 ∈ LMod ∧ 𝐹 = (ℂflds 𝐾) ∧ 𝐾 ∈ (SubRing‘ℂfld)) → 𝐾 = (Base‘(ℂflds 𝐾)))
62fveq2d 6880 . . . . 5 ((𝑊 ∈ LMod ∧ 𝐹 = (ℂflds 𝐾) ∧ 𝐾 ∈ (SubRing‘ℂfld)) → (Base‘𝐹) = (Base‘(ℂflds 𝐾)))
75, 6eqtr4d 2773 . . . 4 ((𝑊 ∈ LMod ∧ 𝐹 = (ℂflds 𝐾) ∧ 𝐾 ∈ (SubRing‘ℂfld)) → 𝐾 = (Base‘𝐹))
87oveq2d 7421 . . 3 ((𝑊 ∈ LMod ∧ 𝐹 = (ℂflds 𝐾) ∧ 𝐾 ∈ (SubRing‘ℂfld)) → (ℂflds 𝐾) = (ℂflds (Base‘𝐹)))
92, 8eqtrd 2770 . 2 ((𝑊 ∈ LMod ∧ 𝐹 = (ℂflds 𝐾) ∧ 𝐾 ∈ (SubRing‘ℂfld)) → 𝐹 = (ℂflds (Base‘𝐹)))
10 simp3 1138 . . 3 ((𝑊 ∈ LMod ∧ 𝐹 = (ℂflds 𝐾) ∧ 𝐾 ∈ (SubRing‘ℂfld)) → 𝐾 ∈ (SubRing‘ℂfld))
117, 10eqeltrrd 2835 . 2 ((𝑊 ∈ LMod ∧ 𝐹 = (ℂflds 𝐾) ∧ 𝐾 ∈ (SubRing‘ℂfld)) → (Base‘𝐹) ∈ (SubRing‘ℂfld))
12 clm0.f . . 3 𝐹 = (Scalar‘𝑊)
13 eqid 2735 . . 3 (Base‘𝐹) = (Base‘𝐹)
1412, 13isclm 25015 . 2 (𝑊 ∈ ℂMod ↔ (𝑊 ∈ LMod ∧ 𝐹 = (ℂflds (Base‘𝐹)) ∧ (Base‘𝐹) ∈ (SubRing‘ℂfld)))
151, 9, 11, 14syl3anbrc 1344 1 ((𝑊 ∈ LMod ∧ 𝐹 = (ℂflds 𝐾) ∧ 𝐾 ∈ (SubRing‘ℂfld)) → 𝑊 ∈ ℂMod)
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1086   = wceq 1540  wcel 2108  cfv 6531  (class class class)co 7405  Basecbs 17228  s cress 17251  Scalarcsca 17274  SubRingcsubrg 20529  LModclmod 20817  fldccnfld 21315  ℂModcclm 25013
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7729  ax-cnex 11185  ax-1cn 11187  ax-addcl 11189
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-ral 3052  df-rex 3061  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-pss 3946  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-iun 4969  df-br 5120  df-opab 5182  df-mpt 5202  df-tr 5230  df-id 5548  df-eprel 5553  df-po 5561  df-so 5562  df-fr 5606  df-we 5608  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-pred 6290  df-ord 6355  df-on 6356  df-lim 6357  df-suc 6358  df-iota 6484  df-fun 6533  df-fn 6534  df-f 6535  df-f1 6536  df-fo 6537  df-f1o 6538  df-fv 6539  df-ov 7408  df-oprab 7409  df-mpo 7410  df-om 7862  df-2nd 7989  df-frecs 8280  df-wrecs 8311  df-recs 8385  df-rdg 8424  df-nn 12241  df-sets 17183  df-slot 17201  df-ndx 17213  df-base 17229  df-ress 17252  df-subg 19106  df-ring 20195  df-subrg 20530  df-clm 25014
This theorem is referenced by:  zlmclm  25063  cnstrcvs  25092  cncvs  25096  recvs  25097  recvsOLD  25098  qcvs  25099  zclmncvs  25100
  Copyright terms: Public domain W3C validator