MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isclmi Structured version   Visualization version   GIF version

Theorem isclmi 25129
Description: Reverse direction of isclm 25116. (Contributed by Mario Carneiro, 30-Oct-2015.)
Hypothesis
Ref Expression
clm0.f 𝐹 = (Scalar‘𝑊)
Assertion
Ref Expression
isclmi ((𝑊 ∈ LMod ∧ 𝐹 = (ℂflds 𝐾) ∧ 𝐾 ∈ (SubRing‘ℂfld)) → 𝑊 ∈ ℂMod)

Proof of Theorem isclmi
StepHypRef Expression
1 simp1 1136 . 2 ((𝑊 ∈ LMod ∧ 𝐹 = (ℂflds 𝐾) ∧ 𝐾 ∈ (SubRing‘ℂfld)) → 𝑊 ∈ LMod)
2 simp2 1137 . . 3 ((𝑊 ∈ LMod ∧ 𝐹 = (ℂflds 𝐾) ∧ 𝐾 ∈ (SubRing‘ℂfld)) → 𝐹 = (ℂflds 𝐾))
3 eqid 2740 . . . . . . 7 (ℂflds 𝐾) = (ℂflds 𝐾)
43subrgbas 20609 . . . . . 6 (𝐾 ∈ (SubRing‘ℂfld) → 𝐾 = (Base‘(ℂflds 𝐾)))
543ad2ant3 1135 . . . . 5 ((𝑊 ∈ LMod ∧ 𝐹 = (ℂflds 𝐾) ∧ 𝐾 ∈ (SubRing‘ℂfld)) → 𝐾 = (Base‘(ℂflds 𝐾)))
62fveq2d 6924 . . . . 5 ((𝑊 ∈ LMod ∧ 𝐹 = (ℂflds 𝐾) ∧ 𝐾 ∈ (SubRing‘ℂfld)) → (Base‘𝐹) = (Base‘(ℂflds 𝐾)))
75, 6eqtr4d 2783 . . . 4 ((𝑊 ∈ LMod ∧ 𝐹 = (ℂflds 𝐾) ∧ 𝐾 ∈ (SubRing‘ℂfld)) → 𝐾 = (Base‘𝐹))
87oveq2d 7464 . . 3 ((𝑊 ∈ LMod ∧ 𝐹 = (ℂflds 𝐾) ∧ 𝐾 ∈ (SubRing‘ℂfld)) → (ℂflds 𝐾) = (ℂflds (Base‘𝐹)))
92, 8eqtrd 2780 . 2 ((𝑊 ∈ LMod ∧ 𝐹 = (ℂflds 𝐾) ∧ 𝐾 ∈ (SubRing‘ℂfld)) → 𝐹 = (ℂflds (Base‘𝐹)))
10 simp3 1138 . . 3 ((𝑊 ∈ LMod ∧ 𝐹 = (ℂflds 𝐾) ∧ 𝐾 ∈ (SubRing‘ℂfld)) → 𝐾 ∈ (SubRing‘ℂfld))
117, 10eqeltrrd 2845 . 2 ((𝑊 ∈ LMod ∧ 𝐹 = (ℂflds 𝐾) ∧ 𝐾 ∈ (SubRing‘ℂfld)) → (Base‘𝐹) ∈ (SubRing‘ℂfld))
12 clm0.f . . 3 𝐹 = (Scalar‘𝑊)
13 eqid 2740 . . 3 (Base‘𝐹) = (Base‘𝐹)
1412, 13isclm 25116 . 2 (𝑊 ∈ ℂMod ↔ (𝑊 ∈ LMod ∧ 𝐹 = (ℂflds (Base‘𝐹)) ∧ (Base‘𝐹) ∈ (SubRing‘ℂfld)))
151, 9, 11, 14syl3anbrc 1343 1 ((𝑊 ∈ LMod ∧ 𝐹 = (ℂflds 𝐾) ∧ 𝐾 ∈ (SubRing‘ℂfld)) → 𝑊 ∈ ℂMod)
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1087   = wceq 1537  wcel 2108  cfv 6573  (class class class)co 7448  Basecbs 17258  s cress 17287  Scalarcsca 17314  SubRingcsubrg 20595  LModclmod 20880  fldccnfld 21387  ℂModcclm 25114
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-cnex 11240  ax-1cn 11242  ax-addcl 11244
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-ov 7451  df-oprab 7452  df-mpo 7453  df-om 7904  df-2nd 8031  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-nn 12294  df-sets 17211  df-slot 17229  df-ndx 17241  df-base 17259  df-ress 17288  df-subg 19163  df-ring 20262  df-subrg 20597  df-clm 25115
This theorem is referenced by:  zlmclm  25164  cnstrcvs  25193  cncvs  25197  recvs  25198  recvsOLD  25199  qcvs  25200  zclmncvs  25201
  Copyright terms: Public domain W3C validator