MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  smndex1mgm Structured version   Visualization version   GIF version

Theorem smndex1mgm 18546
Description: The monoid of endofunctions on 0 restricted to the modulo function 𝐼 and the constant functions (𝐺𝐾) is a magma. (Contributed by AV, 14-Feb-2024.)
Hypotheses
Ref Expression
smndex1ibas.m 𝑀 = (EndoFMnd‘ℕ0)
smndex1ibas.n 𝑁 ∈ ℕ
smndex1ibas.i 𝐼 = (𝑥 ∈ ℕ0 ↦ (𝑥 mod 𝑁))
smndex1ibas.g 𝐺 = (𝑛 ∈ (0..^𝑁) ↦ (𝑥 ∈ ℕ0𝑛))
smndex1mgm.b 𝐵 = ({𝐼} ∪ 𝑛 ∈ (0..^𝑁){(𝐺𝑛)})
smndex1mgm.s 𝑆 = (𝑀s 𝐵)
Assertion
Ref Expression
smndex1mgm 𝑆 ∈ Mgm
Distinct variable groups:   𝑥,𝑁,𝑛   𝑥,𝑀   𝑛,𝐺   𝑛,𝑀   𝑥,𝐺   𝑛,𝐼,𝑥
Allowed substitution hints:   𝐵(𝑥,𝑛)   𝑆(𝑥,𝑛)

Proof of Theorem smndex1mgm
Dummy variables 𝑏 𝑘 𝑎 𝑚 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 smndex1ibas.m . . . . . . 7 𝑀 = (EndoFMnd‘ℕ0)
2 smndex1ibas.n . . . . . . 7 𝑁 ∈ ℕ
3 smndex1ibas.i . . . . . . 7 𝐼 = (𝑥 ∈ ℕ0 ↦ (𝑥 mod 𝑁))
4 smndex1ibas.g . . . . . . 7 𝐺 = (𝑛 ∈ (0..^𝑁) ↦ (𝑥 ∈ ℕ0𝑛))
5 smndex1mgm.b . . . . . . 7 𝐵 = ({𝐼} ∪ 𝑛 ∈ (0..^𝑁){(𝐺𝑛)})
61, 2, 3, 4, 5smndex1basss 18544 . . . . . 6 𝐵 ⊆ (Base‘𝑀)
7 ssel 3914 . . . . . . 7 (𝐵 ⊆ (Base‘𝑀) → (𝑎𝐵𝑎 ∈ (Base‘𝑀)))
8 ssel 3914 . . . . . . 7 (𝐵 ⊆ (Base‘𝑀) → (𝑏𝐵𝑏 ∈ (Base‘𝑀)))
97, 8anim12d 609 . . . . . 6 (𝐵 ⊆ (Base‘𝑀) → ((𝑎𝐵𝑏𝐵) → (𝑎 ∈ (Base‘𝑀) ∧ 𝑏 ∈ (Base‘𝑀))))
106, 9ax-mp 5 . . . . 5 ((𝑎𝐵𝑏𝐵) → (𝑎 ∈ (Base‘𝑀) ∧ 𝑏 ∈ (Base‘𝑀)))
11 eqid 2738 . . . . . 6 (Base‘𝑀) = (Base‘𝑀)
12 eqid 2738 . . . . . 6 (+g𝑀) = (+g𝑀)
131, 11, 12efmndov 18520 . . . . 5 ((𝑎 ∈ (Base‘𝑀) ∧ 𝑏 ∈ (Base‘𝑀)) → (𝑎(+g𝑀)𝑏) = (𝑎𝑏))
1410, 13syl 17 . . . 4 ((𝑎𝐵𝑏𝐵) → (𝑎(+g𝑀)𝑏) = (𝑎𝑏))
15 simpl 483 . . . . . . . . . . . 12 ((𝑎 = 𝐼𝑏 = 𝐼) → 𝑎 = 𝐼)
16 simpr 485 . . . . . . . . . . . 12 ((𝑎 = 𝐼𝑏 = 𝐼) → 𝑏 = 𝐼)
1715, 16coeq12d 5773 . . . . . . . . . . 11 ((𝑎 = 𝐼𝑏 = 𝐼) → (𝑎𝑏) = (𝐼𝐼))
181, 2, 3smndex1iidm 18540 . . . . . . . . . . 11 (𝐼𝐼) = 𝐼
1917, 18eqtrdi 2794 . . . . . . . . . 10 ((𝑎 = 𝐼𝑏 = 𝐼) → (𝑎𝑏) = 𝐼)
2019orcd 870 . . . . . . . . 9 ((𝑎 = 𝐼𝑏 = 𝐼) → ((𝑎𝑏) = 𝐼 ∨ ∃𝑘 ∈ (0..^𝑁)(𝑎𝑏) = (𝐺𝑘)))
2120ex 413 . . . . . . . 8 (𝑎 = 𝐼 → (𝑏 = 𝐼 → ((𝑎𝑏) = 𝐼 ∨ ∃𝑘 ∈ (0..^𝑁)(𝑎𝑏) = (𝐺𝑘))))
22 simpll 764 . . . . . . . . . . . . . . 15 (((𝑎 = 𝐼𝑘 ∈ (0..^𝑁)) ∧ 𝑏 = (𝐺𝑘)) → 𝑎 = 𝐼)
23 simpr 485 . . . . . . . . . . . . . . 15 (((𝑎 = 𝐼𝑘 ∈ (0..^𝑁)) ∧ 𝑏 = (𝐺𝑘)) → 𝑏 = (𝐺𝑘))
2422, 23coeq12d 5773 . . . . . . . . . . . . . 14 (((𝑎 = 𝐼𝑘 ∈ (0..^𝑁)) ∧ 𝑏 = (𝐺𝑘)) → (𝑎𝑏) = (𝐼 ∘ (𝐺𝑘)))
251, 2, 3, 4smndex1igid 18543 . . . . . . . . . . . . . . 15 (𝑘 ∈ (0..^𝑁) → (𝐼 ∘ (𝐺𝑘)) = (𝐺𝑘))
2625ad2antlr 724 . . . . . . . . . . . . . 14 (((𝑎 = 𝐼𝑘 ∈ (0..^𝑁)) ∧ 𝑏 = (𝐺𝑘)) → (𝐼 ∘ (𝐺𝑘)) = (𝐺𝑘))
2724, 26eqtrd 2778 . . . . . . . . . . . . 13 (((𝑎 = 𝐼𝑘 ∈ (0..^𝑁)) ∧ 𝑏 = (𝐺𝑘)) → (𝑎𝑏) = (𝐺𝑘))
2827ex 413 . . . . . . . . . . . 12 ((𝑎 = 𝐼𝑘 ∈ (0..^𝑁)) → (𝑏 = (𝐺𝑘) → (𝑎𝑏) = (𝐺𝑘)))
2928reximdva 3203 . . . . . . . . . . 11 (𝑎 = 𝐼 → (∃𝑘 ∈ (0..^𝑁)𝑏 = (𝐺𝑘) → ∃𝑘 ∈ (0..^𝑁)(𝑎𝑏) = (𝐺𝑘)))
3029imp 407 . . . . . . . . . 10 ((𝑎 = 𝐼 ∧ ∃𝑘 ∈ (0..^𝑁)𝑏 = (𝐺𝑘)) → ∃𝑘 ∈ (0..^𝑁)(𝑎𝑏) = (𝐺𝑘))
3130olcd 871 . . . . . . . . 9 ((𝑎 = 𝐼 ∧ ∃𝑘 ∈ (0..^𝑁)𝑏 = (𝐺𝑘)) → ((𝑎𝑏) = 𝐼 ∨ ∃𝑘 ∈ (0..^𝑁)(𝑎𝑏) = (𝐺𝑘)))
3231ex 413 . . . . . . . 8 (𝑎 = 𝐼 → (∃𝑘 ∈ (0..^𝑁)𝑏 = (𝐺𝑘) → ((𝑎𝑏) = 𝐼 ∨ ∃𝑘 ∈ (0..^𝑁)(𝑎𝑏) = (𝐺𝑘))))
3321, 32jaod 856 . . . . . . 7 (𝑎 = 𝐼 → ((𝑏 = 𝐼 ∨ ∃𝑘 ∈ (0..^𝑁)𝑏 = (𝐺𝑘)) → ((𝑎𝑏) = 𝐼 ∨ ∃𝑘 ∈ (0..^𝑁)(𝑎𝑏) = (𝐺𝑘))))
34 simpr 485 . . . . . . . . . . . . . . 15 (((𝑏 = 𝐼𝑘 ∈ (0..^𝑁)) ∧ 𝑎 = (𝐺𝑘)) → 𝑎 = (𝐺𝑘))
35 simpll 764 . . . . . . . . . . . . . . 15 (((𝑏 = 𝐼𝑘 ∈ (0..^𝑁)) ∧ 𝑎 = (𝐺𝑘)) → 𝑏 = 𝐼)
3634, 35coeq12d 5773 . . . . . . . . . . . . . 14 (((𝑏 = 𝐼𝑘 ∈ (0..^𝑁)) ∧ 𝑎 = (𝐺𝑘)) → (𝑎𝑏) = ((𝐺𝑘) ∘ 𝐼))
371, 2, 3smndex1ibas 18539 . . . . . . . . . . . . . . . 16 𝐼 ∈ (Base‘𝑀)
381, 2, 3, 4smndex1gid 18542 . . . . . . . . . . . . . . . 16 ((𝐼 ∈ (Base‘𝑀) ∧ 𝑘 ∈ (0..^𝑁)) → ((𝐺𝑘) ∘ 𝐼) = (𝐺𝑘))
3937, 38mpan 687 . . . . . . . . . . . . . . 15 (𝑘 ∈ (0..^𝑁) → ((𝐺𝑘) ∘ 𝐼) = (𝐺𝑘))
4039ad2antlr 724 . . . . . . . . . . . . . 14 (((𝑏 = 𝐼𝑘 ∈ (0..^𝑁)) ∧ 𝑎 = (𝐺𝑘)) → ((𝐺𝑘) ∘ 𝐼) = (𝐺𝑘))
4136, 40eqtrd 2778 . . . . . . . . . . . . 13 (((𝑏 = 𝐼𝑘 ∈ (0..^𝑁)) ∧ 𝑎 = (𝐺𝑘)) → (𝑎𝑏) = (𝐺𝑘))
4241ex 413 . . . . . . . . . . . 12 ((𝑏 = 𝐼𝑘 ∈ (0..^𝑁)) → (𝑎 = (𝐺𝑘) → (𝑎𝑏) = (𝐺𝑘)))
4342reximdva 3203 . . . . . . . . . . 11 (𝑏 = 𝐼 → (∃𝑘 ∈ (0..^𝑁)𝑎 = (𝐺𝑘) → ∃𝑘 ∈ (0..^𝑁)(𝑎𝑏) = (𝐺𝑘)))
4443imp 407 . . . . . . . . . 10 ((𝑏 = 𝐼 ∧ ∃𝑘 ∈ (0..^𝑁)𝑎 = (𝐺𝑘)) → ∃𝑘 ∈ (0..^𝑁)(𝑎𝑏) = (𝐺𝑘))
4544olcd 871 . . . . . . . . 9 ((𝑏 = 𝐼 ∧ ∃𝑘 ∈ (0..^𝑁)𝑎 = (𝐺𝑘)) → ((𝑎𝑏) = 𝐼 ∨ ∃𝑘 ∈ (0..^𝑁)(𝑎𝑏) = (𝐺𝑘)))
4645expcom 414 . . . . . . . 8 (∃𝑘 ∈ (0..^𝑁)𝑎 = (𝐺𝑘) → (𝑏 = 𝐼 → ((𝑎𝑏) = 𝐼 ∨ ∃𝑘 ∈ (0..^𝑁)(𝑎𝑏) = (𝐺𝑘))))
47 fveq2 6774 . . . . . . . . . . 11 (𝑘 = 𝑚 → (𝐺𝑘) = (𝐺𝑚))
4847eqeq2d 2749 . . . . . . . . . 10 (𝑘 = 𝑚 → (𝑏 = (𝐺𝑘) ↔ 𝑏 = (𝐺𝑚)))
4948cbvrexvw 3384 . . . . . . . . 9 (∃𝑘 ∈ (0..^𝑁)𝑏 = (𝐺𝑘) ↔ ∃𝑚 ∈ (0..^𝑁)𝑏 = (𝐺𝑚))
50 simpr 485 . . . . . . . . . . . . . . . . 17 ((((𝑚 ∈ (0..^𝑁) ∧ 𝑏 = (𝐺𝑚)) ∧ 𝑘 ∈ (0..^𝑁)) ∧ 𝑎 = (𝐺𝑘)) → 𝑎 = (𝐺𝑘))
51 simpllr 773 . . . . . . . . . . . . . . . . 17 ((((𝑚 ∈ (0..^𝑁) ∧ 𝑏 = (𝐺𝑚)) ∧ 𝑘 ∈ (0..^𝑁)) ∧ 𝑎 = (𝐺𝑘)) → 𝑏 = (𝐺𝑚))
5250, 51coeq12d 5773 . . . . . . . . . . . . . . . 16 ((((𝑚 ∈ (0..^𝑁) ∧ 𝑏 = (𝐺𝑚)) ∧ 𝑘 ∈ (0..^𝑁)) ∧ 𝑎 = (𝐺𝑘)) → (𝑎𝑏) = ((𝐺𝑘) ∘ (𝐺𝑚)))
531, 2, 3, 4smndex1gbas 18541 . . . . . . . . . . . . . . . . . 18 (𝑚 ∈ (0..^𝑁) → (𝐺𝑚) ∈ (Base‘𝑀))
541, 2, 3, 4smndex1gid 18542 . . . . . . . . . . . . . . . . . 18 (((𝐺𝑚) ∈ (Base‘𝑀) ∧ 𝑘 ∈ (0..^𝑁)) → ((𝐺𝑘) ∘ (𝐺𝑚)) = (𝐺𝑘))
5553, 54sylan 580 . . . . . . . . . . . . . . . . 17 ((𝑚 ∈ (0..^𝑁) ∧ 𝑘 ∈ (0..^𝑁)) → ((𝐺𝑘) ∘ (𝐺𝑚)) = (𝐺𝑘))
5655ad4ant13 748 . . . . . . . . . . . . . . . 16 ((((𝑚 ∈ (0..^𝑁) ∧ 𝑏 = (𝐺𝑚)) ∧ 𝑘 ∈ (0..^𝑁)) ∧ 𝑎 = (𝐺𝑘)) → ((𝐺𝑘) ∘ (𝐺𝑚)) = (𝐺𝑘))
5752, 56eqtrd 2778 . . . . . . . . . . . . . . 15 ((((𝑚 ∈ (0..^𝑁) ∧ 𝑏 = (𝐺𝑚)) ∧ 𝑘 ∈ (0..^𝑁)) ∧ 𝑎 = (𝐺𝑘)) → (𝑎𝑏) = (𝐺𝑘))
5857ex 413 . . . . . . . . . . . . . 14 (((𝑚 ∈ (0..^𝑁) ∧ 𝑏 = (𝐺𝑚)) ∧ 𝑘 ∈ (0..^𝑁)) → (𝑎 = (𝐺𝑘) → (𝑎𝑏) = (𝐺𝑘)))
5958reximdva 3203 . . . . . . . . . . . . 13 ((𝑚 ∈ (0..^𝑁) ∧ 𝑏 = (𝐺𝑚)) → (∃𝑘 ∈ (0..^𝑁)𝑎 = (𝐺𝑘) → ∃𝑘 ∈ (0..^𝑁)(𝑎𝑏) = (𝐺𝑘)))
6059rexlimiva 3210 . . . . . . . . . . . 12 (∃𝑚 ∈ (0..^𝑁)𝑏 = (𝐺𝑚) → (∃𝑘 ∈ (0..^𝑁)𝑎 = (𝐺𝑘) → ∃𝑘 ∈ (0..^𝑁)(𝑎𝑏) = (𝐺𝑘)))
6160imp 407 . . . . . . . . . . 11 ((∃𝑚 ∈ (0..^𝑁)𝑏 = (𝐺𝑚) ∧ ∃𝑘 ∈ (0..^𝑁)𝑎 = (𝐺𝑘)) → ∃𝑘 ∈ (0..^𝑁)(𝑎𝑏) = (𝐺𝑘))
6261olcd 871 . . . . . . . . . 10 ((∃𝑚 ∈ (0..^𝑁)𝑏 = (𝐺𝑚) ∧ ∃𝑘 ∈ (0..^𝑁)𝑎 = (𝐺𝑘)) → ((𝑎𝑏) = 𝐼 ∨ ∃𝑘 ∈ (0..^𝑁)(𝑎𝑏) = (𝐺𝑘)))
6362expcom 414 . . . . . . . . 9 (∃𝑘 ∈ (0..^𝑁)𝑎 = (𝐺𝑘) → (∃𝑚 ∈ (0..^𝑁)𝑏 = (𝐺𝑚) → ((𝑎𝑏) = 𝐼 ∨ ∃𝑘 ∈ (0..^𝑁)(𝑎𝑏) = (𝐺𝑘))))
6449, 63syl5bi 241 . . . . . . . 8 (∃𝑘 ∈ (0..^𝑁)𝑎 = (𝐺𝑘) → (∃𝑘 ∈ (0..^𝑁)𝑏 = (𝐺𝑘) → ((𝑎𝑏) = 𝐼 ∨ ∃𝑘 ∈ (0..^𝑁)(𝑎𝑏) = (𝐺𝑘))))
6546, 64jaod 856 . . . . . . 7 (∃𝑘 ∈ (0..^𝑁)𝑎 = (𝐺𝑘) → ((𝑏 = 𝐼 ∨ ∃𝑘 ∈ (0..^𝑁)𝑏 = (𝐺𝑘)) → ((𝑎𝑏) = 𝐼 ∨ ∃𝑘 ∈ (0..^𝑁)(𝑎𝑏) = (𝐺𝑘))))
6633, 65jaoi 854 . . . . . 6 ((𝑎 = 𝐼 ∨ ∃𝑘 ∈ (0..^𝑁)𝑎 = (𝐺𝑘)) → ((𝑏 = 𝐼 ∨ ∃𝑘 ∈ (0..^𝑁)𝑏 = (𝐺𝑘)) → ((𝑎𝑏) = 𝐼 ∨ ∃𝑘 ∈ (0..^𝑁)(𝑎𝑏) = (𝐺𝑘))))
6766imp 407 . . . . 5 (((𝑎 = 𝐼 ∨ ∃𝑘 ∈ (0..^𝑁)𝑎 = (𝐺𝑘)) ∧ (𝑏 = 𝐼 ∨ ∃𝑘 ∈ (0..^𝑁)𝑏 = (𝐺𝑘))) → ((𝑎𝑏) = 𝐼 ∨ ∃𝑘 ∈ (0..^𝑁)(𝑎𝑏) = (𝐺𝑘)))
685eleq2i 2830 . . . . . . . 8 (𝑎𝐵𝑎 ∈ ({𝐼} ∪ 𝑛 ∈ (0..^𝑁){(𝐺𝑛)}))
69 fveq2 6774 . . . . . . . . . . . 12 (𝑛 = 𝑘 → (𝐺𝑛) = (𝐺𝑘))
7069sneqd 4573 . . . . . . . . . . 11 (𝑛 = 𝑘 → {(𝐺𝑛)} = {(𝐺𝑘)})
7170cbviunv 4970 . . . . . . . . . 10 𝑛 ∈ (0..^𝑁){(𝐺𝑛)} = 𝑘 ∈ (0..^𝑁){(𝐺𝑘)}
7271uneq2i 4094 . . . . . . . . 9 ({𝐼} ∪ 𝑛 ∈ (0..^𝑁){(𝐺𝑛)}) = ({𝐼} ∪ 𝑘 ∈ (0..^𝑁){(𝐺𝑘)})
7372eleq2i 2830 . . . . . . . 8 (𝑎 ∈ ({𝐼} ∪ 𝑛 ∈ (0..^𝑁){(𝐺𝑛)}) ↔ 𝑎 ∈ ({𝐼} ∪ 𝑘 ∈ (0..^𝑁){(𝐺𝑘)}))
7468, 73bitri 274 . . . . . . 7 (𝑎𝐵𝑎 ∈ ({𝐼} ∪ 𝑘 ∈ (0..^𝑁){(𝐺𝑘)}))
75 elun 4083 . . . . . . 7 (𝑎 ∈ ({𝐼} ∪ 𝑘 ∈ (0..^𝑁){(𝐺𝑘)}) ↔ (𝑎 ∈ {𝐼} ∨ 𝑎 𝑘 ∈ (0..^𝑁){(𝐺𝑘)}))
76 velsn 4577 . . . . . . . 8 (𝑎 ∈ {𝐼} ↔ 𝑎 = 𝐼)
77 eliun 4928 . . . . . . . . 9 (𝑎 𝑘 ∈ (0..^𝑁){(𝐺𝑘)} ↔ ∃𝑘 ∈ (0..^𝑁)𝑎 ∈ {(𝐺𝑘)})
78 velsn 4577 . . . . . . . . . 10 (𝑎 ∈ {(𝐺𝑘)} ↔ 𝑎 = (𝐺𝑘))
7978rexbii 3181 . . . . . . . . 9 (∃𝑘 ∈ (0..^𝑁)𝑎 ∈ {(𝐺𝑘)} ↔ ∃𝑘 ∈ (0..^𝑁)𝑎 = (𝐺𝑘))
8077, 79bitri 274 . . . . . . . 8 (𝑎 𝑘 ∈ (0..^𝑁){(𝐺𝑘)} ↔ ∃𝑘 ∈ (0..^𝑁)𝑎 = (𝐺𝑘))
8176, 80orbi12i 912 . . . . . . 7 ((𝑎 ∈ {𝐼} ∨ 𝑎 𝑘 ∈ (0..^𝑁){(𝐺𝑘)}) ↔ (𝑎 = 𝐼 ∨ ∃𝑘 ∈ (0..^𝑁)𝑎 = (𝐺𝑘)))
8274, 75, 813bitri 297 . . . . . 6 (𝑎𝐵 ↔ (𝑎 = 𝐼 ∨ ∃𝑘 ∈ (0..^𝑁)𝑎 = (𝐺𝑘)))
835eleq2i 2830 . . . . . . . 8 (𝑏𝐵𝑏 ∈ ({𝐼} ∪ 𝑛 ∈ (0..^𝑁){(𝐺𝑛)}))
8472eleq2i 2830 . . . . . . . 8 (𝑏 ∈ ({𝐼} ∪ 𝑛 ∈ (0..^𝑁){(𝐺𝑛)}) ↔ 𝑏 ∈ ({𝐼} ∪ 𝑘 ∈ (0..^𝑁){(𝐺𝑘)}))
8583, 84bitri 274 . . . . . . 7 (𝑏𝐵𝑏 ∈ ({𝐼} ∪ 𝑘 ∈ (0..^𝑁){(𝐺𝑘)}))
86 elun 4083 . . . . . . 7 (𝑏 ∈ ({𝐼} ∪ 𝑘 ∈ (0..^𝑁){(𝐺𝑘)}) ↔ (𝑏 ∈ {𝐼} ∨ 𝑏 𝑘 ∈ (0..^𝑁){(𝐺𝑘)}))
87 velsn 4577 . . . . . . . 8 (𝑏 ∈ {𝐼} ↔ 𝑏 = 𝐼)
88 eliun 4928 . . . . . . . . 9 (𝑏 𝑘 ∈ (0..^𝑁){(𝐺𝑘)} ↔ ∃𝑘 ∈ (0..^𝑁)𝑏 ∈ {(𝐺𝑘)})
89 velsn 4577 . . . . . . . . . 10 (𝑏 ∈ {(𝐺𝑘)} ↔ 𝑏 = (𝐺𝑘))
9089rexbii 3181 . . . . . . . . 9 (∃𝑘 ∈ (0..^𝑁)𝑏 ∈ {(𝐺𝑘)} ↔ ∃𝑘 ∈ (0..^𝑁)𝑏 = (𝐺𝑘))
9188, 90bitri 274 . . . . . . . 8 (𝑏 𝑘 ∈ (0..^𝑁){(𝐺𝑘)} ↔ ∃𝑘 ∈ (0..^𝑁)𝑏 = (𝐺𝑘))
9287, 91orbi12i 912 . . . . . . 7 ((𝑏 ∈ {𝐼} ∨ 𝑏 𝑘 ∈ (0..^𝑁){(𝐺𝑘)}) ↔ (𝑏 = 𝐼 ∨ ∃𝑘 ∈ (0..^𝑁)𝑏 = (𝐺𝑘)))
9385, 86, 923bitri 297 . . . . . 6 (𝑏𝐵 ↔ (𝑏 = 𝐼 ∨ ∃𝑘 ∈ (0..^𝑁)𝑏 = (𝐺𝑘)))
9482, 93anbi12i 627 . . . . 5 ((𝑎𝐵𝑏𝐵) ↔ ((𝑎 = 𝐼 ∨ ∃𝑘 ∈ (0..^𝑁)𝑎 = (𝐺𝑘)) ∧ (𝑏 = 𝐼 ∨ ∃𝑘 ∈ (0..^𝑁)𝑏 = (𝐺𝑘))))
955eleq2i 2830 . . . . . . 7 ((𝑎𝑏) ∈ 𝐵 ↔ (𝑎𝑏) ∈ ({𝐼} ∪ 𝑛 ∈ (0..^𝑁){(𝐺𝑛)}))
9672eleq2i 2830 . . . . . . 7 ((𝑎𝑏) ∈ ({𝐼} ∪ 𝑛 ∈ (0..^𝑁){(𝐺𝑛)}) ↔ (𝑎𝑏) ∈ ({𝐼} ∪ 𝑘 ∈ (0..^𝑁){(𝐺𝑘)}))
9795, 96bitri 274 . . . . . 6 ((𝑎𝑏) ∈ 𝐵 ↔ (𝑎𝑏) ∈ ({𝐼} ∪ 𝑘 ∈ (0..^𝑁){(𝐺𝑘)}))
98 elun 4083 . . . . . 6 ((𝑎𝑏) ∈ ({𝐼} ∪ 𝑘 ∈ (0..^𝑁){(𝐺𝑘)}) ↔ ((𝑎𝑏) ∈ {𝐼} ∨ (𝑎𝑏) ∈ 𝑘 ∈ (0..^𝑁){(𝐺𝑘)}))
99 vex 3436 . . . . . . . . 9 𝑎 ∈ V
100 vex 3436 . . . . . . . . 9 𝑏 ∈ V
10199, 100coex 7777 . . . . . . . 8 (𝑎𝑏) ∈ V
102101elsn 4576 . . . . . . 7 ((𝑎𝑏) ∈ {𝐼} ↔ (𝑎𝑏) = 𝐼)
103 eliun 4928 . . . . . . . 8 ((𝑎𝑏) ∈ 𝑘 ∈ (0..^𝑁){(𝐺𝑘)} ↔ ∃𝑘 ∈ (0..^𝑁)(𝑎𝑏) ∈ {(𝐺𝑘)})
104101elsn 4576 . . . . . . . . 9 ((𝑎𝑏) ∈ {(𝐺𝑘)} ↔ (𝑎𝑏) = (𝐺𝑘))
105104rexbii 3181 . . . . . . . 8 (∃𝑘 ∈ (0..^𝑁)(𝑎𝑏) ∈ {(𝐺𝑘)} ↔ ∃𝑘 ∈ (0..^𝑁)(𝑎𝑏) = (𝐺𝑘))
106103, 105bitri 274 . . . . . . 7 ((𝑎𝑏) ∈ 𝑘 ∈ (0..^𝑁){(𝐺𝑘)} ↔ ∃𝑘 ∈ (0..^𝑁)(𝑎𝑏) = (𝐺𝑘))
107102, 106orbi12i 912 . . . . . 6 (((𝑎𝑏) ∈ {𝐼} ∨ (𝑎𝑏) ∈ 𝑘 ∈ (0..^𝑁){(𝐺𝑘)}) ↔ ((𝑎𝑏) = 𝐼 ∨ ∃𝑘 ∈ (0..^𝑁)(𝑎𝑏) = (𝐺𝑘)))
10897, 98, 1073bitri 297 . . . . 5 ((𝑎𝑏) ∈ 𝐵 ↔ ((𝑎𝑏) = 𝐼 ∨ ∃𝑘 ∈ (0..^𝑁)(𝑎𝑏) = (𝐺𝑘)))
10967, 94, 1083imtr4i 292 . . . 4 ((𝑎𝐵𝑏𝐵) → (𝑎𝑏) ∈ 𝐵)
11014, 109eqeltrd 2839 . . 3 ((𝑎𝐵𝑏𝐵) → (𝑎(+g𝑀)𝑏) ∈ 𝐵)
111110rgen2 3120 . 2 𝑎𝐵𝑏𝐵 (𝑎(+g𝑀)𝑏) ∈ 𝐵
112 smndex1mgm.s . . . 4 𝑆 = (𝑀s 𝐵)
113112ovexi 7309 . . 3 𝑆 ∈ V
1141, 2, 3, 4, 5, 112smndex1bas 18545 . . . . 5 (Base‘𝑆) = 𝐵
115114eqcomi 2747 . . . 4 𝐵 = (Base‘𝑆)
116115fvexi 6788 . . . . 5 𝐵 ∈ V
117112, 12ressplusg 17000 . . . . 5 (𝐵 ∈ V → (+g𝑀) = (+g𝑆))
118116, 117ax-mp 5 . . . 4 (+g𝑀) = (+g𝑆)
119115, 118ismgm 18327 . . 3 (𝑆 ∈ V → (𝑆 ∈ Mgm ↔ ∀𝑎𝐵𝑏𝐵 (𝑎(+g𝑀)𝑏) ∈ 𝐵))
120113, 119ax-mp 5 . 2 (𝑆 ∈ Mgm ↔ ∀𝑎𝐵𝑏𝐵 (𝑎(+g𝑀)𝑏) ∈ 𝐵)
121111, 120mpbir 230 1 𝑆 ∈ Mgm
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396  wo 844   = wceq 1539  wcel 2106  wral 3064  wrex 3065  Vcvv 3432  cun 3885  wss 3887  {csn 4561   ciun 4924  cmpt 5157  ccom 5593  cfv 6433  (class class class)co 7275  0cc0 10871  cn 11973  0cn0 12233  ..^cfzo 13382   mod cmo 13589  Basecbs 16912  s cress 16941  +gcplusg 16962  Mgmcmgm 18324  EndoFMndcefmnd 18507
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-cnex 10927  ax-resscn 10928  ax-1cn 10929  ax-icn 10930  ax-addcl 10931  ax-addrcl 10932  ax-mulcl 10933  ax-mulrcl 10934  ax-mulcom 10935  ax-addass 10936  ax-mulass 10937  ax-distr 10938  ax-i2m1 10939  ax-1ne0 10940  ax-1rid 10941  ax-rnegex 10942  ax-rrecex 10943  ax-cnre 10944  ax-pre-lttri 10945  ax-pre-lttrn 10946  ax-pre-ltadd 10947  ax-pre-mulgt0 10948  ax-pre-sup 10949
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-rmo 3071  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-tp 4566  df-op 4568  df-uni 4840  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-om 7713  df-1st 7831  df-2nd 7832  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-1o 8297  df-er 8498  df-map 8617  df-en 8734  df-dom 8735  df-sdom 8736  df-fin 8737  df-sup 9201  df-inf 9202  df-pnf 11011  df-mnf 11012  df-xr 11013  df-ltxr 11014  df-le 11015  df-sub 11207  df-neg 11208  df-div 11633  df-nn 11974  df-2 12036  df-3 12037  df-4 12038  df-5 12039  df-6 12040  df-7 12041  df-8 12042  df-9 12043  df-n0 12234  df-z 12320  df-uz 12583  df-rp 12731  df-fz 13240  df-fzo 13383  df-fl 13512  df-mod 13590  df-struct 16848  df-sets 16865  df-slot 16883  df-ndx 16895  df-base 16913  df-ress 16942  df-plusg 16975  df-tset 16981  df-mgm 18326  df-efmnd 18508
This theorem is referenced by:  smndex1sgrp  18547
  Copyright terms: Public domain W3C validator