Step | Hyp | Ref
| Expression |
1 | | smndex1ibas.m |
. . . . . . 7
⊢ 𝑀 =
(EndoFMnd‘ℕ0) |
2 | | smndex1ibas.n |
. . . . . . 7
⊢ 𝑁 ∈ ℕ |
3 | | smndex1ibas.i |
. . . . . . 7
⊢ 𝐼 = (𝑥 ∈ ℕ0 ↦ (𝑥 mod 𝑁)) |
4 | | smndex1ibas.g |
. . . . . . 7
⊢ 𝐺 = (𝑛 ∈ (0..^𝑁) ↦ (𝑥 ∈ ℕ0 ↦ 𝑛)) |
5 | | smndex1mgm.b |
. . . . . . 7
⊢ 𝐵 = ({𝐼} ∪ ∪
𝑛 ∈ (0..^𝑁){(𝐺‘𝑛)}) |
6 | 1, 2, 3, 4, 5 | smndex1basss 18459 |
. . . . . 6
⊢ 𝐵 ⊆ (Base‘𝑀) |
7 | | ssel 3910 |
. . . . . . 7
⊢ (𝐵 ⊆ (Base‘𝑀) → (𝑎 ∈ 𝐵 → 𝑎 ∈ (Base‘𝑀))) |
8 | | ssel 3910 |
. . . . . . 7
⊢ (𝐵 ⊆ (Base‘𝑀) → (𝑏 ∈ 𝐵 → 𝑏 ∈ (Base‘𝑀))) |
9 | 7, 8 | anim12d 608 |
. . . . . 6
⊢ (𝐵 ⊆ (Base‘𝑀) → ((𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵) → (𝑎 ∈ (Base‘𝑀) ∧ 𝑏 ∈ (Base‘𝑀)))) |
10 | 6, 9 | ax-mp 5 |
. . . . 5
⊢ ((𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵) → (𝑎 ∈ (Base‘𝑀) ∧ 𝑏 ∈ (Base‘𝑀))) |
11 | | eqid 2738 |
. . . . . 6
⊢
(Base‘𝑀) =
(Base‘𝑀) |
12 | | eqid 2738 |
. . . . . 6
⊢
(+g‘𝑀) = (+g‘𝑀) |
13 | 1, 11, 12 | efmndov 18435 |
. . . . 5
⊢ ((𝑎 ∈ (Base‘𝑀) ∧ 𝑏 ∈ (Base‘𝑀)) → (𝑎(+g‘𝑀)𝑏) = (𝑎 ∘ 𝑏)) |
14 | 10, 13 | syl 17 |
. . . 4
⊢ ((𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵) → (𝑎(+g‘𝑀)𝑏) = (𝑎 ∘ 𝑏)) |
15 | | simpl 482 |
. . . . . . . . . . . 12
⊢ ((𝑎 = 𝐼 ∧ 𝑏 = 𝐼) → 𝑎 = 𝐼) |
16 | | simpr 484 |
. . . . . . . . . . . 12
⊢ ((𝑎 = 𝐼 ∧ 𝑏 = 𝐼) → 𝑏 = 𝐼) |
17 | 15, 16 | coeq12d 5762 |
. . . . . . . . . . 11
⊢ ((𝑎 = 𝐼 ∧ 𝑏 = 𝐼) → (𝑎 ∘ 𝑏) = (𝐼 ∘ 𝐼)) |
18 | 1, 2, 3 | smndex1iidm 18455 |
. . . . . . . . . . 11
⊢ (𝐼 ∘ 𝐼) = 𝐼 |
19 | 17, 18 | eqtrdi 2795 |
. . . . . . . . . 10
⊢ ((𝑎 = 𝐼 ∧ 𝑏 = 𝐼) → (𝑎 ∘ 𝑏) = 𝐼) |
20 | 19 | orcd 869 |
. . . . . . . . 9
⊢ ((𝑎 = 𝐼 ∧ 𝑏 = 𝐼) → ((𝑎 ∘ 𝑏) = 𝐼 ∨ ∃𝑘 ∈ (0..^𝑁)(𝑎 ∘ 𝑏) = (𝐺‘𝑘))) |
21 | 20 | ex 412 |
. . . . . . . 8
⊢ (𝑎 = 𝐼 → (𝑏 = 𝐼 → ((𝑎 ∘ 𝑏) = 𝐼 ∨ ∃𝑘 ∈ (0..^𝑁)(𝑎 ∘ 𝑏) = (𝐺‘𝑘)))) |
22 | | simpll 763 |
. . . . . . . . . . . . . . 15
⊢ (((𝑎 = 𝐼 ∧ 𝑘 ∈ (0..^𝑁)) ∧ 𝑏 = (𝐺‘𝑘)) → 𝑎 = 𝐼) |
23 | | simpr 484 |
. . . . . . . . . . . . . . 15
⊢ (((𝑎 = 𝐼 ∧ 𝑘 ∈ (0..^𝑁)) ∧ 𝑏 = (𝐺‘𝑘)) → 𝑏 = (𝐺‘𝑘)) |
24 | 22, 23 | coeq12d 5762 |
. . . . . . . . . . . . . 14
⊢ (((𝑎 = 𝐼 ∧ 𝑘 ∈ (0..^𝑁)) ∧ 𝑏 = (𝐺‘𝑘)) → (𝑎 ∘ 𝑏) = (𝐼 ∘ (𝐺‘𝑘))) |
25 | 1, 2, 3, 4 | smndex1igid 18458 |
. . . . . . . . . . . . . . 15
⊢ (𝑘 ∈ (0..^𝑁) → (𝐼 ∘ (𝐺‘𝑘)) = (𝐺‘𝑘)) |
26 | 25 | ad2antlr 723 |
. . . . . . . . . . . . . 14
⊢ (((𝑎 = 𝐼 ∧ 𝑘 ∈ (0..^𝑁)) ∧ 𝑏 = (𝐺‘𝑘)) → (𝐼 ∘ (𝐺‘𝑘)) = (𝐺‘𝑘)) |
27 | 24, 26 | eqtrd 2778 |
. . . . . . . . . . . . 13
⊢ (((𝑎 = 𝐼 ∧ 𝑘 ∈ (0..^𝑁)) ∧ 𝑏 = (𝐺‘𝑘)) → (𝑎 ∘ 𝑏) = (𝐺‘𝑘)) |
28 | 27 | ex 412 |
. . . . . . . . . . . 12
⊢ ((𝑎 = 𝐼 ∧ 𝑘 ∈ (0..^𝑁)) → (𝑏 = (𝐺‘𝑘) → (𝑎 ∘ 𝑏) = (𝐺‘𝑘))) |
29 | 28 | reximdva 3202 |
. . . . . . . . . . 11
⊢ (𝑎 = 𝐼 → (∃𝑘 ∈ (0..^𝑁)𝑏 = (𝐺‘𝑘) → ∃𝑘 ∈ (0..^𝑁)(𝑎 ∘ 𝑏) = (𝐺‘𝑘))) |
30 | 29 | imp 406 |
. . . . . . . . . 10
⊢ ((𝑎 = 𝐼 ∧ ∃𝑘 ∈ (0..^𝑁)𝑏 = (𝐺‘𝑘)) → ∃𝑘 ∈ (0..^𝑁)(𝑎 ∘ 𝑏) = (𝐺‘𝑘)) |
31 | 30 | olcd 870 |
. . . . . . . . 9
⊢ ((𝑎 = 𝐼 ∧ ∃𝑘 ∈ (0..^𝑁)𝑏 = (𝐺‘𝑘)) → ((𝑎 ∘ 𝑏) = 𝐼 ∨ ∃𝑘 ∈ (0..^𝑁)(𝑎 ∘ 𝑏) = (𝐺‘𝑘))) |
32 | 31 | ex 412 |
. . . . . . . 8
⊢ (𝑎 = 𝐼 → (∃𝑘 ∈ (0..^𝑁)𝑏 = (𝐺‘𝑘) → ((𝑎 ∘ 𝑏) = 𝐼 ∨ ∃𝑘 ∈ (0..^𝑁)(𝑎 ∘ 𝑏) = (𝐺‘𝑘)))) |
33 | 21, 32 | jaod 855 |
. . . . . . 7
⊢ (𝑎 = 𝐼 → ((𝑏 = 𝐼 ∨ ∃𝑘 ∈ (0..^𝑁)𝑏 = (𝐺‘𝑘)) → ((𝑎 ∘ 𝑏) = 𝐼 ∨ ∃𝑘 ∈ (0..^𝑁)(𝑎 ∘ 𝑏) = (𝐺‘𝑘)))) |
34 | | simpr 484 |
. . . . . . . . . . . . . . 15
⊢ (((𝑏 = 𝐼 ∧ 𝑘 ∈ (0..^𝑁)) ∧ 𝑎 = (𝐺‘𝑘)) → 𝑎 = (𝐺‘𝑘)) |
35 | | simpll 763 |
. . . . . . . . . . . . . . 15
⊢ (((𝑏 = 𝐼 ∧ 𝑘 ∈ (0..^𝑁)) ∧ 𝑎 = (𝐺‘𝑘)) → 𝑏 = 𝐼) |
36 | 34, 35 | coeq12d 5762 |
. . . . . . . . . . . . . 14
⊢ (((𝑏 = 𝐼 ∧ 𝑘 ∈ (0..^𝑁)) ∧ 𝑎 = (𝐺‘𝑘)) → (𝑎 ∘ 𝑏) = ((𝐺‘𝑘) ∘ 𝐼)) |
37 | 1, 2, 3 | smndex1ibas 18454 |
. . . . . . . . . . . . . . . 16
⊢ 𝐼 ∈ (Base‘𝑀) |
38 | 1, 2, 3, 4 | smndex1gid 18457 |
. . . . . . . . . . . . . . . 16
⊢ ((𝐼 ∈ (Base‘𝑀) ∧ 𝑘 ∈ (0..^𝑁)) → ((𝐺‘𝑘) ∘ 𝐼) = (𝐺‘𝑘)) |
39 | 37, 38 | mpan 686 |
. . . . . . . . . . . . . . 15
⊢ (𝑘 ∈ (0..^𝑁) → ((𝐺‘𝑘) ∘ 𝐼) = (𝐺‘𝑘)) |
40 | 39 | ad2antlr 723 |
. . . . . . . . . . . . . 14
⊢ (((𝑏 = 𝐼 ∧ 𝑘 ∈ (0..^𝑁)) ∧ 𝑎 = (𝐺‘𝑘)) → ((𝐺‘𝑘) ∘ 𝐼) = (𝐺‘𝑘)) |
41 | 36, 40 | eqtrd 2778 |
. . . . . . . . . . . . 13
⊢ (((𝑏 = 𝐼 ∧ 𝑘 ∈ (0..^𝑁)) ∧ 𝑎 = (𝐺‘𝑘)) → (𝑎 ∘ 𝑏) = (𝐺‘𝑘)) |
42 | 41 | ex 412 |
. . . . . . . . . . . 12
⊢ ((𝑏 = 𝐼 ∧ 𝑘 ∈ (0..^𝑁)) → (𝑎 = (𝐺‘𝑘) → (𝑎 ∘ 𝑏) = (𝐺‘𝑘))) |
43 | 42 | reximdva 3202 |
. . . . . . . . . . 11
⊢ (𝑏 = 𝐼 → (∃𝑘 ∈ (0..^𝑁)𝑎 = (𝐺‘𝑘) → ∃𝑘 ∈ (0..^𝑁)(𝑎 ∘ 𝑏) = (𝐺‘𝑘))) |
44 | 43 | imp 406 |
. . . . . . . . . 10
⊢ ((𝑏 = 𝐼 ∧ ∃𝑘 ∈ (0..^𝑁)𝑎 = (𝐺‘𝑘)) → ∃𝑘 ∈ (0..^𝑁)(𝑎 ∘ 𝑏) = (𝐺‘𝑘)) |
45 | 44 | olcd 870 |
. . . . . . . . 9
⊢ ((𝑏 = 𝐼 ∧ ∃𝑘 ∈ (0..^𝑁)𝑎 = (𝐺‘𝑘)) → ((𝑎 ∘ 𝑏) = 𝐼 ∨ ∃𝑘 ∈ (0..^𝑁)(𝑎 ∘ 𝑏) = (𝐺‘𝑘))) |
46 | 45 | expcom 413 |
. . . . . . . 8
⊢
(∃𝑘 ∈
(0..^𝑁)𝑎 = (𝐺‘𝑘) → (𝑏 = 𝐼 → ((𝑎 ∘ 𝑏) = 𝐼 ∨ ∃𝑘 ∈ (0..^𝑁)(𝑎 ∘ 𝑏) = (𝐺‘𝑘)))) |
47 | | fveq2 6756 |
. . . . . . . . . . 11
⊢ (𝑘 = 𝑚 → (𝐺‘𝑘) = (𝐺‘𝑚)) |
48 | 47 | eqeq2d 2749 |
. . . . . . . . . 10
⊢ (𝑘 = 𝑚 → (𝑏 = (𝐺‘𝑘) ↔ 𝑏 = (𝐺‘𝑚))) |
49 | 48 | cbvrexvw 3373 |
. . . . . . . . 9
⊢
(∃𝑘 ∈
(0..^𝑁)𝑏 = (𝐺‘𝑘) ↔ ∃𝑚 ∈ (0..^𝑁)𝑏 = (𝐺‘𝑚)) |
50 | | simpr 484 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝑚 ∈ (0..^𝑁) ∧ 𝑏 = (𝐺‘𝑚)) ∧ 𝑘 ∈ (0..^𝑁)) ∧ 𝑎 = (𝐺‘𝑘)) → 𝑎 = (𝐺‘𝑘)) |
51 | | simpllr 772 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝑚 ∈ (0..^𝑁) ∧ 𝑏 = (𝐺‘𝑚)) ∧ 𝑘 ∈ (0..^𝑁)) ∧ 𝑎 = (𝐺‘𝑘)) → 𝑏 = (𝐺‘𝑚)) |
52 | 50, 51 | coeq12d 5762 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝑚 ∈ (0..^𝑁) ∧ 𝑏 = (𝐺‘𝑚)) ∧ 𝑘 ∈ (0..^𝑁)) ∧ 𝑎 = (𝐺‘𝑘)) → (𝑎 ∘ 𝑏) = ((𝐺‘𝑘) ∘ (𝐺‘𝑚))) |
53 | 1, 2, 3, 4 | smndex1gbas 18456 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑚 ∈ (0..^𝑁) → (𝐺‘𝑚) ∈ (Base‘𝑀)) |
54 | 1, 2, 3, 4 | smndex1gid 18457 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝐺‘𝑚) ∈ (Base‘𝑀) ∧ 𝑘 ∈ (0..^𝑁)) → ((𝐺‘𝑘) ∘ (𝐺‘𝑚)) = (𝐺‘𝑘)) |
55 | 53, 54 | sylan 579 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑚 ∈ (0..^𝑁) ∧ 𝑘 ∈ (0..^𝑁)) → ((𝐺‘𝑘) ∘ (𝐺‘𝑚)) = (𝐺‘𝑘)) |
56 | 55 | ad4ant13 747 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝑚 ∈ (0..^𝑁) ∧ 𝑏 = (𝐺‘𝑚)) ∧ 𝑘 ∈ (0..^𝑁)) ∧ 𝑎 = (𝐺‘𝑘)) → ((𝐺‘𝑘) ∘ (𝐺‘𝑚)) = (𝐺‘𝑘)) |
57 | 52, 56 | eqtrd 2778 |
. . . . . . . . . . . . . . 15
⊢ ((((𝑚 ∈ (0..^𝑁) ∧ 𝑏 = (𝐺‘𝑚)) ∧ 𝑘 ∈ (0..^𝑁)) ∧ 𝑎 = (𝐺‘𝑘)) → (𝑎 ∘ 𝑏) = (𝐺‘𝑘)) |
58 | 57 | ex 412 |
. . . . . . . . . . . . . 14
⊢ (((𝑚 ∈ (0..^𝑁) ∧ 𝑏 = (𝐺‘𝑚)) ∧ 𝑘 ∈ (0..^𝑁)) → (𝑎 = (𝐺‘𝑘) → (𝑎 ∘ 𝑏) = (𝐺‘𝑘))) |
59 | 58 | reximdva 3202 |
. . . . . . . . . . . . 13
⊢ ((𝑚 ∈ (0..^𝑁) ∧ 𝑏 = (𝐺‘𝑚)) → (∃𝑘 ∈ (0..^𝑁)𝑎 = (𝐺‘𝑘) → ∃𝑘 ∈ (0..^𝑁)(𝑎 ∘ 𝑏) = (𝐺‘𝑘))) |
60 | 59 | rexlimiva 3209 |
. . . . . . . . . . . 12
⊢
(∃𝑚 ∈
(0..^𝑁)𝑏 = (𝐺‘𝑚) → (∃𝑘 ∈ (0..^𝑁)𝑎 = (𝐺‘𝑘) → ∃𝑘 ∈ (0..^𝑁)(𝑎 ∘ 𝑏) = (𝐺‘𝑘))) |
61 | 60 | imp 406 |
. . . . . . . . . . 11
⊢
((∃𝑚 ∈
(0..^𝑁)𝑏 = (𝐺‘𝑚) ∧ ∃𝑘 ∈ (0..^𝑁)𝑎 = (𝐺‘𝑘)) → ∃𝑘 ∈ (0..^𝑁)(𝑎 ∘ 𝑏) = (𝐺‘𝑘)) |
62 | 61 | olcd 870 |
. . . . . . . . . 10
⊢
((∃𝑚 ∈
(0..^𝑁)𝑏 = (𝐺‘𝑚) ∧ ∃𝑘 ∈ (0..^𝑁)𝑎 = (𝐺‘𝑘)) → ((𝑎 ∘ 𝑏) = 𝐼 ∨ ∃𝑘 ∈ (0..^𝑁)(𝑎 ∘ 𝑏) = (𝐺‘𝑘))) |
63 | 62 | expcom 413 |
. . . . . . . . 9
⊢
(∃𝑘 ∈
(0..^𝑁)𝑎 = (𝐺‘𝑘) → (∃𝑚 ∈ (0..^𝑁)𝑏 = (𝐺‘𝑚) → ((𝑎 ∘ 𝑏) = 𝐼 ∨ ∃𝑘 ∈ (0..^𝑁)(𝑎 ∘ 𝑏) = (𝐺‘𝑘)))) |
64 | 49, 63 | syl5bi 241 |
. . . . . . . 8
⊢
(∃𝑘 ∈
(0..^𝑁)𝑎 = (𝐺‘𝑘) → (∃𝑘 ∈ (0..^𝑁)𝑏 = (𝐺‘𝑘) → ((𝑎 ∘ 𝑏) = 𝐼 ∨ ∃𝑘 ∈ (0..^𝑁)(𝑎 ∘ 𝑏) = (𝐺‘𝑘)))) |
65 | 46, 64 | jaod 855 |
. . . . . . 7
⊢
(∃𝑘 ∈
(0..^𝑁)𝑎 = (𝐺‘𝑘) → ((𝑏 = 𝐼 ∨ ∃𝑘 ∈ (0..^𝑁)𝑏 = (𝐺‘𝑘)) → ((𝑎 ∘ 𝑏) = 𝐼 ∨ ∃𝑘 ∈ (0..^𝑁)(𝑎 ∘ 𝑏) = (𝐺‘𝑘)))) |
66 | 33, 65 | jaoi 853 |
. . . . . 6
⊢ ((𝑎 = 𝐼 ∨ ∃𝑘 ∈ (0..^𝑁)𝑎 = (𝐺‘𝑘)) → ((𝑏 = 𝐼 ∨ ∃𝑘 ∈ (0..^𝑁)𝑏 = (𝐺‘𝑘)) → ((𝑎 ∘ 𝑏) = 𝐼 ∨ ∃𝑘 ∈ (0..^𝑁)(𝑎 ∘ 𝑏) = (𝐺‘𝑘)))) |
67 | 66 | imp 406 |
. . . . 5
⊢ (((𝑎 = 𝐼 ∨ ∃𝑘 ∈ (0..^𝑁)𝑎 = (𝐺‘𝑘)) ∧ (𝑏 = 𝐼 ∨ ∃𝑘 ∈ (0..^𝑁)𝑏 = (𝐺‘𝑘))) → ((𝑎 ∘ 𝑏) = 𝐼 ∨ ∃𝑘 ∈ (0..^𝑁)(𝑎 ∘ 𝑏) = (𝐺‘𝑘))) |
68 | 5 | eleq2i 2830 |
. . . . . . . 8
⊢ (𝑎 ∈ 𝐵 ↔ 𝑎 ∈ ({𝐼} ∪ ∪
𝑛 ∈ (0..^𝑁){(𝐺‘𝑛)})) |
69 | | fveq2 6756 |
. . . . . . . . . . . 12
⊢ (𝑛 = 𝑘 → (𝐺‘𝑛) = (𝐺‘𝑘)) |
70 | 69 | sneqd 4570 |
. . . . . . . . . . 11
⊢ (𝑛 = 𝑘 → {(𝐺‘𝑛)} = {(𝐺‘𝑘)}) |
71 | 70 | cbviunv 4966 |
. . . . . . . . . 10
⊢ ∪ 𝑛 ∈ (0..^𝑁){(𝐺‘𝑛)} = ∪
𝑘 ∈ (0..^𝑁){(𝐺‘𝑘)} |
72 | 71 | uneq2i 4090 |
. . . . . . . . 9
⊢ ({𝐼} ∪ ∪ 𝑛 ∈ (0..^𝑁){(𝐺‘𝑛)}) = ({𝐼} ∪ ∪
𝑘 ∈ (0..^𝑁){(𝐺‘𝑘)}) |
73 | 72 | eleq2i 2830 |
. . . . . . . 8
⊢ (𝑎 ∈ ({𝐼} ∪ ∪
𝑛 ∈ (0..^𝑁){(𝐺‘𝑛)}) ↔ 𝑎 ∈ ({𝐼} ∪ ∪
𝑘 ∈ (0..^𝑁){(𝐺‘𝑘)})) |
74 | 68, 73 | bitri 274 |
. . . . . . 7
⊢ (𝑎 ∈ 𝐵 ↔ 𝑎 ∈ ({𝐼} ∪ ∪
𝑘 ∈ (0..^𝑁){(𝐺‘𝑘)})) |
75 | | elun 4079 |
. . . . . . 7
⊢ (𝑎 ∈ ({𝐼} ∪ ∪
𝑘 ∈ (0..^𝑁){(𝐺‘𝑘)}) ↔ (𝑎 ∈ {𝐼} ∨ 𝑎 ∈ ∪
𝑘 ∈ (0..^𝑁){(𝐺‘𝑘)})) |
76 | | velsn 4574 |
. . . . . . . 8
⊢ (𝑎 ∈ {𝐼} ↔ 𝑎 = 𝐼) |
77 | | eliun 4925 |
. . . . . . . . 9
⊢ (𝑎 ∈ ∪ 𝑘 ∈ (0..^𝑁){(𝐺‘𝑘)} ↔ ∃𝑘 ∈ (0..^𝑁)𝑎 ∈ {(𝐺‘𝑘)}) |
78 | | velsn 4574 |
. . . . . . . . . 10
⊢ (𝑎 ∈ {(𝐺‘𝑘)} ↔ 𝑎 = (𝐺‘𝑘)) |
79 | 78 | rexbii 3177 |
. . . . . . . . 9
⊢
(∃𝑘 ∈
(0..^𝑁)𝑎 ∈ {(𝐺‘𝑘)} ↔ ∃𝑘 ∈ (0..^𝑁)𝑎 = (𝐺‘𝑘)) |
80 | 77, 79 | bitri 274 |
. . . . . . . 8
⊢ (𝑎 ∈ ∪ 𝑘 ∈ (0..^𝑁){(𝐺‘𝑘)} ↔ ∃𝑘 ∈ (0..^𝑁)𝑎 = (𝐺‘𝑘)) |
81 | 76, 80 | orbi12i 911 |
. . . . . . 7
⊢ ((𝑎 ∈ {𝐼} ∨ 𝑎 ∈ ∪
𝑘 ∈ (0..^𝑁){(𝐺‘𝑘)}) ↔ (𝑎 = 𝐼 ∨ ∃𝑘 ∈ (0..^𝑁)𝑎 = (𝐺‘𝑘))) |
82 | 74, 75, 81 | 3bitri 296 |
. . . . . 6
⊢ (𝑎 ∈ 𝐵 ↔ (𝑎 = 𝐼 ∨ ∃𝑘 ∈ (0..^𝑁)𝑎 = (𝐺‘𝑘))) |
83 | 5 | eleq2i 2830 |
. . . . . . . 8
⊢ (𝑏 ∈ 𝐵 ↔ 𝑏 ∈ ({𝐼} ∪ ∪
𝑛 ∈ (0..^𝑁){(𝐺‘𝑛)})) |
84 | 72 | eleq2i 2830 |
. . . . . . . 8
⊢ (𝑏 ∈ ({𝐼} ∪ ∪
𝑛 ∈ (0..^𝑁){(𝐺‘𝑛)}) ↔ 𝑏 ∈ ({𝐼} ∪ ∪
𝑘 ∈ (0..^𝑁){(𝐺‘𝑘)})) |
85 | 83, 84 | bitri 274 |
. . . . . . 7
⊢ (𝑏 ∈ 𝐵 ↔ 𝑏 ∈ ({𝐼} ∪ ∪
𝑘 ∈ (0..^𝑁){(𝐺‘𝑘)})) |
86 | | elun 4079 |
. . . . . . 7
⊢ (𝑏 ∈ ({𝐼} ∪ ∪
𝑘 ∈ (0..^𝑁){(𝐺‘𝑘)}) ↔ (𝑏 ∈ {𝐼} ∨ 𝑏 ∈ ∪
𝑘 ∈ (0..^𝑁){(𝐺‘𝑘)})) |
87 | | velsn 4574 |
. . . . . . . 8
⊢ (𝑏 ∈ {𝐼} ↔ 𝑏 = 𝐼) |
88 | | eliun 4925 |
. . . . . . . . 9
⊢ (𝑏 ∈ ∪ 𝑘 ∈ (0..^𝑁){(𝐺‘𝑘)} ↔ ∃𝑘 ∈ (0..^𝑁)𝑏 ∈ {(𝐺‘𝑘)}) |
89 | | velsn 4574 |
. . . . . . . . . 10
⊢ (𝑏 ∈ {(𝐺‘𝑘)} ↔ 𝑏 = (𝐺‘𝑘)) |
90 | 89 | rexbii 3177 |
. . . . . . . . 9
⊢
(∃𝑘 ∈
(0..^𝑁)𝑏 ∈ {(𝐺‘𝑘)} ↔ ∃𝑘 ∈ (0..^𝑁)𝑏 = (𝐺‘𝑘)) |
91 | 88, 90 | bitri 274 |
. . . . . . . 8
⊢ (𝑏 ∈ ∪ 𝑘 ∈ (0..^𝑁){(𝐺‘𝑘)} ↔ ∃𝑘 ∈ (0..^𝑁)𝑏 = (𝐺‘𝑘)) |
92 | 87, 91 | orbi12i 911 |
. . . . . . 7
⊢ ((𝑏 ∈ {𝐼} ∨ 𝑏 ∈ ∪
𝑘 ∈ (0..^𝑁){(𝐺‘𝑘)}) ↔ (𝑏 = 𝐼 ∨ ∃𝑘 ∈ (0..^𝑁)𝑏 = (𝐺‘𝑘))) |
93 | 85, 86, 92 | 3bitri 296 |
. . . . . 6
⊢ (𝑏 ∈ 𝐵 ↔ (𝑏 = 𝐼 ∨ ∃𝑘 ∈ (0..^𝑁)𝑏 = (𝐺‘𝑘))) |
94 | 82, 93 | anbi12i 626 |
. . . . 5
⊢ ((𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵) ↔ ((𝑎 = 𝐼 ∨ ∃𝑘 ∈ (0..^𝑁)𝑎 = (𝐺‘𝑘)) ∧ (𝑏 = 𝐼 ∨ ∃𝑘 ∈ (0..^𝑁)𝑏 = (𝐺‘𝑘)))) |
95 | 5 | eleq2i 2830 |
. . . . . . 7
⊢ ((𝑎 ∘ 𝑏) ∈ 𝐵 ↔ (𝑎 ∘ 𝑏) ∈ ({𝐼} ∪ ∪
𝑛 ∈ (0..^𝑁){(𝐺‘𝑛)})) |
96 | 72 | eleq2i 2830 |
. . . . . . 7
⊢ ((𝑎 ∘ 𝑏) ∈ ({𝐼} ∪ ∪
𝑛 ∈ (0..^𝑁){(𝐺‘𝑛)}) ↔ (𝑎 ∘ 𝑏) ∈ ({𝐼} ∪ ∪
𝑘 ∈ (0..^𝑁){(𝐺‘𝑘)})) |
97 | 95, 96 | bitri 274 |
. . . . . 6
⊢ ((𝑎 ∘ 𝑏) ∈ 𝐵 ↔ (𝑎 ∘ 𝑏) ∈ ({𝐼} ∪ ∪
𝑘 ∈ (0..^𝑁){(𝐺‘𝑘)})) |
98 | | elun 4079 |
. . . . . 6
⊢ ((𝑎 ∘ 𝑏) ∈ ({𝐼} ∪ ∪
𝑘 ∈ (0..^𝑁){(𝐺‘𝑘)}) ↔ ((𝑎 ∘ 𝑏) ∈ {𝐼} ∨ (𝑎 ∘ 𝑏) ∈ ∪
𝑘 ∈ (0..^𝑁){(𝐺‘𝑘)})) |
99 | | vex 3426 |
. . . . . . . . 9
⊢ 𝑎 ∈ V |
100 | | vex 3426 |
. . . . . . . . 9
⊢ 𝑏 ∈ V |
101 | 99, 100 | coex 7751 |
. . . . . . . 8
⊢ (𝑎 ∘ 𝑏) ∈ V |
102 | 101 | elsn 4573 |
. . . . . . 7
⊢ ((𝑎 ∘ 𝑏) ∈ {𝐼} ↔ (𝑎 ∘ 𝑏) = 𝐼) |
103 | | eliun 4925 |
. . . . . . . 8
⊢ ((𝑎 ∘ 𝑏) ∈ ∪
𝑘 ∈ (0..^𝑁){(𝐺‘𝑘)} ↔ ∃𝑘 ∈ (0..^𝑁)(𝑎 ∘ 𝑏) ∈ {(𝐺‘𝑘)}) |
104 | 101 | elsn 4573 |
. . . . . . . . 9
⊢ ((𝑎 ∘ 𝑏) ∈ {(𝐺‘𝑘)} ↔ (𝑎 ∘ 𝑏) = (𝐺‘𝑘)) |
105 | 104 | rexbii 3177 |
. . . . . . . 8
⊢
(∃𝑘 ∈
(0..^𝑁)(𝑎 ∘ 𝑏) ∈ {(𝐺‘𝑘)} ↔ ∃𝑘 ∈ (0..^𝑁)(𝑎 ∘ 𝑏) = (𝐺‘𝑘)) |
106 | 103, 105 | bitri 274 |
. . . . . . 7
⊢ ((𝑎 ∘ 𝑏) ∈ ∪
𝑘 ∈ (0..^𝑁){(𝐺‘𝑘)} ↔ ∃𝑘 ∈ (0..^𝑁)(𝑎 ∘ 𝑏) = (𝐺‘𝑘)) |
107 | 102, 106 | orbi12i 911 |
. . . . . 6
⊢ (((𝑎 ∘ 𝑏) ∈ {𝐼} ∨ (𝑎 ∘ 𝑏) ∈ ∪
𝑘 ∈ (0..^𝑁){(𝐺‘𝑘)}) ↔ ((𝑎 ∘ 𝑏) = 𝐼 ∨ ∃𝑘 ∈ (0..^𝑁)(𝑎 ∘ 𝑏) = (𝐺‘𝑘))) |
108 | 97, 98, 107 | 3bitri 296 |
. . . . 5
⊢ ((𝑎 ∘ 𝑏) ∈ 𝐵 ↔ ((𝑎 ∘ 𝑏) = 𝐼 ∨ ∃𝑘 ∈ (0..^𝑁)(𝑎 ∘ 𝑏) = (𝐺‘𝑘))) |
109 | 67, 94, 108 | 3imtr4i 291 |
. . . 4
⊢ ((𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵) → (𝑎 ∘ 𝑏) ∈ 𝐵) |
110 | 14, 109 | eqeltrd 2839 |
. . 3
⊢ ((𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵) → (𝑎(+g‘𝑀)𝑏) ∈ 𝐵) |
111 | 110 | rgen2 3126 |
. 2
⊢
∀𝑎 ∈
𝐵 ∀𝑏 ∈ 𝐵 (𝑎(+g‘𝑀)𝑏) ∈ 𝐵 |
112 | | smndex1mgm.s |
. . . 4
⊢ 𝑆 = (𝑀 ↾s 𝐵) |
113 | 112 | ovexi 7289 |
. . 3
⊢ 𝑆 ∈ V |
114 | 1, 2, 3, 4, 5, 112 | smndex1bas 18460 |
. . . . 5
⊢
(Base‘𝑆) =
𝐵 |
115 | 114 | eqcomi 2747 |
. . . 4
⊢ 𝐵 = (Base‘𝑆) |
116 | 115 | fvexi 6770 |
. . . . 5
⊢ 𝐵 ∈ V |
117 | 112, 12 | ressplusg 16926 |
. . . . 5
⊢ (𝐵 ∈ V →
(+g‘𝑀) =
(+g‘𝑆)) |
118 | 116, 117 | ax-mp 5 |
. . . 4
⊢
(+g‘𝑀) = (+g‘𝑆) |
119 | 115, 118 | ismgm 18242 |
. . 3
⊢ (𝑆 ∈ V → (𝑆 ∈ Mgm ↔ ∀𝑎 ∈ 𝐵 ∀𝑏 ∈ 𝐵 (𝑎(+g‘𝑀)𝑏) ∈ 𝐵)) |
120 | 113, 119 | ax-mp 5 |
. 2
⊢ (𝑆 ∈ Mgm ↔ ∀𝑎 ∈ 𝐵 ∀𝑏 ∈ 𝐵 (𝑎(+g‘𝑀)𝑏) ∈ 𝐵) |
121 | 111, 120 | mpbir 230 |
1
⊢ 𝑆 ∈ Mgm |