MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  smndex1mgm Structured version   Visualization version   GIF version

Theorem smndex1mgm 18841
Description: The monoid of endofunctions on 0 restricted to the modulo function 𝐼 and the constant functions (𝐺𝐾) is a magma. (Contributed by AV, 14-Feb-2024.)
Hypotheses
Ref Expression
smndex1ibas.m 𝑀 = (EndoFMnd‘ℕ0)
smndex1ibas.n 𝑁 ∈ ℕ
smndex1ibas.i 𝐼 = (𝑥 ∈ ℕ0 ↦ (𝑥 mod 𝑁))
smndex1ibas.g 𝐺 = (𝑛 ∈ (0..^𝑁) ↦ (𝑥 ∈ ℕ0𝑛))
smndex1mgm.b 𝐵 = ({𝐼} ∪ 𝑛 ∈ (0..^𝑁){(𝐺𝑛)})
smndex1mgm.s 𝑆 = (𝑀s 𝐵)
Assertion
Ref Expression
smndex1mgm 𝑆 ∈ Mgm
Distinct variable groups:   𝑥,𝑁,𝑛   𝑥,𝑀   𝑛,𝐺   𝑛,𝑀   𝑥,𝐺   𝑛,𝐼,𝑥
Allowed substitution hints:   𝐵(𝑥,𝑛)   𝑆(𝑥,𝑛)

Proof of Theorem smndex1mgm
Dummy variables 𝑏 𝑘 𝑎 𝑚 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 smndex1ibas.m . . . . . . 7 𝑀 = (EndoFMnd‘ℕ0)
2 smndex1ibas.n . . . . . . 7 𝑁 ∈ ℕ
3 smndex1ibas.i . . . . . . 7 𝐼 = (𝑥 ∈ ℕ0 ↦ (𝑥 mod 𝑁))
4 smndex1ibas.g . . . . . . 7 𝐺 = (𝑛 ∈ (0..^𝑁) ↦ (𝑥 ∈ ℕ0𝑛))
5 smndex1mgm.b . . . . . . 7 𝐵 = ({𝐼} ∪ 𝑛 ∈ (0..^𝑁){(𝐺𝑛)})
61, 2, 3, 4, 5smndex1basss 18839 . . . . . 6 𝐵 ⊆ (Base‘𝑀)
7 ssel 3943 . . . . . . 7 (𝐵 ⊆ (Base‘𝑀) → (𝑎𝐵𝑎 ∈ (Base‘𝑀)))
8 ssel 3943 . . . . . . 7 (𝐵 ⊆ (Base‘𝑀) → (𝑏𝐵𝑏 ∈ (Base‘𝑀)))
97, 8anim12d 609 . . . . . 6 (𝐵 ⊆ (Base‘𝑀) → ((𝑎𝐵𝑏𝐵) → (𝑎 ∈ (Base‘𝑀) ∧ 𝑏 ∈ (Base‘𝑀))))
106, 9ax-mp 5 . . . . 5 ((𝑎𝐵𝑏𝐵) → (𝑎 ∈ (Base‘𝑀) ∧ 𝑏 ∈ (Base‘𝑀)))
11 eqid 2730 . . . . . 6 (Base‘𝑀) = (Base‘𝑀)
12 eqid 2730 . . . . . 6 (+g𝑀) = (+g𝑀)
131, 11, 12efmndov 18815 . . . . 5 ((𝑎 ∈ (Base‘𝑀) ∧ 𝑏 ∈ (Base‘𝑀)) → (𝑎(+g𝑀)𝑏) = (𝑎𝑏))
1410, 13syl 17 . . . 4 ((𝑎𝐵𝑏𝐵) → (𝑎(+g𝑀)𝑏) = (𝑎𝑏))
15 simpl 482 . . . . . . . . . . . 12 ((𝑎 = 𝐼𝑏 = 𝐼) → 𝑎 = 𝐼)
16 simpr 484 . . . . . . . . . . . 12 ((𝑎 = 𝐼𝑏 = 𝐼) → 𝑏 = 𝐼)
1715, 16coeq12d 5831 . . . . . . . . . . 11 ((𝑎 = 𝐼𝑏 = 𝐼) → (𝑎𝑏) = (𝐼𝐼))
181, 2, 3smndex1iidm 18835 . . . . . . . . . . 11 (𝐼𝐼) = 𝐼
1917, 18eqtrdi 2781 . . . . . . . . . 10 ((𝑎 = 𝐼𝑏 = 𝐼) → (𝑎𝑏) = 𝐼)
2019orcd 873 . . . . . . . . 9 ((𝑎 = 𝐼𝑏 = 𝐼) → ((𝑎𝑏) = 𝐼 ∨ ∃𝑘 ∈ (0..^𝑁)(𝑎𝑏) = (𝐺𝑘)))
2120ex 412 . . . . . . . 8 (𝑎 = 𝐼 → (𝑏 = 𝐼 → ((𝑎𝑏) = 𝐼 ∨ ∃𝑘 ∈ (0..^𝑁)(𝑎𝑏) = (𝐺𝑘))))
22 simpll 766 . . . . . . . . . . . . . . 15 (((𝑎 = 𝐼𝑘 ∈ (0..^𝑁)) ∧ 𝑏 = (𝐺𝑘)) → 𝑎 = 𝐼)
23 simpr 484 . . . . . . . . . . . . . . 15 (((𝑎 = 𝐼𝑘 ∈ (0..^𝑁)) ∧ 𝑏 = (𝐺𝑘)) → 𝑏 = (𝐺𝑘))
2422, 23coeq12d 5831 . . . . . . . . . . . . . 14 (((𝑎 = 𝐼𝑘 ∈ (0..^𝑁)) ∧ 𝑏 = (𝐺𝑘)) → (𝑎𝑏) = (𝐼 ∘ (𝐺𝑘)))
251, 2, 3, 4smndex1igid 18838 . . . . . . . . . . . . . . 15 (𝑘 ∈ (0..^𝑁) → (𝐼 ∘ (𝐺𝑘)) = (𝐺𝑘))
2625ad2antlr 727 . . . . . . . . . . . . . 14 (((𝑎 = 𝐼𝑘 ∈ (0..^𝑁)) ∧ 𝑏 = (𝐺𝑘)) → (𝐼 ∘ (𝐺𝑘)) = (𝐺𝑘))
2724, 26eqtrd 2765 . . . . . . . . . . . . 13 (((𝑎 = 𝐼𝑘 ∈ (0..^𝑁)) ∧ 𝑏 = (𝐺𝑘)) → (𝑎𝑏) = (𝐺𝑘))
2827ex 412 . . . . . . . . . . . 12 ((𝑎 = 𝐼𝑘 ∈ (0..^𝑁)) → (𝑏 = (𝐺𝑘) → (𝑎𝑏) = (𝐺𝑘)))
2928reximdva 3147 . . . . . . . . . . 11 (𝑎 = 𝐼 → (∃𝑘 ∈ (0..^𝑁)𝑏 = (𝐺𝑘) → ∃𝑘 ∈ (0..^𝑁)(𝑎𝑏) = (𝐺𝑘)))
3029imp 406 . . . . . . . . . 10 ((𝑎 = 𝐼 ∧ ∃𝑘 ∈ (0..^𝑁)𝑏 = (𝐺𝑘)) → ∃𝑘 ∈ (0..^𝑁)(𝑎𝑏) = (𝐺𝑘))
3130olcd 874 . . . . . . . . 9 ((𝑎 = 𝐼 ∧ ∃𝑘 ∈ (0..^𝑁)𝑏 = (𝐺𝑘)) → ((𝑎𝑏) = 𝐼 ∨ ∃𝑘 ∈ (0..^𝑁)(𝑎𝑏) = (𝐺𝑘)))
3231ex 412 . . . . . . . 8 (𝑎 = 𝐼 → (∃𝑘 ∈ (0..^𝑁)𝑏 = (𝐺𝑘) → ((𝑎𝑏) = 𝐼 ∨ ∃𝑘 ∈ (0..^𝑁)(𝑎𝑏) = (𝐺𝑘))))
3321, 32jaod 859 . . . . . . 7 (𝑎 = 𝐼 → ((𝑏 = 𝐼 ∨ ∃𝑘 ∈ (0..^𝑁)𝑏 = (𝐺𝑘)) → ((𝑎𝑏) = 𝐼 ∨ ∃𝑘 ∈ (0..^𝑁)(𝑎𝑏) = (𝐺𝑘))))
34 simpr 484 . . . . . . . . . . . . . . 15 (((𝑏 = 𝐼𝑘 ∈ (0..^𝑁)) ∧ 𝑎 = (𝐺𝑘)) → 𝑎 = (𝐺𝑘))
35 simpll 766 . . . . . . . . . . . . . . 15 (((𝑏 = 𝐼𝑘 ∈ (0..^𝑁)) ∧ 𝑎 = (𝐺𝑘)) → 𝑏 = 𝐼)
3634, 35coeq12d 5831 . . . . . . . . . . . . . 14 (((𝑏 = 𝐼𝑘 ∈ (0..^𝑁)) ∧ 𝑎 = (𝐺𝑘)) → (𝑎𝑏) = ((𝐺𝑘) ∘ 𝐼))
371, 2, 3smndex1ibas 18834 . . . . . . . . . . . . . . . 16 𝐼 ∈ (Base‘𝑀)
381, 2, 3, 4smndex1gid 18837 . . . . . . . . . . . . . . . 16 ((𝐼 ∈ (Base‘𝑀) ∧ 𝑘 ∈ (0..^𝑁)) → ((𝐺𝑘) ∘ 𝐼) = (𝐺𝑘))
3937, 38mpan 690 . . . . . . . . . . . . . . 15 (𝑘 ∈ (0..^𝑁) → ((𝐺𝑘) ∘ 𝐼) = (𝐺𝑘))
4039ad2antlr 727 . . . . . . . . . . . . . 14 (((𝑏 = 𝐼𝑘 ∈ (0..^𝑁)) ∧ 𝑎 = (𝐺𝑘)) → ((𝐺𝑘) ∘ 𝐼) = (𝐺𝑘))
4136, 40eqtrd 2765 . . . . . . . . . . . . 13 (((𝑏 = 𝐼𝑘 ∈ (0..^𝑁)) ∧ 𝑎 = (𝐺𝑘)) → (𝑎𝑏) = (𝐺𝑘))
4241ex 412 . . . . . . . . . . . 12 ((𝑏 = 𝐼𝑘 ∈ (0..^𝑁)) → (𝑎 = (𝐺𝑘) → (𝑎𝑏) = (𝐺𝑘)))
4342reximdva 3147 . . . . . . . . . . 11 (𝑏 = 𝐼 → (∃𝑘 ∈ (0..^𝑁)𝑎 = (𝐺𝑘) → ∃𝑘 ∈ (0..^𝑁)(𝑎𝑏) = (𝐺𝑘)))
4443imp 406 . . . . . . . . . 10 ((𝑏 = 𝐼 ∧ ∃𝑘 ∈ (0..^𝑁)𝑎 = (𝐺𝑘)) → ∃𝑘 ∈ (0..^𝑁)(𝑎𝑏) = (𝐺𝑘))
4544olcd 874 . . . . . . . . 9 ((𝑏 = 𝐼 ∧ ∃𝑘 ∈ (0..^𝑁)𝑎 = (𝐺𝑘)) → ((𝑎𝑏) = 𝐼 ∨ ∃𝑘 ∈ (0..^𝑁)(𝑎𝑏) = (𝐺𝑘)))
4645expcom 413 . . . . . . . 8 (∃𝑘 ∈ (0..^𝑁)𝑎 = (𝐺𝑘) → (𝑏 = 𝐼 → ((𝑎𝑏) = 𝐼 ∨ ∃𝑘 ∈ (0..^𝑁)(𝑎𝑏) = (𝐺𝑘))))
47 fveq2 6861 . . . . . . . . . . 11 (𝑘 = 𝑚 → (𝐺𝑘) = (𝐺𝑚))
4847eqeq2d 2741 . . . . . . . . . 10 (𝑘 = 𝑚 → (𝑏 = (𝐺𝑘) ↔ 𝑏 = (𝐺𝑚)))
4948cbvrexvw 3217 . . . . . . . . 9 (∃𝑘 ∈ (0..^𝑁)𝑏 = (𝐺𝑘) ↔ ∃𝑚 ∈ (0..^𝑁)𝑏 = (𝐺𝑚))
50 simpr 484 . . . . . . . . . . . . . . . . 17 ((((𝑚 ∈ (0..^𝑁) ∧ 𝑏 = (𝐺𝑚)) ∧ 𝑘 ∈ (0..^𝑁)) ∧ 𝑎 = (𝐺𝑘)) → 𝑎 = (𝐺𝑘))
51 simpllr 775 . . . . . . . . . . . . . . . . 17 ((((𝑚 ∈ (0..^𝑁) ∧ 𝑏 = (𝐺𝑚)) ∧ 𝑘 ∈ (0..^𝑁)) ∧ 𝑎 = (𝐺𝑘)) → 𝑏 = (𝐺𝑚))
5250, 51coeq12d 5831 . . . . . . . . . . . . . . . 16 ((((𝑚 ∈ (0..^𝑁) ∧ 𝑏 = (𝐺𝑚)) ∧ 𝑘 ∈ (0..^𝑁)) ∧ 𝑎 = (𝐺𝑘)) → (𝑎𝑏) = ((𝐺𝑘) ∘ (𝐺𝑚)))
531, 2, 3, 4smndex1gbas 18836 . . . . . . . . . . . . . . . . . 18 (𝑚 ∈ (0..^𝑁) → (𝐺𝑚) ∈ (Base‘𝑀))
541, 2, 3, 4smndex1gid 18837 . . . . . . . . . . . . . . . . . 18 (((𝐺𝑚) ∈ (Base‘𝑀) ∧ 𝑘 ∈ (0..^𝑁)) → ((𝐺𝑘) ∘ (𝐺𝑚)) = (𝐺𝑘))
5553, 54sylan 580 . . . . . . . . . . . . . . . . 17 ((𝑚 ∈ (0..^𝑁) ∧ 𝑘 ∈ (0..^𝑁)) → ((𝐺𝑘) ∘ (𝐺𝑚)) = (𝐺𝑘))
5655ad4ant13 751 . . . . . . . . . . . . . . . 16 ((((𝑚 ∈ (0..^𝑁) ∧ 𝑏 = (𝐺𝑚)) ∧ 𝑘 ∈ (0..^𝑁)) ∧ 𝑎 = (𝐺𝑘)) → ((𝐺𝑘) ∘ (𝐺𝑚)) = (𝐺𝑘))
5752, 56eqtrd 2765 . . . . . . . . . . . . . . 15 ((((𝑚 ∈ (0..^𝑁) ∧ 𝑏 = (𝐺𝑚)) ∧ 𝑘 ∈ (0..^𝑁)) ∧ 𝑎 = (𝐺𝑘)) → (𝑎𝑏) = (𝐺𝑘))
5857ex 412 . . . . . . . . . . . . . 14 (((𝑚 ∈ (0..^𝑁) ∧ 𝑏 = (𝐺𝑚)) ∧ 𝑘 ∈ (0..^𝑁)) → (𝑎 = (𝐺𝑘) → (𝑎𝑏) = (𝐺𝑘)))
5958reximdva 3147 . . . . . . . . . . . . 13 ((𝑚 ∈ (0..^𝑁) ∧ 𝑏 = (𝐺𝑚)) → (∃𝑘 ∈ (0..^𝑁)𝑎 = (𝐺𝑘) → ∃𝑘 ∈ (0..^𝑁)(𝑎𝑏) = (𝐺𝑘)))
6059rexlimiva 3127 . . . . . . . . . . . 12 (∃𝑚 ∈ (0..^𝑁)𝑏 = (𝐺𝑚) → (∃𝑘 ∈ (0..^𝑁)𝑎 = (𝐺𝑘) → ∃𝑘 ∈ (0..^𝑁)(𝑎𝑏) = (𝐺𝑘)))
6160imp 406 . . . . . . . . . . 11 ((∃𝑚 ∈ (0..^𝑁)𝑏 = (𝐺𝑚) ∧ ∃𝑘 ∈ (0..^𝑁)𝑎 = (𝐺𝑘)) → ∃𝑘 ∈ (0..^𝑁)(𝑎𝑏) = (𝐺𝑘))
6261olcd 874 . . . . . . . . . 10 ((∃𝑚 ∈ (0..^𝑁)𝑏 = (𝐺𝑚) ∧ ∃𝑘 ∈ (0..^𝑁)𝑎 = (𝐺𝑘)) → ((𝑎𝑏) = 𝐼 ∨ ∃𝑘 ∈ (0..^𝑁)(𝑎𝑏) = (𝐺𝑘)))
6362expcom 413 . . . . . . . . 9 (∃𝑘 ∈ (0..^𝑁)𝑎 = (𝐺𝑘) → (∃𝑚 ∈ (0..^𝑁)𝑏 = (𝐺𝑚) → ((𝑎𝑏) = 𝐼 ∨ ∃𝑘 ∈ (0..^𝑁)(𝑎𝑏) = (𝐺𝑘))))
6449, 63biimtrid 242 . . . . . . . 8 (∃𝑘 ∈ (0..^𝑁)𝑎 = (𝐺𝑘) → (∃𝑘 ∈ (0..^𝑁)𝑏 = (𝐺𝑘) → ((𝑎𝑏) = 𝐼 ∨ ∃𝑘 ∈ (0..^𝑁)(𝑎𝑏) = (𝐺𝑘))))
6546, 64jaod 859 . . . . . . 7 (∃𝑘 ∈ (0..^𝑁)𝑎 = (𝐺𝑘) → ((𝑏 = 𝐼 ∨ ∃𝑘 ∈ (0..^𝑁)𝑏 = (𝐺𝑘)) → ((𝑎𝑏) = 𝐼 ∨ ∃𝑘 ∈ (0..^𝑁)(𝑎𝑏) = (𝐺𝑘))))
6633, 65jaoi 857 . . . . . 6 ((𝑎 = 𝐼 ∨ ∃𝑘 ∈ (0..^𝑁)𝑎 = (𝐺𝑘)) → ((𝑏 = 𝐼 ∨ ∃𝑘 ∈ (0..^𝑁)𝑏 = (𝐺𝑘)) → ((𝑎𝑏) = 𝐼 ∨ ∃𝑘 ∈ (0..^𝑁)(𝑎𝑏) = (𝐺𝑘))))
6766imp 406 . . . . 5 (((𝑎 = 𝐼 ∨ ∃𝑘 ∈ (0..^𝑁)𝑎 = (𝐺𝑘)) ∧ (𝑏 = 𝐼 ∨ ∃𝑘 ∈ (0..^𝑁)𝑏 = (𝐺𝑘))) → ((𝑎𝑏) = 𝐼 ∨ ∃𝑘 ∈ (0..^𝑁)(𝑎𝑏) = (𝐺𝑘)))
685eleq2i 2821 . . . . . . . 8 (𝑎𝐵𝑎 ∈ ({𝐼} ∪ 𝑛 ∈ (0..^𝑁){(𝐺𝑛)}))
69 fveq2 6861 . . . . . . . . . . . 12 (𝑛 = 𝑘 → (𝐺𝑛) = (𝐺𝑘))
7069sneqd 4604 . . . . . . . . . . 11 (𝑛 = 𝑘 → {(𝐺𝑛)} = {(𝐺𝑘)})
7170cbviunv 5007 . . . . . . . . . 10 𝑛 ∈ (0..^𝑁){(𝐺𝑛)} = 𝑘 ∈ (0..^𝑁){(𝐺𝑘)}
7271uneq2i 4131 . . . . . . . . 9 ({𝐼} ∪ 𝑛 ∈ (0..^𝑁){(𝐺𝑛)}) = ({𝐼} ∪ 𝑘 ∈ (0..^𝑁){(𝐺𝑘)})
7372eleq2i 2821 . . . . . . . 8 (𝑎 ∈ ({𝐼} ∪ 𝑛 ∈ (0..^𝑁){(𝐺𝑛)}) ↔ 𝑎 ∈ ({𝐼} ∪ 𝑘 ∈ (0..^𝑁){(𝐺𝑘)}))
7468, 73bitri 275 . . . . . . 7 (𝑎𝐵𝑎 ∈ ({𝐼} ∪ 𝑘 ∈ (0..^𝑁){(𝐺𝑘)}))
75 elun 4119 . . . . . . 7 (𝑎 ∈ ({𝐼} ∪ 𝑘 ∈ (0..^𝑁){(𝐺𝑘)}) ↔ (𝑎 ∈ {𝐼} ∨ 𝑎 𝑘 ∈ (0..^𝑁){(𝐺𝑘)}))
76 velsn 4608 . . . . . . . 8 (𝑎 ∈ {𝐼} ↔ 𝑎 = 𝐼)
77 eliun 4962 . . . . . . . . 9 (𝑎 𝑘 ∈ (0..^𝑁){(𝐺𝑘)} ↔ ∃𝑘 ∈ (0..^𝑁)𝑎 ∈ {(𝐺𝑘)})
78 velsn 4608 . . . . . . . . . 10 (𝑎 ∈ {(𝐺𝑘)} ↔ 𝑎 = (𝐺𝑘))
7978rexbii 3077 . . . . . . . . 9 (∃𝑘 ∈ (0..^𝑁)𝑎 ∈ {(𝐺𝑘)} ↔ ∃𝑘 ∈ (0..^𝑁)𝑎 = (𝐺𝑘))
8077, 79bitri 275 . . . . . . . 8 (𝑎 𝑘 ∈ (0..^𝑁){(𝐺𝑘)} ↔ ∃𝑘 ∈ (0..^𝑁)𝑎 = (𝐺𝑘))
8176, 80orbi12i 914 . . . . . . 7 ((𝑎 ∈ {𝐼} ∨ 𝑎 𝑘 ∈ (0..^𝑁){(𝐺𝑘)}) ↔ (𝑎 = 𝐼 ∨ ∃𝑘 ∈ (0..^𝑁)𝑎 = (𝐺𝑘)))
8274, 75, 813bitri 297 . . . . . 6 (𝑎𝐵 ↔ (𝑎 = 𝐼 ∨ ∃𝑘 ∈ (0..^𝑁)𝑎 = (𝐺𝑘)))
835eleq2i 2821 . . . . . . . 8 (𝑏𝐵𝑏 ∈ ({𝐼} ∪ 𝑛 ∈ (0..^𝑁){(𝐺𝑛)}))
8472eleq2i 2821 . . . . . . . 8 (𝑏 ∈ ({𝐼} ∪ 𝑛 ∈ (0..^𝑁){(𝐺𝑛)}) ↔ 𝑏 ∈ ({𝐼} ∪ 𝑘 ∈ (0..^𝑁){(𝐺𝑘)}))
8583, 84bitri 275 . . . . . . 7 (𝑏𝐵𝑏 ∈ ({𝐼} ∪ 𝑘 ∈ (0..^𝑁){(𝐺𝑘)}))
86 elun 4119 . . . . . . 7 (𝑏 ∈ ({𝐼} ∪ 𝑘 ∈ (0..^𝑁){(𝐺𝑘)}) ↔ (𝑏 ∈ {𝐼} ∨ 𝑏 𝑘 ∈ (0..^𝑁){(𝐺𝑘)}))
87 velsn 4608 . . . . . . . 8 (𝑏 ∈ {𝐼} ↔ 𝑏 = 𝐼)
88 eliun 4962 . . . . . . . . 9 (𝑏 𝑘 ∈ (0..^𝑁){(𝐺𝑘)} ↔ ∃𝑘 ∈ (0..^𝑁)𝑏 ∈ {(𝐺𝑘)})
89 velsn 4608 . . . . . . . . . 10 (𝑏 ∈ {(𝐺𝑘)} ↔ 𝑏 = (𝐺𝑘))
9089rexbii 3077 . . . . . . . . 9 (∃𝑘 ∈ (0..^𝑁)𝑏 ∈ {(𝐺𝑘)} ↔ ∃𝑘 ∈ (0..^𝑁)𝑏 = (𝐺𝑘))
9188, 90bitri 275 . . . . . . . 8 (𝑏 𝑘 ∈ (0..^𝑁){(𝐺𝑘)} ↔ ∃𝑘 ∈ (0..^𝑁)𝑏 = (𝐺𝑘))
9287, 91orbi12i 914 . . . . . . 7 ((𝑏 ∈ {𝐼} ∨ 𝑏 𝑘 ∈ (0..^𝑁){(𝐺𝑘)}) ↔ (𝑏 = 𝐼 ∨ ∃𝑘 ∈ (0..^𝑁)𝑏 = (𝐺𝑘)))
9385, 86, 923bitri 297 . . . . . 6 (𝑏𝐵 ↔ (𝑏 = 𝐼 ∨ ∃𝑘 ∈ (0..^𝑁)𝑏 = (𝐺𝑘)))
9482, 93anbi12i 628 . . . . 5 ((𝑎𝐵𝑏𝐵) ↔ ((𝑎 = 𝐼 ∨ ∃𝑘 ∈ (0..^𝑁)𝑎 = (𝐺𝑘)) ∧ (𝑏 = 𝐼 ∨ ∃𝑘 ∈ (0..^𝑁)𝑏 = (𝐺𝑘))))
955eleq2i 2821 . . . . . . 7 ((𝑎𝑏) ∈ 𝐵 ↔ (𝑎𝑏) ∈ ({𝐼} ∪ 𝑛 ∈ (0..^𝑁){(𝐺𝑛)}))
9672eleq2i 2821 . . . . . . 7 ((𝑎𝑏) ∈ ({𝐼} ∪ 𝑛 ∈ (0..^𝑁){(𝐺𝑛)}) ↔ (𝑎𝑏) ∈ ({𝐼} ∪ 𝑘 ∈ (0..^𝑁){(𝐺𝑘)}))
9795, 96bitri 275 . . . . . 6 ((𝑎𝑏) ∈ 𝐵 ↔ (𝑎𝑏) ∈ ({𝐼} ∪ 𝑘 ∈ (0..^𝑁){(𝐺𝑘)}))
98 elun 4119 . . . . . 6 ((𝑎𝑏) ∈ ({𝐼} ∪ 𝑘 ∈ (0..^𝑁){(𝐺𝑘)}) ↔ ((𝑎𝑏) ∈ {𝐼} ∨ (𝑎𝑏) ∈ 𝑘 ∈ (0..^𝑁){(𝐺𝑘)}))
99 vex 3454 . . . . . . . . 9 𝑎 ∈ V
100 vex 3454 . . . . . . . . 9 𝑏 ∈ V
10199, 100coex 7909 . . . . . . . 8 (𝑎𝑏) ∈ V
102101elsn 4607 . . . . . . 7 ((𝑎𝑏) ∈ {𝐼} ↔ (𝑎𝑏) = 𝐼)
103 eliun 4962 . . . . . . . 8 ((𝑎𝑏) ∈ 𝑘 ∈ (0..^𝑁){(𝐺𝑘)} ↔ ∃𝑘 ∈ (0..^𝑁)(𝑎𝑏) ∈ {(𝐺𝑘)})
104101elsn 4607 . . . . . . . . 9 ((𝑎𝑏) ∈ {(𝐺𝑘)} ↔ (𝑎𝑏) = (𝐺𝑘))
105104rexbii 3077 . . . . . . . 8 (∃𝑘 ∈ (0..^𝑁)(𝑎𝑏) ∈ {(𝐺𝑘)} ↔ ∃𝑘 ∈ (0..^𝑁)(𝑎𝑏) = (𝐺𝑘))
106103, 105bitri 275 . . . . . . 7 ((𝑎𝑏) ∈ 𝑘 ∈ (0..^𝑁){(𝐺𝑘)} ↔ ∃𝑘 ∈ (0..^𝑁)(𝑎𝑏) = (𝐺𝑘))
107102, 106orbi12i 914 . . . . . 6 (((𝑎𝑏) ∈ {𝐼} ∨ (𝑎𝑏) ∈ 𝑘 ∈ (0..^𝑁){(𝐺𝑘)}) ↔ ((𝑎𝑏) = 𝐼 ∨ ∃𝑘 ∈ (0..^𝑁)(𝑎𝑏) = (𝐺𝑘)))
10897, 98, 1073bitri 297 . . . . 5 ((𝑎𝑏) ∈ 𝐵 ↔ ((𝑎𝑏) = 𝐼 ∨ ∃𝑘 ∈ (0..^𝑁)(𝑎𝑏) = (𝐺𝑘)))
10967, 94, 1083imtr4i 292 . . . 4 ((𝑎𝐵𝑏𝐵) → (𝑎𝑏) ∈ 𝐵)
11014, 109eqeltrd 2829 . . 3 ((𝑎𝐵𝑏𝐵) → (𝑎(+g𝑀)𝑏) ∈ 𝐵)
111110rgen2 3178 . 2 𝑎𝐵𝑏𝐵 (𝑎(+g𝑀)𝑏) ∈ 𝐵
112 smndex1mgm.s . . . 4 𝑆 = (𝑀s 𝐵)
113112ovexi 7424 . . 3 𝑆 ∈ V
1141, 2, 3, 4, 5, 112smndex1bas 18840 . . . . 5 (Base‘𝑆) = 𝐵
115114eqcomi 2739 . . . 4 𝐵 = (Base‘𝑆)
116115fvexi 6875 . . . . 5 𝐵 ∈ V
117112, 12ressplusg 17261 . . . . 5 (𝐵 ∈ V → (+g𝑀) = (+g𝑆))
118116, 117ax-mp 5 . . . 4 (+g𝑀) = (+g𝑆)
119115, 118ismgm 18575 . . 3 (𝑆 ∈ V → (𝑆 ∈ Mgm ↔ ∀𝑎𝐵𝑏𝐵 (𝑎(+g𝑀)𝑏) ∈ 𝐵))
120113, 119ax-mp 5 . 2 (𝑆 ∈ Mgm ↔ ∀𝑎𝐵𝑏𝐵 (𝑎(+g𝑀)𝑏) ∈ 𝐵)
121111, 120mpbir 231 1 𝑆 ∈ Mgm
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wo 847   = wceq 1540  wcel 2109  wral 3045  wrex 3054  Vcvv 3450  cun 3915  wss 3917  {csn 4592   ciun 4958  cmpt 5191  ccom 5645  cfv 6514  (class class class)co 7390  0cc0 11075  cn 12193  0cn0 12449  ..^cfzo 13622   mod cmo 13838  Basecbs 17186  s cress 17207  +gcplusg 17227  Mgmcmgm 18572  EndoFMndcefmnd 18802
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-cnex 11131  ax-resscn 11132  ax-1cn 11133  ax-icn 11134  ax-addcl 11135  ax-addrcl 11136  ax-mulcl 11137  ax-mulrcl 11138  ax-mulcom 11139  ax-addass 11140  ax-mulass 11141  ax-distr 11142  ax-i2m1 11143  ax-1ne0 11144  ax-1rid 11145  ax-rnegex 11146  ax-rrecex 11147  ax-cnre 11148  ax-pre-lttri 11149  ax-pre-lttrn 11150  ax-pre-ltadd 11151  ax-pre-mulgt0 11152  ax-pre-sup 11153
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-tp 4597  df-op 4599  df-uni 4875  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-om 7846  df-1st 7971  df-2nd 7972  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-1o 8437  df-er 8674  df-map 8804  df-en 8922  df-dom 8923  df-sdom 8924  df-fin 8925  df-sup 9400  df-inf 9401  df-pnf 11217  df-mnf 11218  df-xr 11219  df-ltxr 11220  df-le 11221  df-sub 11414  df-neg 11415  df-div 11843  df-nn 12194  df-2 12256  df-3 12257  df-4 12258  df-5 12259  df-6 12260  df-7 12261  df-8 12262  df-9 12263  df-n0 12450  df-z 12537  df-uz 12801  df-rp 12959  df-fz 13476  df-fzo 13623  df-fl 13761  df-mod 13839  df-struct 17124  df-sets 17141  df-slot 17159  df-ndx 17171  df-base 17187  df-ress 17208  df-plusg 17240  df-tset 17246  df-mgm 18574  df-efmnd 18803
This theorem is referenced by:  smndex1sgrp  18842
  Copyright terms: Public domain W3C validator