| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > rnglidlmmgm | Structured version Visualization version GIF version | ||
| Description: The multiplicative group of a (left) ideal of a non-unital ring is a magma. (Contributed by AV, 17-Feb-2020.) Generalization for non-unital rings. The assumption 0 ∈ 𝑈 is required because a left ideal of a non-unital ring does not have to be a subgroup. (Revised by AV, 11-Mar-2025.) |
| Ref | Expression |
|---|---|
| rnglidlabl.l | ⊢ 𝐿 = (LIdeal‘𝑅) |
| rnglidlabl.i | ⊢ 𝐼 = (𝑅 ↾s 𝑈) |
| rnglidlabl.z | ⊢ 0 = (0g‘𝑅) |
| Ref | Expression |
|---|---|
| rnglidlmmgm | ⊢ ((𝑅 ∈ Rng ∧ 𝑈 ∈ 𝐿 ∧ 0 ∈ 𝑈) → (mulGrp‘𝐼) ∈ Mgm) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simp1 1136 | . . . . . 6 ⊢ ((𝑅 ∈ Rng ∧ 𝑈 ∈ 𝐿 ∧ 0 ∈ 𝑈) → 𝑅 ∈ Rng) | |
| 2 | rnglidlabl.l | . . . . . . . . 9 ⊢ 𝐿 = (LIdeal‘𝑅) | |
| 3 | rnglidlabl.i | . . . . . . . . 9 ⊢ 𝐼 = (𝑅 ↾s 𝑈) | |
| 4 | 2, 3 | lidlbas 21121 | . . . . . . . 8 ⊢ (𝑈 ∈ 𝐿 → (Base‘𝐼) = 𝑈) |
| 5 | eleq1a 2823 | . . . . . . . 8 ⊢ (𝑈 ∈ 𝐿 → ((Base‘𝐼) = 𝑈 → (Base‘𝐼) ∈ 𝐿)) | |
| 6 | 4, 5 | mpd 15 | . . . . . . 7 ⊢ (𝑈 ∈ 𝐿 → (Base‘𝐼) ∈ 𝐿) |
| 7 | 6 | 3ad2ant2 1134 | . . . . . 6 ⊢ ((𝑅 ∈ Rng ∧ 𝑈 ∈ 𝐿 ∧ 0 ∈ 𝑈) → (Base‘𝐼) ∈ 𝐿) |
| 8 | 4 | eqcomd 2735 | . . . . . . . . 9 ⊢ (𝑈 ∈ 𝐿 → 𝑈 = (Base‘𝐼)) |
| 9 | 8 | eleq2d 2814 | . . . . . . . 8 ⊢ (𝑈 ∈ 𝐿 → ( 0 ∈ 𝑈 ↔ 0 ∈ (Base‘𝐼))) |
| 10 | 9 | biimpa 476 | . . . . . . 7 ⊢ ((𝑈 ∈ 𝐿 ∧ 0 ∈ 𝑈) → 0 ∈ (Base‘𝐼)) |
| 11 | 10 | 3adant1 1130 | . . . . . 6 ⊢ ((𝑅 ∈ Rng ∧ 𝑈 ∈ 𝐿 ∧ 0 ∈ 𝑈) → 0 ∈ (Base‘𝐼)) |
| 12 | 1, 7, 11 | 3jca 1128 | . . . . 5 ⊢ ((𝑅 ∈ Rng ∧ 𝑈 ∈ 𝐿 ∧ 0 ∈ 𝑈) → (𝑅 ∈ Rng ∧ (Base‘𝐼) ∈ 𝐿 ∧ 0 ∈ (Base‘𝐼))) |
| 13 | 2, 3 | lidlssbas 21120 | . . . . . . . . 9 ⊢ (𝑈 ∈ 𝐿 → (Base‘𝐼) ⊆ (Base‘𝑅)) |
| 14 | 13 | sseld 3934 | . . . . . . . 8 ⊢ (𝑈 ∈ 𝐿 → (𝑎 ∈ (Base‘𝐼) → 𝑎 ∈ (Base‘𝑅))) |
| 15 | 14 | 3ad2ant2 1134 | . . . . . . 7 ⊢ ((𝑅 ∈ Rng ∧ 𝑈 ∈ 𝐿 ∧ 0 ∈ 𝑈) → (𝑎 ∈ (Base‘𝐼) → 𝑎 ∈ (Base‘𝑅))) |
| 16 | 15 | anim1d 611 | . . . . . 6 ⊢ ((𝑅 ∈ Rng ∧ 𝑈 ∈ 𝐿 ∧ 0 ∈ 𝑈) → ((𝑎 ∈ (Base‘𝐼) ∧ 𝑏 ∈ (Base‘𝐼)) → (𝑎 ∈ (Base‘𝑅) ∧ 𝑏 ∈ (Base‘𝐼)))) |
| 17 | 16 | imp 406 | . . . . 5 ⊢ (((𝑅 ∈ Rng ∧ 𝑈 ∈ 𝐿 ∧ 0 ∈ 𝑈) ∧ (𝑎 ∈ (Base‘𝐼) ∧ 𝑏 ∈ (Base‘𝐼))) → (𝑎 ∈ (Base‘𝑅) ∧ 𝑏 ∈ (Base‘𝐼))) |
| 18 | rnglidlabl.z | . . . . . 6 ⊢ 0 = (0g‘𝑅) | |
| 19 | eqid 2729 | . . . . . 6 ⊢ (Base‘𝑅) = (Base‘𝑅) | |
| 20 | eqid 2729 | . . . . . 6 ⊢ (.r‘𝑅) = (.r‘𝑅) | |
| 21 | 18, 19, 20, 2 | rnglidlmcl 21123 | . . . . 5 ⊢ (((𝑅 ∈ Rng ∧ (Base‘𝐼) ∈ 𝐿 ∧ 0 ∈ (Base‘𝐼)) ∧ (𝑎 ∈ (Base‘𝑅) ∧ 𝑏 ∈ (Base‘𝐼))) → (𝑎(.r‘𝑅)𝑏) ∈ (Base‘𝐼)) |
| 22 | 12, 17, 21 | syl2an2r 685 | . . . 4 ⊢ (((𝑅 ∈ Rng ∧ 𝑈 ∈ 𝐿 ∧ 0 ∈ 𝑈) ∧ (𝑎 ∈ (Base‘𝐼) ∧ 𝑏 ∈ (Base‘𝐼))) → (𝑎(.r‘𝑅)𝑏) ∈ (Base‘𝐼)) |
| 23 | 3, 20 | ressmulr 17211 | . . . . . . . . 9 ⊢ (𝑈 ∈ 𝐿 → (.r‘𝑅) = (.r‘𝐼)) |
| 24 | 23 | eqcomd 2735 | . . . . . . . 8 ⊢ (𝑈 ∈ 𝐿 → (.r‘𝐼) = (.r‘𝑅)) |
| 25 | 24 | oveqd 7366 | . . . . . . 7 ⊢ (𝑈 ∈ 𝐿 → (𝑎(.r‘𝐼)𝑏) = (𝑎(.r‘𝑅)𝑏)) |
| 26 | 25 | eleq1d 2813 | . . . . . 6 ⊢ (𝑈 ∈ 𝐿 → ((𝑎(.r‘𝐼)𝑏) ∈ (Base‘𝐼) ↔ (𝑎(.r‘𝑅)𝑏) ∈ (Base‘𝐼))) |
| 27 | 26 | 3ad2ant2 1134 | . . . . 5 ⊢ ((𝑅 ∈ Rng ∧ 𝑈 ∈ 𝐿 ∧ 0 ∈ 𝑈) → ((𝑎(.r‘𝐼)𝑏) ∈ (Base‘𝐼) ↔ (𝑎(.r‘𝑅)𝑏) ∈ (Base‘𝐼))) |
| 28 | 27 | adantr 480 | . . . 4 ⊢ (((𝑅 ∈ Rng ∧ 𝑈 ∈ 𝐿 ∧ 0 ∈ 𝑈) ∧ (𝑎 ∈ (Base‘𝐼) ∧ 𝑏 ∈ (Base‘𝐼))) → ((𝑎(.r‘𝐼)𝑏) ∈ (Base‘𝐼) ↔ (𝑎(.r‘𝑅)𝑏) ∈ (Base‘𝐼))) |
| 29 | 22, 28 | mpbird 257 | . . 3 ⊢ (((𝑅 ∈ Rng ∧ 𝑈 ∈ 𝐿 ∧ 0 ∈ 𝑈) ∧ (𝑎 ∈ (Base‘𝐼) ∧ 𝑏 ∈ (Base‘𝐼))) → (𝑎(.r‘𝐼)𝑏) ∈ (Base‘𝐼)) |
| 30 | 29 | ralrimivva 3172 | . 2 ⊢ ((𝑅 ∈ Rng ∧ 𝑈 ∈ 𝐿 ∧ 0 ∈ 𝑈) → ∀𝑎 ∈ (Base‘𝐼)∀𝑏 ∈ (Base‘𝐼)(𝑎(.r‘𝐼)𝑏) ∈ (Base‘𝐼)) |
| 31 | fvex 6835 | . . 3 ⊢ (mulGrp‘𝐼) ∈ V | |
| 32 | eqid 2729 | . . . . 5 ⊢ (mulGrp‘𝐼) = (mulGrp‘𝐼) | |
| 33 | eqid 2729 | . . . . 5 ⊢ (Base‘𝐼) = (Base‘𝐼) | |
| 34 | 32, 33 | mgpbas 20030 | . . . 4 ⊢ (Base‘𝐼) = (Base‘(mulGrp‘𝐼)) |
| 35 | eqid 2729 | . . . . 5 ⊢ (.r‘𝐼) = (.r‘𝐼) | |
| 36 | 32, 35 | mgpplusg 20029 | . . . 4 ⊢ (.r‘𝐼) = (+g‘(mulGrp‘𝐼)) |
| 37 | 34, 36 | ismgm 18515 | . . 3 ⊢ ((mulGrp‘𝐼) ∈ V → ((mulGrp‘𝐼) ∈ Mgm ↔ ∀𝑎 ∈ (Base‘𝐼)∀𝑏 ∈ (Base‘𝐼)(𝑎(.r‘𝐼)𝑏) ∈ (Base‘𝐼))) |
| 38 | 31, 37 | mp1i 13 | . 2 ⊢ ((𝑅 ∈ Rng ∧ 𝑈 ∈ 𝐿 ∧ 0 ∈ 𝑈) → ((mulGrp‘𝐼) ∈ Mgm ↔ ∀𝑎 ∈ (Base‘𝐼)∀𝑏 ∈ (Base‘𝐼)(𝑎(.r‘𝐼)𝑏) ∈ (Base‘𝐼))) |
| 39 | 30, 38 | mpbird 257 | 1 ⊢ ((𝑅 ∈ Rng ∧ 𝑈 ∈ 𝐿 ∧ 0 ∈ 𝑈) → (mulGrp‘𝐼) ∈ Mgm) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 ∀wral 3044 Vcvv 3436 ‘cfv 6482 (class class class)co 7349 Basecbs 17120 ↾s cress 17141 .rcmulr 17162 0gc0g 17343 Mgmcmgm 18512 mulGrpcmgp 20025 Rngcrng 20037 LIdealclidl 21113 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5218 ax-sep 5235 ax-nul 5245 ax-pow 5304 ax-pr 5371 ax-un 7671 ax-cnex 11065 ax-resscn 11066 ax-1cn 11067 ax-icn 11068 ax-addcl 11069 ax-addrcl 11070 ax-mulcl 11071 ax-mulrcl 11072 ax-mulcom 11073 ax-addass 11074 ax-mulass 11075 ax-distr 11076 ax-i2m1 11077 ax-1ne0 11078 ax-1rid 11079 ax-rnegex 11080 ax-rrecex 11081 ax-cnre 11082 ax-pre-lttri 11083 ax-pre-lttrn 11084 ax-pre-ltadd 11085 ax-pre-mulgt0 11086 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3343 df-reu 3344 df-rab 3395 df-v 3438 df-sbc 3743 df-csb 3852 df-dif 3906 df-un 3908 df-in 3910 df-ss 3920 df-pss 3923 df-nul 4285 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4859 df-iun 4943 df-br 5093 df-opab 5155 df-mpt 5174 df-tr 5200 df-id 5514 df-eprel 5519 df-po 5527 df-so 5528 df-fr 5572 df-we 5574 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-pred 6249 df-ord 6310 df-on 6311 df-lim 6312 df-suc 6313 df-iota 6438 df-fun 6484 df-fn 6485 df-f 6486 df-f1 6487 df-fo 6488 df-f1o 6489 df-fv 6490 df-riota 7306 df-ov 7352 df-oprab 7353 df-mpo 7354 df-om 7800 df-2nd 7925 df-frecs 8214 df-wrecs 8245 df-recs 8294 df-rdg 8332 df-er 8625 df-en 8873 df-dom 8874 df-sdom 8875 df-pnf 11151 df-mnf 11152 df-xr 11153 df-ltxr 11154 df-le 11155 df-sub 11349 df-neg 11350 df-nn 12129 df-2 12191 df-3 12192 df-4 12193 df-5 12194 df-6 12195 df-7 12196 df-8 12197 df-sets 17075 df-slot 17093 df-ndx 17105 df-base 17121 df-ress 17142 df-plusg 17174 df-mulr 17175 df-sca 17177 df-vsca 17178 df-ip 17179 df-0g 17345 df-mgm 18514 df-sgrp 18593 df-mnd 18609 df-grp 18815 df-abl 19662 df-mgp 20026 df-rng 20038 df-lss 20835 df-sra 21077 df-rgmod 21078 df-lidl 21115 |
| This theorem is referenced by: rnglidlmsgrp 21153 |
| Copyright terms: Public domain | W3C validator |