| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > rnglidlmmgm | Structured version Visualization version GIF version | ||
| Description: The multiplicative group of a (left) ideal of a non-unital ring is a magma. (Contributed by AV, 17-Feb-2020.) Generalization for non-unital rings. The assumption 0 ∈ 𝑈 is required because a left ideal of a non-unital ring does not have to be a subgroup. (Revised by AV, 11-Mar-2025.) |
| Ref | Expression |
|---|---|
| rnglidlabl.l | ⊢ 𝐿 = (LIdeal‘𝑅) |
| rnglidlabl.i | ⊢ 𝐼 = (𝑅 ↾s 𝑈) |
| rnglidlabl.z | ⊢ 0 = (0g‘𝑅) |
| Ref | Expression |
|---|---|
| rnglidlmmgm | ⊢ ((𝑅 ∈ Rng ∧ 𝑈 ∈ 𝐿 ∧ 0 ∈ 𝑈) → (mulGrp‘𝐼) ∈ Mgm) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simp1 1136 | . . . . . 6 ⊢ ((𝑅 ∈ Rng ∧ 𝑈 ∈ 𝐿 ∧ 0 ∈ 𝑈) → 𝑅 ∈ Rng) | |
| 2 | rnglidlabl.l | . . . . . . . . 9 ⊢ 𝐿 = (LIdeal‘𝑅) | |
| 3 | rnglidlabl.i | . . . . . . . . 9 ⊢ 𝐼 = (𝑅 ↾s 𝑈) | |
| 4 | 2, 3 | lidlbas 21100 | . . . . . . . 8 ⊢ (𝑈 ∈ 𝐿 → (Base‘𝐼) = 𝑈) |
| 5 | eleq1a 2823 | . . . . . . . 8 ⊢ (𝑈 ∈ 𝐿 → ((Base‘𝐼) = 𝑈 → (Base‘𝐼) ∈ 𝐿)) | |
| 6 | 4, 5 | mpd 15 | . . . . . . 7 ⊢ (𝑈 ∈ 𝐿 → (Base‘𝐼) ∈ 𝐿) |
| 7 | 6 | 3ad2ant2 1134 | . . . . . 6 ⊢ ((𝑅 ∈ Rng ∧ 𝑈 ∈ 𝐿 ∧ 0 ∈ 𝑈) → (Base‘𝐼) ∈ 𝐿) |
| 8 | 4 | eqcomd 2735 | . . . . . . . . 9 ⊢ (𝑈 ∈ 𝐿 → 𝑈 = (Base‘𝐼)) |
| 9 | 8 | eleq2d 2814 | . . . . . . . 8 ⊢ (𝑈 ∈ 𝐿 → ( 0 ∈ 𝑈 ↔ 0 ∈ (Base‘𝐼))) |
| 10 | 9 | biimpa 476 | . . . . . . 7 ⊢ ((𝑈 ∈ 𝐿 ∧ 0 ∈ 𝑈) → 0 ∈ (Base‘𝐼)) |
| 11 | 10 | 3adant1 1130 | . . . . . 6 ⊢ ((𝑅 ∈ Rng ∧ 𝑈 ∈ 𝐿 ∧ 0 ∈ 𝑈) → 0 ∈ (Base‘𝐼)) |
| 12 | 1, 7, 11 | 3jca 1128 | . . . . 5 ⊢ ((𝑅 ∈ Rng ∧ 𝑈 ∈ 𝐿 ∧ 0 ∈ 𝑈) → (𝑅 ∈ Rng ∧ (Base‘𝐼) ∈ 𝐿 ∧ 0 ∈ (Base‘𝐼))) |
| 13 | 2, 3 | lidlssbas 21099 | . . . . . . . . 9 ⊢ (𝑈 ∈ 𝐿 → (Base‘𝐼) ⊆ (Base‘𝑅)) |
| 14 | 13 | sseld 3942 | . . . . . . . 8 ⊢ (𝑈 ∈ 𝐿 → (𝑎 ∈ (Base‘𝐼) → 𝑎 ∈ (Base‘𝑅))) |
| 15 | 14 | 3ad2ant2 1134 | . . . . . . 7 ⊢ ((𝑅 ∈ Rng ∧ 𝑈 ∈ 𝐿 ∧ 0 ∈ 𝑈) → (𝑎 ∈ (Base‘𝐼) → 𝑎 ∈ (Base‘𝑅))) |
| 16 | 15 | anim1d 611 | . . . . . 6 ⊢ ((𝑅 ∈ Rng ∧ 𝑈 ∈ 𝐿 ∧ 0 ∈ 𝑈) → ((𝑎 ∈ (Base‘𝐼) ∧ 𝑏 ∈ (Base‘𝐼)) → (𝑎 ∈ (Base‘𝑅) ∧ 𝑏 ∈ (Base‘𝐼)))) |
| 17 | 16 | imp 406 | . . . . 5 ⊢ (((𝑅 ∈ Rng ∧ 𝑈 ∈ 𝐿 ∧ 0 ∈ 𝑈) ∧ (𝑎 ∈ (Base‘𝐼) ∧ 𝑏 ∈ (Base‘𝐼))) → (𝑎 ∈ (Base‘𝑅) ∧ 𝑏 ∈ (Base‘𝐼))) |
| 18 | rnglidlabl.z | . . . . . 6 ⊢ 0 = (0g‘𝑅) | |
| 19 | eqid 2729 | . . . . . 6 ⊢ (Base‘𝑅) = (Base‘𝑅) | |
| 20 | eqid 2729 | . . . . . 6 ⊢ (.r‘𝑅) = (.r‘𝑅) | |
| 21 | 18, 19, 20, 2 | rnglidlmcl 21102 | . . . . 5 ⊢ (((𝑅 ∈ Rng ∧ (Base‘𝐼) ∈ 𝐿 ∧ 0 ∈ (Base‘𝐼)) ∧ (𝑎 ∈ (Base‘𝑅) ∧ 𝑏 ∈ (Base‘𝐼))) → (𝑎(.r‘𝑅)𝑏) ∈ (Base‘𝐼)) |
| 22 | 12, 17, 21 | syl2an2r 685 | . . . 4 ⊢ (((𝑅 ∈ Rng ∧ 𝑈 ∈ 𝐿 ∧ 0 ∈ 𝑈) ∧ (𝑎 ∈ (Base‘𝐼) ∧ 𝑏 ∈ (Base‘𝐼))) → (𝑎(.r‘𝑅)𝑏) ∈ (Base‘𝐼)) |
| 23 | 3, 20 | ressmulr 17246 | . . . . . . . . 9 ⊢ (𝑈 ∈ 𝐿 → (.r‘𝑅) = (.r‘𝐼)) |
| 24 | 23 | eqcomd 2735 | . . . . . . . 8 ⊢ (𝑈 ∈ 𝐿 → (.r‘𝐼) = (.r‘𝑅)) |
| 25 | 24 | oveqd 7386 | . . . . . . 7 ⊢ (𝑈 ∈ 𝐿 → (𝑎(.r‘𝐼)𝑏) = (𝑎(.r‘𝑅)𝑏)) |
| 26 | 25 | eleq1d 2813 | . . . . . 6 ⊢ (𝑈 ∈ 𝐿 → ((𝑎(.r‘𝐼)𝑏) ∈ (Base‘𝐼) ↔ (𝑎(.r‘𝑅)𝑏) ∈ (Base‘𝐼))) |
| 27 | 26 | 3ad2ant2 1134 | . . . . 5 ⊢ ((𝑅 ∈ Rng ∧ 𝑈 ∈ 𝐿 ∧ 0 ∈ 𝑈) → ((𝑎(.r‘𝐼)𝑏) ∈ (Base‘𝐼) ↔ (𝑎(.r‘𝑅)𝑏) ∈ (Base‘𝐼))) |
| 28 | 27 | adantr 480 | . . . 4 ⊢ (((𝑅 ∈ Rng ∧ 𝑈 ∈ 𝐿 ∧ 0 ∈ 𝑈) ∧ (𝑎 ∈ (Base‘𝐼) ∧ 𝑏 ∈ (Base‘𝐼))) → ((𝑎(.r‘𝐼)𝑏) ∈ (Base‘𝐼) ↔ (𝑎(.r‘𝑅)𝑏) ∈ (Base‘𝐼))) |
| 29 | 22, 28 | mpbird 257 | . . 3 ⊢ (((𝑅 ∈ Rng ∧ 𝑈 ∈ 𝐿 ∧ 0 ∈ 𝑈) ∧ (𝑎 ∈ (Base‘𝐼) ∧ 𝑏 ∈ (Base‘𝐼))) → (𝑎(.r‘𝐼)𝑏) ∈ (Base‘𝐼)) |
| 30 | 29 | ralrimivva 3178 | . 2 ⊢ ((𝑅 ∈ Rng ∧ 𝑈 ∈ 𝐿 ∧ 0 ∈ 𝑈) → ∀𝑎 ∈ (Base‘𝐼)∀𝑏 ∈ (Base‘𝐼)(𝑎(.r‘𝐼)𝑏) ∈ (Base‘𝐼)) |
| 31 | fvex 6853 | . . 3 ⊢ (mulGrp‘𝐼) ∈ V | |
| 32 | eqid 2729 | . . . . 5 ⊢ (mulGrp‘𝐼) = (mulGrp‘𝐼) | |
| 33 | eqid 2729 | . . . . 5 ⊢ (Base‘𝐼) = (Base‘𝐼) | |
| 34 | 32, 33 | mgpbas 20030 | . . . 4 ⊢ (Base‘𝐼) = (Base‘(mulGrp‘𝐼)) |
| 35 | eqid 2729 | . . . . 5 ⊢ (.r‘𝐼) = (.r‘𝐼) | |
| 36 | 32, 35 | mgpplusg 20029 | . . . 4 ⊢ (.r‘𝐼) = (+g‘(mulGrp‘𝐼)) |
| 37 | 34, 36 | ismgm 18544 | . . 3 ⊢ ((mulGrp‘𝐼) ∈ V → ((mulGrp‘𝐼) ∈ Mgm ↔ ∀𝑎 ∈ (Base‘𝐼)∀𝑏 ∈ (Base‘𝐼)(𝑎(.r‘𝐼)𝑏) ∈ (Base‘𝐼))) |
| 38 | 31, 37 | mp1i 13 | . 2 ⊢ ((𝑅 ∈ Rng ∧ 𝑈 ∈ 𝐿 ∧ 0 ∈ 𝑈) → ((mulGrp‘𝐼) ∈ Mgm ↔ ∀𝑎 ∈ (Base‘𝐼)∀𝑏 ∈ (Base‘𝐼)(𝑎(.r‘𝐼)𝑏) ∈ (Base‘𝐼))) |
| 39 | 30, 38 | mpbird 257 | 1 ⊢ ((𝑅 ∈ Rng ∧ 𝑈 ∈ 𝐿 ∧ 0 ∈ 𝑈) → (mulGrp‘𝐼) ∈ Mgm) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 ∀wral 3044 Vcvv 3444 ‘cfv 6499 (class class class)co 7369 Basecbs 17155 ↾s cress 17176 .rcmulr 17197 0gc0g 17378 Mgmcmgm 18541 mulGrpcmgp 20025 Rngcrng 20037 LIdealclidl 21092 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5229 ax-sep 5246 ax-nul 5256 ax-pow 5315 ax-pr 5382 ax-un 7691 ax-cnex 11100 ax-resscn 11101 ax-1cn 11102 ax-icn 11103 ax-addcl 11104 ax-addrcl 11105 ax-mulcl 11106 ax-mulrcl 11107 ax-mulcom 11108 ax-addass 11109 ax-mulass 11110 ax-distr 11111 ax-i2m1 11112 ax-1ne0 11113 ax-1rid 11114 ax-rnegex 11115 ax-rrecex 11116 ax-cnre 11117 ax-pre-lttri 11118 ax-pre-lttrn 11119 ax-pre-ltadd 11120 ax-pre-mulgt0 11121 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3351 df-reu 3352 df-rab 3403 df-v 3446 df-sbc 3751 df-csb 3860 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-pss 3931 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-iun 4953 df-br 5103 df-opab 5165 df-mpt 5184 df-tr 5210 df-id 5526 df-eprel 5531 df-po 5539 df-so 5540 df-fr 5584 df-we 5586 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-pred 6262 df-ord 6323 df-on 6324 df-lim 6325 df-suc 6326 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-f1 6504 df-fo 6505 df-f1o 6506 df-fv 6507 df-riota 7326 df-ov 7372 df-oprab 7373 df-mpo 7374 df-om 7823 df-2nd 7948 df-frecs 8237 df-wrecs 8268 df-recs 8317 df-rdg 8355 df-er 8648 df-en 8896 df-dom 8897 df-sdom 8898 df-pnf 11186 df-mnf 11187 df-xr 11188 df-ltxr 11189 df-le 11190 df-sub 11383 df-neg 11384 df-nn 12163 df-2 12225 df-3 12226 df-4 12227 df-5 12228 df-6 12229 df-7 12230 df-8 12231 df-sets 17110 df-slot 17128 df-ndx 17140 df-base 17156 df-ress 17177 df-plusg 17209 df-mulr 17210 df-sca 17212 df-vsca 17213 df-ip 17214 df-0g 17380 df-mgm 18543 df-sgrp 18622 df-mnd 18638 df-grp 18844 df-abl 19689 df-mgp 20026 df-rng 20038 df-lss 20814 df-sra 21056 df-rgmod 21057 df-lidl 21094 |
| This theorem is referenced by: rnglidlmsgrp 21132 |
| Copyright terms: Public domain | W3C validator |