MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rnglidlmmgm Structured version   Visualization version   GIF version

Theorem rnglidlmmgm 21182
Description: The multiplicative group of a (left) ideal of a non-unital ring is a magma. (Contributed by AV, 17-Feb-2020.) Generalization for non-unital rings. The assumption 0𝑈 is required because a left ideal of a non-unital ring does not have to be a subgroup. (Revised by AV, 11-Mar-2025.)
Hypotheses
Ref Expression
rnglidlabl.l 𝐿 = (LIdeal‘𝑅)
rnglidlabl.i 𝐼 = (𝑅s 𝑈)
rnglidlabl.z 0 = (0g𝑅)
Assertion
Ref Expression
rnglidlmmgm ((𝑅 ∈ Rng ∧ 𝑈𝐿0𝑈) → (mulGrp‘𝐼) ∈ Mgm)

Proof of Theorem rnglidlmmgm
Dummy variables 𝑎 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simp1 1136 . . . . . 6 ((𝑅 ∈ Rng ∧ 𝑈𝐿0𝑈) → 𝑅 ∈ Rng)
2 rnglidlabl.l . . . . . . . . 9 𝐿 = (LIdeal‘𝑅)
3 rnglidlabl.i . . . . . . . . 9 𝐼 = (𝑅s 𝑈)
42, 3lidlbas 21151 . . . . . . . 8 (𝑈𝐿 → (Base‘𝐼) = 𝑈)
5 eleq1a 2826 . . . . . . . 8 (𝑈𝐿 → ((Base‘𝐼) = 𝑈 → (Base‘𝐼) ∈ 𝐿))
64, 5mpd 15 . . . . . . 7 (𝑈𝐿 → (Base‘𝐼) ∈ 𝐿)
763ad2ant2 1134 . . . . . 6 ((𝑅 ∈ Rng ∧ 𝑈𝐿0𝑈) → (Base‘𝐼) ∈ 𝐿)
84eqcomd 2737 . . . . . . . . 9 (𝑈𝐿𝑈 = (Base‘𝐼))
98eleq2d 2817 . . . . . . . 8 (𝑈𝐿 → ( 0𝑈0 ∈ (Base‘𝐼)))
109biimpa 476 . . . . . . 7 ((𝑈𝐿0𝑈) → 0 ∈ (Base‘𝐼))
11103adant1 1130 . . . . . 6 ((𝑅 ∈ Rng ∧ 𝑈𝐿0𝑈) → 0 ∈ (Base‘𝐼))
121, 7, 113jca 1128 . . . . 5 ((𝑅 ∈ Rng ∧ 𝑈𝐿0𝑈) → (𝑅 ∈ Rng ∧ (Base‘𝐼) ∈ 𝐿0 ∈ (Base‘𝐼)))
132, 3lidlssbas 21150 . . . . . . . . 9 (𝑈𝐿 → (Base‘𝐼) ⊆ (Base‘𝑅))
1413sseld 3928 . . . . . . . 8 (𝑈𝐿 → (𝑎 ∈ (Base‘𝐼) → 𝑎 ∈ (Base‘𝑅)))
15143ad2ant2 1134 . . . . . . 7 ((𝑅 ∈ Rng ∧ 𝑈𝐿0𝑈) → (𝑎 ∈ (Base‘𝐼) → 𝑎 ∈ (Base‘𝑅)))
1615anim1d 611 . . . . . 6 ((𝑅 ∈ Rng ∧ 𝑈𝐿0𝑈) → ((𝑎 ∈ (Base‘𝐼) ∧ 𝑏 ∈ (Base‘𝐼)) → (𝑎 ∈ (Base‘𝑅) ∧ 𝑏 ∈ (Base‘𝐼))))
1716imp 406 . . . . 5 (((𝑅 ∈ Rng ∧ 𝑈𝐿0𝑈) ∧ (𝑎 ∈ (Base‘𝐼) ∧ 𝑏 ∈ (Base‘𝐼))) → (𝑎 ∈ (Base‘𝑅) ∧ 𝑏 ∈ (Base‘𝐼)))
18 rnglidlabl.z . . . . . 6 0 = (0g𝑅)
19 eqid 2731 . . . . . 6 (Base‘𝑅) = (Base‘𝑅)
20 eqid 2731 . . . . . 6 (.r𝑅) = (.r𝑅)
2118, 19, 20, 2rnglidlmcl 21153 . . . . 5 (((𝑅 ∈ Rng ∧ (Base‘𝐼) ∈ 𝐿0 ∈ (Base‘𝐼)) ∧ (𝑎 ∈ (Base‘𝑅) ∧ 𝑏 ∈ (Base‘𝐼))) → (𝑎(.r𝑅)𝑏) ∈ (Base‘𝐼))
2212, 17, 21syl2an2r 685 . . . 4 (((𝑅 ∈ Rng ∧ 𝑈𝐿0𝑈) ∧ (𝑎 ∈ (Base‘𝐼) ∧ 𝑏 ∈ (Base‘𝐼))) → (𝑎(.r𝑅)𝑏) ∈ (Base‘𝐼))
233, 20ressmulr 17211 . . . . . . . . 9 (𝑈𝐿 → (.r𝑅) = (.r𝐼))
2423eqcomd 2737 . . . . . . . 8 (𝑈𝐿 → (.r𝐼) = (.r𝑅))
2524oveqd 7363 . . . . . . 7 (𝑈𝐿 → (𝑎(.r𝐼)𝑏) = (𝑎(.r𝑅)𝑏))
2625eleq1d 2816 . . . . . 6 (𝑈𝐿 → ((𝑎(.r𝐼)𝑏) ∈ (Base‘𝐼) ↔ (𝑎(.r𝑅)𝑏) ∈ (Base‘𝐼)))
27263ad2ant2 1134 . . . . 5 ((𝑅 ∈ Rng ∧ 𝑈𝐿0𝑈) → ((𝑎(.r𝐼)𝑏) ∈ (Base‘𝐼) ↔ (𝑎(.r𝑅)𝑏) ∈ (Base‘𝐼)))
2827adantr 480 . . . 4 (((𝑅 ∈ Rng ∧ 𝑈𝐿0𝑈) ∧ (𝑎 ∈ (Base‘𝐼) ∧ 𝑏 ∈ (Base‘𝐼))) → ((𝑎(.r𝐼)𝑏) ∈ (Base‘𝐼) ↔ (𝑎(.r𝑅)𝑏) ∈ (Base‘𝐼)))
2922, 28mpbird 257 . . 3 (((𝑅 ∈ Rng ∧ 𝑈𝐿0𝑈) ∧ (𝑎 ∈ (Base‘𝐼) ∧ 𝑏 ∈ (Base‘𝐼))) → (𝑎(.r𝐼)𝑏) ∈ (Base‘𝐼))
3029ralrimivva 3175 . 2 ((𝑅 ∈ Rng ∧ 𝑈𝐿0𝑈) → ∀𝑎 ∈ (Base‘𝐼)∀𝑏 ∈ (Base‘𝐼)(𝑎(.r𝐼)𝑏) ∈ (Base‘𝐼))
31 fvex 6835 . . 3 (mulGrp‘𝐼) ∈ V
32 eqid 2731 . . . . 5 (mulGrp‘𝐼) = (mulGrp‘𝐼)
33 eqid 2731 . . . . 5 (Base‘𝐼) = (Base‘𝐼)
3432, 33mgpbas 20063 . . . 4 (Base‘𝐼) = (Base‘(mulGrp‘𝐼))
35 eqid 2731 . . . . 5 (.r𝐼) = (.r𝐼)
3632, 35mgpplusg 20062 . . . 4 (.r𝐼) = (+g‘(mulGrp‘𝐼))
3734, 36ismgm 18549 . . 3 ((mulGrp‘𝐼) ∈ V → ((mulGrp‘𝐼) ∈ Mgm ↔ ∀𝑎 ∈ (Base‘𝐼)∀𝑏 ∈ (Base‘𝐼)(𝑎(.r𝐼)𝑏) ∈ (Base‘𝐼)))
3831, 37mp1i 13 . 2 ((𝑅 ∈ Rng ∧ 𝑈𝐿0𝑈) → ((mulGrp‘𝐼) ∈ Mgm ↔ ∀𝑎 ∈ (Base‘𝐼)∀𝑏 ∈ (Base‘𝐼)(𝑎(.r𝐼)𝑏) ∈ (Base‘𝐼)))
3930, 38mpbird 257 1 ((𝑅 ∈ Rng ∧ 𝑈𝐿0𝑈) → (mulGrp‘𝐼) ∈ Mgm)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1541  wcel 2111  wral 3047  Vcvv 3436  cfv 6481  (class class class)co 7346  Basecbs 17120  s cress 17141  .rcmulr 17162  0gc0g 17343  Mgmcmgm 18546  mulGrpcmgp 20058  Rngcrng 20070  LIdealclidl 21143
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5215  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7668  ax-cnex 11062  ax-resscn 11063  ax-1cn 11064  ax-icn 11065  ax-addcl 11066  ax-addrcl 11067  ax-mulcl 11068  ax-mulrcl 11069  ax-mulcom 11070  ax-addass 11071  ax-mulass 11072  ax-distr 11073  ax-i2m1 11074  ax-1ne0 11075  ax-1rid 11076  ax-rnegex 11077  ax-rrecex 11078  ax-cnre 11079  ax-pre-lttri 11080  ax-pre-lttrn 11081  ax-pre-ltadd 11082  ax-pre-mulgt0 11083
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-iun 4941  df-br 5090  df-opab 5152  df-mpt 5171  df-tr 5197  df-id 5509  df-eprel 5514  df-po 5522  df-so 5523  df-fr 5567  df-we 5569  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-om 7797  df-2nd 7922  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-er 8622  df-en 8870  df-dom 8871  df-sdom 8872  df-pnf 11148  df-mnf 11149  df-xr 11150  df-ltxr 11151  df-le 11152  df-sub 11346  df-neg 11347  df-nn 12126  df-2 12188  df-3 12189  df-4 12190  df-5 12191  df-6 12192  df-7 12193  df-8 12194  df-sets 17075  df-slot 17093  df-ndx 17105  df-base 17121  df-ress 17142  df-plusg 17174  df-mulr 17175  df-sca 17177  df-vsca 17178  df-ip 17179  df-0g 17345  df-mgm 18548  df-sgrp 18627  df-mnd 18643  df-grp 18849  df-abl 19695  df-mgp 20059  df-rng 20071  df-lss 20865  df-sra 21107  df-rgmod 21108  df-lidl 21145
This theorem is referenced by:  rnglidlmsgrp  21183
  Copyright terms: Public domain W3C validator