MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tmsms Structured version   Visualization version   GIF version

Theorem tmsms 23549
Description: The constructed metric space is a metric space given a metric. (Contributed by Mario Carneiro, 2-Sep-2015.)
Hypothesis
Ref Expression
tmsbas.k 𝐾 = (toMetSp‘𝐷)
Assertion
Ref Expression
tmsms (𝐷 ∈ (Met‘𝑋) → 𝐾 ∈ MetSp)

Proof of Theorem tmsms
StepHypRef Expression
1 metxmet 23395 . . 3 (𝐷 ∈ (Met‘𝑋) → 𝐷 ∈ (∞Met‘𝑋))
2 tmsbas.k . . . 4 𝐾 = (toMetSp‘𝐷)
32tmsxms 23548 . . 3 (𝐷 ∈ (∞Met‘𝑋) → 𝐾 ∈ ∞MetSp)
41, 3syl 17 . 2 (𝐷 ∈ (Met‘𝑋) → 𝐾 ∈ ∞MetSp)
52tmsds 23546 . . . . . 6 (𝐷 ∈ (∞Met‘𝑋) → 𝐷 = (dist‘𝐾))
61, 5syl 17 . . . . 5 (𝐷 ∈ (Met‘𝑋) → 𝐷 = (dist‘𝐾))
72tmsbas 23545 . . . . . . 7 (𝐷 ∈ (∞Met‘𝑋) → 𝑋 = (Base‘𝐾))
81, 7syl 17 . . . . . 6 (𝐷 ∈ (Met‘𝑋) → 𝑋 = (Base‘𝐾))
98fveq2d 6760 . . . . 5 (𝐷 ∈ (Met‘𝑋) → (Met‘𝑋) = (Met‘(Base‘𝐾)))
106, 9eleq12d 2833 . . . 4 (𝐷 ∈ (Met‘𝑋) → (𝐷 ∈ (Met‘𝑋) ↔ (dist‘𝐾) ∈ (Met‘(Base‘𝐾))))
1110ibi 266 . . 3 (𝐷 ∈ (Met‘𝑋) → (dist‘𝐾) ∈ (Met‘(Base‘𝐾)))
12 ssid 3939 . . 3 (Base‘𝐾) ⊆ (Base‘𝐾)
13 metres2 23424 . . 3 (((dist‘𝐾) ∈ (Met‘(Base‘𝐾)) ∧ (Base‘𝐾) ⊆ (Base‘𝐾)) → ((dist‘𝐾) ↾ ((Base‘𝐾) × (Base‘𝐾))) ∈ (Met‘(Base‘𝐾)))
1411, 12, 13sylancl 585 . 2 (𝐷 ∈ (Met‘𝑋) → ((dist‘𝐾) ↾ ((Base‘𝐾) × (Base‘𝐾))) ∈ (Met‘(Base‘𝐾)))
15 eqid 2738 . . 3 (TopOpen‘𝐾) = (TopOpen‘𝐾)
16 eqid 2738 . . 3 (Base‘𝐾) = (Base‘𝐾)
17 eqid 2738 . . 3 ((dist‘𝐾) ↾ ((Base‘𝐾) × (Base‘𝐾))) = ((dist‘𝐾) ↾ ((Base‘𝐾) × (Base‘𝐾)))
1815, 16, 17isms 23510 . 2 (𝐾 ∈ MetSp ↔ (𝐾 ∈ ∞MetSp ∧ ((dist‘𝐾) ↾ ((Base‘𝐾) × (Base‘𝐾))) ∈ (Met‘(Base‘𝐾))))
194, 14, 18sylanbrc 582 1 (𝐷 ∈ (Met‘𝑋) → 𝐾 ∈ MetSp)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1539  wcel 2108  wss 3883   × cxp 5578  cres 5582  cfv 6418  Basecbs 16840  distcds 16897  TopOpenctopn 17049  ∞Metcxmet 20495  Metcmet 20496  ∞MetSpcxms 23378  MetSpcms 23379  toMetSpctms 23380
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879  ax-pre-sup 10880
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-om 7688  df-1st 7804  df-2nd 7805  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-1o 8267  df-er 8456  df-map 8575  df-en 8692  df-dom 8693  df-sdom 8694  df-fin 8695  df-sup 9131  df-inf 9132  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-div 11563  df-nn 11904  df-2 11966  df-3 11967  df-4 11968  df-5 11969  df-6 11970  df-7 11971  df-8 11972  df-9 11973  df-n0 12164  df-z 12250  df-dec 12367  df-uz 12512  df-q 12618  df-rp 12660  df-xneg 12777  df-xadd 12778  df-xmul 12779  df-fz 13169  df-struct 16776  df-sets 16793  df-slot 16811  df-ndx 16823  df-base 16841  df-tset 16907  df-ds 16910  df-rest 17050  df-topn 17051  df-topgen 17071  df-psmet 20502  df-xmet 20503  df-met 20504  df-bl 20505  df-mopn 20506  df-top 21951  df-topon 21968  df-topsp 21990  df-bases 22004  df-xms 23381  df-ms 23382  df-tms 23383
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator