MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  setsms Structured version   Visualization version   GIF version

Theorem setsms 22662
Description: The constructed metric space is a metric space iff the provided distance function is a metric. (Contributed by Mario Carneiro, 28-Aug-2015.)
Hypotheses
Ref Expression
setsms.x (𝜑𝑋 = (Base‘𝑀))
setsms.d (𝜑𝐷 = ((dist‘𝑀) ↾ (𝑋 × 𝑋)))
setsms.k (𝜑𝐾 = (𝑀 sSet ⟨(TopSet‘ndx), (MetOpen‘𝐷)⟩))
setsms.m (𝜑𝑀𝑉)
Assertion
Ref Expression
setsms (𝜑 → (𝐾 ∈ MetSp ↔ 𝐷 ∈ (Met‘𝑋)))

Proof of Theorem setsms
StepHypRef Expression
1 setsms.x . . . 4 (𝜑𝑋 = (Base‘𝑀))
2 setsms.d . . . 4 (𝜑𝐷 = ((dist‘𝑀) ↾ (𝑋 × 𝑋)))
3 setsms.k . . . 4 (𝜑𝐾 = (𝑀 sSet ⟨(TopSet‘ndx), (MetOpen‘𝐷)⟩))
4 setsms.m . . . 4 (𝜑𝑀𝑉)
51, 2, 3, 4setsxms 22661 . . 3 (𝜑 → (𝐾 ∈ ∞MetSp ↔ 𝐷 ∈ (∞Met‘𝑋)))
61, 2, 3setsmsds 22658 . . . . . 6 (𝜑 → (dist‘𝑀) = (dist‘𝐾))
71, 2, 3setsmsbas 22657 . . . . . . 7 (𝜑𝑋 = (Base‘𝐾))
87sqxpeqd 5378 . . . . . 6 (𝜑 → (𝑋 × 𝑋) = ((Base‘𝐾) × (Base‘𝐾)))
96, 8reseq12d 5634 . . . . 5 (𝜑 → ((dist‘𝑀) ↾ (𝑋 × 𝑋)) = ((dist‘𝐾) ↾ ((Base‘𝐾) × (Base‘𝐾))))
102, 9eqtr2d 2862 . . . 4 (𝜑 → ((dist‘𝐾) ↾ ((Base‘𝐾) × (Base‘𝐾))) = 𝐷)
117fveq2d 6441 . . . . 5 (𝜑 → (Met‘𝑋) = (Met‘(Base‘𝐾)))
1211eqcomd 2831 . . . 4 (𝜑 → (Met‘(Base‘𝐾)) = (Met‘𝑋))
1310, 12eleq12d 2900 . . 3 (𝜑 → (((dist‘𝐾) ↾ ((Base‘𝐾) × (Base‘𝐾))) ∈ (Met‘(Base‘𝐾)) ↔ 𝐷 ∈ (Met‘𝑋)))
145, 13anbi12d 624 . 2 (𝜑 → ((𝐾 ∈ ∞MetSp ∧ ((dist‘𝐾) ↾ ((Base‘𝐾) × (Base‘𝐾))) ∈ (Met‘(Base‘𝐾))) ↔ (𝐷 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (Met‘𝑋))))
15 eqid 2825 . . 3 (TopOpen‘𝐾) = (TopOpen‘𝐾)
16 eqid 2825 . . 3 (Base‘𝐾) = (Base‘𝐾)
17 eqid 2825 . . 3 ((dist‘𝐾) ↾ ((Base‘𝐾) × (Base‘𝐾))) = ((dist‘𝐾) ↾ ((Base‘𝐾) × (Base‘𝐾)))
1815, 16, 17isms 22631 . 2 (𝐾 ∈ MetSp ↔ (𝐾 ∈ ∞MetSp ∧ ((dist‘𝐾) ↾ ((Base‘𝐾) × (Base‘𝐾))) ∈ (Met‘(Base‘𝐾))))
19 metxmet 22516 . . 3 (𝐷 ∈ (Met‘𝑋) → 𝐷 ∈ (∞Met‘𝑋))
2019pm4.71ri 556 . 2 (𝐷 ∈ (Met‘𝑋) ↔ (𝐷 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (Met‘𝑋)))
2114, 18, 203bitr4g 306 1 (𝜑 → (𝐾 ∈ MetSp ↔ 𝐷 ∈ (Met‘𝑋)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 198  wa 386   = wceq 1656  wcel 2164  cop 4405   × cxp 5344  cres 5348  cfv 6127  (class class class)co 6910  ndxcnx 16226   sSet csts 16227  Basecbs 16229  TopSetcts 16318  distcds 16321  TopOpenctopn 16442  ∞Metcxmet 20098  Metcmet 20099  MetOpencmopn 20103  ∞MetSpcxms 22499  MetSpcms 22500
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1894  ax-4 1908  ax-5 2009  ax-6 2075  ax-7 2112  ax-8 2166  ax-9 2173  ax-10 2192  ax-11 2207  ax-12 2220  ax-13 2389  ax-ext 2803  ax-rep 4996  ax-sep 5007  ax-nul 5015  ax-pow 5067  ax-pr 5129  ax-un 7214  ax-cnex 10315  ax-resscn 10316  ax-1cn 10317  ax-icn 10318  ax-addcl 10319  ax-addrcl 10320  ax-mulcl 10321  ax-mulrcl 10322  ax-mulcom 10323  ax-addass 10324  ax-mulass 10325  ax-distr 10326  ax-i2m1 10327  ax-1ne0 10328  ax-1rid 10329  ax-rnegex 10330  ax-rrecex 10331  ax-cnre 10332  ax-pre-lttri 10333  ax-pre-lttrn 10334  ax-pre-ltadd 10335  ax-pre-mulgt0 10336  ax-pre-sup 10337
This theorem depends on definitions:  df-bi 199  df-an 387  df-or 879  df-3or 1112  df-3an 1113  df-tru 1660  df-ex 1879  df-nf 1883  df-sb 2068  df-mo 2605  df-eu 2640  df-clab 2812  df-cleq 2818  df-clel 2821  df-nfc 2958  df-ne 3000  df-nel 3103  df-ral 3122  df-rex 3123  df-reu 3124  df-rmo 3125  df-rab 3126  df-v 3416  df-sbc 3663  df-csb 3758  df-dif 3801  df-un 3803  df-in 3805  df-ss 3812  df-pss 3814  df-nul 4147  df-if 4309  df-pw 4382  df-sn 4400  df-pr 4402  df-tp 4404  df-op 4406  df-uni 4661  df-iun 4744  df-br 4876  df-opab 4938  df-mpt 4955  df-tr 4978  df-id 5252  df-eprel 5257  df-po 5265  df-so 5266  df-fr 5305  df-we 5307  df-xp 5352  df-rel 5353  df-cnv 5354  df-co 5355  df-dm 5356  df-rn 5357  df-res 5358  df-ima 5359  df-pred 5924  df-ord 5970  df-on 5971  df-lim 5972  df-suc 5973  df-iota 6090  df-fun 6129  df-fn 6130  df-f 6131  df-f1 6132  df-fo 6133  df-f1o 6134  df-fv 6135  df-riota 6871  df-ov 6913  df-oprab 6914  df-mpt2 6915  df-om 7332  df-1st 7433  df-2nd 7434  df-wrecs 7677  df-recs 7739  df-rdg 7777  df-er 8014  df-map 8129  df-en 8229  df-dom 8230  df-sdom 8231  df-sup 8623  df-inf 8624  df-pnf 10400  df-mnf 10401  df-xr 10402  df-ltxr 10403  df-le 10404  df-sub 10594  df-neg 10595  df-div 11017  df-nn 11358  df-2 11421  df-3 11422  df-4 11423  df-5 11424  df-6 11425  df-7 11426  df-8 11427  df-9 11428  df-n0 11626  df-z 11712  df-dec 11829  df-uz 11976  df-q 12079  df-rp 12120  df-xneg 12239  df-xadd 12240  df-xmul 12241  df-ndx 16232  df-slot 16233  df-base 16235  df-sets 16236  df-tset 16331  df-ds 16334  df-rest 16443  df-topn 16444  df-topgen 16464  df-psmet 20105  df-xmet 20106  df-met 20107  df-bl 20108  df-mopn 20109  df-top 21076  df-topon 21093  df-topsp 21115  df-bases 21128  df-xms 22502  df-ms 22503
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator