MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  setsms Structured version   Visualization version   GIF version

Theorem setsms 24398
Description: The constructed metric space is a metric space iff the provided distance function is a metric. (Contributed by Mario Carneiro, 28-Aug-2015.)
Hypotheses
Ref Expression
setsms.x (𝜑𝑋 = (Base‘𝑀))
setsms.d (𝜑𝐷 = ((dist‘𝑀) ↾ (𝑋 × 𝑋)))
setsms.k (𝜑𝐾 = (𝑀 sSet ⟨(TopSet‘ndx), (MetOpen‘𝐷)⟩))
setsms.m (𝜑𝑀𝑉)
Assertion
Ref Expression
setsms (𝜑 → (𝐾 ∈ MetSp ↔ 𝐷 ∈ (Met‘𝑋)))

Proof of Theorem setsms
StepHypRef Expression
1 setsms.x . . . 4 (𝜑𝑋 = (Base‘𝑀))
2 setsms.d . . . 4 (𝜑𝐷 = ((dist‘𝑀) ↾ (𝑋 × 𝑋)))
3 setsms.k . . . 4 (𝜑𝐾 = (𝑀 sSet ⟨(TopSet‘ndx), (MetOpen‘𝐷)⟩))
4 setsms.m . . . 4 (𝜑𝑀𝑉)
51, 2, 3, 4setsxms 24397 . . 3 (𝜑 → (𝐾 ∈ ∞MetSp ↔ 𝐷 ∈ (∞Met‘𝑋)))
61, 2, 3setsmsds 24394 . . . . . 6 (𝜑 → (dist‘𝑀) = (dist‘𝐾))
71, 2, 3setsmsbas 24393 . . . . . . 7 (𝜑𝑋 = (Base‘𝐾))
87sqxpeqd 5653 . . . . . 6 (𝜑 → (𝑋 × 𝑋) = ((Base‘𝐾) × (Base‘𝐾)))
96, 8reseq12d 5935 . . . . 5 (𝜑 → ((dist‘𝑀) ↾ (𝑋 × 𝑋)) = ((dist‘𝐾) ↾ ((Base‘𝐾) × (Base‘𝐾))))
102, 9eqtr2d 2769 . . . 4 (𝜑 → ((dist‘𝐾) ↾ ((Base‘𝐾) × (Base‘𝐾))) = 𝐷)
117fveq2d 6834 . . . . 5 (𝜑 → (Met‘𝑋) = (Met‘(Base‘𝐾)))
1211eqcomd 2739 . . . 4 (𝜑 → (Met‘(Base‘𝐾)) = (Met‘𝑋))
1310, 12eleq12d 2827 . . 3 (𝜑 → (((dist‘𝐾) ↾ ((Base‘𝐾) × (Base‘𝐾))) ∈ (Met‘(Base‘𝐾)) ↔ 𝐷 ∈ (Met‘𝑋)))
145, 13anbi12d 632 . 2 (𝜑 → ((𝐾 ∈ ∞MetSp ∧ ((dist‘𝐾) ↾ ((Base‘𝐾) × (Base‘𝐾))) ∈ (Met‘(Base‘𝐾))) ↔ (𝐷 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (Met‘𝑋))))
15 eqid 2733 . . 3 (TopOpen‘𝐾) = (TopOpen‘𝐾)
16 eqid 2733 . . 3 (Base‘𝐾) = (Base‘𝐾)
17 eqid 2733 . . 3 ((dist‘𝐾) ↾ ((Base‘𝐾) × (Base‘𝐾))) = ((dist‘𝐾) ↾ ((Base‘𝐾) × (Base‘𝐾)))
1815, 16, 17isms 24367 . 2 (𝐾 ∈ MetSp ↔ (𝐾 ∈ ∞MetSp ∧ ((dist‘𝐾) ↾ ((Base‘𝐾) × (Base‘𝐾))) ∈ (Met‘(Base‘𝐾))))
19 metxmet 24252 . . 3 (𝐷 ∈ (Met‘𝑋) → 𝐷 ∈ (∞Met‘𝑋))
2019pm4.71ri 560 . 2 (𝐷 ∈ (Met‘𝑋) ↔ (𝐷 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (Met‘𝑋)))
2114, 18, 203bitr4g 314 1 (𝜑 → (𝐾 ∈ MetSp ↔ 𝐷 ∈ (Met‘𝑋)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1541  wcel 2113  cop 4583   × cxp 5619  cres 5623  cfv 6488  (class class class)co 7354   sSet csts 17078  ndxcnx 17108  Basecbs 17124  TopSetcts 17171  distcds 17174  TopOpenctopn 17329  ∞Metcxmet 21280  Metcmet 21281  MetOpencmopn 21285  ∞MetSpcxms 24235  MetSpcms 24236
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7676  ax-cnex 11071  ax-resscn 11072  ax-1cn 11073  ax-icn 11074  ax-addcl 11075  ax-addrcl 11076  ax-mulcl 11077  ax-mulrcl 11078  ax-mulcom 11079  ax-addass 11080  ax-mulass 11081  ax-distr 11082  ax-i2m1 11083  ax-1ne0 11084  ax-1rid 11085  ax-rnegex 11086  ax-rrecex 11087  ax-cnre 11088  ax-pre-lttri 11089  ax-pre-lttrn 11090  ax-pre-ltadd 11091  ax-pre-mulgt0 11092  ax-pre-sup 11093
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-nel 3034  df-ral 3049  df-rex 3058  df-rmo 3347  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-pss 3918  df-nul 4283  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4861  df-iun 4945  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5516  df-eprel 5521  df-po 5529  df-so 5530  df-fr 5574  df-we 5576  df-xp 5627  df-rel 5628  df-cnv 5629  df-co 5630  df-dm 5631  df-rn 5632  df-res 5633  df-ima 5634  df-pred 6255  df-ord 6316  df-on 6317  df-lim 6318  df-suc 6319  df-iota 6444  df-fun 6490  df-fn 6491  df-f 6492  df-f1 6493  df-fo 6494  df-f1o 6495  df-fv 6496  df-riota 7311  df-ov 7357  df-oprab 7358  df-mpo 7359  df-om 7805  df-1st 7929  df-2nd 7930  df-frecs 8219  df-wrecs 8250  df-recs 8299  df-rdg 8337  df-er 8630  df-map 8760  df-en 8878  df-dom 8879  df-sdom 8880  df-sup 9335  df-inf 9336  df-pnf 11157  df-mnf 11158  df-xr 11159  df-ltxr 11160  df-le 11161  df-sub 11355  df-neg 11356  df-div 11784  df-nn 12135  df-2 12197  df-3 12198  df-4 12199  df-5 12200  df-6 12201  df-7 12202  df-8 12203  df-9 12204  df-n0 12391  df-z 12478  df-dec 12597  df-uz 12741  df-q 12851  df-rp 12895  df-xneg 13015  df-xadd 13016  df-xmul 13017  df-sets 17079  df-slot 17097  df-ndx 17109  df-base 17125  df-tset 17184  df-ds 17187  df-rest 17330  df-topn 17331  df-topgen 17351  df-psmet 21287  df-xmet 21288  df-met 21289  df-bl 21290  df-mopn 21291  df-top 22812  df-topon 22829  df-topsp 22851  df-bases 22864  df-xms 24238  df-ms 24239
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator