| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > imasf1oms | Structured version Visualization version GIF version | ||
| Description: The image of a metric space is a metric space. (Contributed by Mario Carneiro, 28-Aug-2015.) |
| Ref | Expression |
|---|---|
| imasf1obl.u | ⊢ (𝜑 → 𝑈 = (𝐹 “s 𝑅)) |
| imasf1obl.v | ⊢ (𝜑 → 𝑉 = (Base‘𝑅)) |
| imasf1obl.f | ⊢ (𝜑 → 𝐹:𝑉–1-1-onto→𝐵) |
| imasf1oms.r | ⊢ (𝜑 → 𝑅 ∈ MetSp) |
| Ref | Expression |
|---|---|
| imasf1oms | ⊢ (𝜑 → 𝑈 ∈ MetSp) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | imasf1obl.u | . . 3 ⊢ (𝜑 → 𝑈 = (𝐹 “s 𝑅)) | |
| 2 | imasf1obl.v | . . 3 ⊢ (𝜑 → 𝑉 = (Base‘𝑅)) | |
| 3 | imasf1obl.f | . . 3 ⊢ (𝜑 → 𝐹:𝑉–1-1-onto→𝐵) | |
| 4 | imasf1oms.r | . . . 4 ⊢ (𝜑 → 𝑅 ∈ MetSp) | |
| 5 | msxms 24377 | . . . 4 ⊢ (𝑅 ∈ MetSp → 𝑅 ∈ ∞MetSp) | |
| 6 | 4, 5 | syl 17 | . . 3 ⊢ (𝜑 → 𝑅 ∈ ∞MetSp) |
| 7 | 1, 2, 3, 6 | imasf1oxms 24412 | . 2 ⊢ (𝜑 → 𝑈 ∈ ∞MetSp) |
| 8 | eqid 2729 | . . . . 5 ⊢ ((dist‘𝑅) ↾ (𝑉 × 𝑉)) = ((dist‘𝑅) ↾ (𝑉 × 𝑉)) | |
| 9 | eqid 2729 | . . . . 5 ⊢ (dist‘𝑈) = (dist‘𝑈) | |
| 10 | eqid 2729 | . . . . . . . 8 ⊢ (Base‘𝑅) = (Base‘𝑅) | |
| 11 | eqid 2729 | . . . . . . . 8 ⊢ ((dist‘𝑅) ↾ ((Base‘𝑅) × (Base‘𝑅))) = ((dist‘𝑅) ↾ ((Base‘𝑅) × (Base‘𝑅))) | |
| 12 | 10, 11 | msmet 24380 | . . . . . . 7 ⊢ (𝑅 ∈ MetSp → ((dist‘𝑅) ↾ ((Base‘𝑅) × (Base‘𝑅))) ∈ (Met‘(Base‘𝑅))) |
| 13 | 4, 12 | syl 17 | . . . . . 6 ⊢ (𝜑 → ((dist‘𝑅) ↾ ((Base‘𝑅) × (Base‘𝑅))) ∈ (Met‘(Base‘𝑅))) |
| 14 | 2 | sqxpeqd 5663 | . . . . . . 7 ⊢ (𝜑 → (𝑉 × 𝑉) = ((Base‘𝑅) × (Base‘𝑅))) |
| 15 | 14 | reseq2d 5940 | . . . . . 6 ⊢ (𝜑 → ((dist‘𝑅) ↾ (𝑉 × 𝑉)) = ((dist‘𝑅) ↾ ((Base‘𝑅) × (Base‘𝑅)))) |
| 16 | 2 | fveq2d 6845 | . . . . . 6 ⊢ (𝜑 → (Met‘𝑉) = (Met‘(Base‘𝑅))) |
| 17 | 13, 15, 16 | 3eltr4d 2843 | . . . . 5 ⊢ (𝜑 → ((dist‘𝑅) ↾ (𝑉 × 𝑉)) ∈ (Met‘𝑉)) |
| 18 | 1, 2, 3, 4, 8, 9, 17 | imasf1omet 24299 | . . . 4 ⊢ (𝜑 → (dist‘𝑈) ∈ (Met‘𝐵)) |
| 19 | f1ofo 6790 | . . . . . . 7 ⊢ (𝐹:𝑉–1-1-onto→𝐵 → 𝐹:𝑉–onto→𝐵) | |
| 20 | 3, 19 | syl 17 | . . . . . 6 ⊢ (𝜑 → 𝐹:𝑉–onto→𝐵) |
| 21 | 1, 2, 20, 4 | imasbas 17453 | . . . . 5 ⊢ (𝜑 → 𝐵 = (Base‘𝑈)) |
| 22 | 21 | fveq2d 6845 | . . . 4 ⊢ (𝜑 → (Met‘𝐵) = (Met‘(Base‘𝑈))) |
| 23 | 18, 22 | eleqtrd 2830 | . . 3 ⊢ (𝜑 → (dist‘𝑈) ∈ (Met‘(Base‘𝑈))) |
| 24 | ssid 3966 | . . 3 ⊢ (Base‘𝑈) ⊆ (Base‘𝑈) | |
| 25 | metres2 24286 | . . 3 ⊢ (((dist‘𝑈) ∈ (Met‘(Base‘𝑈)) ∧ (Base‘𝑈) ⊆ (Base‘𝑈)) → ((dist‘𝑈) ↾ ((Base‘𝑈) × (Base‘𝑈))) ∈ (Met‘(Base‘𝑈))) | |
| 26 | 23, 24, 25 | sylancl 586 | . 2 ⊢ (𝜑 → ((dist‘𝑈) ↾ ((Base‘𝑈) × (Base‘𝑈))) ∈ (Met‘(Base‘𝑈))) |
| 27 | eqid 2729 | . . 3 ⊢ (TopOpen‘𝑈) = (TopOpen‘𝑈) | |
| 28 | eqid 2729 | . . 3 ⊢ (Base‘𝑈) = (Base‘𝑈) | |
| 29 | eqid 2729 | . . 3 ⊢ ((dist‘𝑈) ↾ ((Base‘𝑈) × (Base‘𝑈))) = ((dist‘𝑈) ↾ ((Base‘𝑈) × (Base‘𝑈))) | |
| 30 | 27, 28, 29 | isms 24372 | . 2 ⊢ (𝑈 ∈ MetSp ↔ (𝑈 ∈ ∞MetSp ∧ ((dist‘𝑈) ↾ ((Base‘𝑈) × (Base‘𝑈))) ∈ (Met‘(Base‘𝑈)))) |
| 31 | 7, 26, 30 | sylanbrc 583 | 1 ⊢ (𝜑 → 𝑈 ∈ MetSp) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 ⊆ wss 3911 × cxp 5629 ↾ cres 5633 –onto→wfo 6498 –1-1-onto→wf1o 6499 ‘cfv 6500 (class class class)co 7370 Basecbs 17157 distcds 17207 TopOpenctopn 17362 “s cimas 17445 Metcmet 21284 ∞MetSpcxms 24240 MetSpcms 24241 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5229 ax-sep 5246 ax-nul 5256 ax-pow 5315 ax-pr 5382 ax-un 7692 ax-cnex 11103 ax-resscn 11104 ax-1cn 11105 ax-icn 11106 ax-addcl 11107 ax-addrcl 11108 ax-mulcl 11109 ax-mulrcl 11110 ax-mulcom 11111 ax-addass 11112 ax-mulass 11113 ax-distr 11114 ax-i2m1 11115 ax-1ne0 11116 ax-1rid 11117 ax-rnegex 11118 ax-rrecex 11119 ax-cnre 11120 ax-pre-lttri 11121 ax-pre-lttrn 11122 ax-pre-ltadd 11123 ax-pre-mulgt0 11124 ax-pre-sup 11125 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3351 df-reu 3352 df-rab 3403 df-v 3446 df-sbc 3751 df-csb 3860 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-pss 3931 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-tp 4590 df-op 4592 df-uni 4868 df-int 4907 df-iun 4953 df-iin 4954 df-br 5103 df-opab 5165 df-mpt 5184 df-tr 5210 df-id 5526 df-eprel 5531 df-po 5539 df-so 5540 df-fr 5584 df-se 5585 df-we 5586 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-pred 6263 df-ord 6324 df-on 6325 df-lim 6326 df-suc 6327 df-iota 6453 df-fun 6502 df-fn 6503 df-f 6504 df-f1 6505 df-fo 6506 df-f1o 6507 df-fv 6508 df-isom 6509 df-riota 7327 df-ov 7373 df-oprab 7374 df-mpo 7375 df-of 7634 df-om 7824 df-1st 7948 df-2nd 7949 df-supp 8118 df-frecs 8238 df-wrecs 8269 df-recs 8318 df-rdg 8356 df-1o 8412 df-2o 8413 df-er 8649 df-map 8779 df-en 8897 df-dom 8898 df-sdom 8899 df-fin 8900 df-fsupp 9290 df-sup 9370 df-inf 9371 df-oi 9440 df-card 9871 df-pnf 11189 df-mnf 11190 df-xr 11191 df-ltxr 11192 df-le 11193 df-sub 11386 df-neg 11387 df-div 11815 df-nn 12166 df-2 12228 df-3 12229 df-4 12230 df-5 12231 df-6 12232 df-7 12233 df-8 12234 df-9 12235 df-n0 12422 df-z 12509 df-dec 12629 df-uz 12773 df-q 12887 df-rp 12931 df-xneg 13051 df-xadd 13052 df-xmul 13053 df-fz 13448 df-fzo 13595 df-seq 13946 df-hash 14275 df-struct 17095 df-sets 17112 df-slot 17130 df-ndx 17142 df-base 17158 df-ress 17179 df-plusg 17211 df-mulr 17212 df-sca 17214 df-vsca 17215 df-ip 17216 df-tset 17217 df-ple 17218 df-ds 17220 df-rest 17363 df-topn 17364 df-0g 17382 df-gsum 17383 df-topgen 17384 df-xrs 17443 df-qtop 17448 df-imas 17449 df-mre 17525 df-mrc 17526 df-acs 17528 df-mgm 18551 df-sgrp 18630 df-mnd 18646 df-submnd 18695 df-mulg 18984 df-cntz 19233 df-cmn 19698 df-psmet 21290 df-xmet 21291 df-met 21292 df-bl 21293 df-mopn 21294 df-top 22816 df-topon 22833 df-topsp 22855 df-bases 22868 df-xms 24243 df-ms 24244 |
| This theorem is referenced by: xpsms 24458 |
| Copyright terms: Public domain | W3C validator |