MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  imasf1oms Structured version   Visualization version   GIF version

Theorem imasf1oms 23100
Description: The image of a metric space is a metric space. (Contributed by Mario Carneiro, 28-Aug-2015.)
Hypotheses
Ref Expression
imasf1obl.u (𝜑𝑈 = (𝐹s 𝑅))
imasf1obl.v (𝜑𝑉 = (Base‘𝑅))
imasf1obl.f (𝜑𝐹:𝑉1-1-onto𝐵)
imasf1oms.r (𝜑𝑅 ∈ MetSp)
Assertion
Ref Expression
imasf1oms (𝜑𝑈 ∈ MetSp)

Proof of Theorem imasf1oms
StepHypRef Expression
1 imasf1obl.u . . 3 (𝜑𝑈 = (𝐹s 𝑅))
2 imasf1obl.v . . 3 (𝜑𝑉 = (Base‘𝑅))
3 imasf1obl.f . . 3 (𝜑𝐹:𝑉1-1-onto𝐵)
4 imasf1oms.r . . . 4 (𝜑𝑅 ∈ MetSp)
5 msxms 23064 . . . 4 (𝑅 ∈ MetSp → 𝑅 ∈ ∞MetSp)
64, 5syl 17 . . 3 (𝜑𝑅 ∈ ∞MetSp)
71, 2, 3, 6imasf1oxms 23099 . 2 (𝜑𝑈 ∈ ∞MetSp)
8 eqid 2821 . . . . 5 ((dist‘𝑅) ↾ (𝑉 × 𝑉)) = ((dist‘𝑅) ↾ (𝑉 × 𝑉))
9 eqid 2821 . . . . 5 (dist‘𝑈) = (dist‘𝑈)
10 eqid 2821 . . . . . . . 8 (Base‘𝑅) = (Base‘𝑅)
11 eqid 2821 . . . . . . . 8 ((dist‘𝑅) ↾ ((Base‘𝑅) × (Base‘𝑅))) = ((dist‘𝑅) ↾ ((Base‘𝑅) × (Base‘𝑅)))
1210, 11msmet 23067 . . . . . . 7 (𝑅 ∈ MetSp → ((dist‘𝑅) ↾ ((Base‘𝑅) × (Base‘𝑅))) ∈ (Met‘(Base‘𝑅)))
134, 12syl 17 . . . . . 6 (𝜑 → ((dist‘𝑅) ↾ ((Base‘𝑅) × (Base‘𝑅))) ∈ (Met‘(Base‘𝑅)))
142sqxpeqd 5587 . . . . . . 7 (𝜑 → (𝑉 × 𝑉) = ((Base‘𝑅) × (Base‘𝑅)))
1514reseq2d 5853 . . . . . 6 (𝜑 → ((dist‘𝑅) ↾ (𝑉 × 𝑉)) = ((dist‘𝑅) ↾ ((Base‘𝑅) × (Base‘𝑅))))
162fveq2d 6674 . . . . . 6 (𝜑 → (Met‘𝑉) = (Met‘(Base‘𝑅)))
1713, 15, 163eltr4d 2928 . . . . 5 (𝜑 → ((dist‘𝑅) ↾ (𝑉 × 𝑉)) ∈ (Met‘𝑉))
181, 2, 3, 4, 8, 9, 17imasf1omet 22986 . . . 4 (𝜑 → (dist‘𝑈) ∈ (Met‘𝐵))
19 f1ofo 6622 . . . . . . 7 (𝐹:𝑉1-1-onto𝐵𝐹:𝑉onto𝐵)
203, 19syl 17 . . . . . 6 (𝜑𝐹:𝑉onto𝐵)
211, 2, 20, 4imasbas 16785 . . . . 5 (𝜑𝐵 = (Base‘𝑈))
2221fveq2d 6674 . . . 4 (𝜑 → (Met‘𝐵) = (Met‘(Base‘𝑈)))
2318, 22eleqtrd 2915 . . 3 (𝜑 → (dist‘𝑈) ∈ (Met‘(Base‘𝑈)))
24 ssid 3989 . . 3 (Base‘𝑈) ⊆ (Base‘𝑈)
25 metres2 22973 . . 3 (((dist‘𝑈) ∈ (Met‘(Base‘𝑈)) ∧ (Base‘𝑈) ⊆ (Base‘𝑈)) → ((dist‘𝑈) ↾ ((Base‘𝑈) × (Base‘𝑈))) ∈ (Met‘(Base‘𝑈)))
2623, 24, 25sylancl 588 . 2 (𝜑 → ((dist‘𝑈) ↾ ((Base‘𝑈) × (Base‘𝑈))) ∈ (Met‘(Base‘𝑈)))
27 eqid 2821 . . 3 (TopOpen‘𝑈) = (TopOpen‘𝑈)
28 eqid 2821 . . 3 (Base‘𝑈) = (Base‘𝑈)
29 eqid 2821 . . 3 ((dist‘𝑈) ↾ ((Base‘𝑈) × (Base‘𝑈))) = ((dist‘𝑈) ↾ ((Base‘𝑈) × (Base‘𝑈)))
3027, 28, 29isms 23059 . 2 (𝑈 ∈ MetSp ↔ (𝑈 ∈ ∞MetSp ∧ ((dist‘𝑈) ↾ ((Base‘𝑈) × (Base‘𝑈))) ∈ (Met‘(Base‘𝑈))))
317, 26, 30sylanbrc 585 1 (𝜑𝑈 ∈ MetSp)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1537  wcel 2114  wss 3936   × cxp 5553  cres 5557  ontowfo 6353  1-1-ontowf1o 6354  cfv 6355  (class class class)co 7156  Basecbs 16483  distcds 16574  TopOpenctopn 16695  s cimas 16777  Metcmet 20531  ∞MetSpcxms 22927  MetSpcms 22928
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2793  ax-rep 5190  ax-sep 5203  ax-nul 5210  ax-pow 5266  ax-pr 5330  ax-un 7461  ax-cnex 10593  ax-resscn 10594  ax-1cn 10595  ax-icn 10596  ax-addcl 10597  ax-addrcl 10598  ax-mulcl 10599  ax-mulrcl 10600  ax-mulcom 10601  ax-addass 10602  ax-mulass 10603  ax-distr 10604  ax-i2m1 10605  ax-1ne0 10606  ax-1rid 10607  ax-rnegex 10608  ax-rrecex 10609  ax-cnre 10610  ax-pre-lttri 10611  ax-pre-lttrn 10612  ax-pre-ltadd 10613  ax-pre-mulgt0 10614  ax-pre-sup 10615
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3496  df-sbc 3773  df-csb 3884  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-pss 3954  df-nul 4292  df-if 4468  df-pw 4541  df-sn 4568  df-pr 4570  df-tp 4572  df-op 4574  df-uni 4839  df-int 4877  df-iun 4921  df-iin 4922  df-br 5067  df-opab 5129  df-mpt 5147  df-tr 5173  df-id 5460  df-eprel 5465  df-po 5474  df-so 5475  df-fr 5514  df-se 5515  df-we 5516  df-xp 5561  df-rel 5562  df-cnv 5563  df-co 5564  df-dm 5565  df-rn 5566  df-res 5567  df-ima 5568  df-pred 6148  df-ord 6194  df-on 6195  df-lim 6196  df-suc 6197  df-iota 6314  df-fun 6357  df-fn 6358  df-f 6359  df-f1 6360  df-fo 6361  df-f1o 6362  df-fv 6363  df-isom 6364  df-riota 7114  df-ov 7159  df-oprab 7160  df-mpo 7161  df-of 7409  df-om 7581  df-1st 7689  df-2nd 7690  df-supp 7831  df-wrecs 7947  df-recs 8008  df-rdg 8046  df-1o 8102  df-oadd 8106  df-er 8289  df-map 8408  df-en 8510  df-dom 8511  df-sdom 8512  df-fin 8513  df-fsupp 8834  df-sup 8906  df-inf 8907  df-oi 8974  df-card 9368  df-pnf 10677  df-mnf 10678  df-xr 10679  df-ltxr 10680  df-le 10681  df-sub 10872  df-neg 10873  df-div 11298  df-nn 11639  df-2 11701  df-3 11702  df-4 11703  df-5 11704  df-6 11705  df-7 11706  df-8 11707  df-9 11708  df-n0 11899  df-z 11983  df-dec 12100  df-uz 12245  df-q 12350  df-rp 12391  df-xneg 12508  df-xadd 12509  df-xmul 12510  df-fz 12894  df-fzo 13035  df-seq 13371  df-hash 13692  df-struct 16485  df-ndx 16486  df-slot 16487  df-base 16489  df-sets 16490  df-ress 16491  df-plusg 16578  df-mulr 16579  df-sca 16581  df-vsca 16582  df-ip 16583  df-tset 16584  df-ple 16585  df-ds 16587  df-rest 16696  df-topn 16697  df-0g 16715  df-gsum 16716  df-topgen 16717  df-xrs 16775  df-qtop 16780  df-imas 16781  df-mre 16857  df-mrc 16858  df-acs 16860  df-mgm 17852  df-sgrp 17901  df-mnd 17912  df-submnd 17957  df-mulg 18225  df-cntz 18447  df-cmn 18908  df-psmet 20537  df-xmet 20538  df-met 20539  df-bl 20540  df-mopn 20541  df-top 21502  df-topon 21519  df-topsp 21541  df-bases 21554  df-xms 22930  df-ms 22931
This theorem is referenced by:  xpsms  23145
  Copyright terms: Public domain W3C validator