MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  imasf1oms Structured version   Visualization version   GIF version

Theorem imasf1oms 24419
Description: The image of a metric space is a metric space. (Contributed by Mario Carneiro, 28-Aug-2015.)
Hypotheses
Ref Expression
imasf1obl.u (𝜑𝑈 = (𝐹s 𝑅))
imasf1obl.v (𝜑𝑉 = (Base‘𝑅))
imasf1obl.f (𝜑𝐹:𝑉1-1-onto𝐵)
imasf1oms.r (𝜑𝑅 ∈ MetSp)
Assertion
Ref Expression
imasf1oms (𝜑𝑈 ∈ MetSp)

Proof of Theorem imasf1oms
StepHypRef Expression
1 imasf1obl.u . . 3 (𝜑𝑈 = (𝐹s 𝑅))
2 imasf1obl.v . . 3 (𝜑𝑉 = (Base‘𝑅))
3 imasf1obl.f . . 3 (𝜑𝐹:𝑉1-1-onto𝐵)
4 imasf1oms.r . . . 4 (𝜑𝑅 ∈ MetSp)
5 msxms 24380 . . . 4 (𝑅 ∈ MetSp → 𝑅 ∈ ∞MetSp)
64, 5syl 17 . . 3 (𝜑𝑅 ∈ ∞MetSp)
71, 2, 3, 6imasf1oxms 24418 . 2 (𝜑𝑈 ∈ ∞MetSp)
8 eqid 2728 . . . . 5 ((dist‘𝑅) ↾ (𝑉 × 𝑉)) = ((dist‘𝑅) ↾ (𝑉 × 𝑉))
9 eqid 2728 . . . . 5 (dist‘𝑈) = (dist‘𝑈)
10 eqid 2728 . . . . . . . 8 (Base‘𝑅) = (Base‘𝑅)
11 eqid 2728 . . . . . . . 8 ((dist‘𝑅) ↾ ((Base‘𝑅) × (Base‘𝑅))) = ((dist‘𝑅) ↾ ((Base‘𝑅) × (Base‘𝑅)))
1210, 11msmet 24383 . . . . . . 7 (𝑅 ∈ MetSp → ((dist‘𝑅) ↾ ((Base‘𝑅) × (Base‘𝑅))) ∈ (Met‘(Base‘𝑅)))
134, 12syl 17 . . . . . 6 (𝜑 → ((dist‘𝑅) ↾ ((Base‘𝑅) × (Base‘𝑅))) ∈ (Met‘(Base‘𝑅)))
142sqxpeqd 5714 . . . . . . 7 (𝜑 → (𝑉 × 𝑉) = ((Base‘𝑅) × (Base‘𝑅)))
1514reseq2d 5989 . . . . . 6 (𝜑 → ((dist‘𝑅) ↾ (𝑉 × 𝑉)) = ((dist‘𝑅) ↾ ((Base‘𝑅) × (Base‘𝑅))))
162fveq2d 6906 . . . . . 6 (𝜑 → (Met‘𝑉) = (Met‘(Base‘𝑅)))
1713, 15, 163eltr4d 2844 . . . . 5 (𝜑 → ((dist‘𝑅) ↾ (𝑉 × 𝑉)) ∈ (Met‘𝑉))
181, 2, 3, 4, 8, 9, 17imasf1omet 24302 . . . 4 (𝜑 → (dist‘𝑈) ∈ (Met‘𝐵))
19 f1ofo 6851 . . . . . . 7 (𝐹:𝑉1-1-onto𝐵𝐹:𝑉onto𝐵)
203, 19syl 17 . . . . . 6 (𝜑𝐹:𝑉onto𝐵)
211, 2, 20, 4imasbas 17501 . . . . 5 (𝜑𝐵 = (Base‘𝑈))
2221fveq2d 6906 . . . 4 (𝜑 → (Met‘𝐵) = (Met‘(Base‘𝑈)))
2318, 22eleqtrd 2831 . . 3 (𝜑 → (dist‘𝑈) ∈ (Met‘(Base‘𝑈)))
24 ssid 4004 . . 3 (Base‘𝑈) ⊆ (Base‘𝑈)
25 metres2 24289 . . 3 (((dist‘𝑈) ∈ (Met‘(Base‘𝑈)) ∧ (Base‘𝑈) ⊆ (Base‘𝑈)) → ((dist‘𝑈) ↾ ((Base‘𝑈) × (Base‘𝑈))) ∈ (Met‘(Base‘𝑈)))
2623, 24, 25sylancl 584 . 2 (𝜑 → ((dist‘𝑈) ↾ ((Base‘𝑈) × (Base‘𝑈))) ∈ (Met‘(Base‘𝑈)))
27 eqid 2728 . . 3 (TopOpen‘𝑈) = (TopOpen‘𝑈)
28 eqid 2728 . . 3 (Base‘𝑈) = (Base‘𝑈)
29 eqid 2728 . . 3 ((dist‘𝑈) ↾ ((Base‘𝑈) × (Base‘𝑈))) = ((dist‘𝑈) ↾ ((Base‘𝑈) × (Base‘𝑈)))
3027, 28, 29isms 24375 . 2 (𝑈 ∈ MetSp ↔ (𝑈 ∈ ∞MetSp ∧ ((dist‘𝑈) ↾ ((Base‘𝑈) × (Base‘𝑈))) ∈ (Met‘(Base‘𝑈))))
317, 26, 30sylanbrc 581 1 (𝜑𝑈 ∈ MetSp)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1533  wcel 2098  wss 3949   × cxp 5680  cres 5684  ontowfo 6551  1-1-ontowf1o 6552  cfv 6553  (class class class)co 7426  Basecbs 17187  distcds 17249  TopOpenctopn 17410  s cimas 17493  Metcmet 21272  ∞MetSpcxms 24243  MetSpcms 24244
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2699  ax-rep 5289  ax-sep 5303  ax-nul 5310  ax-pow 5369  ax-pr 5433  ax-un 7746  ax-cnex 11202  ax-resscn 11203  ax-1cn 11204  ax-icn 11205  ax-addcl 11206  ax-addrcl 11207  ax-mulcl 11208  ax-mulrcl 11209  ax-mulcom 11210  ax-addass 11211  ax-mulass 11212  ax-distr 11213  ax-i2m1 11214  ax-1ne0 11215  ax-1rid 11216  ax-rnegex 11217  ax-rrecex 11218  ax-cnre 11219  ax-pre-lttri 11220  ax-pre-lttrn 11221  ax-pre-ltadd 11222  ax-pre-mulgt0 11223  ax-pre-sup 11224
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2529  df-eu 2558  df-clab 2706  df-cleq 2720  df-clel 2806  df-nfc 2881  df-ne 2938  df-nel 3044  df-ral 3059  df-rex 3068  df-rmo 3374  df-reu 3375  df-rab 3431  df-v 3475  df-sbc 3779  df-csb 3895  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-pss 3968  df-nul 4327  df-if 4533  df-pw 4608  df-sn 4633  df-pr 4635  df-tp 4637  df-op 4639  df-uni 4913  df-int 4954  df-iun 5002  df-iin 5003  df-br 5153  df-opab 5215  df-mpt 5236  df-tr 5270  df-id 5580  df-eprel 5586  df-po 5594  df-so 5595  df-fr 5637  df-se 5638  df-we 5639  df-xp 5688  df-rel 5689  df-cnv 5690  df-co 5691  df-dm 5692  df-rn 5693  df-res 5694  df-ima 5695  df-pred 6310  df-ord 6377  df-on 6378  df-lim 6379  df-suc 6380  df-iota 6505  df-fun 6555  df-fn 6556  df-f 6557  df-f1 6558  df-fo 6559  df-f1o 6560  df-fv 6561  df-isom 6562  df-riota 7382  df-ov 7429  df-oprab 7430  df-mpo 7431  df-of 7691  df-om 7877  df-1st 7999  df-2nd 8000  df-supp 8172  df-frecs 8293  df-wrecs 8324  df-recs 8398  df-rdg 8437  df-1o 8493  df-er 8731  df-map 8853  df-en 8971  df-dom 8972  df-sdom 8973  df-fin 8974  df-fsupp 9394  df-sup 9473  df-inf 9474  df-oi 9541  df-card 9970  df-pnf 11288  df-mnf 11289  df-xr 11290  df-ltxr 11291  df-le 11292  df-sub 11484  df-neg 11485  df-div 11910  df-nn 12251  df-2 12313  df-3 12314  df-4 12315  df-5 12316  df-6 12317  df-7 12318  df-8 12319  df-9 12320  df-n0 12511  df-z 12597  df-dec 12716  df-uz 12861  df-q 12971  df-rp 13015  df-xneg 13132  df-xadd 13133  df-xmul 13134  df-fz 13525  df-fzo 13668  df-seq 14007  df-hash 14330  df-struct 17123  df-sets 17140  df-slot 17158  df-ndx 17170  df-base 17188  df-ress 17217  df-plusg 17253  df-mulr 17254  df-sca 17256  df-vsca 17257  df-ip 17258  df-tset 17259  df-ple 17260  df-ds 17262  df-rest 17411  df-topn 17412  df-0g 17430  df-gsum 17431  df-topgen 17432  df-xrs 17491  df-qtop 17496  df-imas 17497  df-mre 17573  df-mrc 17574  df-acs 17576  df-mgm 18607  df-sgrp 18686  df-mnd 18702  df-submnd 18748  df-mulg 19031  df-cntz 19275  df-cmn 19744  df-psmet 21278  df-xmet 21279  df-met 21280  df-bl 21281  df-mopn 21282  df-top 22816  df-topon 22833  df-topsp 22855  df-bases 22869  df-xms 24246  df-ms 24247
This theorem is referenced by:  xpsms  24464
  Copyright terms: Public domain W3C validator