MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  imasf1oms Structured version   Visualization version   GIF version

Theorem imasf1oms 23388
Description: The image of a metric space is a metric space. (Contributed by Mario Carneiro, 28-Aug-2015.)
Hypotheses
Ref Expression
imasf1obl.u (𝜑𝑈 = (𝐹s 𝑅))
imasf1obl.v (𝜑𝑉 = (Base‘𝑅))
imasf1obl.f (𝜑𝐹:𝑉1-1-onto𝐵)
imasf1oms.r (𝜑𝑅 ∈ MetSp)
Assertion
Ref Expression
imasf1oms (𝜑𝑈 ∈ MetSp)

Proof of Theorem imasf1oms
StepHypRef Expression
1 imasf1obl.u . . 3 (𝜑𝑈 = (𝐹s 𝑅))
2 imasf1obl.v . . 3 (𝜑𝑉 = (Base‘𝑅))
3 imasf1obl.f . . 3 (𝜑𝐹:𝑉1-1-onto𝐵)
4 imasf1oms.r . . . 4 (𝜑𝑅 ∈ MetSp)
5 msxms 23352 . . . 4 (𝑅 ∈ MetSp → 𝑅 ∈ ∞MetSp)
64, 5syl 17 . . 3 (𝜑𝑅 ∈ ∞MetSp)
71, 2, 3, 6imasf1oxms 23387 . 2 (𝜑𝑈 ∈ ∞MetSp)
8 eqid 2737 . . . . 5 ((dist‘𝑅) ↾ (𝑉 × 𝑉)) = ((dist‘𝑅) ↾ (𝑉 × 𝑉))
9 eqid 2737 . . . . 5 (dist‘𝑈) = (dist‘𝑈)
10 eqid 2737 . . . . . . . 8 (Base‘𝑅) = (Base‘𝑅)
11 eqid 2737 . . . . . . . 8 ((dist‘𝑅) ↾ ((Base‘𝑅) × (Base‘𝑅))) = ((dist‘𝑅) ↾ ((Base‘𝑅) × (Base‘𝑅)))
1210, 11msmet 23355 . . . . . . 7 (𝑅 ∈ MetSp → ((dist‘𝑅) ↾ ((Base‘𝑅) × (Base‘𝑅))) ∈ (Met‘(Base‘𝑅)))
134, 12syl 17 . . . . . 6 (𝜑 → ((dist‘𝑅) ↾ ((Base‘𝑅) × (Base‘𝑅))) ∈ (Met‘(Base‘𝑅)))
142sqxpeqd 5583 . . . . . . 7 (𝜑 → (𝑉 × 𝑉) = ((Base‘𝑅) × (Base‘𝑅)))
1514reseq2d 5851 . . . . . 6 (𝜑 → ((dist‘𝑅) ↾ (𝑉 × 𝑉)) = ((dist‘𝑅) ↾ ((Base‘𝑅) × (Base‘𝑅))))
162fveq2d 6721 . . . . . 6 (𝜑 → (Met‘𝑉) = (Met‘(Base‘𝑅)))
1713, 15, 163eltr4d 2853 . . . . 5 (𝜑 → ((dist‘𝑅) ↾ (𝑉 × 𝑉)) ∈ (Met‘𝑉))
181, 2, 3, 4, 8, 9, 17imasf1omet 23274 . . . 4 (𝜑 → (dist‘𝑈) ∈ (Met‘𝐵))
19 f1ofo 6668 . . . . . . 7 (𝐹:𝑉1-1-onto𝐵𝐹:𝑉onto𝐵)
203, 19syl 17 . . . . . 6 (𝜑𝐹:𝑉onto𝐵)
211, 2, 20, 4imasbas 17017 . . . . 5 (𝜑𝐵 = (Base‘𝑈))
2221fveq2d 6721 . . . 4 (𝜑 → (Met‘𝐵) = (Met‘(Base‘𝑈)))
2318, 22eleqtrd 2840 . . 3 (𝜑 → (dist‘𝑈) ∈ (Met‘(Base‘𝑈)))
24 ssid 3923 . . 3 (Base‘𝑈) ⊆ (Base‘𝑈)
25 metres2 23261 . . 3 (((dist‘𝑈) ∈ (Met‘(Base‘𝑈)) ∧ (Base‘𝑈) ⊆ (Base‘𝑈)) → ((dist‘𝑈) ↾ ((Base‘𝑈) × (Base‘𝑈))) ∈ (Met‘(Base‘𝑈)))
2623, 24, 25sylancl 589 . 2 (𝜑 → ((dist‘𝑈) ↾ ((Base‘𝑈) × (Base‘𝑈))) ∈ (Met‘(Base‘𝑈)))
27 eqid 2737 . . 3 (TopOpen‘𝑈) = (TopOpen‘𝑈)
28 eqid 2737 . . 3 (Base‘𝑈) = (Base‘𝑈)
29 eqid 2737 . . 3 ((dist‘𝑈) ↾ ((Base‘𝑈) × (Base‘𝑈))) = ((dist‘𝑈) ↾ ((Base‘𝑈) × (Base‘𝑈)))
3027, 28, 29isms 23347 . 2 (𝑈 ∈ MetSp ↔ (𝑈 ∈ ∞MetSp ∧ ((dist‘𝑈) ↾ ((Base‘𝑈) × (Base‘𝑈))) ∈ (Met‘(Base‘𝑈))))
317, 26, 30sylanbrc 586 1 (𝜑𝑈 ∈ MetSp)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1543  wcel 2110  wss 3866   × cxp 5549  cres 5553  ontowfo 6378  1-1-ontowf1o 6379  cfv 6380  (class class class)co 7213  Basecbs 16760  distcds 16811  TopOpenctopn 16926  s cimas 17009  Metcmet 20349  ∞MetSpcxms 23215  MetSpcms 23216
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2016  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-ext 2708  ax-rep 5179  ax-sep 5192  ax-nul 5199  ax-pow 5258  ax-pr 5322  ax-un 7523  ax-cnex 10785  ax-resscn 10786  ax-1cn 10787  ax-icn 10788  ax-addcl 10789  ax-addrcl 10790  ax-mulcl 10791  ax-mulrcl 10792  ax-mulcom 10793  ax-addass 10794  ax-mulass 10795  ax-distr 10796  ax-i2m1 10797  ax-1ne0 10798  ax-1rid 10799  ax-rnegex 10800  ax-rrecex 10801  ax-cnre 10802  ax-pre-lttri 10803  ax-pre-lttrn 10804  ax-pre-ltadd 10805  ax-pre-mulgt0 10806  ax-pre-sup 10807
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3or 1090  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2071  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2886  df-ne 2941  df-nel 3047  df-ral 3066  df-rex 3067  df-reu 3068  df-rmo 3069  df-rab 3070  df-v 3410  df-sbc 3695  df-csb 3812  df-dif 3869  df-un 3871  df-in 3873  df-ss 3883  df-pss 3885  df-nul 4238  df-if 4440  df-pw 4515  df-sn 4542  df-pr 4544  df-tp 4546  df-op 4548  df-uni 4820  df-int 4860  df-iun 4906  df-iin 4907  df-br 5054  df-opab 5116  df-mpt 5136  df-tr 5162  df-id 5455  df-eprel 5460  df-po 5468  df-so 5469  df-fr 5509  df-se 5510  df-we 5511  df-xp 5557  df-rel 5558  df-cnv 5559  df-co 5560  df-dm 5561  df-rn 5562  df-res 5563  df-ima 5564  df-pred 6160  df-ord 6216  df-on 6217  df-lim 6218  df-suc 6219  df-iota 6338  df-fun 6382  df-fn 6383  df-f 6384  df-f1 6385  df-fo 6386  df-f1o 6387  df-fv 6388  df-isom 6389  df-riota 7170  df-ov 7216  df-oprab 7217  df-mpo 7218  df-of 7469  df-om 7645  df-1st 7761  df-2nd 7762  df-supp 7904  df-wrecs 8047  df-recs 8108  df-rdg 8146  df-1o 8202  df-er 8391  df-map 8510  df-en 8627  df-dom 8628  df-sdom 8629  df-fin 8630  df-fsupp 8986  df-sup 9058  df-inf 9059  df-oi 9126  df-card 9555  df-pnf 10869  df-mnf 10870  df-xr 10871  df-ltxr 10872  df-le 10873  df-sub 11064  df-neg 11065  df-div 11490  df-nn 11831  df-2 11893  df-3 11894  df-4 11895  df-5 11896  df-6 11897  df-7 11898  df-8 11899  df-9 11900  df-n0 12091  df-z 12177  df-dec 12294  df-uz 12439  df-q 12545  df-rp 12587  df-xneg 12704  df-xadd 12705  df-xmul 12706  df-fz 13096  df-fzo 13239  df-seq 13575  df-hash 13897  df-struct 16700  df-sets 16717  df-slot 16735  df-ndx 16745  df-base 16761  df-ress 16785  df-plusg 16815  df-mulr 16816  df-sca 16818  df-vsca 16819  df-ip 16820  df-tset 16821  df-ple 16822  df-ds 16824  df-rest 16927  df-topn 16928  df-0g 16946  df-gsum 16947  df-topgen 16948  df-xrs 17007  df-qtop 17012  df-imas 17013  df-mre 17089  df-mrc 17090  df-acs 17092  df-mgm 18114  df-sgrp 18163  df-mnd 18174  df-submnd 18219  df-mulg 18489  df-cntz 18711  df-cmn 19172  df-psmet 20355  df-xmet 20356  df-met 20357  df-bl 20358  df-mopn 20359  df-top 21791  df-topon 21808  df-topsp 21830  df-bases 21843  df-xms 23218  df-ms 23219
This theorem is referenced by:  xpsms  23433
  Copyright terms: Public domain W3C validator