| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > imasf1oms | Structured version Visualization version GIF version | ||
| Description: The image of a metric space is a metric space. (Contributed by Mario Carneiro, 28-Aug-2015.) |
| Ref | Expression |
|---|---|
| imasf1obl.u | ⊢ (𝜑 → 𝑈 = (𝐹 “s 𝑅)) |
| imasf1obl.v | ⊢ (𝜑 → 𝑉 = (Base‘𝑅)) |
| imasf1obl.f | ⊢ (𝜑 → 𝐹:𝑉–1-1-onto→𝐵) |
| imasf1oms.r | ⊢ (𝜑 → 𝑅 ∈ MetSp) |
| Ref | Expression |
|---|---|
| imasf1oms | ⊢ (𝜑 → 𝑈 ∈ MetSp) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | imasf1obl.u | . . 3 ⊢ (𝜑 → 𝑈 = (𝐹 “s 𝑅)) | |
| 2 | imasf1obl.v | . . 3 ⊢ (𝜑 → 𝑉 = (Base‘𝑅)) | |
| 3 | imasf1obl.f | . . 3 ⊢ (𝜑 → 𝐹:𝑉–1-1-onto→𝐵) | |
| 4 | imasf1oms.r | . . . 4 ⊢ (𝜑 → 𝑅 ∈ MetSp) | |
| 5 | msxms 24409 | . . . 4 ⊢ (𝑅 ∈ MetSp → 𝑅 ∈ ∞MetSp) | |
| 6 | 4, 5 | syl 17 | . . 3 ⊢ (𝜑 → 𝑅 ∈ ∞MetSp) |
| 7 | 1, 2, 3, 6 | imasf1oxms 24446 | . 2 ⊢ (𝜑 → 𝑈 ∈ ∞MetSp) |
| 8 | eqid 2734 | . . . . 5 ⊢ ((dist‘𝑅) ↾ (𝑉 × 𝑉)) = ((dist‘𝑅) ↾ (𝑉 × 𝑉)) | |
| 9 | eqid 2734 | . . . . 5 ⊢ (dist‘𝑈) = (dist‘𝑈) | |
| 10 | eqid 2734 | . . . . . . . 8 ⊢ (Base‘𝑅) = (Base‘𝑅) | |
| 11 | eqid 2734 | . . . . . . . 8 ⊢ ((dist‘𝑅) ↾ ((Base‘𝑅) × (Base‘𝑅))) = ((dist‘𝑅) ↾ ((Base‘𝑅) × (Base‘𝑅))) | |
| 12 | 10, 11 | msmet 24412 | . . . . . . 7 ⊢ (𝑅 ∈ MetSp → ((dist‘𝑅) ↾ ((Base‘𝑅) × (Base‘𝑅))) ∈ (Met‘(Base‘𝑅))) |
| 13 | 4, 12 | syl 17 | . . . . . 6 ⊢ (𝜑 → ((dist‘𝑅) ↾ ((Base‘𝑅) × (Base‘𝑅))) ∈ (Met‘(Base‘𝑅))) |
| 14 | 2 | sqxpeqd 5697 | . . . . . . 7 ⊢ (𝜑 → (𝑉 × 𝑉) = ((Base‘𝑅) × (Base‘𝑅))) |
| 15 | 14 | reseq2d 5977 | . . . . . 6 ⊢ (𝜑 → ((dist‘𝑅) ↾ (𝑉 × 𝑉)) = ((dist‘𝑅) ↾ ((Base‘𝑅) × (Base‘𝑅)))) |
| 16 | 2 | fveq2d 6890 | . . . . . 6 ⊢ (𝜑 → (Met‘𝑉) = (Met‘(Base‘𝑅))) |
| 17 | 13, 15, 16 | 3eltr4d 2848 | . . . . 5 ⊢ (𝜑 → ((dist‘𝑅) ↾ (𝑉 × 𝑉)) ∈ (Met‘𝑉)) |
| 18 | 1, 2, 3, 4, 8, 9, 17 | imasf1omet 24331 | . . . 4 ⊢ (𝜑 → (dist‘𝑈) ∈ (Met‘𝐵)) |
| 19 | f1ofo 6835 | . . . . . . 7 ⊢ (𝐹:𝑉–1-1-onto→𝐵 → 𝐹:𝑉–onto→𝐵) | |
| 20 | 3, 19 | syl 17 | . . . . . 6 ⊢ (𝜑 → 𝐹:𝑉–onto→𝐵) |
| 21 | 1, 2, 20, 4 | imasbas 17528 | . . . . 5 ⊢ (𝜑 → 𝐵 = (Base‘𝑈)) |
| 22 | 21 | fveq2d 6890 | . . . 4 ⊢ (𝜑 → (Met‘𝐵) = (Met‘(Base‘𝑈))) |
| 23 | 18, 22 | eleqtrd 2835 | . . 3 ⊢ (𝜑 → (dist‘𝑈) ∈ (Met‘(Base‘𝑈))) |
| 24 | ssid 3986 | . . 3 ⊢ (Base‘𝑈) ⊆ (Base‘𝑈) | |
| 25 | metres2 24318 | . . 3 ⊢ (((dist‘𝑈) ∈ (Met‘(Base‘𝑈)) ∧ (Base‘𝑈) ⊆ (Base‘𝑈)) → ((dist‘𝑈) ↾ ((Base‘𝑈) × (Base‘𝑈))) ∈ (Met‘(Base‘𝑈))) | |
| 26 | 23, 24, 25 | sylancl 586 | . 2 ⊢ (𝜑 → ((dist‘𝑈) ↾ ((Base‘𝑈) × (Base‘𝑈))) ∈ (Met‘(Base‘𝑈))) |
| 27 | eqid 2734 | . . 3 ⊢ (TopOpen‘𝑈) = (TopOpen‘𝑈) | |
| 28 | eqid 2734 | . . 3 ⊢ (Base‘𝑈) = (Base‘𝑈) | |
| 29 | eqid 2734 | . . 3 ⊢ ((dist‘𝑈) ↾ ((Base‘𝑈) × (Base‘𝑈))) = ((dist‘𝑈) ↾ ((Base‘𝑈) × (Base‘𝑈))) | |
| 30 | 27, 28, 29 | isms 24404 | . 2 ⊢ (𝑈 ∈ MetSp ↔ (𝑈 ∈ ∞MetSp ∧ ((dist‘𝑈) ↾ ((Base‘𝑈) × (Base‘𝑈))) ∈ (Met‘(Base‘𝑈)))) |
| 31 | 7, 26, 30 | sylanbrc 583 | 1 ⊢ (𝜑 → 𝑈 ∈ MetSp) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1539 ∈ wcel 2107 ⊆ wss 3931 × cxp 5663 ↾ cres 5667 –onto→wfo 6539 –1-1-onto→wf1o 6540 ‘cfv 6541 (class class class)co 7413 Basecbs 17229 distcds 17282 TopOpenctopn 17437 “s cimas 17520 Metcmet 21312 ∞MetSpcxms 24272 MetSpcms 24273 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-rep 5259 ax-sep 5276 ax-nul 5286 ax-pow 5345 ax-pr 5412 ax-un 7737 ax-cnex 11193 ax-resscn 11194 ax-1cn 11195 ax-icn 11196 ax-addcl 11197 ax-addrcl 11198 ax-mulcl 11199 ax-mulrcl 11200 ax-mulcom 11201 ax-addass 11202 ax-mulass 11203 ax-distr 11204 ax-i2m1 11205 ax-1ne0 11206 ax-1rid 11207 ax-rnegex 11208 ax-rrecex 11209 ax-cnre 11210 ax-pre-lttri 11211 ax-pre-lttrn 11212 ax-pre-ltadd 11213 ax-pre-mulgt0 11214 ax-pre-sup 11215 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-ne 2932 df-nel 3036 df-ral 3051 df-rex 3060 df-rmo 3363 df-reu 3364 df-rab 3420 df-v 3465 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-pss 3951 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-tp 4611 df-op 4613 df-uni 4888 df-int 4927 df-iun 4973 df-iin 4974 df-br 5124 df-opab 5186 df-mpt 5206 df-tr 5240 df-id 5558 df-eprel 5564 df-po 5572 df-so 5573 df-fr 5617 df-se 5618 df-we 5619 df-xp 5671 df-rel 5672 df-cnv 5673 df-co 5674 df-dm 5675 df-rn 5676 df-res 5677 df-ima 5678 df-pred 6301 df-ord 6366 df-on 6367 df-lim 6368 df-suc 6369 df-iota 6494 df-fun 6543 df-fn 6544 df-f 6545 df-f1 6546 df-fo 6547 df-f1o 6548 df-fv 6549 df-isom 6550 df-riota 7370 df-ov 7416 df-oprab 7417 df-mpo 7418 df-of 7679 df-om 7870 df-1st 7996 df-2nd 7997 df-supp 8168 df-frecs 8288 df-wrecs 8319 df-recs 8393 df-rdg 8432 df-1o 8488 df-2o 8489 df-er 8727 df-map 8850 df-en 8968 df-dom 8969 df-sdom 8970 df-fin 8971 df-fsupp 9384 df-sup 9464 df-inf 9465 df-oi 9532 df-card 9961 df-pnf 11279 df-mnf 11280 df-xr 11281 df-ltxr 11282 df-le 11283 df-sub 11476 df-neg 11477 df-div 11903 df-nn 12249 df-2 12311 df-3 12312 df-4 12313 df-5 12314 df-6 12315 df-7 12316 df-8 12317 df-9 12318 df-n0 12510 df-z 12597 df-dec 12717 df-uz 12861 df-q 12973 df-rp 13017 df-xneg 13136 df-xadd 13137 df-xmul 13138 df-fz 13530 df-fzo 13677 df-seq 14025 df-hash 14352 df-struct 17166 df-sets 17183 df-slot 17201 df-ndx 17213 df-base 17230 df-ress 17253 df-plusg 17286 df-mulr 17287 df-sca 17289 df-vsca 17290 df-ip 17291 df-tset 17292 df-ple 17293 df-ds 17295 df-rest 17438 df-topn 17439 df-0g 17457 df-gsum 17458 df-topgen 17459 df-xrs 17518 df-qtop 17523 df-imas 17524 df-mre 17600 df-mrc 17601 df-acs 17603 df-mgm 18622 df-sgrp 18701 df-mnd 18717 df-submnd 18766 df-mulg 19055 df-cntz 19304 df-cmn 19768 df-psmet 21318 df-xmet 21319 df-met 21320 df-bl 21321 df-mopn 21322 df-top 22848 df-topon 22865 df-topsp 22887 df-bases 22900 df-xms 24275 df-ms 24276 |
| This theorem is referenced by: xpsms 24492 |
| Copyright terms: Public domain | W3C validator |