Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > imasf1oms | Structured version Visualization version GIF version |
Description: The image of a metric space is a metric space. (Contributed by Mario Carneiro, 28-Aug-2015.) |
Ref | Expression |
---|---|
imasf1obl.u | ⊢ (𝜑 → 𝑈 = (𝐹 “s 𝑅)) |
imasf1obl.v | ⊢ (𝜑 → 𝑉 = (Base‘𝑅)) |
imasf1obl.f | ⊢ (𝜑 → 𝐹:𝑉–1-1-onto→𝐵) |
imasf1oms.r | ⊢ (𝜑 → 𝑅 ∈ MetSp) |
Ref | Expression |
---|---|
imasf1oms | ⊢ (𝜑 → 𝑈 ∈ MetSp) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | imasf1obl.u | . . 3 ⊢ (𝜑 → 𝑈 = (𝐹 “s 𝑅)) | |
2 | imasf1obl.v | . . 3 ⊢ (𝜑 → 𝑉 = (Base‘𝑅)) | |
3 | imasf1obl.f | . . 3 ⊢ (𝜑 → 𝐹:𝑉–1-1-onto→𝐵) | |
4 | imasf1oms.r | . . . 4 ⊢ (𝜑 → 𝑅 ∈ MetSp) | |
5 | msxms 23515 | . . . 4 ⊢ (𝑅 ∈ MetSp → 𝑅 ∈ ∞MetSp) | |
6 | 4, 5 | syl 17 | . . 3 ⊢ (𝜑 → 𝑅 ∈ ∞MetSp) |
7 | 1, 2, 3, 6 | imasf1oxms 23551 | . 2 ⊢ (𝜑 → 𝑈 ∈ ∞MetSp) |
8 | eqid 2738 | . . . . 5 ⊢ ((dist‘𝑅) ↾ (𝑉 × 𝑉)) = ((dist‘𝑅) ↾ (𝑉 × 𝑉)) | |
9 | eqid 2738 | . . . . 5 ⊢ (dist‘𝑈) = (dist‘𝑈) | |
10 | eqid 2738 | . . . . . . . 8 ⊢ (Base‘𝑅) = (Base‘𝑅) | |
11 | eqid 2738 | . . . . . . . 8 ⊢ ((dist‘𝑅) ↾ ((Base‘𝑅) × (Base‘𝑅))) = ((dist‘𝑅) ↾ ((Base‘𝑅) × (Base‘𝑅))) | |
12 | 10, 11 | msmet 23518 | . . . . . . 7 ⊢ (𝑅 ∈ MetSp → ((dist‘𝑅) ↾ ((Base‘𝑅) × (Base‘𝑅))) ∈ (Met‘(Base‘𝑅))) |
13 | 4, 12 | syl 17 | . . . . . 6 ⊢ (𝜑 → ((dist‘𝑅) ↾ ((Base‘𝑅) × (Base‘𝑅))) ∈ (Met‘(Base‘𝑅))) |
14 | 2 | sqxpeqd 5612 | . . . . . . 7 ⊢ (𝜑 → (𝑉 × 𝑉) = ((Base‘𝑅) × (Base‘𝑅))) |
15 | 14 | reseq2d 5880 | . . . . . 6 ⊢ (𝜑 → ((dist‘𝑅) ↾ (𝑉 × 𝑉)) = ((dist‘𝑅) ↾ ((Base‘𝑅) × (Base‘𝑅)))) |
16 | 2 | fveq2d 6760 | . . . . . 6 ⊢ (𝜑 → (Met‘𝑉) = (Met‘(Base‘𝑅))) |
17 | 13, 15, 16 | 3eltr4d 2854 | . . . . 5 ⊢ (𝜑 → ((dist‘𝑅) ↾ (𝑉 × 𝑉)) ∈ (Met‘𝑉)) |
18 | 1, 2, 3, 4, 8, 9, 17 | imasf1omet 23437 | . . . 4 ⊢ (𝜑 → (dist‘𝑈) ∈ (Met‘𝐵)) |
19 | f1ofo 6707 | . . . . . . 7 ⊢ (𝐹:𝑉–1-1-onto→𝐵 → 𝐹:𝑉–onto→𝐵) | |
20 | 3, 19 | syl 17 | . . . . . 6 ⊢ (𝜑 → 𝐹:𝑉–onto→𝐵) |
21 | 1, 2, 20, 4 | imasbas 17140 | . . . . 5 ⊢ (𝜑 → 𝐵 = (Base‘𝑈)) |
22 | 21 | fveq2d 6760 | . . . 4 ⊢ (𝜑 → (Met‘𝐵) = (Met‘(Base‘𝑈))) |
23 | 18, 22 | eleqtrd 2841 | . . 3 ⊢ (𝜑 → (dist‘𝑈) ∈ (Met‘(Base‘𝑈))) |
24 | ssid 3939 | . . 3 ⊢ (Base‘𝑈) ⊆ (Base‘𝑈) | |
25 | metres2 23424 | . . 3 ⊢ (((dist‘𝑈) ∈ (Met‘(Base‘𝑈)) ∧ (Base‘𝑈) ⊆ (Base‘𝑈)) → ((dist‘𝑈) ↾ ((Base‘𝑈) × (Base‘𝑈))) ∈ (Met‘(Base‘𝑈))) | |
26 | 23, 24, 25 | sylancl 585 | . 2 ⊢ (𝜑 → ((dist‘𝑈) ↾ ((Base‘𝑈) × (Base‘𝑈))) ∈ (Met‘(Base‘𝑈))) |
27 | eqid 2738 | . . 3 ⊢ (TopOpen‘𝑈) = (TopOpen‘𝑈) | |
28 | eqid 2738 | . . 3 ⊢ (Base‘𝑈) = (Base‘𝑈) | |
29 | eqid 2738 | . . 3 ⊢ ((dist‘𝑈) ↾ ((Base‘𝑈) × (Base‘𝑈))) = ((dist‘𝑈) ↾ ((Base‘𝑈) × (Base‘𝑈))) | |
30 | 27, 28, 29 | isms 23510 | . 2 ⊢ (𝑈 ∈ MetSp ↔ (𝑈 ∈ ∞MetSp ∧ ((dist‘𝑈) ↾ ((Base‘𝑈) × (Base‘𝑈))) ∈ (Met‘(Base‘𝑈)))) |
31 | 7, 26, 30 | sylanbrc 582 | 1 ⊢ (𝜑 → 𝑈 ∈ MetSp) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1539 ∈ wcel 2108 ⊆ wss 3883 × cxp 5578 ↾ cres 5582 –onto→wfo 6416 –1-1-onto→wf1o 6417 ‘cfv 6418 (class class class)co 7255 Basecbs 16840 distcds 16897 TopOpenctopn 17049 “s cimas 17132 Metcmet 20496 ∞MetSpcxms 23378 MetSpcms 23379 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-rep 5205 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 ax-cnex 10858 ax-resscn 10859 ax-1cn 10860 ax-icn 10861 ax-addcl 10862 ax-addrcl 10863 ax-mulcl 10864 ax-mulrcl 10865 ax-mulcom 10866 ax-addass 10867 ax-mulass 10868 ax-distr 10869 ax-i2m1 10870 ax-1ne0 10871 ax-1rid 10872 ax-rnegex 10873 ax-rrecex 10874 ax-cnre 10875 ax-pre-lttri 10876 ax-pre-lttrn 10877 ax-pre-ltadd 10878 ax-pre-mulgt0 10879 ax-pre-sup 10880 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-nel 3049 df-ral 3068 df-rex 3069 df-reu 3070 df-rmo 3071 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-uni 4837 df-int 4877 df-iun 4923 df-iin 4924 df-br 5071 df-opab 5133 df-mpt 5154 df-tr 5188 df-id 5480 df-eprel 5486 df-po 5494 df-so 5495 df-fr 5535 df-se 5536 df-we 5537 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-pred 6191 df-ord 6254 df-on 6255 df-lim 6256 df-suc 6257 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-isom 6427 df-riota 7212 df-ov 7258 df-oprab 7259 df-mpo 7260 df-of 7511 df-om 7688 df-1st 7804 df-2nd 7805 df-supp 7949 df-frecs 8068 df-wrecs 8099 df-recs 8173 df-rdg 8212 df-1o 8267 df-er 8456 df-map 8575 df-en 8692 df-dom 8693 df-sdom 8694 df-fin 8695 df-fsupp 9059 df-sup 9131 df-inf 9132 df-oi 9199 df-card 9628 df-pnf 10942 df-mnf 10943 df-xr 10944 df-ltxr 10945 df-le 10946 df-sub 11137 df-neg 11138 df-div 11563 df-nn 11904 df-2 11966 df-3 11967 df-4 11968 df-5 11969 df-6 11970 df-7 11971 df-8 11972 df-9 11973 df-n0 12164 df-z 12250 df-dec 12367 df-uz 12512 df-q 12618 df-rp 12660 df-xneg 12777 df-xadd 12778 df-xmul 12779 df-fz 13169 df-fzo 13312 df-seq 13650 df-hash 13973 df-struct 16776 df-sets 16793 df-slot 16811 df-ndx 16823 df-base 16841 df-ress 16868 df-plusg 16901 df-mulr 16902 df-sca 16904 df-vsca 16905 df-ip 16906 df-tset 16907 df-ple 16908 df-ds 16910 df-rest 17050 df-topn 17051 df-0g 17069 df-gsum 17070 df-topgen 17071 df-xrs 17130 df-qtop 17135 df-imas 17136 df-mre 17212 df-mrc 17213 df-acs 17215 df-mgm 18241 df-sgrp 18290 df-mnd 18301 df-submnd 18346 df-mulg 18616 df-cntz 18838 df-cmn 19303 df-psmet 20502 df-xmet 20503 df-met 20504 df-bl 20505 df-mopn 20506 df-top 21951 df-topon 21968 df-topsp 21990 df-bases 22004 df-xms 23381 df-ms 23382 |
This theorem is referenced by: xpsms 23597 |
Copyright terms: Public domain | W3C validator |