![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ressms | Structured version Visualization version GIF version |
Description: The restriction of a metric space is a metric space. (Contributed by Mario Carneiro, 24-Aug-2015.) |
Ref | Expression |
---|---|
ressms | ⊢ ((𝐾 ∈ MetSp ∧ 𝐴 ∈ 𝑉) → (𝐾 ↾s 𝐴) ∈ MetSp) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | msxms 24279 | . . 3 ⊢ (𝐾 ∈ MetSp → 𝐾 ∈ ∞MetSp) | |
2 | ressxms 24353 | . . 3 ⊢ ((𝐾 ∈ ∞MetSp ∧ 𝐴 ∈ 𝑉) → (𝐾 ↾s 𝐴) ∈ ∞MetSp) | |
3 | 1, 2 | sylan 579 | . 2 ⊢ ((𝐾 ∈ MetSp ∧ 𝐴 ∈ 𝑉) → (𝐾 ↾s 𝐴) ∈ ∞MetSp) |
4 | eqid 2731 | . . . . . 6 ⊢ (Base‘𝐾) = (Base‘𝐾) | |
5 | eqid 2731 | . . . . . 6 ⊢ ((dist‘𝐾) ↾ ((Base‘𝐾) × (Base‘𝐾))) = ((dist‘𝐾) ↾ ((Base‘𝐾) × (Base‘𝐾))) | |
6 | 4, 5 | msmet 24282 | . . . . 5 ⊢ (𝐾 ∈ MetSp → ((dist‘𝐾) ↾ ((Base‘𝐾) × (Base‘𝐾))) ∈ (Met‘(Base‘𝐾))) |
7 | 6 | adantr 480 | . . . 4 ⊢ ((𝐾 ∈ MetSp ∧ 𝐴 ∈ 𝑉) → ((dist‘𝐾) ↾ ((Base‘𝐾) × (Base‘𝐾))) ∈ (Met‘(Base‘𝐾))) |
8 | metres 24190 | . . . 4 ⊢ (((dist‘𝐾) ↾ ((Base‘𝐾) × (Base‘𝐾))) ∈ (Met‘(Base‘𝐾)) → (((dist‘𝐾) ↾ ((Base‘𝐾) × (Base‘𝐾))) ↾ (𝐴 × 𝐴)) ∈ (Met‘((Base‘𝐾) ∩ 𝐴))) | |
9 | 7, 8 | syl 17 | . . 3 ⊢ ((𝐾 ∈ MetSp ∧ 𝐴 ∈ 𝑉) → (((dist‘𝐾) ↾ ((Base‘𝐾) × (Base‘𝐾))) ↾ (𝐴 × 𝐴)) ∈ (Met‘((Base‘𝐾) ∩ 𝐴))) |
10 | resres 5994 | . . . . 5 ⊢ (((dist‘𝐾) ↾ ((Base‘𝐾) × (Base‘𝐾))) ↾ (𝐴 × 𝐴)) = ((dist‘𝐾) ↾ (((Base‘𝐾) × (Base‘𝐾)) ∩ (𝐴 × 𝐴))) | |
11 | inxp 5832 | . . . . . 6 ⊢ (((Base‘𝐾) × (Base‘𝐾)) ∩ (𝐴 × 𝐴)) = (((Base‘𝐾) ∩ 𝐴) × ((Base‘𝐾) ∩ 𝐴)) | |
12 | 11 | reseq2i 5978 | . . . . 5 ⊢ ((dist‘𝐾) ↾ (((Base‘𝐾) × (Base‘𝐾)) ∩ (𝐴 × 𝐴))) = ((dist‘𝐾) ↾ (((Base‘𝐾) ∩ 𝐴) × ((Base‘𝐾) ∩ 𝐴))) |
13 | 10, 12 | eqtri 2759 | . . . 4 ⊢ (((dist‘𝐾) ↾ ((Base‘𝐾) × (Base‘𝐾))) ↾ (𝐴 × 𝐴)) = ((dist‘𝐾) ↾ (((Base‘𝐾) ∩ 𝐴) × ((Base‘𝐾) ∩ 𝐴))) |
14 | eqid 2731 | . . . . . . 7 ⊢ (𝐾 ↾s 𝐴) = (𝐾 ↾s 𝐴) | |
15 | eqid 2731 | . . . . . . 7 ⊢ (dist‘𝐾) = (dist‘𝐾) | |
16 | 14, 15 | ressds 17362 | . . . . . 6 ⊢ (𝐴 ∈ 𝑉 → (dist‘𝐾) = (dist‘(𝐾 ↾s 𝐴))) |
17 | 16 | adantl 481 | . . . . 5 ⊢ ((𝐾 ∈ MetSp ∧ 𝐴 ∈ 𝑉) → (dist‘𝐾) = (dist‘(𝐾 ↾s 𝐴))) |
18 | incom 4201 | . . . . . . 7 ⊢ ((Base‘𝐾) ∩ 𝐴) = (𝐴 ∩ (Base‘𝐾)) | |
19 | 14, 4 | ressbas 17186 | . . . . . . . 8 ⊢ (𝐴 ∈ 𝑉 → (𝐴 ∩ (Base‘𝐾)) = (Base‘(𝐾 ↾s 𝐴))) |
20 | 19 | adantl 481 | . . . . . . 7 ⊢ ((𝐾 ∈ MetSp ∧ 𝐴 ∈ 𝑉) → (𝐴 ∩ (Base‘𝐾)) = (Base‘(𝐾 ↾s 𝐴))) |
21 | 18, 20 | eqtrid 2783 | . . . . . 6 ⊢ ((𝐾 ∈ MetSp ∧ 𝐴 ∈ 𝑉) → ((Base‘𝐾) ∩ 𝐴) = (Base‘(𝐾 ↾s 𝐴))) |
22 | 21 | sqxpeqd 5708 | . . . . 5 ⊢ ((𝐾 ∈ MetSp ∧ 𝐴 ∈ 𝑉) → (((Base‘𝐾) ∩ 𝐴) × ((Base‘𝐾) ∩ 𝐴)) = ((Base‘(𝐾 ↾s 𝐴)) × (Base‘(𝐾 ↾s 𝐴)))) |
23 | 17, 22 | reseq12d 5982 | . . . 4 ⊢ ((𝐾 ∈ MetSp ∧ 𝐴 ∈ 𝑉) → ((dist‘𝐾) ↾ (((Base‘𝐾) ∩ 𝐴) × ((Base‘𝐾) ∩ 𝐴))) = ((dist‘(𝐾 ↾s 𝐴)) ↾ ((Base‘(𝐾 ↾s 𝐴)) × (Base‘(𝐾 ↾s 𝐴))))) |
24 | 13, 23 | eqtrid 2783 | . . 3 ⊢ ((𝐾 ∈ MetSp ∧ 𝐴 ∈ 𝑉) → (((dist‘𝐾) ↾ ((Base‘𝐾) × (Base‘𝐾))) ↾ (𝐴 × 𝐴)) = ((dist‘(𝐾 ↾s 𝐴)) ↾ ((Base‘(𝐾 ↾s 𝐴)) × (Base‘(𝐾 ↾s 𝐴))))) |
25 | 21 | fveq2d 6895 | . . 3 ⊢ ((𝐾 ∈ MetSp ∧ 𝐴 ∈ 𝑉) → (Met‘((Base‘𝐾) ∩ 𝐴)) = (Met‘(Base‘(𝐾 ↾s 𝐴)))) |
26 | 9, 24, 25 | 3eltr3d 2846 | . 2 ⊢ ((𝐾 ∈ MetSp ∧ 𝐴 ∈ 𝑉) → ((dist‘(𝐾 ↾s 𝐴)) ↾ ((Base‘(𝐾 ↾s 𝐴)) × (Base‘(𝐾 ↾s 𝐴)))) ∈ (Met‘(Base‘(𝐾 ↾s 𝐴)))) |
27 | eqid 2731 | . . . 4 ⊢ (TopOpen‘𝐾) = (TopOpen‘𝐾) | |
28 | 14, 27 | resstopn 23009 | . . 3 ⊢ ((TopOpen‘𝐾) ↾t 𝐴) = (TopOpen‘(𝐾 ↾s 𝐴)) |
29 | eqid 2731 | . . 3 ⊢ (Base‘(𝐾 ↾s 𝐴)) = (Base‘(𝐾 ↾s 𝐴)) | |
30 | eqid 2731 | . . 3 ⊢ ((dist‘(𝐾 ↾s 𝐴)) ↾ ((Base‘(𝐾 ↾s 𝐴)) × (Base‘(𝐾 ↾s 𝐴)))) = ((dist‘(𝐾 ↾s 𝐴)) ↾ ((Base‘(𝐾 ↾s 𝐴)) × (Base‘(𝐾 ↾s 𝐴)))) | |
31 | 28, 29, 30 | isms 24274 | . 2 ⊢ ((𝐾 ↾s 𝐴) ∈ MetSp ↔ ((𝐾 ↾s 𝐴) ∈ ∞MetSp ∧ ((dist‘(𝐾 ↾s 𝐴)) ↾ ((Base‘(𝐾 ↾s 𝐴)) × (Base‘(𝐾 ↾s 𝐴)))) ∈ (Met‘(Base‘(𝐾 ↾s 𝐴))))) |
32 | 3, 26, 31 | sylanbrc 582 | 1 ⊢ ((𝐾 ∈ MetSp ∧ 𝐴 ∈ 𝑉) → (𝐾 ↾s 𝐴) ∈ MetSp) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2105 ∩ cin 3947 × cxp 5674 ↾ cres 5678 ‘cfv 6543 (class class class)co 7412 Basecbs 17151 ↾s cress 17180 distcds 17213 ↾t crest 17373 TopOpenctopn 17374 Metcmet 21218 ∞MetSpcxms 24142 MetSpcms 24143 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2702 ax-rep 5285 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7729 ax-cnex 11172 ax-resscn 11173 ax-1cn 11174 ax-icn 11175 ax-addcl 11176 ax-addrcl 11177 ax-mulcl 11178 ax-mulrcl 11179 ax-mulcom 11180 ax-addass 11181 ax-mulass 11182 ax-distr 11183 ax-i2m1 11184 ax-1ne0 11185 ax-1rid 11186 ax-rnegex 11187 ax-rrecex 11188 ax-cnre 11189 ax-pre-lttri 11190 ax-pre-lttrn 11191 ax-pre-ltadd 11192 ax-pre-mulgt0 11193 ax-pre-sup 11194 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2533 df-eu 2562 df-clab 2709 df-cleq 2723 df-clel 2809 df-nfc 2884 df-ne 2940 df-nel 3046 df-ral 3061 df-rex 3070 df-rmo 3375 df-reu 3376 df-rab 3432 df-v 3475 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-pss 3967 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-iun 4999 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5574 df-eprel 5580 df-po 5588 df-so 5589 df-fr 5631 df-we 5633 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-pred 6300 df-ord 6367 df-on 6368 df-lim 6369 df-suc 6370 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-riota 7368 df-ov 7415 df-oprab 7416 df-mpo 7417 df-om 7860 df-1st 7979 df-2nd 7980 df-frecs 8272 df-wrecs 8303 df-recs 8377 df-rdg 8416 df-er 8709 df-map 8828 df-en 8946 df-dom 8947 df-sdom 8948 df-sup 9443 df-inf 9444 df-pnf 11257 df-mnf 11258 df-xr 11259 df-ltxr 11260 df-le 11261 df-sub 11453 df-neg 11454 df-div 11879 df-nn 12220 df-2 12282 df-3 12283 df-4 12284 df-5 12285 df-6 12286 df-7 12287 df-8 12288 df-9 12289 df-n0 12480 df-z 12566 df-dec 12685 df-uz 12830 df-q 12940 df-rp 12982 df-xneg 13099 df-xadd 13100 df-xmul 13101 df-sets 17104 df-slot 17122 df-ndx 17134 df-base 17152 df-ress 17181 df-tset 17223 df-ds 17226 df-rest 17375 df-topn 17376 df-topgen 17396 df-psmet 21224 df-xmet 21225 df-met 21226 df-bl 21227 df-mopn 21228 df-top 22715 df-topon 22732 df-topsp 22754 df-bases 22768 df-xms 24145 df-ms 24146 |
This theorem is referenced by: subgngp 24463 cmsss 25198 cmscsscms 25220 cnpwstotbnd 37128 |
Copyright terms: Public domain | W3C validator |