| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ressms | Structured version Visualization version GIF version | ||
| Description: The restriction of a metric space is a metric space. (Contributed by Mario Carneiro, 24-Aug-2015.) |
| Ref | Expression |
|---|---|
| ressms | ⊢ ((𝐾 ∈ MetSp ∧ 𝐴 ∈ 𝑉) → (𝐾 ↾s 𝐴) ∈ MetSp) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | msxms 24340 | . . 3 ⊢ (𝐾 ∈ MetSp → 𝐾 ∈ ∞MetSp) | |
| 2 | ressxms 24411 | . . 3 ⊢ ((𝐾 ∈ ∞MetSp ∧ 𝐴 ∈ 𝑉) → (𝐾 ↾s 𝐴) ∈ ∞MetSp) | |
| 3 | 1, 2 | sylan 580 | . 2 ⊢ ((𝐾 ∈ MetSp ∧ 𝐴 ∈ 𝑉) → (𝐾 ↾s 𝐴) ∈ ∞MetSp) |
| 4 | eqid 2729 | . . . . . 6 ⊢ (Base‘𝐾) = (Base‘𝐾) | |
| 5 | eqid 2729 | . . . . . 6 ⊢ ((dist‘𝐾) ↾ ((Base‘𝐾) × (Base‘𝐾))) = ((dist‘𝐾) ↾ ((Base‘𝐾) × (Base‘𝐾))) | |
| 6 | 4, 5 | msmet 24343 | . . . . 5 ⊢ (𝐾 ∈ MetSp → ((dist‘𝐾) ↾ ((Base‘𝐾) × (Base‘𝐾))) ∈ (Met‘(Base‘𝐾))) |
| 7 | 6 | adantr 480 | . . . 4 ⊢ ((𝐾 ∈ MetSp ∧ 𝐴 ∈ 𝑉) → ((dist‘𝐾) ↾ ((Base‘𝐾) × (Base‘𝐾))) ∈ (Met‘(Base‘𝐾))) |
| 8 | metres 24251 | . . . 4 ⊢ (((dist‘𝐾) ↾ ((Base‘𝐾) × (Base‘𝐾))) ∈ (Met‘(Base‘𝐾)) → (((dist‘𝐾) ↾ ((Base‘𝐾) × (Base‘𝐾))) ↾ (𝐴 × 𝐴)) ∈ (Met‘((Base‘𝐾) ∩ 𝐴))) | |
| 9 | 7, 8 | syl 17 | . . 3 ⊢ ((𝐾 ∈ MetSp ∧ 𝐴 ∈ 𝑉) → (((dist‘𝐾) ↾ ((Base‘𝐾) × (Base‘𝐾))) ↾ (𝐴 × 𝐴)) ∈ (Met‘((Base‘𝐾) ∩ 𝐴))) |
| 10 | resres 5943 | . . . . 5 ⊢ (((dist‘𝐾) ↾ ((Base‘𝐾) × (Base‘𝐾))) ↾ (𝐴 × 𝐴)) = ((dist‘𝐾) ↾ (((Base‘𝐾) × (Base‘𝐾)) ∩ (𝐴 × 𝐴))) | |
| 11 | inxp 5774 | . . . . . 6 ⊢ (((Base‘𝐾) × (Base‘𝐾)) ∩ (𝐴 × 𝐴)) = (((Base‘𝐾) ∩ 𝐴) × ((Base‘𝐾) ∩ 𝐴)) | |
| 12 | 11 | reseq2i 5927 | . . . . 5 ⊢ ((dist‘𝐾) ↾ (((Base‘𝐾) × (Base‘𝐾)) ∩ (𝐴 × 𝐴))) = ((dist‘𝐾) ↾ (((Base‘𝐾) ∩ 𝐴) × ((Base‘𝐾) ∩ 𝐴))) |
| 13 | 10, 12 | eqtri 2752 | . . . 4 ⊢ (((dist‘𝐾) ↾ ((Base‘𝐾) × (Base‘𝐾))) ↾ (𝐴 × 𝐴)) = ((dist‘𝐾) ↾ (((Base‘𝐾) ∩ 𝐴) × ((Base‘𝐾) ∩ 𝐴))) |
| 14 | eqid 2729 | . . . . . . 7 ⊢ (𝐾 ↾s 𝐴) = (𝐾 ↾s 𝐴) | |
| 15 | eqid 2729 | . . . . . . 7 ⊢ (dist‘𝐾) = (dist‘𝐾) | |
| 16 | 14, 15 | ressds 17314 | . . . . . 6 ⊢ (𝐴 ∈ 𝑉 → (dist‘𝐾) = (dist‘(𝐾 ↾s 𝐴))) |
| 17 | 16 | adantl 481 | . . . . 5 ⊢ ((𝐾 ∈ MetSp ∧ 𝐴 ∈ 𝑉) → (dist‘𝐾) = (dist‘(𝐾 ↾s 𝐴))) |
| 18 | incom 4160 | . . . . . . 7 ⊢ ((Base‘𝐾) ∩ 𝐴) = (𝐴 ∩ (Base‘𝐾)) | |
| 19 | 14, 4 | ressbas 17147 | . . . . . . . 8 ⊢ (𝐴 ∈ 𝑉 → (𝐴 ∩ (Base‘𝐾)) = (Base‘(𝐾 ↾s 𝐴))) |
| 20 | 19 | adantl 481 | . . . . . . 7 ⊢ ((𝐾 ∈ MetSp ∧ 𝐴 ∈ 𝑉) → (𝐴 ∩ (Base‘𝐾)) = (Base‘(𝐾 ↾s 𝐴))) |
| 21 | 18, 20 | eqtrid 2776 | . . . . . 6 ⊢ ((𝐾 ∈ MetSp ∧ 𝐴 ∈ 𝑉) → ((Base‘𝐾) ∩ 𝐴) = (Base‘(𝐾 ↾s 𝐴))) |
| 22 | 21 | sqxpeqd 5651 | . . . . 5 ⊢ ((𝐾 ∈ MetSp ∧ 𝐴 ∈ 𝑉) → (((Base‘𝐾) ∩ 𝐴) × ((Base‘𝐾) ∩ 𝐴)) = ((Base‘(𝐾 ↾s 𝐴)) × (Base‘(𝐾 ↾s 𝐴)))) |
| 23 | 17, 22 | reseq12d 5931 | . . . 4 ⊢ ((𝐾 ∈ MetSp ∧ 𝐴 ∈ 𝑉) → ((dist‘𝐾) ↾ (((Base‘𝐾) ∩ 𝐴) × ((Base‘𝐾) ∩ 𝐴))) = ((dist‘(𝐾 ↾s 𝐴)) ↾ ((Base‘(𝐾 ↾s 𝐴)) × (Base‘(𝐾 ↾s 𝐴))))) |
| 24 | 13, 23 | eqtrid 2776 | . . 3 ⊢ ((𝐾 ∈ MetSp ∧ 𝐴 ∈ 𝑉) → (((dist‘𝐾) ↾ ((Base‘𝐾) × (Base‘𝐾))) ↾ (𝐴 × 𝐴)) = ((dist‘(𝐾 ↾s 𝐴)) ↾ ((Base‘(𝐾 ↾s 𝐴)) × (Base‘(𝐾 ↾s 𝐴))))) |
| 25 | 21 | fveq2d 6826 | . . 3 ⊢ ((𝐾 ∈ MetSp ∧ 𝐴 ∈ 𝑉) → (Met‘((Base‘𝐾) ∩ 𝐴)) = (Met‘(Base‘(𝐾 ↾s 𝐴)))) |
| 26 | 9, 24, 25 | 3eltr3d 2842 | . 2 ⊢ ((𝐾 ∈ MetSp ∧ 𝐴 ∈ 𝑉) → ((dist‘(𝐾 ↾s 𝐴)) ↾ ((Base‘(𝐾 ↾s 𝐴)) × (Base‘(𝐾 ↾s 𝐴)))) ∈ (Met‘(Base‘(𝐾 ↾s 𝐴)))) |
| 27 | eqid 2729 | . . . 4 ⊢ (TopOpen‘𝐾) = (TopOpen‘𝐾) | |
| 28 | 14, 27 | resstopn 23071 | . . 3 ⊢ ((TopOpen‘𝐾) ↾t 𝐴) = (TopOpen‘(𝐾 ↾s 𝐴)) |
| 29 | eqid 2729 | . . 3 ⊢ (Base‘(𝐾 ↾s 𝐴)) = (Base‘(𝐾 ↾s 𝐴)) | |
| 30 | eqid 2729 | . . 3 ⊢ ((dist‘(𝐾 ↾s 𝐴)) ↾ ((Base‘(𝐾 ↾s 𝐴)) × (Base‘(𝐾 ↾s 𝐴)))) = ((dist‘(𝐾 ↾s 𝐴)) ↾ ((Base‘(𝐾 ↾s 𝐴)) × (Base‘(𝐾 ↾s 𝐴)))) | |
| 31 | 28, 29, 30 | isms 24335 | . 2 ⊢ ((𝐾 ↾s 𝐴) ∈ MetSp ↔ ((𝐾 ↾s 𝐴) ∈ ∞MetSp ∧ ((dist‘(𝐾 ↾s 𝐴)) ↾ ((Base‘(𝐾 ↾s 𝐴)) × (Base‘(𝐾 ↾s 𝐴)))) ∈ (Met‘(Base‘(𝐾 ↾s 𝐴))))) |
| 32 | 3, 26, 31 | sylanbrc 583 | 1 ⊢ ((𝐾 ∈ MetSp ∧ 𝐴 ∈ 𝑉) → (𝐾 ↾s 𝐴) ∈ MetSp) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ∩ cin 3902 × cxp 5617 ↾ cres 5621 ‘cfv 6482 (class class class)co 7349 Basecbs 17120 ↾s cress 17141 distcds 17170 ↾t crest 17324 TopOpenctopn 17325 Metcmet 21247 ∞MetSpcxms 24203 MetSpcms 24204 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5218 ax-sep 5235 ax-nul 5245 ax-pow 5304 ax-pr 5371 ax-un 7671 ax-cnex 11065 ax-resscn 11066 ax-1cn 11067 ax-icn 11068 ax-addcl 11069 ax-addrcl 11070 ax-mulcl 11071 ax-mulrcl 11072 ax-mulcom 11073 ax-addass 11074 ax-mulass 11075 ax-distr 11076 ax-i2m1 11077 ax-1ne0 11078 ax-1rid 11079 ax-rnegex 11080 ax-rrecex 11081 ax-cnre 11082 ax-pre-lttri 11083 ax-pre-lttrn 11084 ax-pre-ltadd 11085 ax-pre-mulgt0 11086 ax-pre-sup 11087 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3343 df-reu 3344 df-rab 3395 df-v 3438 df-sbc 3743 df-csb 3852 df-dif 3906 df-un 3908 df-in 3910 df-ss 3920 df-pss 3923 df-nul 4285 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4859 df-iun 4943 df-br 5093 df-opab 5155 df-mpt 5174 df-tr 5200 df-id 5514 df-eprel 5519 df-po 5527 df-so 5528 df-fr 5572 df-we 5574 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-pred 6249 df-ord 6310 df-on 6311 df-lim 6312 df-suc 6313 df-iota 6438 df-fun 6484 df-fn 6485 df-f 6486 df-f1 6487 df-fo 6488 df-f1o 6489 df-fv 6490 df-riota 7306 df-ov 7352 df-oprab 7353 df-mpo 7354 df-om 7800 df-1st 7924 df-2nd 7925 df-frecs 8214 df-wrecs 8245 df-recs 8294 df-rdg 8332 df-er 8625 df-map 8755 df-en 8873 df-dom 8874 df-sdom 8875 df-sup 9332 df-inf 9333 df-pnf 11151 df-mnf 11152 df-xr 11153 df-ltxr 11154 df-le 11155 df-sub 11349 df-neg 11350 df-div 11778 df-nn 12129 df-2 12191 df-3 12192 df-4 12193 df-5 12194 df-6 12195 df-7 12196 df-8 12197 df-9 12198 df-n0 12385 df-z 12472 df-dec 12592 df-uz 12736 df-q 12850 df-rp 12894 df-xneg 13014 df-xadd 13015 df-xmul 13016 df-sets 17075 df-slot 17093 df-ndx 17105 df-base 17121 df-ress 17142 df-tset 17180 df-ds 17183 df-rest 17326 df-topn 17327 df-topgen 17347 df-psmet 21253 df-xmet 21254 df-met 21255 df-bl 21256 df-mopn 21257 df-top 22779 df-topon 22796 df-topsp 22818 df-bases 22831 df-xms 24206 df-ms 24207 |
| This theorem is referenced by: subgngp 24521 cmsss 25249 cmscsscms 25271 cnpwstotbnd 37777 |
| Copyright terms: Public domain | W3C validator |