MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ressms Structured version   Visualization version   GIF version

Theorem ressms 24390
Description: The restriction of a metric space is a metric space. (Contributed by Mario Carneiro, 24-Aug-2015.)
Assertion
Ref Expression
ressms ((𝐾 ∈ MetSp ∧ 𝐴𝑉) → (𝐾s 𝐴) ∈ MetSp)

Proof of Theorem ressms
StepHypRef Expression
1 msxms 24318 . . 3 (𝐾 ∈ MetSp → 𝐾 ∈ ∞MetSp)
2 ressxms 24389 . . 3 ((𝐾 ∈ ∞MetSp ∧ 𝐴𝑉) → (𝐾s 𝐴) ∈ ∞MetSp)
31, 2sylan 580 . 2 ((𝐾 ∈ MetSp ∧ 𝐴𝑉) → (𝐾s 𝐴) ∈ ∞MetSp)
4 eqid 2729 . . . . . 6 (Base‘𝐾) = (Base‘𝐾)
5 eqid 2729 . . . . . 6 ((dist‘𝐾) ↾ ((Base‘𝐾) × (Base‘𝐾))) = ((dist‘𝐾) ↾ ((Base‘𝐾) × (Base‘𝐾)))
64, 5msmet 24321 . . . . 5 (𝐾 ∈ MetSp → ((dist‘𝐾) ↾ ((Base‘𝐾) × (Base‘𝐾))) ∈ (Met‘(Base‘𝐾)))
76adantr 480 . . . 4 ((𝐾 ∈ MetSp ∧ 𝐴𝑉) → ((dist‘𝐾) ↾ ((Base‘𝐾) × (Base‘𝐾))) ∈ (Met‘(Base‘𝐾)))
8 metres 24229 . . . 4 (((dist‘𝐾) ↾ ((Base‘𝐾) × (Base‘𝐾))) ∈ (Met‘(Base‘𝐾)) → (((dist‘𝐾) ↾ ((Base‘𝐾) × (Base‘𝐾))) ↾ (𝐴 × 𝐴)) ∈ (Met‘((Base‘𝐾) ∩ 𝐴)))
97, 8syl 17 . . 3 ((𝐾 ∈ MetSp ∧ 𝐴𝑉) → (((dist‘𝐾) ↾ ((Base‘𝐾) × (Base‘𝐾))) ↾ (𝐴 × 𝐴)) ∈ (Met‘((Base‘𝐾) ∩ 𝐴)))
10 resres 5952 . . . . 5 (((dist‘𝐾) ↾ ((Base‘𝐾) × (Base‘𝐾))) ↾ (𝐴 × 𝐴)) = ((dist‘𝐾) ↾ (((Base‘𝐾) × (Base‘𝐾)) ∩ (𝐴 × 𝐴)))
11 inxp 5785 . . . . . 6 (((Base‘𝐾) × (Base‘𝐾)) ∩ (𝐴 × 𝐴)) = (((Base‘𝐾) ∩ 𝐴) × ((Base‘𝐾) ∩ 𝐴))
1211reseq2i 5936 . . . . 5 ((dist‘𝐾) ↾ (((Base‘𝐾) × (Base‘𝐾)) ∩ (𝐴 × 𝐴))) = ((dist‘𝐾) ↾ (((Base‘𝐾) ∩ 𝐴) × ((Base‘𝐾) ∩ 𝐴)))
1310, 12eqtri 2752 . . . 4 (((dist‘𝐾) ↾ ((Base‘𝐾) × (Base‘𝐾))) ↾ (𝐴 × 𝐴)) = ((dist‘𝐾) ↾ (((Base‘𝐾) ∩ 𝐴) × ((Base‘𝐾) ∩ 𝐴)))
14 eqid 2729 . . . . . . 7 (𝐾s 𝐴) = (𝐾s 𝐴)
15 eqid 2729 . . . . . . 7 (dist‘𝐾) = (dist‘𝐾)
1614, 15ressds 17349 . . . . . 6 (𝐴𝑉 → (dist‘𝐾) = (dist‘(𝐾s 𝐴)))
1716adantl 481 . . . . 5 ((𝐾 ∈ MetSp ∧ 𝐴𝑉) → (dist‘𝐾) = (dist‘(𝐾s 𝐴)))
18 incom 4168 . . . . . . 7 ((Base‘𝐾) ∩ 𝐴) = (𝐴 ∩ (Base‘𝐾))
1914, 4ressbas 17182 . . . . . . . 8 (𝐴𝑉 → (𝐴 ∩ (Base‘𝐾)) = (Base‘(𝐾s 𝐴)))
2019adantl 481 . . . . . . 7 ((𝐾 ∈ MetSp ∧ 𝐴𝑉) → (𝐴 ∩ (Base‘𝐾)) = (Base‘(𝐾s 𝐴)))
2118, 20eqtrid 2776 . . . . . 6 ((𝐾 ∈ MetSp ∧ 𝐴𝑉) → ((Base‘𝐾) ∩ 𝐴) = (Base‘(𝐾s 𝐴)))
2221sqxpeqd 5663 . . . . 5 ((𝐾 ∈ MetSp ∧ 𝐴𝑉) → (((Base‘𝐾) ∩ 𝐴) × ((Base‘𝐾) ∩ 𝐴)) = ((Base‘(𝐾s 𝐴)) × (Base‘(𝐾s 𝐴))))
2317, 22reseq12d 5940 . . . 4 ((𝐾 ∈ MetSp ∧ 𝐴𝑉) → ((dist‘𝐾) ↾ (((Base‘𝐾) ∩ 𝐴) × ((Base‘𝐾) ∩ 𝐴))) = ((dist‘(𝐾s 𝐴)) ↾ ((Base‘(𝐾s 𝐴)) × (Base‘(𝐾s 𝐴)))))
2413, 23eqtrid 2776 . . 3 ((𝐾 ∈ MetSp ∧ 𝐴𝑉) → (((dist‘𝐾) ↾ ((Base‘𝐾) × (Base‘𝐾))) ↾ (𝐴 × 𝐴)) = ((dist‘(𝐾s 𝐴)) ↾ ((Base‘(𝐾s 𝐴)) × (Base‘(𝐾s 𝐴)))))
2521fveq2d 6844 . . 3 ((𝐾 ∈ MetSp ∧ 𝐴𝑉) → (Met‘((Base‘𝐾) ∩ 𝐴)) = (Met‘(Base‘(𝐾s 𝐴))))
269, 24, 253eltr3d 2842 . 2 ((𝐾 ∈ MetSp ∧ 𝐴𝑉) → ((dist‘(𝐾s 𝐴)) ↾ ((Base‘(𝐾s 𝐴)) × (Base‘(𝐾s 𝐴)))) ∈ (Met‘(Base‘(𝐾s 𝐴))))
27 eqid 2729 . . . 4 (TopOpen‘𝐾) = (TopOpen‘𝐾)
2814, 27resstopn 23049 . . 3 ((TopOpen‘𝐾) ↾t 𝐴) = (TopOpen‘(𝐾s 𝐴))
29 eqid 2729 . . 3 (Base‘(𝐾s 𝐴)) = (Base‘(𝐾s 𝐴))
30 eqid 2729 . . 3 ((dist‘(𝐾s 𝐴)) ↾ ((Base‘(𝐾s 𝐴)) × (Base‘(𝐾s 𝐴)))) = ((dist‘(𝐾s 𝐴)) ↾ ((Base‘(𝐾s 𝐴)) × (Base‘(𝐾s 𝐴))))
3128, 29, 30isms 24313 . 2 ((𝐾s 𝐴) ∈ MetSp ↔ ((𝐾s 𝐴) ∈ ∞MetSp ∧ ((dist‘(𝐾s 𝐴)) ↾ ((Base‘(𝐾s 𝐴)) × (Base‘(𝐾s 𝐴)))) ∈ (Met‘(Base‘(𝐾s 𝐴)))))
323, 26, 31sylanbrc 583 1 ((𝐾 ∈ MetSp ∧ 𝐴𝑉) → (𝐾s 𝐴) ∈ MetSp)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  cin 3910   × cxp 5629  cres 5633  cfv 6499  (class class class)co 7369  Basecbs 17155  s cress 17176  distcds 17205  t crest 17359  TopOpenctopn 17360  Metcmet 21226  ∞MetSpcxms 24181  MetSpcms 24182
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5229  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691  ax-cnex 11100  ax-resscn 11101  ax-1cn 11102  ax-icn 11103  ax-addcl 11104  ax-addrcl 11105  ax-mulcl 11106  ax-mulrcl 11107  ax-mulcom 11108  ax-addass 11109  ax-mulass 11110  ax-distr 11111  ax-i2m1 11112  ax-1ne0 11113  ax-1rid 11114  ax-rnegex 11115  ax-rrecex 11116  ax-cnre 11117  ax-pre-lttri 11118  ax-pre-lttrn 11119  ax-pre-ltadd 11120  ax-pre-mulgt0 11121  ax-pre-sup 11122
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3351  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3931  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-iun 4953  df-br 5103  df-opab 5165  df-mpt 5184  df-tr 5210  df-id 5526  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5584  df-we 5586  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-pred 6262  df-ord 6323  df-on 6324  df-lim 6325  df-suc 6326  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-riota 7326  df-ov 7372  df-oprab 7373  df-mpo 7374  df-om 7823  df-1st 7947  df-2nd 7948  df-frecs 8237  df-wrecs 8268  df-recs 8317  df-rdg 8355  df-er 8648  df-map 8778  df-en 8896  df-dom 8897  df-sdom 8898  df-sup 9369  df-inf 9370  df-pnf 11186  df-mnf 11187  df-xr 11188  df-ltxr 11189  df-le 11190  df-sub 11383  df-neg 11384  df-div 11812  df-nn 12163  df-2 12225  df-3 12226  df-4 12227  df-5 12228  df-6 12229  df-7 12230  df-8 12231  df-9 12232  df-n0 12419  df-z 12506  df-dec 12626  df-uz 12770  df-q 12884  df-rp 12928  df-xneg 13048  df-xadd 13049  df-xmul 13050  df-sets 17110  df-slot 17128  df-ndx 17140  df-base 17156  df-ress 17177  df-tset 17215  df-ds 17218  df-rest 17361  df-topn 17362  df-topgen 17382  df-psmet 21232  df-xmet 21233  df-met 21234  df-bl 21235  df-mopn 21236  df-top 22757  df-topon 22774  df-topsp 22796  df-bases 22809  df-xms 24184  df-ms 24185
This theorem is referenced by:  subgngp  24499  cmsss  25227  cmscsscms  25249  cnpwstotbnd  37764
  Copyright terms: Public domain W3C validator