MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ressms Structured version   Visualization version   GIF version

Theorem ressms 24357
Description: The restriction of a metric space is a metric space. (Contributed by Mario Carneiro, 24-Aug-2015.)
Assertion
Ref Expression
ressms ((𝐾 ∈ MetSp ∧ 𝐴𝑉) → (𝐾s 𝐴) ∈ MetSp)

Proof of Theorem ressms
StepHypRef Expression
1 msxms 24282 . . 3 (𝐾 ∈ MetSp → 𝐾 ∈ ∞MetSp)
2 ressxms 24356 . . 3 ((𝐾 ∈ ∞MetSp ∧ 𝐴𝑉) → (𝐾s 𝐴) ∈ ∞MetSp)
31, 2sylan 579 . 2 ((𝐾 ∈ MetSp ∧ 𝐴𝑉) → (𝐾s 𝐴) ∈ ∞MetSp)
4 eqid 2724 . . . . . 6 (Base‘𝐾) = (Base‘𝐾)
5 eqid 2724 . . . . . 6 ((dist‘𝐾) ↾ ((Base‘𝐾) × (Base‘𝐾))) = ((dist‘𝐾) ↾ ((Base‘𝐾) × (Base‘𝐾)))
64, 5msmet 24285 . . . . 5 (𝐾 ∈ MetSp → ((dist‘𝐾) ↾ ((Base‘𝐾) × (Base‘𝐾))) ∈ (Met‘(Base‘𝐾)))
76adantr 480 . . . 4 ((𝐾 ∈ MetSp ∧ 𝐴𝑉) → ((dist‘𝐾) ↾ ((Base‘𝐾) × (Base‘𝐾))) ∈ (Met‘(Base‘𝐾)))
8 metres 24193 . . . 4 (((dist‘𝐾) ↾ ((Base‘𝐾) × (Base‘𝐾))) ∈ (Met‘(Base‘𝐾)) → (((dist‘𝐾) ↾ ((Base‘𝐾) × (Base‘𝐾))) ↾ (𝐴 × 𝐴)) ∈ (Met‘((Base‘𝐾) ∩ 𝐴)))
97, 8syl 17 . . 3 ((𝐾 ∈ MetSp ∧ 𝐴𝑉) → (((dist‘𝐾) ↾ ((Base‘𝐾) × (Base‘𝐾))) ↾ (𝐴 × 𝐴)) ∈ (Met‘((Base‘𝐾) ∩ 𝐴)))
10 resres 5984 . . . . 5 (((dist‘𝐾) ↾ ((Base‘𝐾) × (Base‘𝐾))) ↾ (𝐴 × 𝐴)) = ((dist‘𝐾) ↾ (((Base‘𝐾) × (Base‘𝐾)) ∩ (𝐴 × 𝐴)))
11 inxp 5822 . . . . . 6 (((Base‘𝐾) × (Base‘𝐾)) ∩ (𝐴 × 𝐴)) = (((Base‘𝐾) ∩ 𝐴) × ((Base‘𝐾) ∩ 𝐴))
1211reseq2i 5968 . . . . 5 ((dist‘𝐾) ↾ (((Base‘𝐾) × (Base‘𝐾)) ∩ (𝐴 × 𝐴))) = ((dist‘𝐾) ↾ (((Base‘𝐾) ∩ 𝐴) × ((Base‘𝐾) ∩ 𝐴)))
1310, 12eqtri 2752 . . . 4 (((dist‘𝐾) ↾ ((Base‘𝐾) × (Base‘𝐾))) ↾ (𝐴 × 𝐴)) = ((dist‘𝐾) ↾ (((Base‘𝐾) ∩ 𝐴) × ((Base‘𝐾) ∩ 𝐴)))
14 eqid 2724 . . . . . . 7 (𝐾s 𝐴) = (𝐾s 𝐴)
15 eqid 2724 . . . . . . 7 (dist‘𝐾) = (dist‘𝐾)
1614, 15ressds 17354 . . . . . 6 (𝐴𝑉 → (dist‘𝐾) = (dist‘(𝐾s 𝐴)))
1716adantl 481 . . . . 5 ((𝐾 ∈ MetSp ∧ 𝐴𝑉) → (dist‘𝐾) = (dist‘(𝐾s 𝐴)))
18 incom 4193 . . . . . . 7 ((Base‘𝐾) ∩ 𝐴) = (𝐴 ∩ (Base‘𝐾))
1914, 4ressbas 17178 . . . . . . . 8 (𝐴𝑉 → (𝐴 ∩ (Base‘𝐾)) = (Base‘(𝐾s 𝐴)))
2019adantl 481 . . . . . . 7 ((𝐾 ∈ MetSp ∧ 𝐴𝑉) → (𝐴 ∩ (Base‘𝐾)) = (Base‘(𝐾s 𝐴)))
2118, 20eqtrid 2776 . . . . . 6 ((𝐾 ∈ MetSp ∧ 𝐴𝑉) → ((Base‘𝐾) ∩ 𝐴) = (Base‘(𝐾s 𝐴)))
2221sqxpeqd 5698 . . . . 5 ((𝐾 ∈ MetSp ∧ 𝐴𝑉) → (((Base‘𝐾) ∩ 𝐴) × ((Base‘𝐾) ∩ 𝐴)) = ((Base‘(𝐾s 𝐴)) × (Base‘(𝐾s 𝐴))))
2317, 22reseq12d 5972 . . . 4 ((𝐾 ∈ MetSp ∧ 𝐴𝑉) → ((dist‘𝐾) ↾ (((Base‘𝐾) ∩ 𝐴) × ((Base‘𝐾) ∩ 𝐴))) = ((dist‘(𝐾s 𝐴)) ↾ ((Base‘(𝐾s 𝐴)) × (Base‘(𝐾s 𝐴)))))
2413, 23eqtrid 2776 . . 3 ((𝐾 ∈ MetSp ∧ 𝐴𝑉) → (((dist‘𝐾) ↾ ((Base‘𝐾) × (Base‘𝐾))) ↾ (𝐴 × 𝐴)) = ((dist‘(𝐾s 𝐴)) ↾ ((Base‘(𝐾s 𝐴)) × (Base‘(𝐾s 𝐴)))))
2521fveq2d 6885 . . 3 ((𝐾 ∈ MetSp ∧ 𝐴𝑉) → (Met‘((Base‘𝐾) ∩ 𝐴)) = (Met‘(Base‘(𝐾s 𝐴))))
269, 24, 253eltr3d 2839 . 2 ((𝐾 ∈ MetSp ∧ 𝐴𝑉) → ((dist‘(𝐾s 𝐴)) ↾ ((Base‘(𝐾s 𝐴)) × (Base‘(𝐾s 𝐴)))) ∈ (Met‘(Base‘(𝐾s 𝐴))))
27 eqid 2724 . . . 4 (TopOpen‘𝐾) = (TopOpen‘𝐾)
2814, 27resstopn 23012 . . 3 ((TopOpen‘𝐾) ↾t 𝐴) = (TopOpen‘(𝐾s 𝐴))
29 eqid 2724 . . 3 (Base‘(𝐾s 𝐴)) = (Base‘(𝐾s 𝐴))
30 eqid 2724 . . 3 ((dist‘(𝐾s 𝐴)) ↾ ((Base‘(𝐾s 𝐴)) × (Base‘(𝐾s 𝐴)))) = ((dist‘(𝐾s 𝐴)) ↾ ((Base‘(𝐾s 𝐴)) × (Base‘(𝐾s 𝐴))))
3128, 29, 30isms 24277 . 2 ((𝐾s 𝐴) ∈ MetSp ↔ ((𝐾s 𝐴) ∈ ∞MetSp ∧ ((dist‘(𝐾s 𝐴)) ↾ ((Base‘(𝐾s 𝐴)) × (Base‘(𝐾s 𝐴)))) ∈ (Met‘(Base‘(𝐾s 𝐴)))))
323, 26, 31sylanbrc 582 1 ((𝐾 ∈ MetSp ∧ 𝐴𝑉) → (𝐾s 𝐴) ∈ MetSp)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1533  wcel 2098  cin 3939   × cxp 5664  cres 5668  cfv 6533  (class class class)co 7401  Basecbs 17143  s cress 17172  distcds 17205  t crest 17365  TopOpenctopn 17366  Metcmet 21214  ∞MetSpcxms 24145  MetSpcms 24146
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2163  ax-ext 2695  ax-rep 5275  ax-sep 5289  ax-nul 5296  ax-pow 5353  ax-pr 5417  ax-un 7718  ax-cnex 11162  ax-resscn 11163  ax-1cn 11164  ax-icn 11165  ax-addcl 11166  ax-addrcl 11167  ax-mulcl 11168  ax-mulrcl 11169  ax-mulcom 11170  ax-addass 11171  ax-mulass 11172  ax-distr 11173  ax-i2m1 11174  ax-1ne0 11175  ax-1rid 11176  ax-rnegex 11177  ax-rrecex 11178  ax-cnre 11179  ax-pre-lttri 11180  ax-pre-lttrn 11181  ax-pre-ltadd 11182  ax-pre-mulgt0 11183  ax-pre-sup 11184
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2526  df-eu 2555  df-clab 2702  df-cleq 2716  df-clel 2802  df-nfc 2877  df-ne 2933  df-nel 3039  df-ral 3054  df-rex 3063  df-rmo 3368  df-reu 3369  df-rab 3425  df-v 3468  df-sbc 3770  df-csb 3886  df-dif 3943  df-un 3945  df-in 3947  df-ss 3957  df-pss 3959  df-nul 4315  df-if 4521  df-pw 4596  df-sn 4621  df-pr 4623  df-op 4627  df-uni 4900  df-iun 4989  df-br 5139  df-opab 5201  df-mpt 5222  df-tr 5256  df-id 5564  df-eprel 5570  df-po 5578  df-so 5579  df-fr 5621  df-we 5623  df-xp 5672  df-rel 5673  df-cnv 5674  df-co 5675  df-dm 5676  df-rn 5677  df-res 5678  df-ima 5679  df-pred 6290  df-ord 6357  df-on 6358  df-lim 6359  df-suc 6360  df-iota 6485  df-fun 6535  df-fn 6536  df-f 6537  df-f1 6538  df-fo 6539  df-f1o 6540  df-fv 6541  df-riota 7357  df-ov 7404  df-oprab 7405  df-mpo 7406  df-om 7849  df-1st 7968  df-2nd 7969  df-frecs 8261  df-wrecs 8292  df-recs 8366  df-rdg 8405  df-er 8699  df-map 8818  df-en 8936  df-dom 8937  df-sdom 8938  df-sup 9433  df-inf 9434  df-pnf 11247  df-mnf 11248  df-xr 11249  df-ltxr 11250  df-le 11251  df-sub 11443  df-neg 11444  df-div 11869  df-nn 12210  df-2 12272  df-3 12273  df-4 12274  df-5 12275  df-6 12276  df-7 12277  df-8 12278  df-9 12279  df-n0 12470  df-z 12556  df-dec 12675  df-uz 12820  df-q 12930  df-rp 12972  df-xneg 13089  df-xadd 13090  df-xmul 13091  df-sets 17096  df-slot 17114  df-ndx 17126  df-base 17144  df-ress 17173  df-tset 17215  df-ds 17218  df-rest 17367  df-topn 17368  df-topgen 17388  df-psmet 21220  df-xmet 21221  df-met 21222  df-bl 21223  df-mopn 21224  df-top 22718  df-topon 22735  df-topsp 22757  df-bases 22771  df-xms 24148  df-ms 24149
This theorem is referenced by:  subgngp  24466  cmsss  25201  cmscsscms  25223  cnpwstotbnd  37155
  Copyright terms: Public domain W3C validator