| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ressms | Structured version Visualization version GIF version | ||
| Description: The restriction of a metric space is a metric space. (Contributed by Mario Carneiro, 24-Aug-2015.) |
| Ref | Expression |
|---|---|
| ressms | ⊢ ((𝐾 ∈ MetSp ∧ 𝐴 ∈ 𝑉) → (𝐾 ↾s 𝐴) ∈ MetSp) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | msxms 24342 | . . 3 ⊢ (𝐾 ∈ MetSp → 𝐾 ∈ ∞MetSp) | |
| 2 | ressxms 24413 | . . 3 ⊢ ((𝐾 ∈ ∞MetSp ∧ 𝐴 ∈ 𝑉) → (𝐾 ↾s 𝐴) ∈ ∞MetSp) | |
| 3 | 1, 2 | sylan 580 | . 2 ⊢ ((𝐾 ∈ MetSp ∧ 𝐴 ∈ 𝑉) → (𝐾 ↾s 𝐴) ∈ ∞MetSp) |
| 4 | eqid 2729 | . . . . . 6 ⊢ (Base‘𝐾) = (Base‘𝐾) | |
| 5 | eqid 2729 | . . . . . 6 ⊢ ((dist‘𝐾) ↾ ((Base‘𝐾) × (Base‘𝐾))) = ((dist‘𝐾) ↾ ((Base‘𝐾) × (Base‘𝐾))) | |
| 6 | 4, 5 | msmet 24345 | . . . . 5 ⊢ (𝐾 ∈ MetSp → ((dist‘𝐾) ↾ ((Base‘𝐾) × (Base‘𝐾))) ∈ (Met‘(Base‘𝐾))) |
| 7 | 6 | adantr 480 | . . . 4 ⊢ ((𝐾 ∈ MetSp ∧ 𝐴 ∈ 𝑉) → ((dist‘𝐾) ↾ ((Base‘𝐾) × (Base‘𝐾))) ∈ (Met‘(Base‘𝐾))) |
| 8 | metres 24253 | . . . 4 ⊢ (((dist‘𝐾) ↾ ((Base‘𝐾) × (Base‘𝐾))) ∈ (Met‘(Base‘𝐾)) → (((dist‘𝐾) ↾ ((Base‘𝐾) × (Base‘𝐾))) ↾ (𝐴 × 𝐴)) ∈ (Met‘((Base‘𝐾) ∩ 𝐴))) | |
| 9 | 7, 8 | syl 17 | . . 3 ⊢ ((𝐾 ∈ MetSp ∧ 𝐴 ∈ 𝑉) → (((dist‘𝐾) ↾ ((Base‘𝐾) × (Base‘𝐾))) ↾ (𝐴 × 𝐴)) ∈ (Met‘((Base‘𝐾) ∩ 𝐴))) |
| 10 | resres 5963 | . . . . 5 ⊢ (((dist‘𝐾) ↾ ((Base‘𝐾) × (Base‘𝐾))) ↾ (𝐴 × 𝐴)) = ((dist‘𝐾) ↾ (((Base‘𝐾) × (Base‘𝐾)) ∩ (𝐴 × 𝐴))) | |
| 11 | inxp 5795 | . . . . . 6 ⊢ (((Base‘𝐾) × (Base‘𝐾)) ∩ (𝐴 × 𝐴)) = (((Base‘𝐾) ∩ 𝐴) × ((Base‘𝐾) ∩ 𝐴)) | |
| 12 | 11 | reseq2i 5947 | . . . . 5 ⊢ ((dist‘𝐾) ↾ (((Base‘𝐾) × (Base‘𝐾)) ∩ (𝐴 × 𝐴))) = ((dist‘𝐾) ↾ (((Base‘𝐾) ∩ 𝐴) × ((Base‘𝐾) ∩ 𝐴))) |
| 13 | 10, 12 | eqtri 2752 | . . . 4 ⊢ (((dist‘𝐾) ↾ ((Base‘𝐾) × (Base‘𝐾))) ↾ (𝐴 × 𝐴)) = ((dist‘𝐾) ↾ (((Base‘𝐾) ∩ 𝐴) × ((Base‘𝐾) ∩ 𝐴))) |
| 14 | eqid 2729 | . . . . . . 7 ⊢ (𝐾 ↾s 𝐴) = (𝐾 ↾s 𝐴) | |
| 15 | eqid 2729 | . . . . . . 7 ⊢ (dist‘𝐾) = (dist‘𝐾) | |
| 16 | 14, 15 | ressds 17373 | . . . . . 6 ⊢ (𝐴 ∈ 𝑉 → (dist‘𝐾) = (dist‘(𝐾 ↾s 𝐴))) |
| 17 | 16 | adantl 481 | . . . . 5 ⊢ ((𝐾 ∈ MetSp ∧ 𝐴 ∈ 𝑉) → (dist‘𝐾) = (dist‘(𝐾 ↾s 𝐴))) |
| 18 | incom 4172 | . . . . . . 7 ⊢ ((Base‘𝐾) ∩ 𝐴) = (𝐴 ∩ (Base‘𝐾)) | |
| 19 | 14, 4 | ressbas 17206 | . . . . . . . 8 ⊢ (𝐴 ∈ 𝑉 → (𝐴 ∩ (Base‘𝐾)) = (Base‘(𝐾 ↾s 𝐴))) |
| 20 | 19 | adantl 481 | . . . . . . 7 ⊢ ((𝐾 ∈ MetSp ∧ 𝐴 ∈ 𝑉) → (𝐴 ∩ (Base‘𝐾)) = (Base‘(𝐾 ↾s 𝐴))) |
| 21 | 18, 20 | eqtrid 2776 | . . . . . 6 ⊢ ((𝐾 ∈ MetSp ∧ 𝐴 ∈ 𝑉) → ((Base‘𝐾) ∩ 𝐴) = (Base‘(𝐾 ↾s 𝐴))) |
| 22 | 21 | sqxpeqd 5670 | . . . . 5 ⊢ ((𝐾 ∈ MetSp ∧ 𝐴 ∈ 𝑉) → (((Base‘𝐾) ∩ 𝐴) × ((Base‘𝐾) ∩ 𝐴)) = ((Base‘(𝐾 ↾s 𝐴)) × (Base‘(𝐾 ↾s 𝐴)))) |
| 23 | 17, 22 | reseq12d 5951 | . . . 4 ⊢ ((𝐾 ∈ MetSp ∧ 𝐴 ∈ 𝑉) → ((dist‘𝐾) ↾ (((Base‘𝐾) ∩ 𝐴) × ((Base‘𝐾) ∩ 𝐴))) = ((dist‘(𝐾 ↾s 𝐴)) ↾ ((Base‘(𝐾 ↾s 𝐴)) × (Base‘(𝐾 ↾s 𝐴))))) |
| 24 | 13, 23 | eqtrid 2776 | . . 3 ⊢ ((𝐾 ∈ MetSp ∧ 𝐴 ∈ 𝑉) → (((dist‘𝐾) ↾ ((Base‘𝐾) × (Base‘𝐾))) ↾ (𝐴 × 𝐴)) = ((dist‘(𝐾 ↾s 𝐴)) ↾ ((Base‘(𝐾 ↾s 𝐴)) × (Base‘(𝐾 ↾s 𝐴))))) |
| 25 | 21 | fveq2d 6862 | . . 3 ⊢ ((𝐾 ∈ MetSp ∧ 𝐴 ∈ 𝑉) → (Met‘((Base‘𝐾) ∩ 𝐴)) = (Met‘(Base‘(𝐾 ↾s 𝐴)))) |
| 26 | 9, 24, 25 | 3eltr3d 2842 | . 2 ⊢ ((𝐾 ∈ MetSp ∧ 𝐴 ∈ 𝑉) → ((dist‘(𝐾 ↾s 𝐴)) ↾ ((Base‘(𝐾 ↾s 𝐴)) × (Base‘(𝐾 ↾s 𝐴)))) ∈ (Met‘(Base‘(𝐾 ↾s 𝐴)))) |
| 27 | eqid 2729 | . . . 4 ⊢ (TopOpen‘𝐾) = (TopOpen‘𝐾) | |
| 28 | 14, 27 | resstopn 23073 | . . 3 ⊢ ((TopOpen‘𝐾) ↾t 𝐴) = (TopOpen‘(𝐾 ↾s 𝐴)) |
| 29 | eqid 2729 | . . 3 ⊢ (Base‘(𝐾 ↾s 𝐴)) = (Base‘(𝐾 ↾s 𝐴)) | |
| 30 | eqid 2729 | . . 3 ⊢ ((dist‘(𝐾 ↾s 𝐴)) ↾ ((Base‘(𝐾 ↾s 𝐴)) × (Base‘(𝐾 ↾s 𝐴)))) = ((dist‘(𝐾 ↾s 𝐴)) ↾ ((Base‘(𝐾 ↾s 𝐴)) × (Base‘(𝐾 ↾s 𝐴)))) | |
| 31 | 28, 29, 30 | isms 24337 | . 2 ⊢ ((𝐾 ↾s 𝐴) ∈ MetSp ↔ ((𝐾 ↾s 𝐴) ∈ ∞MetSp ∧ ((dist‘(𝐾 ↾s 𝐴)) ↾ ((Base‘(𝐾 ↾s 𝐴)) × (Base‘(𝐾 ↾s 𝐴)))) ∈ (Met‘(Base‘(𝐾 ↾s 𝐴))))) |
| 32 | 3, 26, 31 | sylanbrc 583 | 1 ⊢ ((𝐾 ∈ MetSp ∧ 𝐴 ∈ 𝑉) → (𝐾 ↾s 𝐴) ∈ MetSp) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ∩ cin 3913 × cxp 5636 ↾ cres 5640 ‘cfv 6511 (class class class)co 7387 Basecbs 17179 ↾s cress 17200 distcds 17229 ↾t crest 17383 TopOpenctopn 17384 Metcmet 21250 ∞MetSpcxms 24205 MetSpcms 24206 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5234 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 ax-cnex 11124 ax-resscn 11125 ax-1cn 11126 ax-icn 11127 ax-addcl 11128 ax-addrcl 11129 ax-mulcl 11130 ax-mulrcl 11131 ax-mulcom 11132 ax-addass 11133 ax-mulass 11134 ax-distr 11135 ax-i2m1 11136 ax-1ne0 11137 ax-1rid 11138 ax-rnegex 11139 ax-rrecex 11140 ax-cnre 11141 ax-pre-lttri 11142 ax-pre-lttrn 11143 ax-pre-ltadd 11144 ax-pre-mulgt0 11145 ax-pre-sup 11146 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3354 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-pss 3934 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-iun 4957 df-br 5108 df-opab 5170 df-mpt 5189 df-tr 5215 df-id 5533 df-eprel 5538 df-po 5546 df-so 5547 df-fr 5591 df-we 5593 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-pred 6274 df-ord 6335 df-on 6336 df-lim 6337 df-suc 6338 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-riota 7344 df-ov 7390 df-oprab 7391 df-mpo 7392 df-om 7843 df-1st 7968 df-2nd 7969 df-frecs 8260 df-wrecs 8291 df-recs 8340 df-rdg 8378 df-er 8671 df-map 8801 df-en 8919 df-dom 8920 df-sdom 8921 df-sup 9393 df-inf 9394 df-pnf 11210 df-mnf 11211 df-xr 11212 df-ltxr 11213 df-le 11214 df-sub 11407 df-neg 11408 df-div 11836 df-nn 12187 df-2 12249 df-3 12250 df-4 12251 df-5 12252 df-6 12253 df-7 12254 df-8 12255 df-9 12256 df-n0 12443 df-z 12530 df-dec 12650 df-uz 12794 df-q 12908 df-rp 12952 df-xneg 13072 df-xadd 13073 df-xmul 13074 df-sets 17134 df-slot 17152 df-ndx 17164 df-base 17180 df-ress 17201 df-tset 17239 df-ds 17242 df-rest 17385 df-topn 17386 df-topgen 17406 df-psmet 21256 df-xmet 21257 df-met 21258 df-bl 21259 df-mopn 21260 df-top 22781 df-topon 22798 df-topsp 22820 df-bases 22833 df-xms 24208 df-ms 24209 |
| This theorem is referenced by: subgngp 24523 cmsss 25251 cmscsscms 25273 cnpwstotbnd 37791 |
| Copyright terms: Public domain | W3C validator |