MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ressms Structured version   Visualization version   GIF version

Theorem ressms 24034
Description: The restriction of a metric space is a metric space. (Contributed by Mario Carneiro, 24-Aug-2015.)
Assertion
Ref Expression
ressms ((𝐾 ∈ MetSp ∧ 𝐴𝑉) → (𝐾s 𝐴) ∈ MetSp)

Proof of Theorem ressms
StepHypRef Expression
1 msxms 23959 . . 3 (𝐾 ∈ MetSp → 𝐾 ∈ ∞MetSp)
2 ressxms 24033 . . 3 ((𝐾 ∈ ∞MetSp ∧ 𝐴𝑉) → (𝐾s 𝐴) ∈ ∞MetSp)
31, 2sylan 580 . 2 ((𝐾 ∈ MetSp ∧ 𝐴𝑉) → (𝐾s 𝐴) ∈ ∞MetSp)
4 eqid 2732 . . . . . 6 (Base‘𝐾) = (Base‘𝐾)
5 eqid 2732 . . . . . 6 ((dist‘𝐾) ↾ ((Base‘𝐾) × (Base‘𝐾))) = ((dist‘𝐾) ↾ ((Base‘𝐾) × (Base‘𝐾)))
64, 5msmet 23962 . . . . 5 (𝐾 ∈ MetSp → ((dist‘𝐾) ↾ ((Base‘𝐾) × (Base‘𝐾))) ∈ (Met‘(Base‘𝐾)))
76adantr 481 . . . 4 ((𝐾 ∈ MetSp ∧ 𝐴𝑉) → ((dist‘𝐾) ↾ ((Base‘𝐾) × (Base‘𝐾))) ∈ (Met‘(Base‘𝐾)))
8 metres 23870 . . . 4 (((dist‘𝐾) ↾ ((Base‘𝐾) × (Base‘𝐾))) ∈ (Met‘(Base‘𝐾)) → (((dist‘𝐾) ↾ ((Base‘𝐾) × (Base‘𝐾))) ↾ (𝐴 × 𝐴)) ∈ (Met‘((Base‘𝐾) ∩ 𝐴)))
97, 8syl 17 . . 3 ((𝐾 ∈ MetSp ∧ 𝐴𝑉) → (((dist‘𝐾) ↾ ((Base‘𝐾) × (Base‘𝐾))) ↾ (𝐴 × 𝐴)) ∈ (Met‘((Base‘𝐾) ∩ 𝐴)))
10 resres 5994 . . . . 5 (((dist‘𝐾) ↾ ((Base‘𝐾) × (Base‘𝐾))) ↾ (𝐴 × 𝐴)) = ((dist‘𝐾) ↾ (((Base‘𝐾) × (Base‘𝐾)) ∩ (𝐴 × 𝐴)))
11 inxp 5832 . . . . . 6 (((Base‘𝐾) × (Base‘𝐾)) ∩ (𝐴 × 𝐴)) = (((Base‘𝐾) ∩ 𝐴) × ((Base‘𝐾) ∩ 𝐴))
1211reseq2i 5978 . . . . 5 ((dist‘𝐾) ↾ (((Base‘𝐾) × (Base‘𝐾)) ∩ (𝐴 × 𝐴))) = ((dist‘𝐾) ↾ (((Base‘𝐾) ∩ 𝐴) × ((Base‘𝐾) ∩ 𝐴)))
1310, 12eqtri 2760 . . . 4 (((dist‘𝐾) ↾ ((Base‘𝐾) × (Base‘𝐾))) ↾ (𝐴 × 𝐴)) = ((dist‘𝐾) ↾ (((Base‘𝐾) ∩ 𝐴) × ((Base‘𝐾) ∩ 𝐴)))
14 eqid 2732 . . . . . . 7 (𝐾s 𝐴) = (𝐾s 𝐴)
15 eqid 2732 . . . . . . 7 (dist‘𝐾) = (dist‘𝐾)
1614, 15ressds 17354 . . . . . 6 (𝐴𝑉 → (dist‘𝐾) = (dist‘(𝐾s 𝐴)))
1716adantl 482 . . . . 5 ((𝐾 ∈ MetSp ∧ 𝐴𝑉) → (dist‘𝐾) = (dist‘(𝐾s 𝐴)))
18 incom 4201 . . . . . . 7 ((Base‘𝐾) ∩ 𝐴) = (𝐴 ∩ (Base‘𝐾))
1914, 4ressbas 17178 . . . . . . . 8 (𝐴𝑉 → (𝐴 ∩ (Base‘𝐾)) = (Base‘(𝐾s 𝐴)))
2019adantl 482 . . . . . . 7 ((𝐾 ∈ MetSp ∧ 𝐴𝑉) → (𝐴 ∩ (Base‘𝐾)) = (Base‘(𝐾s 𝐴)))
2118, 20eqtrid 2784 . . . . . 6 ((𝐾 ∈ MetSp ∧ 𝐴𝑉) → ((Base‘𝐾) ∩ 𝐴) = (Base‘(𝐾s 𝐴)))
2221sqxpeqd 5708 . . . . 5 ((𝐾 ∈ MetSp ∧ 𝐴𝑉) → (((Base‘𝐾) ∩ 𝐴) × ((Base‘𝐾) ∩ 𝐴)) = ((Base‘(𝐾s 𝐴)) × (Base‘(𝐾s 𝐴))))
2317, 22reseq12d 5982 . . . 4 ((𝐾 ∈ MetSp ∧ 𝐴𝑉) → ((dist‘𝐾) ↾ (((Base‘𝐾) ∩ 𝐴) × ((Base‘𝐾) ∩ 𝐴))) = ((dist‘(𝐾s 𝐴)) ↾ ((Base‘(𝐾s 𝐴)) × (Base‘(𝐾s 𝐴)))))
2413, 23eqtrid 2784 . . 3 ((𝐾 ∈ MetSp ∧ 𝐴𝑉) → (((dist‘𝐾) ↾ ((Base‘𝐾) × (Base‘𝐾))) ↾ (𝐴 × 𝐴)) = ((dist‘(𝐾s 𝐴)) ↾ ((Base‘(𝐾s 𝐴)) × (Base‘(𝐾s 𝐴)))))
2521fveq2d 6895 . . 3 ((𝐾 ∈ MetSp ∧ 𝐴𝑉) → (Met‘((Base‘𝐾) ∩ 𝐴)) = (Met‘(Base‘(𝐾s 𝐴))))
269, 24, 253eltr3d 2847 . 2 ((𝐾 ∈ MetSp ∧ 𝐴𝑉) → ((dist‘(𝐾s 𝐴)) ↾ ((Base‘(𝐾s 𝐴)) × (Base‘(𝐾s 𝐴)))) ∈ (Met‘(Base‘(𝐾s 𝐴))))
27 eqid 2732 . . . 4 (TopOpen‘𝐾) = (TopOpen‘𝐾)
2814, 27resstopn 22689 . . 3 ((TopOpen‘𝐾) ↾t 𝐴) = (TopOpen‘(𝐾s 𝐴))
29 eqid 2732 . . 3 (Base‘(𝐾s 𝐴)) = (Base‘(𝐾s 𝐴))
30 eqid 2732 . . 3 ((dist‘(𝐾s 𝐴)) ↾ ((Base‘(𝐾s 𝐴)) × (Base‘(𝐾s 𝐴)))) = ((dist‘(𝐾s 𝐴)) ↾ ((Base‘(𝐾s 𝐴)) × (Base‘(𝐾s 𝐴))))
3128, 29, 30isms 23954 . 2 ((𝐾s 𝐴) ∈ MetSp ↔ ((𝐾s 𝐴) ∈ ∞MetSp ∧ ((dist‘(𝐾s 𝐴)) ↾ ((Base‘(𝐾s 𝐴)) × (Base‘(𝐾s 𝐴)))) ∈ (Met‘(Base‘(𝐾s 𝐴)))))
323, 26, 31sylanbrc 583 1 ((𝐾 ∈ MetSp ∧ 𝐴𝑉) → (𝐾s 𝐴) ∈ MetSp)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396   = wceq 1541  wcel 2106  cin 3947   × cxp 5674  cres 5678  cfv 6543  (class class class)co 7408  Basecbs 17143  s cress 17172  distcds 17205  t crest 17365  TopOpenctopn 17366  Metcmet 20929  ∞MetSpcxms 23822  MetSpcms 23823
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-rep 5285  ax-sep 5299  ax-nul 5306  ax-pow 5363  ax-pr 5427  ax-un 7724  ax-cnex 11165  ax-resscn 11166  ax-1cn 11167  ax-icn 11168  ax-addcl 11169  ax-addrcl 11170  ax-mulcl 11171  ax-mulrcl 11172  ax-mulcom 11173  ax-addass 11174  ax-mulass 11175  ax-distr 11176  ax-i2m1 11177  ax-1ne0 11178  ax-1rid 11179  ax-rnegex 11180  ax-rrecex 11181  ax-cnre 11182  ax-pre-lttri 11183  ax-pre-lttrn 11184  ax-pre-ltadd 11185  ax-pre-mulgt0 11186  ax-pre-sup 11187
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3376  df-reu 3377  df-rab 3433  df-v 3476  df-sbc 3778  df-csb 3894  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-pss 3967  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-iun 4999  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5574  df-eprel 5580  df-po 5588  df-so 5589  df-fr 5631  df-we 5633  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-pred 6300  df-ord 6367  df-on 6368  df-lim 6369  df-suc 6370  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-riota 7364  df-ov 7411  df-oprab 7412  df-mpo 7413  df-om 7855  df-1st 7974  df-2nd 7975  df-frecs 8265  df-wrecs 8296  df-recs 8370  df-rdg 8409  df-er 8702  df-map 8821  df-en 8939  df-dom 8940  df-sdom 8941  df-sup 9436  df-inf 9437  df-pnf 11249  df-mnf 11250  df-xr 11251  df-ltxr 11252  df-le 11253  df-sub 11445  df-neg 11446  df-div 11871  df-nn 12212  df-2 12274  df-3 12275  df-4 12276  df-5 12277  df-6 12278  df-7 12279  df-8 12280  df-9 12281  df-n0 12472  df-z 12558  df-dec 12677  df-uz 12822  df-q 12932  df-rp 12974  df-xneg 13091  df-xadd 13092  df-xmul 13093  df-sets 17096  df-slot 17114  df-ndx 17126  df-base 17144  df-ress 17173  df-tset 17215  df-ds 17218  df-rest 17367  df-topn 17368  df-topgen 17388  df-psmet 20935  df-xmet 20936  df-met 20937  df-bl 20938  df-mopn 20939  df-top 22395  df-topon 22412  df-topsp 22434  df-bases 22448  df-xms 23825  df-ms 23826
This theorem is referenced by:  subgngp  24143  cmsss  24867  cmscsscms  24889  cnpwstotbnd  36660
  Copyright terms: Public domain W3C validator