| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ressms | Structured version Visualization version GIF version | ||
| Description: The restriction of a metric space is a metric space. (Contributed by Mario Carneiro, 24-Aug-2015.) |
| Ref | Expression |
|---|---|
| ressms | ⊢ ((𝐾 ∈ MetSp ∧ 𝐴 ∈ 𝑉) → (𝐾 ↾s 𝐴) ∈ MetSp) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | msxms 24369 | . . 3 ⊢ (𝐾 ∈ MetSp → 𝐾 ∈ ∞MetSp) | |
| 2 | ressxms 24440 | . . 3 ⊢ ((𝐾 ∈ ∞MetSp ∧ 𝐴 ∈ 𝑉) → (𝐾 ↾s 𝐴) ∈ ∞MetSp) | |
| 3 | 1, 2 | sylan 580 | . 2 ⊢ ((𝐾 ∈ MetSp ∧ 𝐴 ∈ 𝑉) → (𝐾 ↾s 𝐴) ∈ ∞MetSp) |
| 4 | eqid 2731 | . . . . . 6 ⊢ (Base‘𝐾) = (Base‘𝐾) | |
| 5 | eqid 2731 | . . . . . 6 ⊢ ((dist‘𝐾) ↾ ((Base‘𝐾) × (Base‘𝐾))) = ((dist‘𝐾) ↾ ((Base‘𝐾) × (Base‘𝐾))) | |
| 6 | 4, 5 | msmet 24372 | . . . . 5 ⊢ (𝐾 ∈ MetSp → ((dist‘𝐾) ↾ ((Base‘𝐾) × (Base‘𝐾))) ∈ (Met‘(Base‘𝐾))) |
| 7 | 6 | adantr 480 | . . . 4 ⊢ ((𝐾 ∈ MetSp ∧ 𝐴 ∈ 𝑉) → ((dist‘𝐾) ↾ ((Base‘𝐾) × (Base‘𝐾))) ∈ (Met‘(Base‘𝐾))) |
| 8 | metres 24280 | . . . 4 ⊢ (((dist‘𝐾) ↾ ((Base‘𝐾) × (Base‘𝐾))) ∈ (Met‘(Base‘𝐾)) → (((dist‘𝐾) ↾ ((Base‘𝐾) × (Base‘𝐾))) ↾ (𝐴 × 𝐴)) ∈ (Met‘((Base‘𝐾) ∩ 𝐴))) | |
| 9 | 7, 8 | syl 17 | . . 3 ⊢ ((𝐾 ∈ MetSp ∧ 𝐴 ∈ 𝑉) → (((dist‘𝐾) ↾ ((Base‘𝐾) × (Base‘𝐾))) ↾ (𝐴 × 𝐴)) ∈ (Met‘((Base‘𝐾) ∩ 𝐴))) |
| 10 | resres 5940 | . . . . 5 ⊢ (((dist‘𝐾) ↾ ((Base‘𝐾) × (Base‘𝐾))) ↾ (𝐴 × 𝐴)) = ((dist‘𝐾) ↾ (((Base‘𝐾) × (Base‘𝐾)) ∩ (𝐴 × 𝐴))) | |
| 11 | inxp 5770 | . . . . . 6 ⊢ (((Base‘𝐾) × (Base‘𝐾)) ∩ (𝐴 × 𝐴)) = (((Base‘𝐾) ∩ 𝐴) × ((Base‘𝐾) ∩ 𝐴)) | |
| 12 | 11 | reseq2i 5924 | . . . . 5 ⊢ ((dist‘𝐾) ↾ (((Base‘𝐾) × (Base‘𝐾)) ∩ (𝐴 × 𝐴))) = ((dist‘𝐾) ↾ (((Base‘𝐾) ∩ 𝐴) × ((Base‘𝐾) ∩ 𝐴))) |
| 13 | 10, 12 | eqtri 2754 | . . . 4 ⊢ (((dist‘𝐾) ↾ ((Base‘𝐾) × (Base‘𝐾))) ↾ (𝐴 × 𝐴)) = ((dist‘𝐾) ↾ (((Base‘𝐾) ∩ 𝐴) × ((Base‘𝐾) ∩ 𝐴))) |
| 14 | eqid 2731 | . . . . . . 7 ⊢ (𝐾 ↾s 𝐴) = (𝐾 ↾s 𝐴) | |
| 15 | eqid 2731 | . . . . . . 7 ⊢ (dist‘𝐾) = (dist‘𝐾) | |
| 16 | 14, 15 | ressds 17314 | . . . . . 6 ⊢ (𝐴 ∈ 𝑉 → (dist‘𝐾) = (dist‘(𝐾 ↾s 𝐴))) |
| 17 | 16 | adantl 481 | . . . . 5 ⊢ ((𝐾 ∈ MetSp ∧ 𝐴 ∈ 𝑉) → (dist‘𝐾) = (dist‘(𝐾 ↾s 𝐴))) |
| 18 | incom 4156 | . . . . . . 7 ⊢ ((Base‘𝐾) ∩ 𝐴) = (𝐴 ∩ (Base‘𝐾)) | |
| 19 | 14, 4 | ressbas 17147 | . . . . . . . 8 ⊢ (𝐴 ∈ 𝑉 → (𝐴 ∩ (Base‘𝐾)) = (Base‘(𝐾 ↾s 𝐴))) |
| 20 | 19 | adantl 481 | . . . . . . 7 ⊢ ((𝐾 ∈ MetSp ∧ 𝐴 ∈ 𝑉) → (𝐴 ∩ (Base‘𝐾)) = (Base‘(𝐾 ↾s 𝐴))) |
| 21 | 18, 20 | eqtrid 2778 | . . . . . 6 ⊢ ((𝐾 ∈ MetSp ∧ 𝐴 ∈ 𝑉) → ((Base‘𝐾) ∩ 𝐴) = (Base‘(𝐾 ↾s 𝐴))) |
| 22 | 21 | sqxpeqd 5646 | . . . . 5 ⊢ ((𝐾 ∈ MetSp ∧ 𝐴 ∈ 𝑉) → (((Base‘𝐾) ∩ 𝐴) × ((Base‘𝐾) ∩ 𝐴)) = ((Base‘(𝐾 ↾s 𝐴)) × (Base‘(𝐾 ↾s 𝐴)))) |
| 23 | 17, 22 | reseq12d 5928 | . . . 4 ⊢ ((𝐾 ∈ MetSp ∧ 𝐴 ∈ 𝑉) → ((dist‘𝐾) ↾ (((Base‘𝐾) ∩ 𝐴) × ((Base‘𝐾) ∩ 𝐴))) = ((dist‘(𝐾 ↾s 𝐴)) ↾ ((Base‘(𝐾 ↾s 𝐴)) × (Base‘(𝐾 ↾s 𝐴))))) |
| 24 | 13, 23 | eqtrid 2778 | . . 3 ⊢ ((𝐾 ∈ MetSp ∧ 𝐴 ∈ 𝑉) → (((dist‘𝐾) ↾ ((Base‘𝐾) × (Base‘𝐾))) ↾ (𝐴 × 𝐴)) = ((dist‘(𝐾 ↾s 𝐴)) ↾ ((Base‘(𝐾 ↾s 𝐴)) × (Base‘(𝐾 ↾s 𝐴))))) |
| 25 | 21 | fveq2d 6826 | . . 3 ⊢ ((𝐾 ∈ MetSp ∧ 𝐴 ∈ 𝑉) → (Met‘((Base‘𝐾) ∩ 𝐴)) = (Met‘(Base‘(𝐾 ↾s 𝐴)))) |
| 26 | 9, 24, 25 | 3eltr3d 2845 | . 2 ⊢ ((𝐾 ∈ MetSp ∧ 𝐴 ∈ 𝑉) → ((dist‘(𝐾 ↾s 𝐴)) ↾ ((Base‘(𝐾 ↾s 𝐴)) × (Base‘(𝐾 ↾s 𝐴)))) ∈ (Met‘(Base‘(𝐾 ↾s 𝐴)))) |
| 27 | eqid 2731 | . . . 4 ⊢ (TopOpen‘𝐾) = (TopOpen‘𝐾) | |
| 28 | 14, 27 | resstopn 23101 | . . 3 ⊢ ((TopOpen‘𝐾) ↾t 𝐴) = (TopOpen‘(𝐾 ↾s 𝐴)) |
| 29 | eqid 2731 | . . 3 ⊢ (Base‘(𝐾 ↾s 𝐴)) = (Base‘(𝐾 ↾s 𝐴)) | |
| 30 | eqid 2731 | . . 3 ⊢ ((dist‘(𝐾 ↾s 𝐴)) ↾ ((Base‘(𝐾 ↾s 𝐴)) × (Base‘(𝐾 ↾s 𝐴)))) = ((dist‘(𝐾 ↾s 𝐴)) ↾ ((Base‘(𝐾 ↾s 𝐴)) × (Base‘(𝐾 ↾s 𝐴)))) | |
| 31 | 28, 29, 30 | isms 24364 | . 2 ⊢ ((𝐾 ↾s 𝐴) ∈ MetSp ↔ ((𝐾 ↾s 𝐴) ∈ ∞MetSp ∧ ((dist‘(𝐾 ↾s 𝐴)) ↾ ((Base‘(𝐾 ↾s 𝐴)) × (Base‘(𝐾 ↾s 𝐴)))) ∈ (Met‘(Base‘(𝐾 ↾s 𝐴))))) |
| 32 | 3, 26, 31 | sylanbrc 583 | 1 ⊢ ((𝐾 ∈ MetSp ∧ 𝐴 ∈ 𝑉) → (𝐾 ↾s 𝐴) ∈ MetSp) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2111 ∩ cin 3896 × cxp 5612 ↾ cres 5616 ‘cfv 6481 (class class class)co 7346 Basecbs 17120 ↾s cress 17141 distcds 17170 ↾t crest 17324 TopOpenctopn 17325 Metcmet 21277 ∞MetSpcxms 24232 MetSpcms 24233 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5215 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 ax-un 7668 ax-cnex 11062 ax-resscn 11063 ax-1cn 11064 ax-icn 11065 ax-addcl 11066 ax-addrcl 11067 ax-mulcl 11068 ax-mulrcl 11069 ax-mulcom 11070 ax-addass 11071 ax-mulass 11072 ax-distr 11073 ax-i2m1 11074 ax-1ne0 11075 ax-1rid 11076 ax-rnegex 11077 ax-rrecex 11078 ax-cnre 11079 ax-pre-lttri 11080 ax-pre-lttrn 11081 ax-pre-ltadd 11082 ax-pre-mulgt0 11083 ax-pre-sup 11084 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3917 df-nul 4281 df-if 4473 df-pw 4549 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-iun 4941 df-br 5090 df-opab 5152 df-mpt 5171 df-tr 5197 df-id 5509 df-eprel 5514 df-po 5522 df-so 5523 df-fr 5567 df-we 5569 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-pred 6248 df-ord 6309 df-on 6310 df-lim 6311 df-suc 6312 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-riota 7303 df-ov 7349 df-oprab 7350 df-mpo 7351 df-om 7797 df-1st 7921 df-2nd 7922 df-frecs 8211 df-wrecs 8242 df-recs 8291 df-rdg 8329 df-er 8622 df-map 8752 df-en 8870 df-dom 8871 df-sdom 8872 df-sup 9326 df-inf 9327 df-pnf 11148 df-mnf 11149 df-xr 11150 df-ltxr 11151 df-le 11152 df-sub 11346 df-neg 11347 df-div 11775 df-nn 12126 df-2 12188 df-3 12189 df-4 12190 df-5 12191 df-6 12192 df-7 12193 df-8 12194 df-9 12195 df-n0 12382 df-z 12469 df-dec 12589 df-uz 12733 df-q 12847 df-rp 12891 df-xneg 13011 df-xadd 13012 df-xmul 13013 df-sets 17075 df-slot 17093 df-ndx 17105 df-base 17121 df-ress 17142 df-tset 17180 df-ds 17183 df-rest 17326 df-topn 17327 df-topgen 17347 df-psmet 21283 df-xmet 21284 df-met 21285 df-bl 21286 df-mopn 21287 df-top 22809 df-topon 22826 df-topsp 22848 df-bases 22861 df-xms 24235 df-ms 24236 |
| This theorem is referenced by: subgngp 24550 cmsss 25278 cmscsscms 25300 cnpwstotbnd 37845 |
| Copyright terms: Public domain | W3C validator |