Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  isms2 Structured version   Visualization version   GIF version

Theorem isms2 23052
 Description: Express the predicate "⟨𝑋, 𝐷⟩ is a metric space" with underlying set 𝑋 and distance function 𝐷. (Contributed by NM, 27-Aug-2006.) (Revised by Mario Carneiro, 24-Aug-2015.)
Hypotheses
Ref Expression
isms.j 𝐽 = (TopOpen‘𝐾)
isms.x 𝑋 = (Base‘𝐾)
isms.d 𝐷 = ((dist‘𝐾) ↾ (𝑋 × 𝑋))
Assertion
Ref Expression
isms2 (𝐾 ∈ MetSp ↔ (𝐷 ∈ (Met‘𝑋) ∧ 𝐽 = (MetOpen‘𝐷)))

Proof of Theorem isms2
StepHypRef Expression
1 isms.j . . . 4 𝐽 = (TopOpen‘𝐾)
2 isms.x . . . 4 𝑋 = (Base‘𝐾)
3 isms.d . . . 4 𝐷 = ((dist‘𝐾) ↾ (𝑋 × 𝑋))
41, 2, 3isxms2 23050 . . 3 (𝐾 ∈ ∞MetSp ↔ (𝐷 ∈ (∞Met‘𝑋) ∧ 𝐽 = (MetOpen‘𝐷)))
54anbi1i 625 . 2 ((𝐾 ∈ ∞MetSp ∧ 𝐷 ∈ (Met‘𝑋)) ↔ ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐽 = (MetOpen‘𝐷)) ∧ 𝐷 ∈ (Met‘𝑋)))
61, 2, 3isms 23051 . 2 (𝐾 ∈ MetSp ↔ (𝐾 ∈ ∞MetSp ∧ 𝐷 ∈ (Met‘𝑋)))
7 metxmet 22936 . . . . 5 (𝐷 ∈ (Met‘𝑋) → 𝐷 ∈ (∞Met‘𝑋))
87pm4.71ri 563 . . . 4 (𝐷 ∈ (Met‘𝑋) ↔ (𝐷 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (Met‘𝑋)))
98anbi1i 625 . . 3 ((𝐷 ∈ (Met‘𝑋) ∧ 𝐽 = (MetOpen‘𝐷)) ↔ ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (Met‘𝑋)) ∧ 𝐽 = (MetOpen‘𝐷)))
10 an32 644 . . 3 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (Met‘𝑋)) ∧ 𝐽 = (MetOpen‘𝐷)) ↔ ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐽 = (MetOpen‘𝐷)) ∧ 𝐷 ∈ (Met‘𝑋)))
119, 10bitri 277 . 2 ((𝐷 ∈ (Met‘𝑋) ∧ 𝐽 = (MetOpen‘𝐷)) ↔ ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐽 = (MetOpen‘𝐷)) ∧ 𝐷 ∈ (Met‘𝑋)))
125, 6, 113bitr4i 305 1 (𝐾 ∈ MetSp ↔ (𝐷 ∈ (Met‘𝑋) ∧ 𝐽 = (MetOpen‘𝐷)))
 Colors of variables: wff setvar class Syntax hints:   ↔ wb 208   ∧ wa 398   = wceq 1531   ∈ wcel 2108   × cxp 5546   ↾ cres 5550  ‘cfv 6348  Basecbs 16475  distcds 16566  TopOpenctopn 16687  ∞Metcxmet 20522  Metcmet 20523  MetOpencmopn 20527  ∞MetSpcxms 22919  MetSpcms 22920 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1905  ax-6 1964  ax-7 2009  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2154  ax-12 2170  ax-ext 2791  ax-sep 5194  ax-nul 5201  ax-pow 5257  ax-pr 5320  ax-un 7453  ax-cnex 10585  ax-resscn 10586  ax-1cn 10587  ax-icn 10588  ax-addcl 10589  ax-addrcl 10590  ax-mulcl 10591  ax-mulrcl 10592  ax-mulcom 10593  ax-addass 10594  ax-mulass 10595  ax-distr 10596  ax-i2m1 10597  ax-1ne0 10598  ax-1rid 10599  ax-rnegex 10600  ax-rrecex 10601  ax-cnre 10602  ax-pre-lttri 10603  ax-pre-lttrn 10604  ax-pre-ltadd 10605  ax-pre-mulgt0 10606  ax-pre-sup 10607 This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1083  df-3an 1084  df-tru 1534  df-ex 1775  df-nf 1779  df-sb 2064  df-mo 2616  df-eu 2648  df-clab 2798  df-cleq 2812  df-clel 2891  df-nfc 2961  df-ne 3015  df-nel 3122  df-ral 3141  df-rex 3142  df-reu 3143  df-rmo 3144  df-rab 3145  df-v 3495  df-sbc 3771  df-csb 3882  df-dif 3937  df-un 3939  df-in 3941  df-ss 3950  df-pss 3952  df-nul 4290  df-if 4466  df-pw 4539  df-sn 4560  df-pr 4562  df-tp 4564  df-op 4566  df-uni 4831  df-iun 4912  df-br 5058  df-opab 5120  df-mpt 5138  df-tr 5164  df-id 5453  df-eprel 5458  df-po 5467  df-so 5468  df-fr 5507  df-we 5509  df-xp 5554  df-rel 5555  df-cnv 5556  df-co 5557  df-dm 5558  df-rn 5559  df-res 5560  df-ima 5561  df-pred 6141  df-ord 6187  df-on 6188  df-lim 6189  df-suc 6190  df-iota 6307  df-fun 6350  df-fn 6351  df-f 6352  df-f1 6353  df-fo 6354  df-f1o 6355  df-fv 6356  df-riota 7106  df-ov 7151  df-oprab 7152  df-mpo 7153  df-om 7573  df-1st 7681  df-2nd 7682  df-wrecs 7939  df-recs 8000  df-rdg 8038  df-er 8281  df-map 8400  df-en 8502  df-dom 8503  df-sdom 8504  df-sup 8898  df-inf 8899  df-pnf 10669  df-mnf 10670  df-xr 10671  df-ltxr 10672  df-le 10673  df-sub 10864  df-neg 10865  df-div 11290  df-nn 11631  df-2 11692  df-n0 11890  df-z 11974  df-uz 12236  df-q 12341  df-rp 12382  df-xneg 12499  df-xadd 12500  df-xmul 12501  df-topgen 16709  df-psmet 20529  df-xmet 20530  df-met 20531  df-bl 20532  df-mopn 20533  df-top 21494  df-topon 21511  df-topsp 21533  df-bases 21546  df-xms 22922  df-ms 22923 This theorem is referenced by:  mstopn  23054  msmet  23059  tngngp2  23253  cnfldms  23376
 Copyright terms: Public domain W3C validator