| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > isms2 | Structured version Visualization version GIF version | ||
| Description: Express the predicate "〈𝑋, 𝐷〉 is a metric space" with underlying set 𝑋 and distance function 𝐷. (Contributed by NM, 27-Aug-2006.) (Revised by Mario Carneiro, 24-Aug-2015.) |
| Ref | Expression |
|---|---|
| isms.j | ⊢ 𝐽 = (TopOpen‘𝐾) |
| isms.x | ⊢ 𝑋 = (Base‘𝐾) |
| isms.d | ⊢ 𝐷 = ((dist‘𝐾) ↾ (𝑋 × 𝑋)) |
| Ref | Expression |
|---|---|
| isms2 | ⊢ (𝐾 ∈ MetSp ↔ (𝐷 ∈ (Met‘𝑋) ∧ 𝐽 = (MetOpen‘𝐷))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | isms.j | . . . 4 ⊢ 𝐽 = (TopOpen‘𝐾) | |
| 2 | isms.x | . . . 4 ⊢ 𝑋 = (Base‘𝐾) | |
| 3 | isms.d | . . . 4 ⊢ 𝐷 = ((dist‘𝐾) ↾ (𝑋 × 𝑋)) | |
| 4 | 1, 2, 3 | isxms2 24403 | . . 3 ⊢ (𝐾 ∈ ∞MetSp ↔ (𝐷 ∈ (∞Met‘𝑋) ∧ 𝐽 = (MetOpen‘𝐷))) |
| 5 | 4 | anbi1i 624 | . 2 ⊢ ((𝐾 ∈ ∞MetSp ∧ 𝐷 ∈ (Met‘𝑋)) ↔ ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐽 = (MetOpen‘𝐷)) ∧ 𝐷 ∈ (Met‘𝑋))) |
| 6 | 1, 2, 3 | isms 24404 | . 2 ⊢ (𝐾 ∈ MetSp ↔ (𝐾 ∈ ∞MetSp ∧ 𝐷 ∈ (Met‘𝑋))) |
| 7 | metxmet 24289 | . . . . 5 ⊢ (𝐷 ∈ (Met‘𝑋) → 𝐷 ∈ (∞Met‘𝑋)) | |
| 8 | 7 | pm4.71ri 560 | . . . 4 ⊢ (𝐷 ∈ (Met‘𝑋) ↔ (𝐷 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (Met‘𝑋))) |
| 9 | 8 | anbi1i 624 | . . 3 ⊢ ((𝐷 ∈ (Met‘𝑋) ∧ 𝐽 = (MetOpen‘𝐷)) ↔ ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (Met‘𝑋)) ∧ 𝐽 = (MetOpen‘𝐷))) |
| 10 | an32 646 | . . 3 ⊢ (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (Met‘𝑋)) ∧ 𝐽 = (MetOpen‘𝐷)) ↔ ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐽 = (MetOpen‘𝐷)) ∧ 𝐷 ∈ (Met‘𝑋))) | |
| 11 | 9, 10 | bitri 275 | . 2 ⊢ ((𝐷 ∈ (Met‘𝑋) ∧ 𝐽 = (MetOpen‘𝐷)) ↔ ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐽 = (MetOpen‘𝐷)) ∧ 𝐷 ∈ (Met‘𝑋))) |
| 12 | 5, 6, 11 | 3bitr4i 303 | 1 ⊢ (𝐾 ∈ MetSp ↔ (𝐷 ∈ (Met‘𝑋) ∧ 𝐽 = (MetOpen‘𝐷))) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 = wceq 1539 ∈ wcel 2107 × cxp 5663 ↾ cres 5667 ‘cfv 6541 Basecbs 17229 distcds 17282 TopOpenctopn 17437 ∞Metcxmet 21311 Metcmet 21312 MetOpencmopn 21316 ∞MetSpcxms 24272 MetSpcms 24273 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-sep 5276 ax-nul 5286 ax-pow 5345 ax-pr 5412 ax-un 7737 ax-cnex 11193 ax-resscn 11194 ax-1cn 11195 ax-icn 11196 ax-addcl 11197 ax-addrcl 11198 ax-mulcl 11199 ax-mulrcl 11200 ax-mulcom 11201 ax-addass 11202 ax-mulass 11203 ax-distr 11204 ax-i2m1 11205 ax-1ne0 11206 ax-1rid 11207 ax-rnegex 11208 ax-rrecex 11209 ax-cnre 11210 ax-pre-lttri 11211 ax-pre-lttrn 11212 ax-pre-ltadd 11213 ax-pre-mulgt0 11214 ax-pre-sup 11215 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-ne 2932 df-nel 3036 df-ral 3051 df-rex 3060 df-rmo 3363 df-reu 3364 df-rab 3420 df-v 3465 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-pss 3951 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4888 df-iun 4973 df-br 5124 df-opab 5186 df-mpt 5206 df-tr 5240 df-id 5558 df-eprel 5564 df-po 5572 df-so 5573 df-fr 5617 df-we 5619 df-xp 5671 df-rel 5672 df-cnv 5673 df-co 5674 df-dm 5675 df-rn 5676 df-res 5677 df-ima 5678 df-pred 6301 df-ord 6366 df-on 6367 df-lim 6368 df-suc 6369 df-iota 6494 df-fun 6543 df-fn 6544 df-f 6545 df-f1 6546 df-fo 6547 df-f1o 6548 df-fv 6549 df-riota 7370 df-ov 7416 df-oprab 7417 df-mpo 7418 df-om 7870 df-1st 7996 df-2nd 7997 df-frecs 8288 df-wrecs 8319 df-recs 8393 df-rdg 8432 df-er 8727 df-map 8850 df-en 8968 df-dom 8969 df-sdom 8970 df-sup 9464 df-inf 9465 df-pnf 11279 df-mnf 11280 df-xr 11281 df-ltxr 11282 df-le 11283 df-sub 11476 df-neg 11477 df-div 11903 df-nn 12249 df-2 12311 df-n0 12510 df-z 12597 df-uz 12861 df-q 12973 df-rp 13017 df-xneg 13136 df-xadd 13137 df-xmul 13138 df-topgen 17459 df-psmet 21318 df-xmet 21319 df-met 21320 df-bl 21321 df-mopn 21322 df-top 22848 df-topon 22865 df-topsp 22887 df-bases 22900 df-xms 24275 df-ms 24276 |
| This theorem is referenced by: mstopn 24407 msmet 24412 tngngp2 24609 cnfldms 24732 |
| Copyright terms: Public domain | W3C validator |