MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mspropd Structured version   Visualization version   GIF version

Theorem mspropd 24500
Description: Property deduction for a metric space. (Contributed by Mario Carneiro, 4-Oct-2015.)
Hypotheses
Ref Expression
xmspropd.1 (𝜑𝐵 = (Base‘𝐾))
xmspropd.2 (𝜑𝐵 = (Base‘𝐿))
xmspropd.3 (𝜑 → ((dist‘𝐾) ↾ (𝐵 × 𝐵)) = ((dist‘𝐿) ↾ (𝐵 × 𝐵)))
xmspropd.4 (𝜑 → (TopOpen‘𝐾) = (TopOpen‘𝐿))
Assertion
Ref Expression
mspropd (𝜑 → (𝐾 ∈ MetSp ↔ 𝐿 ∈ MetSp))

Proof of Theorem mspropd
StepHypRef Expression
1 xmspropd.1 . . . 4 (𝜑𝐵 = (Base‘𝐾))
2 xmspropd.2 . . . 4 (𝜑𝐵 = (Base‘𝐿))
3 xmspropd.3 . . . 4 (𝜑 → ((dist‘𝐾) ↾ (𝐵 × 𝐵)) = ((dist‘𝐿) ↾ (𝐵 × 𝐵)))
4 xmspropd.4 . . . 4 (𝜑 → (TopOpen‘𝐾) = (TopOpen‘𝐿))
51, 2, 3, 4xmspropd 24499 . . 3 (𝜑 → (𝐾 ∈ ∞MetSp ↔ 𝐿 ∈ ∞MetSp))
61sqxpeqd 5721 . . . . . . 7 (𝜑 → (𝐵 × 𝐵) = ((Base‘𝐾) × (Base‘𝐾)))
76reseq2d 6000 . . . . . 6 (𝜑 → ((dist‘𝐾) ↾ (𝐵 × 𝐵)) = ((dist‘𝐾) ↾ ((Base‘𝐾) × (Base‘𝐾))))
83, 7eqtr3d 2777 . . . . 5 (𝜑 → ((dist‘𝐿) ↾ (𝐵 × 𝐵)) = ((dist‘𝐾) ↾ ((Base‘𝐾) × (Base‘𝐾))))
92sqxpeqd 5721 . . . . . 6 (𝜑 → (𝐵 × 𝐵) = ((Base‘𝐿) × (Base‘𝐿)))
109reseq2d 6000 . . . . 5 (𝜑 → ((dist‘𝐿) ↾ (𝐵 × 𝐵)) = ((dist‘𝐿) ↾ ((Base‘𝐿) × (Base‘𝐿))))
118, 10eqtr3d 2777 . . . 4 (𝜑 → ((dist‘𝐾) ↾ ((Base‘𝐾) × (Base‘𝐾))) = ((dist‘𝐿) ↾ ((Base‘𝐿) × (Base‘𝐿))))
121, 2eqtr3d 2777 . . . . 5 (𝜑 → (Base‘𝐾) = (Base‘𝐿))
1312fveq2d 6911 . . . 4 (𝜑 → (Met‘(Base‘𝐾)) = (Met‘(Base‘𝐿)))
1411, 13eleq12d 2833 . . 3 (𝜑 → (((dist‘𝐾) ↾ ((Base‘𝐾) × (Base‘𝐾))) ∈ (Met‘(Base‘𝐾)) ↔ ((dist‘𝐿) ↾ ((Base‘𝐿) × (Base‘𝐿))) ∈ (Met‘(Base‘𝐿))))
155, 14anbi12d 632 . 2 (𝜑 → ((𝐾 ∈ ∞MetSp ∧ ((dist‘𝐾) ↾ ((Base‘𝐾) × (Base‘𝐾))) ∈ (Met‘(Base‘𝐾))) ↔ (𝐿 ∈ ∞MetSp ∧ ((dist‘𝐿) ↾ ((Base‘𝐿) × (Base‘𝐿))) ∈ (Met‘(Base‘𝐿)))))
16 eqid 2735 . . 3 (TopOpen‘𝐾) = (TopOpen‘𝐾)
17 eqid 2735 . . 3 (Base‘𝐾) = (Base‘𝐾)
18 eqid 2735 . . 3 ((dist‘𝐾) ↾ ((Base‘𝐾) × (Base‘𝐾))) = ((dist‘𝐾) ↾ ((Base‘𝐾) × (Base‘𝐾)))
1916, 17, 18isms 24475 . 2 (𝐾 ∈ MetSp ↔ (𝐾 ∈ ∞MetSp ∧ ((dist‘𝐾) ↾ ((Base‘𝐾) × (Base‘𝐾))) ∈ (Met‘(Base‘𝐾))))
20 eqid 2735 . . 3 (TopOpen‘𝐿) = (TopOpen‘𝐿)
21 eqid 2735 . . 3 (Base‘𝐿) = (Base‘𝐿)
22 eqid 2735 . . 3 ((dist‘𝐿) ↾ ((Base‘𝐿) × (Base‘𝐿))) = ((dist‘𝐿) ↾ ((Base‘𝐿) × (Base‘𝐿)))
2320, 21, 22isms 24475 . 2 (𝐿 ∈ MetSp ↔ (𝐿 ∈ ∞MetSp ∧ ((dist‘𝐿) ↾ ((Base‘𝐿) × (Base‘𝐿))) ∈ (Met‘(Base‘𝐿))))
2415, 19, 233bitr4g 314 1 (𝜑 → (𝐾 ∈ MetSp ↔ 𝐿 ∈ MetSp))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1537  wcel 2106   × cxp 5687  cres 5691  cfv 6563  Basecbs 17245  distcds 17307  TopOpenctopn 17468  Metcmet 21368  ∞MetSpcxms 24343  MetSpcms 24344
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ral 3060  df-rex 3069  df-rab 3434  df-v 3480  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5583  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-res 5701  df-iota 6516  df-fun 6565  df-fv 6571  df-top 22916  df-topon 22933  df-topsp 22955  df-xms 24346  df-ms 24347
This theorem is referenced by:  ngppropd  24666  cmspropd  25397  zhmnrg  33928
  Copyright terms: Public domain W3C validator