MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mspropd Structured version   Visualization version   GIF version

Theorem mspropd 24378
Description: Property deduction for a metric space. (Contributed by Mario Carneiro, 4-Oct-2015.)
Hypotheses
Ref Expression
xmspropd.1 (𝜑𝐵 = (Base‘𝐾))
xmspropd.2 (𝜑𝐵 = (Base‘𝐿))
xmspropd.3 (𝜑 → ((dist‘𝐾) ↾ (𝐵 × 𝐵)) = ((dist‘𝐿) ↾ (𝐵 × 𝐵)))
xmspropd.4 (𝜑 → (TopOpen‘𝐾) = (TopOpen‘𝐿))
Assertion
Ref Expression
mspropd (𝜑 → (𝐾 ∈ MetSp ↔ 𝐿 ∈ MetSp))

Proof of Theorem mspropd
StepHypRef Expression
1 xmspropd.1 . . . 4 (𝜑𝐵 = (Base‘𝐾))
2 xmspropd.2 . . . 4 (𝜑𝐵 = (Base‘𝐿))
3 xmspropd.3 . . . 4 (𝜑 → ((dist‘𝐾) ↾ (𝐵 × 𝐵)) = ((dist‘𝐿) ↾ (𝐵 × 𝐵)))
4 xmspropd.4 . . . 4 (𝜑 → (TopOpen‘𝐾) = (TopOpen‘𝐿))
51, 2, 3, 4xmspropd 24377 . . 3 (𝜑 → (𝐾 ∈ ∞MetSp ↔ 𝐿 ∈ ∞MetSp))
61sqxpeqd 5655 . . . . . . 7 (𝜑 → (𝐵 × 𝐵) = ((Base‘𝐾) × (Base‘𝐾)))
76reseq2d 5934 . . . . . 6 (𝜑 → ((dist‘𝐾) ↾ (𝐵 × 𝐵)) = ((dist‘𝐾) ↾ ((Base‘𝐾) × (Base‘𝐾))))
83, 7eqtr3d 2766 . . . . 5 (𝜑 → ((dist‘𝐿) ↾ (𝐵 × 𝐵)) = ((dist‘𝐾) ↾ ((Base‘𝐾) × (Base‘𝐾))))
92sqxpeqd 5655 . . . . . 6 (𝜑 → (𝐵 × 𝐵) = ((Base‘𝐿) × (Base‘𝐿)))
109reseq2d 5934 . . . . 5 (𝜑 → ((dist‘𝐿) ↾ (𝐵 × 𝐵)) = ((dist‘𝐿) ↾ ((Base‘𝐿) × (Base‘𝐿))))
118, 10eqtr3d 2766 . . . 4 (𝜑 → ((dist‘𝐾) ↾ ((Base‘𝐾) × (Base‘𝐾))) = ((dist‘𝐿) ↾ ((Base‘𝐿) × (Base‘𝐿))))
121, 2eqtr3d 2766 . . . . 5 (𝜑 → (Base‘𝐾) = (Base‘𝐿))
1312fveq2d 6830 . . . 4 (𝜑 → (Met‘(Base‘𝐾)) = (Met‘(Base‘𝐿)))
1411, 13eleq12d 2822 . . 3 (𝜑 → (((dist‘𝐾) ↾ ((Base‘𝐾) × (Base‘𝐾))) ∈ (Met‘(Base‘𝐾)) ↔ ((dist‘𝐿) ↾ ((Base‘𝐿) × (Base‘𝐿))) ∈ (Met‘(Base‘𝐿))))
155, 14anbi12d 632 . 2 (𝜑 → ((𝐾 ∈ ∞MetSp ∧ ((dist‘𝐾) ↾ ((Base‘𝐾) × (Base‘𝐾))) ∈ (Met‘(Base‘𝐾))) ↔ (𝐿 ∈ ∞MetSp ∧ ((dist‘𝐿) ↾ ((Base‘𝐿) × (Base‘𝐿))) ∈ (Met‘(Base‘𝐿)))))
16 eqid 2729 . . 3 (TopOpen‘𝐾) = (TopOpen‘𝐾)
17 eqid 2729 . . 3 (Base‘𝐾) = (Base‘𝐾)
18 eqid 2729 . . 3 ((dist‘𝐾) ↾ ((Base‘𝐾) × (Base‘𝐾))) = ((dist‘𝐾) ↾ ((Base‘𝐾) × (Base‘𝐾)))
1916, 17, 18isms 24353 . 2 (𝐾 ∈ MetSp ↔ (𝐾 ∈ ∞MetSp ∧ ((dist‘𝐾) ↾ ((Base‘𝐾) × (Base‘𝐾))) ∈ (Met‘(Base‘𝐾))))
20 eqid 2729 . . 3 (TopOpen‘𝐿) = (TopOpen‘𝐿)
21 eqid 2729 . . 3 (Base‘𝐿) = (Base‘𝐿)
22 eqid 2729 . . 3 ((dist‘𝐿) ↾ ((Base‘𝐿) × (Base‘𝐿))) = ((dist‘𝐿) ↾ ((Base‘𝐿) × (Base‘𝐿)))
2320, 21, 22isms 24353 . 2 (𝐿 ∈ MetSp ↔ (𝐿 ∈ ∞MetSp ∧ ((dist‘𝐿) ↾ ((Base‘𝐿) × (Base‘𝐿))) ∈ (Met‘(Base‘𝐿))))
2415, 19, 233bitr4g 314 1 (𝜑 → (𝐾 ∈ MetSp ↔ 𝐿 ∈ MetSp))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109   × cxp 5621  cres 5625  cfv 6486  Basecbs 17138  distcds 17188  TopOpenctopn 17343  Metcmet 21265  ∞MetSpcxms 24221  MetSpcms 24222
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7675
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ral 3045  df-rex 3054  df-rab 3397  df-v 3440  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-br 5096  df-opab 5158  df-mpt 5177  df-id 5518  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-res 5635  df-iota 6442  df-fun 6488  df-fv 6494  df-top 22797  df-topon 22814  df-topsp 22836  df-xms 24224  df-ms 24225
This theorem is referenced by:  ngppropd  24541  cmspropd  25265  zhmnrg  33931
  Copyright terms: Public domain W3C validator