MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  prdsms Structured version   Visualization version   GIF version

Theorem prdsms 24419
Description: The indexed product structure is a metric space when the index set is finite. (Contributed by Mario Carneiro, 28-Aug-2015.)
Hypothesis
Ref Expression
prdsxms.y 𝑌 = (𝑆Xs𝑅)
Assertion
Ref Expression
prdsms ((𝑆𝑊𝐼 ∈ Fin ∧ 𝑅:𝐼⟶MetSp) → 𝑌 ∈ MetSp)

Proof of Theorem prdsms
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 msxms 24342 . . . . 5 (𝑥 ∈ MetSp → 𝑥 ∈ ∞MetSp)
21ssriv 3950 . . . 4 MetSp ⊆ ∞MetSp
3 fss 6704 . . . 4 ((𝑅:𝐼⟶MetSp ∧ MetSp ⊆ ∞MetSp) → 𝑅:𝐼⟶∞MetSp)
42, 3mpan2 691 . . 3 (𝑅:𝐼⟶MetSp → 𝑅:𝐼⟶∞MetSp)
5 prdsxms.y . . . 4 𝑌 = (𝑆Xs𝑅)
65prdsxms 24418 . . 3 ((𝑆𝑊𝐼 ∈ Fin ∧ 𝑅:𝐼⟶∞MetSp) → 𝑌 ∈ ∞MetSp)
74, 6syl3an3 1165 . 2 ((𝑆𝑊𝐼 ∈ Fin ∧ 𝑅:𝐼⟶MetSp) → 𝑌 ∈ ∞MetSp)
8 simp1 1136 . . . 4 ((𝑆𝑊𝐼 ∈ Fin ∧ 𝑅:𝐼⟶MetSp) → 𝑆𝑊)
9 simp2 1137 . . . 4 ((𝑆𝑊𝐼 ∈ Fin ∧ 𝑅:𝐼⟶MetSp) → 𝐼 ∈ Fin)
10 eqid 2729 . . . 4 (dist‘𝑌) = (dist‘𝑌)
11 eqid 2729 . . . 4 (Base‘𝑌) = (Base‘𝑌)
12 simp3 1138 . . . 4 ((𝑆𝑊𝐼 ∈ Fin ∧ 𝑅:𝐼⟶MetSp) → 𝑅:𝐼⟶MetSp)
135, 8, 9, 10, 11, 12prdsmslem1 24415 . . 3 ((𝑆𝑊𝐼 ∈ Fin ∧ 𝑅:𝐼⟶MetSp) → (dist‘𝑌) ∈ (Met‘(Base‘𝑌)))
14 ssid 3969 . . 3 (Base‘𝑌) ⊆ (Base‘𝑌)
15 metres2 24251 . . 3 (((dist‘𝑌) ∈ (Met‘(Base‘𝑌)) ∧ (Base‘𝑌) ⊆ (Base‘𝑌)) → ((dist‘𝑌) ↾ ((Base‘𝑌) × (Base‘𝑌))) ∈ (Met‘(Base‘𝑌)))
1613, 14, 15sylancl 586 . 2 ((𝑆𝑊𝐼 ∈ Fin ∧ 𝑅:𝐼⟶MetSp) → ((dist‘𝑌) ↾ ((Base‘𝑌) × (Base‘𝑌))) ∈ (Met‘(Base‘𝑌)))
17 eqid 2729 . . 3 (TopOpen‘𝑌) = (TopOpen‘𝑌)
18 eqid 2729 . . 3 ((dist‘𝑌) ↾ ((Base‘𝑌) × (Base‘𝑌))) = ((dist‘𝑌) ↾ ((Base‘𝑌) × (Base‘𝑌)))
1917, 11, 18isms 24337 . 2 (𝑌 ∈ MetSp ↔ (𝑌 ∈ ∞MetSp ∧ ((dist‘𝑌) ↾ ((Base‘𝑌) × (Base‘𝑌))) ∈ (Met‘(Base‘𝑌))))
207, 16, 19sylanbrc 583 1 ((𝑆𝑊𝐼 ∈ Fin ∧ 𝑅:𝐼⟶MetSp) → 𝑌 ∈ MetSp)
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1086   = wceq 1540  wcel 2109  wss 3914   × cxp 5636  cres 5640  wf 6507  cfv 6511  (class class class)co 7387  Fincfn 8918  Basecbs 17179  distcds 17229  TopOpenctopn 17384  Xscprds 17408  Metcmet 21250  ∞MetSpcxms 24205  MetSpcms 24206
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-cnex 11124  ax-resscn 11125  ax-1cn 11126  ax-icn 11127  ax-addcl 11128  ax-addrcl 11129  ax-mulcl 11130  ax-mulrcl 11131  ax-mulcom 11132  ax-addass 11133  ax-mulass 11134  ax-distr 11135  ax-i2m1 11136  ax-1ne0 11137  ax-1rid 11138  ax-rnegex 11139  ax-rrecex 11140  ax-cnre 11141  ax-pre-lttri 11142  ax-pre-lttrn 11143  ax-pre-ltadd 11144  ax-pre-mulgt0 11145  ax-pre-sup 11146
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3354  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-tp 4594  df-op 4596  df-uni 4872  df-int 4911  df-iun 4957  df-iin 4958  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-om 7843  df-1st 7968  df-2nd 7969  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-1o 8434  df-2o 8435  df-er 8671  df-map 8801  df-ixp 8871  df-en 8919  df-dom 8920  df-sdom 8921  df-fin 8922  df-fi 9362  df-sup 9393  df-inf 9394  df-pnf 11210  df-mnf 11211  df-xr 11212  df-ltxr 11213  df-le 11214  df-sub 11407  df-neg 11408  df-div 11836  df-nn 12187  df-2 12249  df-3 12250  df-4 12251  df-5 12252  df-6 12253  df-7 12254  df-8 12255  df-9 12256  df-n0 12443  df-z 12530  df-dec 12650  df-uz 12794  df-q 12908  df-rp 12952  df-xneg 13072  df-xadd 13073  df-xmul 13074  df-icc 13313  df-fz 13469  df-struct 17117  df-slot 17152  df-ndx 17164  df-base 17180  df-plusg 17233  df-mulr 17234  df-sca 17236  df-vsca 17237  df-ip 17238  df-tset 17239  df-ple 17240  df-ds 17242  df-hom 17244  df-cco 17245  df-rest 17385  df-topn 17386  df-topgen 17406  df-pt 17407  df-prds 17410  df-psmet 21256  df-xmet 21257  df-met 21258  df-bl 21259  df-mopn 21260  df-top 22781  df-topon 22798  df-topsp 22820  df-bases 22833  df-xms 24208  df-ms 24209
This theorem is referenced by:  pwsms  24421  xpsms  24423
  Copyright terms: Public domain W3C validator