|   | Metamath Proof Explorer | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > prdsms | Structured version Visualization version GIF version | ||
| Description: The indexed product structure is a metric space when the index set is finite. (Contributed by Mario Carneiro, 28-Aug-2015.) | 
| Ref | Expression | 
|---|---|
| prdsxms.y | ⊢ 𝑌 = (𝑆Xs𝑅) | 
| Ref | Expression | 
|---|---|
| prdsms | ⊢ ((𝑆 ∈ 𝑊 ∧ 𝐼 ∈ Fin ∧ 𝑅:𝐼⟶MetSp) → 𝑌 ∈ MetSp) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | msxms 24464 | . . . . 5 ⊢ (𝑥 ∈ MetSp → 𝑥 ∈ ∞MetSp) | |
| 2 | 1 | ssriv 3987 | . . . 4 ⊢ MetSp ⊆ ∞MetSp | 
| 3 | fss 6752 | . . . 4 ⊢ ((𝑅:𝐼⟶MetSp ∧ MetSp ⊆ ∞MetSp) → 𝑅:𝐼⟶∞MetSp) | |
| 4 | 2, 3 | mpan2 691 | . . 3 ⊢ (𝑅:𝐼⟶MetSp → 𝑅:𝐼⟶∞MetSp) | 
| 5 | prdsxms.y | . . . 4 ⊢ 𝑌 = (𝑆Xs𝑅) | |
| 6 | 5 | prdsxms 24543 | . . 3 ⊢ ((𝑆 ∈ 𝑊 ∧ 𝐼 ∈ Fin ∧ 𝑅:𝐼⟶∞MetSp) → 𝑌 ∈ ∞MetSp) | 
| 7 | 4, 6 | syl3an3 1166 | . 2 ⊢ ((𝑆 ∈ 𝑊 ∧ 𝐼 ∈ Fin ∧ 𝑅:𝐼⟶MetSp) → 𝑌 ∈ ∞MetSp) | 
| 8 | simp1 1137 | . . . 4 ⊢ ((𝑆 ∈ 𝑊 ∧ 𝐼 ∈ Fin ∧ 𝑅:𝐼⟶MetSp) → 𝑆 ∈ 𝑊) | |
| 9 | simp2 1138 | . . . 4 ⊢ ((𝑆 ∈ 𝑊 ∧ 𝐼 ∈ Fin ∧ 𝑅:𝐼⟶MetSp) → 𝐼 ∈ Fin) | |
| 10 | eqid 2737 | . . . 4 ⊢ (dist‘𝑌) = (dist‘𝑌) | |
| 11 | eqid 2737 | . . . 4 ⊢ (Base‘𝑌) = (Base‘𝑌) | |
| 12 | simp3 1139 | . . . 4 ⊢ ((𝑆 ∈ 𝑊 ∧ 𝐼 ∈ Fin ∧ 𝑅:𝐼⟶MetSp) → 𝑅:𝐼⟶MetSp) | |
| 13 | 5, 8, 9, 10, 11, 12 | prdsmslem1 24540 | . . 3 ⊢ ((𝑆 ∈ 𝑊 ∧ 𝐼 ∈ Fin ∧ 𝑅:𝐼⟶MetSp) → (dist‘𝑌) ∈ (Met‘(Base‘𝑌))) | 
| 14 | ssid 4006 | . . 3 ⊢ (Base‘𝑌) ⊆ (Base‘𝑌) | |
| 15 | metres2 24373 | . . 3 ⊢ (((dist‘𝑌) ∈ (Met‘(Base‘𝑌)) ∧ (Base‘𝑌) ⊆ (Base‘𝑌)) → ((dist‘𝑌) ↾ ((Base‘𝑌) × (Base‘𝑌))) ∈ (Met‘(Base‘𝑌))) | |
| 16 | 13, 14, 15 | sylancl 586 | . 2 ⊢ ((𝑆 ∈ 𝑊 ∧ 𝐼 ∈ Fin ∧ 𝑅:𝐼⟶MetSp) → ((dist‘𝑌) ↾ ((Base‘𝑌) × (Base‘𝑌))) ∈ (Met‘(Base‘𝑌))) | 
| 17 | eqid 2737 | . . 3 ⊢ (TopOpen‘𝑌) = (TopOpen‘𝑌) | |
| 18 | eqid 2737 | . . 3 ⊢ ((dist‘𝑌) ↾ ((Base‘𝑌) × (Base‘𝑌))) = ((dist‘𝑌) ↾ ((Base‘𝑌) × (Base‘𝑌))) | |
| 19 | 17, 11, 18 | isms 24459 | . 2 ⊢ (𝑌 ∈ MetSp ↔ (𝑌 ∈ ∞MetSp ∧ ((dist‘𝑌) ↾ ((Base‘𝑌) × (Base‘𝑌))) ∈ (Met‘(Base‘𝑌)))) | 
| 20 | 7, 16, 19 | sylanbrc 583 | 1 ⊢ ((𝑆 ∈ 𝑊 ∧ 𝐼 ∈ Fin ∧ 𝑅:𝐼⟶MetSp) → 𝑌 ∈ MetSp) | 
| Colors of variables: wff setvar class | 
| Syntax hints: → wi 4 ∧ w3a 1087 = wceq 1540 ∈ wcel 2108 ⊆ wss 3951 × cxp 5683 ↾ cres 5687 ⟶wf 6557 ‘cfv 6561 (class class class)co 7431 Fincfn 8985 Basecbs 17247 distcds 17306 TopOpenctopn 17466 Xscprds 17490 Metcmet 21350 ∞MetSpcxms 24327 MetSpcms 24328 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2708 ax-rep 5279 ax-sep 5296 ax-nul 5306 ax-pow 5365 ax-pr 5432 ax-un 7755 ax-cnex 11211 ax-resscn 11212 ax-1cn 11213 ax-icn 11214 ax-addcl 11215 ax-addrcl 11216 ax-mulcl 11217 ax-mulrcl 11218 ax-mulcom 11219 ax-addass 11220 ax-mulass 11221 ax-distr 11222 ax-i2m1 11223 ax-1ne0 11224 ax-1rid 11225 ax-rnegex 11226 ax-rrecex 11227 ax-cnre 11228 ax-pre-lttri 11229 ax-pre-lttrn 11230 ax-pre-ltadd 11231 ax-pre-mulgt0 11232 ax-pre-sup 11233 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3or 1088 df-3an 1089 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2892 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-rmo 3380 df-reu 3381 df-rab 3437 df-v 3482 df-sbc 3789 df-csb 3900 df-dif 3954 df-un 3956 df-in 3958 df-ss 3968 df-pss 3971 df-nul 4334 df-if 4526 df-pw 4602 df-sn 4627 df-pr 4629 df-tp 4631 df-op 4633 df-uni 4908 df-int 4947 df-iun 4993 df-iin 4994 df-br 5144 df-opab 5206 df-mpt 5226 df-tr 5260 df-id 5578 df-eprel 5584 df-po 5592 df-so 5593 df-fr 5637 df-we 5639 df-xp 5691 df-rel 5692 df-cnv 5693 df-co 5694 df-dm 5695 df-rn 5696 df-res 5697 df-ima 5698 df-pred 6321 df-ord 6387 df-on 6388 df-lim 6389 df-suc 6390 df-iota 6514 df-fun 6563 df-fn 6564 df-f 6565 df-f1 6566 df-fo 6567 df-f1o 6568 df-fv 6569 df-riota 7388 df-ov 7434 df-oprab 7435 df-mpo 7436 df-om 7888 df-1st 8014 df-2nd 8015 df-frecs 8306 df-wrecs 8337 df-recs 8411 df-rdg 8450 df-1o 8506 df-2o 8507 df-er 8745 df-map 8868 df-ixp 8938 df-en 8986 df-dom 8987 df-sdom 8988 df-fin 8989 df-fi 9451 df-sup 9482 df-inf 9483 df-pnf 11297 df-mnf 11298 df-xr 11299 df-ltxr 11300 df-le 11301 df-sub 11494 df-neg 11495 df-div 11921 df-nn 12267 df-2 12329 df-3 12330 df-4 12331 df-5 12332 df-6 12333 df-7 12334 df-8 12335 df-9 12336 df-n0 12527 df-z 12614 df-dec 12734 df-uz 12879 df-q 12991 df-rp 13035 df-xneg 13154 df-xadd 13155 df-xmul 13156 df-icc 13394 df-fz 13548 df-struct 17184 df-slot 17219 df-ndx 17231 df-base 17248 df-plusg 17310 df-mulr 17311 df-sca 17313 df-vsca 17314 df-ip 17315 df-tset 17316 df-ple 17317 df-ds 17319 df-hom 17321 df-cco 17322 df-rest 17467 df-topn 17468 df-topgen 17488 df-pt 17489 df-prds 17492 df-psmet 21356 df-xmet 21357 df-met 21358 df-bl 21359 df-mopn 21360 df-top 22900 df-topon 22917 df-topsp 22939 df-bases 22953 df-xms 24330 df-ms 24331 | 
| This theorem is referenced by: pwsms 24546 xpsms 24548 | 
| Copyright terms: Public domain | W3C validator |