Step | Hyp | Ref
| Expression |
1 | | f1ocnv 6712 |
. . . 4
⊢ (𝐻:𝐴–1-1-onto→𝐵 → ◡𝐻:𝐵–1-1-onto→𝐴) |
2 | 1 | adantr 480 |
. . 3
⊢ ((𝐻:𝐴–1-1-onto→𝐵 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥𝑅𝑦 ↔ (𝐻‘𝑥)𝑆(𝐻‘𝑦))) → ◡𝐻:𝐵–1-1-onto→𝐴) |
3 | | f1ocnvfv2 7130 |
. . . . . . . 8
⊢ ((𝐻:𝐴–1-1-onto→𝐵 ∧ 𝑧 ∈ 𝐵) → (𝐻‘(◡𝐻‘𝑧)) = 𝑧) |
4 | 3 | adantrr 713 |
. . . . . . 7
⊢ ((𝐻:𝐴–1-1-onto→𝐵 ∧ (𝑧 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵)) → (𝐻‘(◡𝐻‘𝑧)) = 𝑧) |
5 | | f1ocnvfv2 7130 |
. . . . . . . 8
⊢ ((𝐻:𝐴–1-1-onto→𝐵 ∧ 𝑤 ∈ 𝐵) → (𝐻‘(◡𝐻‘𝑤)) = 𝑤) |
6 | 5 | adantrl 712 |
. . . . . . 7
⊢ ((𝐻:𝐴–1-1-onto→𝐵 ∧ (𝑧 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵)) → (𝐻‘(◡𝐻‘𝑤)) = 𝑤) |
7 | 4, 6 | breq12d 5083 |
. . . . . 6
⊢ ((𝐻:𝐴–1-1-onto→𝐵 ∧ (𝑧 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵)) → ((𝐻‘(◡𝐻‘𝑧))𝑆(𝐻‘(◡𝐻‘𝑤)) ↔ 𝑧𝑆𝑤)) |
8 | 7 | adantlr 711 |
. . . . 5
⊢ (((𝐻:𝐴–1-1-onto→𝐵 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥𝑅𝑦 ↔ (𝐻‘𝑥)𝑆(𝐻‘𝑦))) ∧ (𝑧 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵)) → ((𝐻‘(◡𝐻‘𝑧))𝑆(𝐻‘(◡𝐻‘𝑤)) ↔ 𝑧𝑆𝑤)) |
9 | | f1of 6700 |
. . . . . . 7
⊢ (◡𝐻:𝐵–1-1-onto→𝐴 → ◡𝐻:𝐵⟶𝐴) |
10 | 1, 9 | syl 17 |
. . . . . 6
⊢ (𝐻:𝐴–1-1-onto→𝐵 → ◡𝐻:𝐵⟶𝐴) |
11 | | ffvelrn 6941 |
. . . . . . . . 9
⊢ ((◡𝐻:𝐵⟶𝐴 ∧ 𝑧 ∈ 𝐵) → (◡𝐻‘𝑧) ∈ 𝐴) |
12 | | ffvelrn 6941 |
. . . . . . . . 9
⊢ ((◡𝐻:𝐵⟶𝐴 ∧ 𝑤 ∈ 𝐵) → (◡𝐻‘𝑤) ∈ 𝐴) |
13 | 11, 12 | anim12dan 618 |
. . . . . . . 8
⊢ ((◡𝐻:𝐵⟶𝐴 ∧ (𝑧 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵)) → ((◡𝐻‘𝑧) ∈ 𝐴 ∧ (◡𝐻‘𝑤) ∈ 𝐴)) |
14 | | breq1 5073 |
. . . . . . . . . . 11
⊢ (𝑥 = (◡𝐻‘𝑧) → (𝑥𝑅𝑦 ↔ (◡𝐻‘𝑧)𝑅𝑦)) |
15 | | fveq2 6756 |
. . . . . . . . . . . 12
⊢ (𝑥 = (◡𝐻‘𝑧) → (𝐻‘𝑥) = (𝐻‘(◡𝐻‘𝑧))) |
16 | 15 | breq1d 5080 |
. . . . . . . . . . 11
⊢ (𝑥 = (◡𝐻‘𝑧) → ((𝐻‘𝑥)𝑆(𝐻‘𝑦) ↔ (𝐻‘(◡𝐻‘𝑧))𝑆(𝐻‘𝑦))) |
17 | 14, 16 | bibi12d 345 |
. . . . . . . . . 10
⊢ (𝑥 = (◡𝐻‘𝑧) → ((𝑥𝑅𝑦 ↔ (𝐻‘𝑥)𝑆(𝐻‘𝑦)) ↔ ((◡𝐻‘𝑧)𝑅𝑦 ↔ (𝐻‘(◡𝐻‘𝑧))𝑆(𝐻‘𝑦)))) |
18 | | bicom 221 |
. . . . . . . . . 10
⊢ (((◡𝐻‘𝑧)𝑅𝑦 ↔ (𝐻‘(◡𝐻‘𝑧))𝑆(𝐻‘𝑦)) ↔ ((𝐻‘(◡𝐻‘𝑧))𝑆(𝐻‘𝑦) ↔ (◡𝐻‘𝑧)𝑅𝑦)) |
19 | 17, 18 | bitrdi 286 |
. . . . . . . . 9
⊢ (𝑥 = (◡𝐻‘𝑧) → ((𝑥𝑅𝑦 ↔ (𝐻‘𝑥)𝑆(𝐻‘𝑦)) ↔ ((𝐻‘(◡𝐻‘𝑧))𝑆(𝐻‘𝑦) ↔ (◡𝐻‘𝑧)𝑅𝑦))) |
20 | | fveq2 6756 |
. . . . . . . . . . 11
⊢ (𝑦 = (◡𝐻‘𝑤) → (𝐻‘𝑦) = (𝐻‘(◡𝐻‘𝑤))) |
21 | 20 | breq2d 5082 |
. . . . . . . . . 10
⊢ (𝑦 = (◡𝐻‘𝑤) → ((𝐻‘(◡𝐻‘𝑧))𝑆(𝐻‘𝑦) ↔ (𝐻‘(◡𝐻‘𝑧))𝑆(𝐻‘(◡𝐻‘𝑤)))) |
22 | | breq2 5074 |
. . . . . . . . . 10
⊢ (𝑦 = (◡𝐻‘𝑤) → ((◡𝐻‘𝑧)𝑅𝑦 ↔ (◡𝐻‘𝑧)𝑅(◡𝐻‘𝑤))) |
23 | 21, 22 | bibi12d 345 |
. . . . . . . . 9
⊢ (𝑦 = (◡𝐻‘𝑤) → (((𝐻‘(◡𝐻‘𝑧))𝑆(𝐻‘𝑦) ↔ (◡𝐻‘𝑧)𝑅𝑦) ↔ ((𝐻‘(◡𝐻‘𝑧))𝑆(𝐻‘(◡𝐻‘𝑤)) ↔ (◡𝐻‘𝑧)𝑅(◡𝐻‘𝑤)))) |
24 | 19, 23 | rspc2va 3563 |
. . . . . . . 8
⊢ ((((◡𝐻‘𝑧) ∈ 𝐴 ∧ (◡𝐻‘𝑤) ∈ 𝐴) ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥𝑅𝑦 ↔ (𝐻‘𝑥)𝑆(𝐻‘𝑦))) → ((𝐻‘(◡𝐻‘𝑧))𝑆(𝐻‘(◡𝐻‘𝑤)) ↔ (◡𝐻‘𝑧)𝑅(◡𝐻‘𝑤))) |
25 | 13, 24 | sylan 579 |
. . . . . . 7
⊢ (((◡𝐻:𝐵⟶𝐴 ∧ (𝑧 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵)) ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥𝑅𝑦 ↔ (𝐻‘𝑥)𝑆(𝐻‘𝑦))) → ((𝐻‘(◡𝐻‘𝑧))𝑆(𝐻‘(◡𝐻‘𝑤)) ↔ (◡𝐻‘𝑧)𝑅(◡𝐻‘𝑤))) |
26 | 25 | an32s 648 |
. . . . . 6
⊢ (((◡𝐻:𝐵⟶𝐴 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥𝑅𝑦 ↔ (𝐻‘𝑥)𝑆(𝐻‘𝑦))) ∧ (𝑧 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵)) → ((𝐻‘(◡𝐻‘𝑧))𝑆(𝐻‘(◡𝐻‘𝑤)) ↔ (◡𝐻‘𝑧)𝑅(◡𝐻‘𝑤))) |
27 | 10, 26 | sylanl1 676 |
. . . . 5
⊢ (((𝐻:𝐴–1-1-onto→𝐵 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥𝑅𝑦 ↔ (𝐻‘𝑥)𝑆(𝐻‘𝑦))) ∧ (𝑧 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵)) → ((𝐻‘(◡𝐻‘𝑧))𝑆(𝐻‘(◡𝐻‘𝑤)) ↔ (◡𝐻‘𝑧)𝑅(◡𝐻‘𝑤))) |
28 | 8, 27 | bitr3d 280 |
. . . 4
⊢ (((𝐻:𝐴–1-1-onto→𝐵 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥𝑅𝑦 ↔ (𝐻‘𝑥)𝑆(𝐻‘𝑦))) ∧ (𝑧 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵)) → (𝑧𝑆𝑤 ↔ (◡𝐻‘𝑧)𝑅(◡𝐻‘𝑤))) |
29 | 28 | ralrimivva 3114 |
. . 3
⊢ ((𝐻:𝐴–1-1-onto→𝐵 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥𝑅𝑦 ↔ (𝐻‘𝑥)𝑆(𝐻‘𝑦))) → ∀𝑧 ∈ 𝐵 ∀𝑤 ∈ 𝐵 (𝑧𝑆𝑤 ↔ (◡𝐻‘𝑧)𝑅(◡𝐻‘𝑤))) |
30 | 2, 29 | jca 511 |
. 2
⊢ ((𝐻:𝐴–1-1-onto→𝐵 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥𝑅𝑦 ↔ (𝐻‘𝑥)𝑆(𝐻‘𝑦))) → (◡𝐻:𝐵–1-1-onto→𝐴 ∧ ∀𝑧 ∈ 𝐵 ∀𝑤 ∈ 𝐵 (𝑧𝑆𝑤 ↔ (◡𝐻‘𝑧)𝑅(◡𝐻‘𝑤)))) |
31 | | df-isom 6427 |
. 2
⊢ (𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) ↔ (𝐻:𝐴–1-1-onto→𝐵 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥𝑅𝑦 ↔ (𝐻‘𝑥)𝑆(𝐻‘𝑦)))) |
32 | | df-isom 6427 |
. 2
⊢ (◡𝐻 Isom 𝑆, 𝑅 (𝐵, 𝐴) ↔ (◡𝐻:𝐵–1-1-onto→𝐴 ∧ ∀𝑧 ∈ 𝐵 ∀𝑤 ∈ 𝐵 (𝑧𝑆𝑤 ↔ (◡𝐻‘𝑧)𝑅(◡𝐻‘𝑤)))) |
33 | 30, 31, 32 | 3imtr4i 291 |
1
⊢ (𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) → ◡𝐻 Isom 𝑆, 𝑅 (𝐵, 𝐴)) |