MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isocnv Structured version   Visualization version   GIF version

Theorem isocnv 7350
Description: Converse law for isomorphism. Proposition 6.30(2) of [TakeutiZaring] p. 33. (Contributed by NM, 27-Apr-2004.)
Assertion
Ref Expression
isocnv (𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) → 𝐻 Isom 𝑆, 𝑅 (𝐵, 𝐴))

Proof of Theorem isocnv
Dummy variables 𝑥 𝑤 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 f1ocnv 6861 . . . 4 (𝐻:𝐴1-1-onto𝐵𝐻:𝐵1-1-onto𝐴)
21adantr 480 . . 3 ((𝐻:𝐴1-1-onto𝐵 ∧ ∀𝑥𝐴𝑦𝐴 (𝑥𝑅𝑦 ↔ (𝐻𝑥)𝑆(𝐻𝑦))) → 𝐻:𝐵1-1-onto𝐴)
3 f1ocnvfv2 7297 . . . . . . . 8 ((𝐻:𝐴1-1-onto𝐵𝑧𝐵) → (𝐻‘(𝐻𝑧)) = 𝑧)
43adantrr 717 . . . . . . 7 ((𝐻:𝐴1-1-onto𝐵 ∧ (𝑧𝐵𝑤𝐵)) → (𝐻‘(𝐻𝑧)) = 𝑧)
5 f1ocnvfv2 7297 . . . . . . . 8 ((𝐻:𝐴1-1-onto𝐵𝑤𝐵) → (𝐻‘(𝐻𝑤)) = 𝑤)
65adantrl 716 . . . . . . 7 ((𝐻:𝐴1-1-onto𝐵 ∧ (𝑧𝐵𝑤𝐵)) → (𝐻‘(𝐻𝑤)) = 𝑤)
74, 6breq12d 5161 . . . . . 6 ((𝐻:𝐴1-1-onto𝐵 ∧ (𝑧𝐵𝑤𝐵)) → ((𝐻‘(𝐻𝑧))𝑆(𝐻‘(𝐻𝑤)) ↔ 𝑧𝑆𝑤))
87adantlr 715 . . . . 5 (((𝐻:𝐴1-1-onto𝐵 ∧ ∀𝑥𝐴𝑦𝐴 (𝑥𝑅𝑦 ↔ (𝐻𝑥)𝑆(𝐻𝑦))) ∧ (𝑧𝐵𝑤𝐵)) → ((𝐻‘(𝐻𝑧))𝑆(𝐻‘(𝐻𝑤)) ↔ 𝑧𝑆𝑤))
9 f1of 6849 . . . . . . 7 (𝐻:𝐵1-1-onto𝐴𝐻:𝐵𝐴)
101, 9syl 17 . . . . . 6 (𝐻:𝐴1-1-onto𝐵𝐻:𝐵𝐴)
11 ffvelcdm 7101 . . . . . . . . 9 ((𝐻:𝐵𝐴𝑧𝐵) → (𝐻𝑧) ∈ 𝐴)
12 ffvelcdm 7101 . . . . . . . . 9 ((𝐻:𝐵𝐴𝑤𝐵) → (𝐻𝑤) ∈ 𝐴)
1311, 12anim12dan 619 . . . . . . . 8 ((𝐻:𝐵𝐴 ∧ (𝑧𝐵𝑤𝐵)) → ((𝐻𝑧) ∈ 𝐴 ∧ (𝐻𝑤) ∈ 𝐴))
14 breq1 5151 . . . . . . . . . . 11 (𝑥 = (𝐻𝑧) → (𝑥𝑅𝑦 ↔ (𝐻𝑧)𝑅𝑦))
15 fveq2 6907 . . . . . . . . . . . 12 (𝑥 = (𝐻𝑧) → (𝐻𝑥) = (𝐻‘(𝐻𝑧)))
1615breq1d 5158 . . . . . . . . . . 11 (𝑥 = (𝐻𝑧) → ((𝐻𝑥)𝑆(𝐻𝑦) ↔ (𝐻‘(𝐻𝑧))𝑆(𝐻𝑦)))
1714, 16bibi12d 345 . . . . . . . . . 10 (𝑥 = (𝐻𝑧) → ((𝑥𝑅𝑦 ↔ (𝐻𝑥)𝑆(𝐻𝑦)) ↔ ((𝐻𝑧)𝑅𝑦 ↔ (𝐻‘(𝐻𝑧))𝑆(𝐻𝑦))))
18 bicom 222 . . . . . . . . . 10 (((𝐻𝑧)𝑅𝑦 ↔ (𝐻‘(𝐻𝑧))𝑆(𝐻𝑦)) ↔ ((𝐻‘(𝐻𝑧))𝑆(𝐻𝑦) ↔ (𝐻𝑧)𝑅𝑦))
1917, 18bitrdi 287 . . . . . . . . 9 (𝑥 = (𝐻𝑧) → ((𝑥𝑅𝑦 ↔ (𝐻𝑥)𝑆(𝐻𝑦)) ↔ ((𝐻‘(𝐻𝑧))𝑆(𝐻𝑦) ↔ (𝐻𝑧)𝑅𝑦)))
20 fveq2 6907 . . . . . . . . . . 11 (𝑦 = (𝐻𝑤) → (𝐻𝑦) = (𝐻‘(𝐻𝑤)))
2120breq2d 5160 . . . . . . . . . 10 (𝑦 = (𝐻𝑤) → ((𝐻‘(𝐻𝑧))𝑆(𝐻𝑦) ↔ (𝐻‘(𝐻𝑧))𝑆(𝐻‘(𝐻𝑤))))
22 breq2 5152 . . . . . . . . . 10 (𝑦 = (𝐻𝑤) → ((𝐻𝑧)𝑅𝑦 ↔ (𝐻𝑧)𝑅(𝐻𝑤)))
2321, 22bibi12d 345 . . . . . . . . 9 (𝑦 = (𝐻𝑤) → (((𝐻‘(𝐻𝑧))𝑆(𝐻𝑦) ↔ (𝐻𝑧)𝑅𝑦) ↔ ((𝐻‘(𝐻𝑧))𝑆(𝐻‘(𝐻𝑤)) ↔ (𝐻𝑧)𝑅(𝐻𝑤))))
2419, 23rspc2va 3634 . . . . . . . 8 ((((𝐻𝑧) ∈ 𝐴 ∧ (𝐻𝑤) ∈ 𝐴) ∧ ∀𝑥𝐴𝑦𝐴 (𝑥𝑅𝑦 ↔ (𝐻𝑥)𝑆(𝐻𝑦))) → ((𝐻‘(𝐻𝑧))𝑆(𝐻‘(𝐻𝑤)) ↔ (𝐻𝑧)𝑅(𝐻𝑤)))
2513, 24sylan 580 . . . . . . 7 (((𝐻:𝐵𝐴 ∧ (𝑧𝐵𝑤𝐵)) ∧ ∀𝑥𝐴𝑦𝐴 (𝑥𝑅𝑦 ↔ (𝐻𝑥)𝑆(𝐻𝑦))) → ((𝐻‘(𝐻𝑧))𝑆(𝐻‘(𝐻𝑤)) ↔ (𝐻𝑧)𝑅(𝐻𝑤)))
2625an32s 652 . . . . . 6 (((𝐻:𝐵𝐴 ∧ ∀𝑥𝐴𝑦𝐴 (𝑥𝑅𝑦 ↔ (𝐻𝑥)𝑆(𝐻𝑦))) ∧ (𝑧𝐵𝑤𝐵)) → ((𝐻‘(𝐻𝑧))𝑆(𝐻‘(𝐻𝑤)) ↔ (𝐻𝑧)𝑅(𝐻𝑤)))
2710, 26sylanl1 680 . . . . 5 (((𝐻:𝐴1-1-onto𝐵 ∧ ∀𝑥𝐴𝑦𝐴 (𝑥𝑅𝑦 ↔ (𝐻𝑥)𝑆(𝐻𝑦))) ∧ (𝑧𝐵𝑤𝐵)) → ((𝐻‘(𝐻𝑧))𝑆(𝐻‘(𝐻𝑤)) ↔ (𝐻𝑧)𝑅(𝐻𝑤)))
288, 27bitr3d 281 . . . 4 (((𝐻:𝐴1-1-onto𝐵 ∧ ∀𝑥𝐴𝑦𝐴 (𝑥𝑅𝑦 ↔ (𝐻𝑥)𝑆(𝐻𝑦))) ∧ (𝑧𝐵𝑤𝐵)) → (𝑧𝑆𝑤 ↔ (𝐻𝑧)𝑅(𝐻𝑤)))
2928ralrimivva 3200 . . 3 ((𝐻:𝐴1-1-onto𝐵 ∧ ∀𝑥𝐴𝑦𝐴 (𝑥𝑅𝑦 ↔ (𝐻𝑥)𝑆(𝐻𝑦))) → ∀𝑧𝐵𝑤𝐵 (𝑧𝑆𝑤 ↔ (𝐻𝑧)𝑅(𝐻𝑤)))
302, 29jca 511 . 2 ((𝐻:𝐴1-1-onto𝐵 ∧ ∀𝑥𝐴𝑦𝐴 (𝑥𝑅𝑦 ↔ (𝐻𝑥)𝑆(𝐻𝑦))) → (𝐻:𝐵1-1-onto𝐴 ∧ ∀𝑧𝐵𝑤𝐵 (𝑧𝑆𝑤 ↔ (𝐻𝑧)𝑅(𝐻𝑤))))
31 df-isom 6572 . 2 (𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) ↔ (𝐻:𝐴1-1-onto𝐵 ∧ ∀𝑥𝐴𝑦𝐴 (𝑥𝑅𝑦 ↔ (𝐻𝑥)𝑆(𝐻𝑦))))
32 df-isom 6572 . 2 (𝐻 Isom 𝑆, 𝑅 (𝐵, 𝐴) ↔ (𝐻:𝐵1-1-onto𝐴 ∧ ∀𝑧𝐵𝑤𝐵 (𝑧𝑆𝑤 ↔ (𝐻𝑧)𝑅(𝐻𝑤))))
3330, 31, 323imtr4i 292 1 (𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) → 𝐻 Isom 𝑆, 𝑅 (𝐵, 𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1537  wcel 2106  wral 3059   class class class wbr 5148  ccnv 5688  wf 6559  1-1-ontowf1o 6562  cfv 6563   Isom wiso 6564
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-sep 5302  ax-nul 5312  ax-pr 5438
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-ne 2939  df-ral 3060  df-rex 3069  df-rab 3434  df-v 3480  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-nul 4340  df-if 4532  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-br 5149  df-opab 5211  df-id 5583  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-isom 6572
This theorem is referenced by:  isores1  7354  isofr  7362  isose  7363  isopo  7366  isoso  7368  weisoeq  7375  weisoeq2  7376  fnwelem  8155  oieu  9577  oemapwe  9732  cantnffval2  9733  wemapwe  9735  infxpenlem  10051  fpwwe2lem6  10674  fpwwe2lem8  10676  infrenegsup  12249  ltweuz  13999  fz1isolem  14497  ordthmeo  23826  relogiso  26655  erdsze2lem2  35189  fzisoeu  45251
  Copyright terms: Public domain W3C validator