Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  iunsnima2 Structured version   Visualization version   GIF version

Theorem iunsnima2 32520
Description: Version of iunsnima 32519 with different variables. (Contributed by Thierry Arnoux, 22-Jun-2024.)
Hypotheses
Ref Expression
iunsnima.1 (𝜑𝐴𝑉)
iunsnima.2 ((𝜑𝑥𝐴) → 𝐵𝑊)
iunsnima2.1 𝑥𝐶
iunsnima2.2 (𝑥 = 𝑌𝐵 = 𝐶)
Assertion
Ref Expression
iunsnima2 ((𝜑𝑌𝐴) → ( 𝑥𝐴 ({𝑥} × 𝐵) “ {𝑌}) = 𝐶)
Distinct variable groups:   𝑥,𝐴   𝑥,𝑌
Allowed substitution hints:   𝜑(𝑥)   𝐵(𝑥)   𝐶(𝑥)   𝑉(𝑥)   𝑊(𝑥)

Proof of Theorem iunsnima2
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 elimasng 6049 . . . . 5 ((𝑌𝐴𝑧 ∈ V) → (𝑧 ∈ ( 𝑥𝐴 ({𝑥} × 𝐵) “ {𝑌}) ↔ ⟨𝑌, 𝑧⟩ ∈ 𝑥𝐴 ({𝑥} × 𝐵)))
21elvd 3450 . . . 4 (𝑌𝐴 → (𝑧 ∈ ( 𝑥𝐴 ({𝑥} × 𝐵) “ {𝑌}) ↔ ⟨𝑌, 𝑧⟩ ∈ 𝑥𝐴 ({𝑥} × 𝐵)))
32adantl 481 . . 3 ((𝜑𝑌𝐴) → (𝑧 ∈ ( 𝑥𝐴 ({𝑥} × 𝐵) “ {𝑌}) ↔ ⟨𝑌, 𝑧⟩ ∈ 𝑥𝐴 ({𝑥} × 𝐵)))
4 iunsnima2.1 . . . . . 6 𝑥𝐶
5 iunsnima2.2 . . . . . 6 (𝑥 = 𝑌𝐵 = 𝐶)
64, 5opeliunxp2f 8166 . . . . 5 (⟨𝑌, 𝑧⟩ ∈ 𝑥𝐴 ({𝑥} × 𝐵) ↔ (𝑌𝐴𝑧𝐶))
76baib 535 . . . 4 (𝑌𝐴 → (⟨𝑌, 𝑧⟩ ∈ 𝑥𝐴 ({𝑥} × 𝐵) ↔ 𝑧𝐶))
87adantl 481 . . 3 ((𝜑𝑌𝐴) → (⟨𝑌, 𝑧⟩ ∈ 𝑥𝐴 ({𝑥} × 𝐵) ↔ 𝑧𝐶))
93, 8bitrd 279 . 2 ((𝜑𝑌𝐴) → (𝑧 ∈ ( 𝑥𝐴 ({𝑥} × 𝐵) “ {𝑌}) ↔ 𝑧𝐶))
109eqrdv 2727 1 ((𝜑𝑌𝐴) → ( 𝑥𝐴 ({𝑥} × 𝐵) “ {𝑌}) = 𝐶)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  wnfc 2876  Vcvv 3444  {csn 4585  cop 4591   ciun 4951   × cxp 5629  cima 5634
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5246  ax-nul 5256  ax-pr 5382
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ral 3045  df-rex 3054  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-nul 4293  df-if 4485  df-sn 4586  df-pr 4588  df-op 4592  df-iun 4953  df-br 5103  df-opab 5165  df-xp 5637  df-rel 5638  df-cnv 5639  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644
This theorem is referenced by:  gsumpart  32970  gsumwrd2dccat  32980
  Copyright terms: Public domain W3C validator