![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > iunsnima2 | Structured version Visualization version GIF version |
Description: Version of iunsnima 32282 with different variables. (Contributed by Thierry Arnoux, 22-Jun-2024.) |
Ref | Expression |
---|---|
iunsnima.1 | ⊢ (𝜑 → 𝐴 ∈ 𝑉) |
iunsnima.2 | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ 𝑊) |
iunsnima2.1 | ⊢ Ⅎ𝑥𝐶 |
iunsnima2.2 | ⊢ (𝑥 = 𝑌 → 𝐵 = 𝐶) |
Ref | Expression |
---|---|
iunsnima2 | ⊢ ((𝜑 ∧ 𝑌 ∈ 𝐴) → (∪ 𝑥 ∈ 𝐴 ({𝑥} × 𝐵) “ {𝑌}) = 𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elimasng 6077 | . . . . 5 ⊢ ((𝑌 ∈ 𝐴 ∧ 𝑧 ∈ V) → (𝑧 ∈ (∪ 𝑥 ∈ 𝐴 ({𝑥} × 𝐵) “ {𝑌}) ↔ ⟨𝑌, 𝑧⟩ ∈ ∪ 𝑥 ∈ 𝐴 ({𝑥} × 𝐵))) | |
2 | 1 | elvd 3473 | . . . 4 ⊢ (𝑌 ∈ 𝐴 → (𝑧 ∈ (∪ 𝑥 ∈ 𝐴 ({𝑥} × 𝐵) “ {𝑌}) ↔ ⟨𝑌, 𝑧⟩ ∈ ∪ 𝑥 ∈ 𝐴 ({𝑥} × 𝐵))) |
3 | 2 | adantl 481 | . . 3 ⊢ ((𝜑 ∧ 𝑌 ∈ 𝐴) → (𝑧 ∈ (∪ 𝑥 ∈ 𝐴 ({𝑥} × 𝐵) “ {𝑌}) ↔ ⟨𝑌, 𝑧⟩ ∈ ∪ 𝑥 ∈ 𝐴 ({𝑥} × 𝐵))) |
4 | iunsnima2.1 | . . . . . 6 ⊢ Ⅎ𝑥𝐶 | |
5 | iunsnima2.2 | . . . . . 6 ⊢ (𝑥 = 𝑌 → 𝐵 = 𝐶) | |
6 | 4, 5 | opeliunxp2f 8190 | . . . . 5 ⊢ (⟨𝑌, 𝑧⟩ ∈ ∪ 𝑥 ∈ 𝐴 ({𝑥} × 𝐵) ↔ (𝑌 ∈ 𝐴 ∧ 𝑧 ∈ 𝐶)) |
7 | 6 | baib 535 | . . . 4 ⊢ (𝑌 ∈ 𝐴 → (⟨𝑌, 𝑧⟩ ∈ ∪ 𝑥 ∈ 𝐴 ({𝑥} × 𝐵) ↔ 𝑧 ∈ 𝐶)) |
8 | 7 | adantl 481 | . . 3 ⊢ ((𝜑 ∧ 𝑌 ∈ 𝐴) → (⟨𝑌, 𝑧⟩ ∈ ∪ 𝑥 ∈ 𝐴 ({𝑥} × 𝐵) ↔ 𝑧 ∈ 𝐶)) |
9 | 3, 8 | bitrd 279 | . 2 ⊢ ((𝜑 ∧ 𝑌 ∈ 𝐴) → (𝑧 ∈ (∪ 𝑥 ∈ 𝐴 ({𝑥} × 𝐵) “ {𝑌}) ↔ 𝑧 ∈ 𝐶)) |
10 | 9 | eqrdv 2722 | 1 ⊢ ((𝜑 ∧ 𝑌 ∈ 𝐴) → (∪ 𝑥 ∈ 𝐴 ({𝑥} × 𝐵) “ {𝑌}) = 𝐶) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 = wceq 1533 ∈ wcel 2098 Ⅎwnfc 2875 Vcvv 3466 {csn 4620 ⟨cop 4626 ∪ ciun 4987 × cxp 5664 “ cima 5669 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2695 ax-sep 5289 ax-nul 5296 ax-pr 5417 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-clab 2702 df-cleq 2716 df-clel 2802 df-nfc 2877 df-ral 3054 df-rex 3063 df-rab 3425 df-v 3468 df-sbc 3770 df-csb 3886 df-dif 3943 df-un 3945 df-in 3947 df-ss 3957 df-nul 4315 df-if 4521 df-sn 4621 df-pr 4623 df-op 4627 df-iun 4989 df-br 5139 df-opab 5201 df-xp 5672 df-rel 5673 df-cnv 5674 df-dm 5676 df-rn 5677 df-res 5678 df-ima 5679 |
This theorem is referenced by: gsumpart 32641 |
Copyright terms: Public domain | W3C validator |