Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  iunsnima2 Structured version   Visualization version   GIF version

Theorem iunsnima2 30959
Description: Version of iunsnima 30958 with different variables. (Contributed by Thierry Arnoux, 22-Jun-2024.)
Hypotheses
Ref Expression
iunsnima.1 (𝜑𝐴𝑉)
iunsnima.2 ((𝜑𝑥𝐴) → 𝐵𝑊)
iunsnima2.1 𝑥𝐶
iunsnima2.2 (𝑥 = 𝑌𝐵 = 𝐶)
Assertion
Ref Expression
iunsnima2 ((𝜑𝑌𝐴) → ( 𝑥𝐴 ({𝑥} × 𝐵) “ {𝑌}) = 𝐶)
Distinct variable groups:   𝑥,𝐴   𝑥,𝑌
Allowed substitution hints:   𝜑(𝑥)   𝐵(𝑥)   𝐶(𝑥)   𝑉(𝑥)   𝑊(𝑥)

Proof of Theorem iunsnima2
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 elimasng 5996 . . . . 5 ((𝑌𝐴𝑧 ∈ V) → (𝑧 ∈ ( 𝑥𝐴 ({𝑥} × 𝐵) “ {𝑌}) ↔ ⟨𝑌, 𝑧⟩ ∈ 𝑥𝐴 ({𝑥} × 𝐵)))
21elvd 3439 . . . 4 (𝑌𝐴 → (𝑧 ∈ ( 𝑥𝐴 ({𝑥} × 𝐵) “ {𝑌}) ↔ ⟨𝑌, 𝑧⟩ ∈ 𝑥𝐴 ({𝑥} × 𝐵)))
32adantl 482 . . 3 ((𝜑𝑌𝐴) → (𝑧 ∈ ( 𝑥𝐴 ({𝑥} × 𝐵) “ {𝑌}) ↔ ⟨𝑌, 𝑧⟩ ∈ 𝑥𝐴 ({𝑥} × 𝐵)))
4 iunsnima2.1 . . . . . 6 𝑥𝐶
5 iunsnima2.2 . . . . . 6 (𝑥 = 𝑌𝐵 = 𝐶)
64, 5opeliunxp2f 8026 . . . . 5 (⟨𝑌, 𝑧⟩ ∈ 𝑥𝐴 ({𝑥} × 𝐵) ↔ (𝑌𝐴𝑧𝐶))
76baib 536 . . . 4 (𝑌𝐴 → (⟨𝑌, 𝑧⟩ ∈ 𝑥𝐴 ({𝑥} × 𝐵) ↔ 𝑧𝐶))
87adantl 482 . . 3 ((𝜑𝑌𝐴) → (⟨𝑌, 𝑧⟩ ∈ 𝑥𝐴 ({𝑥} × 𝐵) ↔ 𝑧𝐶))
93, 8bitrd 278 . 2 ((𝜑𝑌𝐴) → (𝑧 ∈ ( 𝑥𝐴 ({𝑥} × 𝐵) “ {𝑌}) ↔ 𝑧𝐶))
109eqrdv 2736 1 ((𝜑𝑌𝐴) → ( 𝑥𝐴 ({𝑥} × 𝐵) “ {𝑌}) = 𝐶)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396   = wceq 1539  wcel 2106  wnfc 2887  Vcvv 3432  {csn 4561  cop 4567   ciun 4924   × cxp 5587  cima 5592
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pr 5352
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ral 3069  df-rex 3070  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-sn 4562  df-pr 4564  df-op 4568  df-iun 4926  df-br 5075  df-opab 5137  df-xp 5595  df-rel 5596  df-cnv 5597  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602
This theorem is referenced by:  gsumpart  31315
  Copyright terms: Public domain W3C validator