| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > iunsnima2 | Structured version Visualization version GIF version | ||
| Description: Version of iunsnima 32544 with different variables. (Contributed by Thierry Arnoux, 22-Jun-2024.) |
| Ref | Expression |
|---|---|
| iunsnima.1 | ⊢ (𝜑 → 𝐴 ∈ 𝑉) |
| iunsnima.2 | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ 𝑊) |
| iunsnima2.1 | ⊢ Ⅎ𝑥𝐶 |
| iunsnima2.2 | ⊢ (𝑥 = 𝑌 → 𝐵 = 𝐶) |
| Ref | Expression |
|---|---|
| iunsnima2 | ⊢ ((𝜑 ∧ 𝑌 ∈ 𝐴) → (∪ 𝑥 ∈ 𝐴 ({𝑥} × 𝐵) “ {𝑌}) = 𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elimasng 6076 | . . . . 5 ⊢ ((𝑌 ∈ 𝐴 ∧ 𝑧 ∈ V) → (𝑧 ∈ (∪ 𝑥 ∈ 𝐴 ({𝑥} × 𝐵) “ {𝑌}) ↔ 〈𝑌, 𝑧〉 ∈ ∪ 𝑥 ∈ 𝐴 ({𝑥} × 𝐵))) | |
| 2 | 1 | elvd 3465 | . . . 4 ⊢ (𝑌 ∈ 𝐴 → (𝑧 ∈ (∪ 𝑥 ∈ 𝐴 ({𝑥} × 𝐵) “ {𝑌}) ↔ 〈𝑌, 𝑧〉 ∈ ∪ 𝑥 ∈ 𝐴 ({𝑥} × 𝐵))) |
| 3 | 2 | adantl 481 | . . 3 ⊢ ((𝜑 ∧ 𝑌 ∈ 𝐴) → (𝑧 ∈ (∪ 𝑥 ∈ 𝐴 ({𝑥} × 𝐵) “ {𝑌}) ↔ 〈𝑌, 𝑧〉 ∈ ∪ 𝑥 ∈ 𝐴 ({𝑥} × 𝐵))) |
| 4 | iunsnima2.1 | . . . . . 6 ⊢ Ⅎ𝑥𝐶 | |
| 5 | iunsnima2.2 | . . . . . 6 ⊢ (𝑥 = 𝑌 → 𝐵 = 𝐶) | |
| 6 | 4, 5 | opeliunxp2f 8207 | . . . . 5 ⊢ (〈𝑌, 𝑧〉 ∈ ∪ 𝑥 ∈ 𝐴 ({𝑥} × 𝐵) ↔ (𝑌 ∈ 𝐴 ∧ 𝑧 ∈ 𝐶)) |
| 7 | 6 | baib 535 | . . . 4 ⊢ (𝑌 ∈ 𝐴 → (〈𝑌, 𝑧〉 ∈ ∪ 𝑥 ∈ 𝐴 ({𝑥} × 𝐵) ↔ 𝑧 ∈ 𝐶)) |
| 8 | 7 | adantl 481 | . . 3 ⊢ ((𝜑 ∧ 𝑌 ∈ 𝐴) → (〈𝑌, 𝑧〉 ∈ ∪ 𝑥 ∈ 𝐴 ({𝑥} × 𝐵) ↔ 𝑧 ∈ 𝐶)) |
| 9 | 3, 8 | bitrd 279 | . 2 ⊢ ((𝜑 ∧ 𝑌 ∈ 𝐴) → (𝑧 ∈ (∪ 𝑥 ∈ 𝐴 ({𝑥} × 𝐵) “ {𝑌}) ↔ 𝑧 ∈ 𝐶)) |
| 10 | 9 | eqrdv 2733 | 1 ⊢ ((𝜑 ∧ 𝑌 ∈ 𝐴) → (∪ 𝑥 ∈ 𝐴 ({𝑥} × 𝐵) “ {𝑌}) = 𝐶) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2108 Ⅎwnfc 2883 Vcvv 3459 {csn 4601 〈cop 4607 ∪ ciun 4967 × cxp 5652 “ cima 5657 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-sep 5266 ax-nul 5276 ax-pr 5402 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ral 3052 df-rex 3061 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-nul 4309 df-if 4501 df-sn 4602 df-pr 4604 df-op 4608 df-iun 4969 df-br 5120 df-opab 5182 df-xp 5660 df-rel 5661 df-cnv 5662 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 |
| This theorem is referenced by: gsumpart 32997 gsumwrd2dccat 33007 |
| Copyright terms: Public domain | W3C validator |