![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > iunsnima2 | Structured version Visualization version GIF version |
Description: Version of iunsnima 32637 with different variables. (Contributed by Thierry Arnoux, 22-Jun-2024.) |
Ref | Expression |
---|---|
iunsnima.1 | ⊢ (𝜑 → 𝐴 ∈ 𝑉) |
iunsnima.2 | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ 𝑊) |
iunsnima2.1 | ⊢ Ⅎ𝑥𝐶 |
iunsnima2.2 | ⊢ (𝑥 = 𝑌 → 𝐵 = 𝐶) |
Ref | Expression |
---|---|
iunsnima2 | ⊢ ((𝜑 ∧ 𝑌 ∈ 𝐴) → (∪ 𝑥 ∈ 𝐴 ({𝑥} × 𝐵) “ {𝑌}) = 𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elimasng 6108 | . . . . 5 ⊢ ((𝑌 ∈ 𝐴 ∧ 𝑧 ∈ V) → (𝑧 ∈ (∪ 𝑥 ∈ 𝐴 ({𝑥} × 𝐵) “ {𝑌}) ↔ 〈𝑌, 𝑧〉 ∈ ∪ 𝑥 ∈ 𝐴 ({𝑥} × 𝐵))) | |
2 | 1 | elvd 3483 | . . . 4 ⊢ (𝑌 ∈ 𝐴 → (𝑧 ∈ (∪ 𝑥 ∈ 𝐴 ({𝑥} × 𝐵) “ {𝑌}) ↔ 〈𝑌, 𝑧〉 ∈ ∪ 𝑥 ∈ 𝐴 ({𝑥} × 𝐵))) |
3 | 2 | adantl 481 | . . 3 ⊢ ((𝜑 ∧ 𝑌 ∈ 𝐴) → (𝑧 ∈ (∪ 𝑥 ∈ 𝐴 ({𝑥} × 𝐵) “ {𝑌}) ↔ 〈𝑌, 𝑧〉 ∈ ∪ 𝑥 ∈ 𝐴 ({𝑥} × 𝐵))) |
4 | iunsnima2.1 | . . . . . 6 ⊢ Ⅎ𝑥𝐶 | |
5 | iunsnima2.2 | . . . . . 6 ⊢ (𝑥 = 𝑌 → 𝐵 = 𝐶) | |
6 | 4, 5 | opeliunxp2f 8233 | . . . . 5 ⊢ (〈𝑌, 𝑧〉 ∈ ∪ 𝑥 ∈ 𝐴 ({𝑥} × 𝐵) ↔ (𝑌 ∈ 𝐴 ∧ 𝑧 ∈ 𝐶)) |
7 | 6 | baib 535 | . . . 4 ⊢ (𝑌 ∈ 𝐴 → (〈𝑌, 𝑧〉 ∈ ∪ 𝑥 ∈ 𝐴 ({𝑥} × 𝐵) ↔ 𝑧 ∈ 𝐶)) |
8 | 7 | adantl 481 | . . 3 ⊢ ((𝜑 ∧ 𝑌 ∈ 𝐴) → (〈𝑌, 𝑧〉 ∈ ∪ 𝑥 ∈ 𝐴 ({𝑥} × 𝐵) ↔ 𝑧 ∈ 𝐶)) |
9 | 3, 8 | bitrd 279 | . 2 ⊢ ((𝜑 ∧ 𝑌 ∈ 𝐴) → (𝑧 ∈ (∪ 𝑥 ∈ 𝐴 ({𝑥} × 𝐵) “ {𝑌}) ↔ 𝑧 ∈ 𝐶)) |
10 | 9 | eqrdv 2732 | 1 ⊢ ((𝜑 ∧ 𝑌 ∈ 𝐴) → (∪ 𝑥 ∈ 𝐴 ({𝑥} × 𝐵) “ {𝑌}) = 𝐶) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1536 ∈ wcel 2105 Ⅎwnfc 2887 Vcvv 3477 {csn 4630 〈cop 4636 ∪ ciun 4995 × cxp 5686 “ cima 5691 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1791 ax-4 1805 ax-5 1907 ax-6 1964 ax-7 2004 ax-8 2107 ax-9 2115 ax-10 2138 ax-11 2154 ax-12 2174 ax-ext 2705 ax-sep 5301 ax-nul 5311 ax-pr 5437 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1539 df-fal 1549 df-ex 1776 df-nf 1780 df-sb 2062 df-clab 2712 df-cleq 2726 df-clel 2813 df-nfc 2889 df-ral 3059 df-rex 3068 df-rab 3433 df-v 3479 df-sbc 3791 df-csb 3908 df-dif 3965 df-un 3967 df-in 3969 df-ss 3979 df-nul 4339 df-if 4531 df-sn 4631 df-pr 4633 df-op 4637 df-iun 4997 df-br 5148 df-opab 5210 df-xp 5694 df-rel 5695 df-cnv 5696 df-dm 5698 df-rn 5699 df-res 5700 df-ima 5701 |
This theorem is referenced by: gsumpart 33042 gsumwrd2dccat 33052 |
Copyright terms: Public domain | W3C validator |