Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  iunsnima2 Structured version   Visualization version   GIF version

Theorem iunsnima2 32638
Description: Version of iunsnima 32637 with different variables. (Contributed by Thierry Arnoux, 22-Jun-2024.)
Hypotheses
Ref Expression
iunsnima.1 (𝜑𝐴𝑉)
iunsnima.2 ((𝜑𝑥𝐴) → 𝐵𝑊)
iunsnima2.1 𝑥𝐶
iunsnima2.2 (𝑥 = 𝑌𝐵 = 𝐶)
Assertion
Ref Expression
iunsnima2 ((𝜑𝑌𝐴) → ( 𝑥𝐴 ({𝑥} × 𝐵) “ {𝑌}) = 𝐶)
Distinct variable groups:   𝑥,𝐴   𝑥,𝑌
Allowed substitution hints:   𝜑(𝑥)   𝐵(𝑥)   𝐶(𝑥)   𝑉(𝑥)   𝑊(𝑥)

Proof of Theorem iunsnima2
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 elimasng 6108 . . . . 5 ((𝑌𝐴𝑧 ∈ V) → (𝑧 ∈ ( 𝑥𝐴 ({𝑥} × 𝐵) “ {𝑌}) ↔ ⟨𝑌, 𝑧⟩ ∈ 𝑥𝐴 ({𝑥} × 𝐵)))
21elvd 3483 . . . 4 (𝑌𝐴 → (𝑧 ∈ ( 𝑥𝐴 ({𝑥} × 𝐵) “ {𝑌}) ↔ ⟨𝑌, 𝑧⟩ ∈ 𝑥𝐴 ({𝑥} × 𝐵)))
32adantl 481 . . 3 ((𝜑𝑌𝐴) → (𝑧 ∈ ( 𝑥𝐴 ({𝑥} × 𝐵) “ {𝑌}) ↔ ⟨𝑌, 𝑧⟩ ∈ 𝑥𝐴 ({𝑥} × 𝐵)))
4 iunsnima2.1 . . . . . 6 𝑥𝐶
5 iunsnima2.2 . . . . . 6 (𝑥 = 𝑌𝐵 = 𝐶)
64, 5opeliunxp2f 8233 . . . . 5 (⟨𝑌, 𝑧⟩ ∈ 𝑥𝐴 ({𝑥} × 𝐵) ↔ (𝑌𝐴𝑧𝐶))
76baib 535 . . . 4 (𝑌𝐴 → (⟨𝑌, 𝑧⟩ ∈ 𝑥𝐴 ({𝑥} × 𝐵) ↔ 𝑧𝐶))
87adantl 481 . . 3 ((𝜑𝑌𝐴) → (⟨𝑌, 𝑧⟩ ∈ 𝑥𝐴 ({𝑥} × 𝐵) ↔ 𝑧𝐶))
93, 8bitrd 279 . 2 ((𝜑𝑌𝐴) → (𝑧 ∈ ( 𝑥𝐴 ({𝑥} × 𝐵) “ {𝑌}) ↔ 𝑧𝐶))
109eqrdv 2732 1 ((𝜑𝑌𝐴) → ( 𝑥𝐴 ({𝑥} × 𝐵) “ {𝑌}) = 𝐶)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1536  wcel 2105  wnfc 2887  Vcvv 3477  {csn 4630  cop 4636   ciun 4995   × cxp 5686  cima 5691
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1791  ax-4 1805  ax-5 1907  ax-6 1964  ax-7 2004  ax-8 2107  ax-9 2115  ax-10 2138  ax-11 2154  ax-12 2174  ax-ext 2705  ax-sep 5301  ax-nul 5311  ax-pr 5437
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1539  df-fal 1549  df-ex 1776  df-nf 1780  df-sb 2062  df-clab 2712  df-cleq 2726  df-clel 2813  df-nfc 2889  df-ral 3059  df-rex 3068  df-rab 3433  df-v 3479  df-sbc 3791  df-csb 3908  df-dif 3965  df-un 3967  df-in 3969  df-ss 3979  df-nul 4339  df-if 4531  df-sn 4631  df-pr 4633  df-op 4637  df-iun 4997  df-br 5148  df-opab 5210  df-xp 5694  df-rel 5695  df-cnv 5696  df-dm 5698  df-rn 5699  df-res 5700  df-ima 5701
This theorem is referenced by:  gsumpart  33042  gsumwrd2dccat  33052
  Copyright terms: Public domain W3C validator