| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > iunsnima2 | Structured version Visualization version GIF version | ||
| Description: Version of iunsnima 32601 with different variables. (Contributed by Thierry Arnoux, 22-Jun-2024.) |
| Ref | Expression |
|---|---|
| iunsnima.1 | ⊢ (𝜑 → 𝐴 ∈ 𝑉) |
| iunsnima.2 | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ 𝑊) |
| iunsnima2.1 | ⊢ Ⅎ𝑥𝐶 |
| iunsnima2.2 | ⊢ (𝑥 = 𝑌 → 𝐵 = 𝐶) |
| Ref | Expression |
|---|---|
| iunsnima2 | ⊢ ((𝜑 ∧ 𝑌 ∈ 𝐴) → (∪ 𝑥 ∈ 𝐴 ({𝑥} × 𝐵) “ {𝑌}) = 𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elimasng 6037 | . . . . 5 ⊢ ((𝑌 ∈ 𝐴 ∧ 𝑧 ∈ V) → (𝑧 ∈ (∪ 𝑥 ∈ 𝐴 ({𝑥} × 𝐵) “ {𝑌}) ↔ 〈𝑌, 𝑧〉 ∈ ∪ 𝑥 ∈ 𝐴 ({𝑥} × 𝐵))) | |
| 2 | 1 | elvd 3442 | . . . 4 ⊢ (𝑌 ∈ 𝐴 → (𝑧 ∈ (∪ 𝑥 ∈ 𝐴 ({𝑥} × 𝐵) “ {𝑌}) ↔ 〈𝑌, 𝑧〉 ∈ ∪ 𝑥 ∈ 𝐴 ({𝑥} × 𝐵))) |
| 3 | 2 | adantl 481 | . . 3 ⊢ ((𝜑 ∧ 𝑌 ∈ 𝐴) → (𝑧 ∈ (∪ 𝑥 ∈ 𝐴 ({𝑥} × 𝐵) “ {𝑌}) ↔ 〈𝑌, 𝑧〉 ∈ ∪ 𝑥 ∈ 𝐴 ({𝑥} × 𝐵))) |
| 4 | iunsnima2.1 | . . . . . 6 ⊢ Ⅎ𝑥𝐶 | |
| 5 | iunsnima2.2 | . . . . . 6 ⊢ (𝑥 = 𝑌 → 𝐵 = 𝐶) | |
| 6 | 4, 5 | opeliunxp2f 8140 | . . . . 5 ⊢ (〈𝑌, 𝑧〉 ∈ ∪ 𝑥 ∈ 𝐴 ({𝑥} × 𝐵) ↔ (𝑌 ∈ 𝐴 ∧ 𝑧 ∈ 𝐶)) |
| 7 | 6 | baib 535 | . . . 4 ⊢ (𝑌 ∈ 𝐴 → (〈𝑌, 𝑧〉 ∈ ∪ 𝑥 ∈ 𝐴 ({𝑥} × 𝐵) ↔ 𝑧 ∈ 𝐶)) |
| 8 | 7 | adantl 481 | . . 3 ⊢ ((𝜑 ∧ 𝑌 ∈ 𝐴) → (〈𝑌, 𝑧〉 ∈ ∪ 𝑥 ∈ 𝐴 ({𝑥} × 𝐵) ↔ 𝑧 ∈ 𝐶)) |
| 9 | 3, 8 | bitrd 279 | . 2 ⊢ ((𝜑 ∧ 𝑌 ∈ 𝐴) → (𝑧 ∈ (∪ 𝑥 ∈ 𝐴 ({𝑥} × 𝐵) “ {𝑌}) ↔ 𝑧 ∈ 𝐶)) |
| 10 | 9 | eqrdv 2729 | 1 ⊢ ((𝜑 ∧ 𝑌 ∈ 𝐴) → (∪ 𝑥 ∈ 𝐴 ({𝑥} × 𝐵) “ {𝑌}) = 𝐶) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1541 ∈ wcel 2111 Ⅎwnfc 2879 Vcvv 3436 {csn 4573 〈cop 4579 ∪ ciun 4939 × cxp 5612 “ cima 5617 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5232 ax-nul 5242 ax-pr 5368 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4281 df-if 4473 df-sn 4574 df-pr 4576 df-op 4580 df-iun 4941 df-br 5090 df-opab 5152 df-xp 5620 df-rel 5621 df-cnv 5622 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 |
| This theorem is referenced by: gsumpart 33037 gsumwrd2dccat 33047 |
| Copyright terms: Public domain | W3C validator |