![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > latref | Structured version Visualization version GIF version |
Description: A lattice ordering is reflexive. (ssid 3879 analog.) (Contributed by NM, 8-Oct-2011.) |
Ref | Expression |
---|---|
latref.b | ⊢ 𝐵 = (Base‘𝐾) |
latref.l | ⊢ ≤ = (le‘𝐾) |
Ref | Expression |
---|---|
latref | ⊢ ((𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵) → 𝑋 ≤ 𝑋) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | latpos 17518 | . 2 ⊢ (𝐾 ∈ Lat → 𝐾 ∈ Poset) | |
2 | latref.b | . . 3 ⊢ 𝐵 = (Base‘𝐾) | |
3 | latref.l | . . 3 ⊢ ≤ = (le‘𝐾) | |
4 | 2, 3 | posref 17419 | . 2 ⊢ ((𝐾 ∈ Poset ∧ 𝑋 ∈ 𝐵) → 𝑋 ≤ 𝑋) |
5 | 1, 4 | sylan 572 | 1 ⊢ ((𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵) → 𝑋 ≤ 𝑋) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 387 = wceq 1507 ∈ wcel 2050 class class class wbr 4929 ‘cfv 6188 Basecbs 16339 lecple 16428 Posetcpo 17408 Latclat 17513 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1758 ax-4 1772 ax-5 1869 ax-6 1928 ax-7 1965 ax-8 2052 ax-9 2059 ax-10 2079 ax-11 2093 ax-12 2106 ax-ext 2750 ax-nul 5067 |
This theorem depends on definitions: df-bi 199 df-an 388 df-or 834 df-3an 1070 df-tru 1510 df-ex 1743 df-nf 1747 df-sb 2016 df-mo 2547 df-eu 2584 df-clab 2759 df-cleq 2771 df-clel 2846 df-nfc 2918 df-ral 3093 df-rex 3094 df-rab 3097 df-v 3417 df-sbc 3682 df-dif 3832 df-un 3834 df-in 3836 df-ss 3843 df-nul 4179 df-if 4351 df-sn 4442 df-pr 4444 df-op 4448 df-uni 4713 df-br 4930 df-opab 4992 df-xp 5413 df-dm 5417 df-iota 6152 df-fv 6196 df-proset 17396 df-poset 17414 df-lat 17514 |
This theorem is referenced by: latleeqj1 17531 latjidm 17542 latleeqm1 17547 latmidm 17554 olj01 35812 olm01 35823 cmtidN 35844 ps-1 36064 3at 36077 llnneat 36101 2atnelpln 36131 lplnneat 36132 lplnnelln 36133 3atnelvolN 36173 lvolneatN 36175 lvolnelln 36176 lvolnelpln 36177 4at 36200 lplncvrlvol 36203 lncmp 36370 lhpocnle 36603 ltrnel 36726 ltrncnvel 36729 tendoidcl 37356 cdlemk39u 37555 dia1eldmN 37628 dia1N 37640 dihwN 37876 dihglblem5apreN 37878 dihmeetbclemN 37891 |
Copyright terms: Public domain | W3C validator |