MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  latref Structured version   Visualization version   GIF version

Theorem latref 17665
Description: A lattice ordering is reflexive. (ssid 3991 analog.) (Contributed by NM, 8-Oct-2011.)
Hypotheses
Ref Expression
latref.b 𝐵 = (Base‘𝐾)
latref.l = (le‘𝐾)
Assertion
Ref Expression
latref ((𝐾 ∈ Lat ∧ 𝑋𝐵) → 𝑋 𝑋)

Proof of Theorem latref
StepHypRef Expression
1 latpos 17662 . 2 (𝐾 ∈ Lat → 𝐾 ∈ Poset)
2 latref.b . . 3 𝐵 = (Base‘𝐾)
3 latref.l . . 3 = (le‘𝐾)
42, 3posref 17563 . 2 ((𝐾 ∈ Poset ∧ 𝑋𝐵) → 𝑋 𝑋)
51, 4sylan 582 1 ((𝐾 ∈ Lat ∧ 𝑋𝐵) → 𝑋 𝑋)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398   = wceq 1537  wcel 2114   class class class wbr 5068  cfv 6357  Basecbs 16485  lecple 16574  Posetcpo 17552  Latclat 17657
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2795  ax-nul 5212
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2802  df-cleq 2816  df-clel 2895  df-nfc 2965  df-ral 3145  df-rex 3146  df-rab 3149  df-v 3498  df-sbc 3775  df-dif 3941  df-un 3943  df-in 3945  df-ss 3954  df-nul 4294  df-if 4470  df-sn 4570  df-pr 4572  df-op 4576  df-uni 4841  df-br 5069  df-opab 5131  df-xp 5563  df-dm 5567  df-iota 6316  df-fv 6365  df-proset 17540  df-poset 17558  df-lat 17658
This theorem is referenced by:  latleeqj1  17675  latjidm  17686  latleeqm1  17691  latmidm  17698  olj01  36363  olm01  36374  cmtidN  36395  ps-1  36615  3at  36628  llnneat  36652  2atnelpln  36682  lplnneat  36683  lplnnelln  36684  3atnelvolN  36724  lvolneatN  36726  lvolnelln  36727  lvolnelpln  36728  4at  36751  lplncvrlvol  36754  lncmp  36921  lhpocnle  37154  ltrnel  37277  ltrncnvel  37280  tendoidcl  37907  cdlemk39u  38106  dia1eldmN  38179  dia1N  38191  dihwN  38427  dihglblem5apreN  38429  dihmeetbclemN  38442
  Copyright terms: Public domain W3C validator