| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > latref | Structured version Visualization version GIF version | ||
| Description: A lattice ordering is reflexive. (ssid 3972 analog.) (Contributed by NM, 8-Oct-2011.) |
| Ref | Expression |
|---|---|
| latref.b | ⊢ 𝐵 = (Base‘𝐾) |
| latref.l | ⊢ ≤ = (le‘𝐾) |
| Ref | Expression |
|---|---|
| latref | ⊢ ((𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵) → 𝑋 ≤ 𝑋) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | latpos 18404 | . 2 ⊢ (𝐾 ∈ Lat → 𝐾 ∈ Poset) | |
| 2 | latref.b | . . 3 ⊢ 𝐵 = (Base‘𝐾) | |
| 3 | latref.l | . . 3 ⊢ ≤ = (le‘𝐾) | |
| 4 | 2, 3 | posref 18286 | . 2 ⊢ ((𝐾 ∈ Poset ∧ 𝑋 ∈ 𝐵) → 𝑋 ≤ 𝑋) |
| 5 | 1, 4 | sylan 580 | 1 ⊢ ((𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵) → 𝑋 ≤ 𝑋) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 class class class wbr 5110 ‘cfv 6514 Basecbs 17186 lecple 17234 Posetcpo 18275 Latclat 18397 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2702 ax-nul 5264 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-ne 2927 df-ral 3046 df-rex 3055 df-rab 3409 df-v 3452 df-sbc 3757 df-dif 3920 df-un 3922 df-ss 3934 df-nul 4300 df-if 4492 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-br 5111 df-opab 5173 df-xp 5647 df-dm 5651 df-iota 6467 df-fv 6522 df-proset 18262 df-poset 18281 df-lat 18398 |
| This theorem is referenced by: latleeqj1 18417 latjidm 18428 latleeqm1 18433 latmidm 18440 olj01 39225 olm01 39236 cmtidN 39257 ps-1 39478 3at 39491 llnneat 39515 2atnelpln 39545 lplnneat 39546 lplnnelln 39547 3atnelvolN 39587 lvolneatN 39589 lvolnelln 39590 lvolnelpln 39591 4at 39614 lplncvrlvol 39617 lncmp 39784 lhpocnle 40017 ltrnel 40140 ltrncnvel 40143 tendoidcl 40770 cdlemk39u 40969 dia1eldmN 41042 dia1N 41054 dihwN 41290 dihglblem5apreN 41292 dihmeetbclemN 41305 |
| Copyright terms: Public domain | W3C validator |