MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  latref Structured version   Visualization version   GIF version

Theorem latref 18365
Description: A lattice ordering is reflexive. (ssid 3960 analog.) (Contributed by NM, 8-Oct-2011.)
Hypotheses
Ref Expression
latref.b 𝐵 = (Base‘𝐾)
latref.l = (le‘𝐾)
Assertion
Ref Expression
latref ((𝐾 ∈ Lat ∧ 𝑋𝐵) → 𝑋 𝑋)

Proof of Theorem latref
StepHypRef Expression
1 latpos 18362 . 2 (𝐾 ∈ Lat → 𝐾 ∈ Poset)
2 latref.b . . 3 𝐵 = (Base‘𝐾)
3 latref.l . . 3 = (le‘𝐾)
42, 3posref 18242 . 2 ((𝐾 ∈ Poset ∧ 𝑋𝐵) → 𝑋 𝑋)
51, 4sylan 580 1 ((𝐾 ∈ Lat ∧ 𝑋𝐵) → 𝑋 𝑋)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109   class class class wbr 5095  cfv 6486  Basecbs 17138  lecple 17186  Posetcpo 18231  Latclat 18355
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2701  ax-nul 5248
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3397  df-v 3440  df-sbc 3745  df-dif 3908  df-un 3910  df-ss 3922  df-nul 4287  df-if 4479  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-br 5096  df-opab 5158  df-xp 5629  df-dm 5633  df-iota 6442  df-fv 6494  df-proset 18218  df-poset 18237  df-lat 18356
This theorem is referenced by:  latleeqj1  18375  latjidm  18386  latleeqm1  18391  latmidm  18398  olj01  39203  olm01  39214  cmtidN  39235  ps-1  39456  3at  39469  llnneat  39493  2atnelpln  39523  lplnneat  39524  lplnnelln  39525  3atnelvolN  39565  lvolneatN  39567  lvolnelln  39568  lvolnelpln  39569  4at  39592  lplncvrlvol  39595  lncmp  39762  lhpocnle  39995  ltrnel  40118  ltrncnvel  40121  tendoidcl  40748  cdlemk39u  40947  dia1eldmN  41020  dia1N  41032  dihwN  41268  dihglblem5apreN  41270  dihmeetbclemN  41283
  Copyright terms: Public domain W3C validator