| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > latref | Structured version Visualization version GIF version | ||
| Description: A lattice ordering is reflexive. (ssid 3953 analog.) (Contributed by NM, 8-Oct-2011.) |
| Ref | Expression |
|---|---|
| latref.b | ⊢ 𝐵 = (Base‘𝐾) |
| latref.l | ⊢ ≤ = (le‘𝐾) |
| Ref | Expression |
|---|---|
| latref | ⊢ ((𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵) → 𝑋 ≤ 𝑋) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | latpos 18346 | . 2 ⊢ (𝐾 ∈ Lat → 𝐾 ∈ Poset) | |
| 2 | latref.b | . . 3 ⊢ 𝐵 = (Base‘𝐾) | |
| 3 | latref.l | . . 3 ⊢ ≤ = (le‘𝐾) | |
| 4 | 2, 3 | posref 18226 | . 2 ⊢ ((𝐾 ∈ Poset ∧ 𝑋 ∈ 𝐵) → 𝑋 ≤ 𝑋) |
| 5 | 1, 4 | sylan 580 | 1 ⊢ ((𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵) → 𝑋 ≤ 𝑋) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2113 class class class wbr 5093 ‘cfv 6486 Basecbs 17122 lecple 17170 Posetcpo 18215 Latclat 18339 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-ext 2705 ax-nul 5246 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2712 df-cleq 2725 df-clel 2808 df-ne 2930 df-ral 3049 df-rex 3058 df-rab 3397 df-v 3439 df-sbc 3738 df-dif 3901 df-un 3903 df-ss 3915 df-nul 4283 df-if 4475 df-sn 4576 df-pr 4578 df-op 4582 df-uni 4859 df-br 5094 df-opab 5156 df-xp 5625 df-dm 5629 df-iota 6442 df-fv 6494 df-proset 18202 df-poset 18221 df-lat 18340 |
| This theorem is referenced by: latleeqj1 18359 latjidm 18370 latleeqm1 18375 latmidm 18382 olj01 39344 olm01 39355 cmtidN 39376 ps-1 39596 3at 39609 llnneat 39633 2atnelpln 39663 lplnneat 39664 lplnnelln 39665 3atnelvolN 39705 lvolneatN 39707 lvolnelln 39708 lvolnelpln 39709 4at 39732 lplncvrlvol 39735 lncmp 39902 lhpocnle 40135 ltrnel 40258 ltrncnvel 40261 tendoidcl 40888 cdlemk39u 41087 dia1eldmN 41160 dia1N 41172 dihwN 41408 dihglblem5apreN 41410 dihmeetbclemN 41423 |
| Copyright terms: Public domain | W3C validator |