| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > latref | Structured version Visualization version GIF version | ||
| Description: A lattice ordering is reflexive. (ssid 3957 analog.) (Contributed by NM, 8-Oct-2011.) |
| Ref | Expression |
|---|---|
| latref.b | ⊢ 𝐵 = (Base‘𝐾) |
| latref.l | ⊢ ≤ = (le‘𝐾) |
| Ref | Expression |
|---|---|
| latref | ⊢ ((𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵) → 𝑋 ≤ 𝑋) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | latpos 18341 | . 2 ⊢ (𝐾 ∈ Lat → 𝐾 ∈ Poset) | |
| 2 | latref.b | . . 3 ⊢ 𝐵 = (Base‘𝐾) | |
| 3 | latref.l | . . 3 ⊢ ≤ = (le‘𝐾) | |
| 4 | 2, 3 | posref 18221 | . 2 ⊢ ((𝐾 ∈ Poset ∧ 𝑋 ∈ 𝐵) → 𝑋 ≤ 𝑋) |
| 5 | 1, 4 | sylan 580 | 1 ⊢ ((𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵) → 𝑋 ≤ 𝑋) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2111 class class class wbr 5091 ‘cfv 6481 Basecbs 17117 lecple 17165 Posetcpo 18210 Latclat 18334 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 ax-nul 5244 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-ne 2929 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-sbc 3742 df-dif 3905 df-un 3907 df-ss 3919 df-nul 4284 df-if 4476 df-sn 4577 df-pr 4579 df-op 4583 df-uni 4860 df-br 5092 df-opab 5154 df-xp 5622 df-dm 5626 df-iota 6437 df-fv 6489 df-proset 18197 df-poset 18216 df-lat 18335 |
| This theorem is referenced by: latleeqj1 18354 latjidm 18365 latleeqm1 18370 latmidm 18377 olj01 39263 olm01 39274 cmtidN 39295 ps-1 39515 3at 39528 llnneat 39552 2atnelpln 39582 lplnneat 39583 lplnnelln 39584 3atnelvolN 39624 lvolneatN 39626 lvolnelln 39627 lvolnelpln 39628 4at 39651 lplncvrlvol 39654 lncmp 39821 lhpocnle 40054 ltrnel 40177 ltrncnvel 40180 tendoidcl 40807 cdlemk39u 41006 dia1eldmN 41079 dia1N 41091 dihwN 41327 dihglblem5apreN 41329 dihmeetbclemN 41342 |
| Copyright terms: Public domain | W3C validator |