Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > latref | Structured version Visualization version GIF version |
Description: A lattice ordering is reflexive. (ssid 3923 analog.) (Contributed by NM, 8-Oct-2011.) |
Ref | Expression |
---|---|
latref.b | ⊢ 𝐵 = (Base‘𝐾) |
latref.l | ⊢ ≤ = (le‘𝐾) |
Ref | Expression |
---|---|
latref | ⊢ ((𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵) → 𝑋 ≤ 𝑋) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | latpos 17944 | . 2 ⊢ (𝐾 ∈ Lat → 𝐾 ∈ Poset) | |
2 | latref.b | . . 3 ⊢ 𝐵 = (Base‘𝐾) | |
3 | latref.l | . . 3 ⊢ ≤ = (le‘𝐾) | |
4 | 2, 3 | posref 17825 | . 2 ⊢ ((𝐾 ∈ Poset ∧ 𝑋 ∈ 𝐵) → 𝑋 ≤ 𝑋) |
5 | 1, 4 | sylan 583 | 1 ⊢ ((𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵) → 𝑋 ≤ 𝑋) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 399 = wceq 1543 ∈ wcel 2110 class class class wbr 5053 ‘cfv 6380 Basecbs 16760 lecple 16809 Posetcpo 17814 Latclat 17937 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1803 ax-4 1817 ax-5 1918 ax-6 1976 ax-7 2016 ax-8 2112 ax-9 2120 ax-10 2141 ax-11 2158 ax-12 2175 ax-ext 2708 ax-nul 5199 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 848 df-3an 1091 df-tru 1546 df-fal 1556 df-ex 1788 df-nf 1792 df-sb 2071 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2816 df-ral 3066 df-rex 3067 df-rab 3070 df-v 3410 df-sbc 3695 df-dif 3869 df-un 3871 df-in 3873 df-ss 3883 df-nul 4238 df-if 4440 df-sn 4542 df-pr 4544 df-op 4548 df-uni 4820 df-br 5054 df-opab 5116 df-xp 5557 df-dm 5561 df-iota 6338 df-fv 6388 df-proset 17802 df-poset 17820 df-lat 17938 |
This theorem is referenced by: latleeqj1 17957 latjidm 17968 latleeqm1 17973 latmidm 17980 olj01 36976 olm01 36987 cmtidN 37008 ps-1 37228 3at 37241 llnneat 37265 2atnelpln 37295 lplnneat 37296 lplnnelln 37297 3atnelvolN 37337 lvolneatN 37339 lvolnelln 37340 lvolnelpln 37341 4at 37364 lplncvrlvol 37367 lncmp 37534 lhpocnle 37767 ltrnel 37890 ltrncnvel 37893 tendoidcl 38520 cdlemk39u 38719 dia1eldmN 38792 dia1N 38804 dihwN 39040 dihglblem5apreN 39042 dihmeetbclemN 39055 |
Copyright terms: Public domain | W3C validator |