| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > latjle12 | Structured version Visualization version GIF version | ||
| Description: A join is less than or equal to a third value iff each argument is less than or equal to the third value. (chlub 31490 analog.) (Contributed by NM, 17-Sep-2011.) |
| Ref | Expression |
|---|---|
| latlej.b | ⊢ 𝐵 = (Base‘𝐾) |
| latlej.l | ⊢ ≤ = (le‘𝐾) |
| latlej.j | ⊢ ∨ = (join‘𝐾) |
| Ref | Expression |
|---|---|
| latjle12 | ⊢ ((𝐾 ∈ Lat ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → ((𝑋 ≤ 𝑍 ∧ 𝑌 ≤ 𝑍) ↔ (𝑋 ∨ 𝑌) ≤ 𝑍)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | latlej.b | . 2 ⊢ 𝐵 = (Base‘𝐾) | |
| 2 | latlej.l | . 2 ⊢ ≤ = (le‘𝐾) | |
| 3 | latlej.j | . 2 ⊢ ∨ = (join‘𝐾) | |
| 4 | latpos 18448 | . . 3 ⊢ (𝐾 ∈ Lat → 𝐾 ∈ Poset) | |
| 5 | 4 | adantr 480 | . 2 ⊢ ((𝐾 ∈ Lat ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → 𝐾 ∈ Poset) |
| 6 | simpr1 1195 | . 2 ⊢ ((𝐾 ∈ Lat ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → 𝑋 ∈ 𝐵) | |
| 7 | simpr2 1196 | . 2 ⊢ ((𝐾 ∈ Lat ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → 𝑌 ∈ 𝐵) | |
| 8 | simpr3 1197 | . 2 ⊢ ((𝐾 ∈ Lat ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → 𝑍 ∈ 𝐵) | |
| 9 | eqid 2735 | . . . 4 ⊢ (meet‘𝐾) = (meet‘𝐾) | |
| 10 | simpl 482 | . . . 4 ⊢ ((𝐾 ∈ Lat ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → 𝐾 ∈ Lat) | |
| 11 | 1, 3, 9, 10, 6, 7 | latcl2 18446 | . . 3 ⊢ ((𝐾 ∈ Lat ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → (〈𝑋, 𝑌〉 ∈ dom ∨ ∧ 〈𝑋, 𝑌〉 ∈ dom (meet‘𝐾))) |
| 12 | 11 | simpld 494 | . 2 ⊢ ((𝐾 ∈ Lat ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → 〈𝑋, 𝑌〉 ∈ dom ∨ ) |
| 13 | 1, 2, 3, 5, 6, 7, 8, 12 | joinle 18396 | 1 ⊢ ((𝐾 ∈ Lat ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → ((𝑋 ≤ 𝑍 ∧ 𝑌 ≤ 𝑍) ↔ (𝑋 ∨ 𝑌) ≤ 𝑍)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2108 〈cop 4607 class class class wbr 5119 dom cdm 5654 ‘cfv 6531 (class class class)co 7405 Basecbs 17228 lecple 17278 Posetcpo 18319 joincjn 18323 meetcmee 18324 Latclat 18441 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-rep 5249 ax-sep 5266 ax-nul 5276 ax-pow 5335 ax-pr 5402 ax-un 7729 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-ral 3052 df-rex 3061 df-rmo 3359 df-reu 3360 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-iun 4969 df-br 5120 df-opab 5182 df-mpt 5202 df-id 5548 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-iota 6484 df-fun 6533 df-fn 6534 df-f 6535 df-f1 6536 df-fo 6537 df-f1o 6538 df-fv 6539 df-riota 7362 df-ov 7408 df-oprab 7409 df-poset 18325 df-lub 18356 df-join 18358 df-lat 18442 |
| This theorem is referenced by: latleeqj1 18461 latjlej1 18463 latjidm 18472 latledi 18487 latjass 18493 mod1ile 18503 lubun 18525 oldmm1 39235 olj01 39243 cvlexchb1 39348 cvlcvr1 39357 hlrelat 39421 hlrelat2 39422 exatleN 39423 hlrelat3 39431 cvrexchlem 39438 cvratlem 39440 cvrat 39441 atlelt 39457 ps-1 39496 hlatexch3N 39499 hlatexch4 39500 3atlem1 39502 3atlem2 39503 lplnexllnN 39583 2llnjaN 39585 4atlem3 39615 4atlem10 39625 4atlem11b 39627 4atlem11 39628 4atlem12b 39630 4atlem12 39631 2lplnja 39638 dalem1 39678 dalem3 39683 dalem8 39689 dalem16 39698 dalem17 39699 dalem21 39713 dalem25 39717 dalem39 39730 dalem54 39745 dalem60 39751 linepsubN 39771 pmapsub 39787 lneq2at 39797 2llnma3r 39807 cdlema1N 39810 cdlemblem 39812 paddasslem5 39843 paddasslem12 39850 paddasslem13 39851 llnexchb2 39888 dalawlem3 39892 dalawlem5 39894 dalawlem8 39897 dalawlem11 39900 dalawlem12 39901 lhp2lt 40020 lhpexle2lem 40028 lhpexle3lem 40030 4atexlemtlw 40086 4atexlemnclw 40089 lautj 40112 cdlemd3 40219 cdleme3g 40253 cdleme3h 40254 cdleme7d 40265 cdleme11c 40280 cdleme15d 40296 cdleme17b 40306 cdleme19a 40322 cdleme20j 40337 cdleme21c 40346 cdleme22b 40360 cdleme22d 40362 cdleme28a 40389 cdleme35a 40467 cdleme35fnpq 40468 cdleme35b 40469 cdleme35f 40473 cdleme42c 40491 cdleme42i 40502 cdlemf1 40580 cdlemg4c 40631 cdlemg6c 40639 cdlemg8b 40647 cdlemg10 40660 cdlemg11b 40661 cdlemg13a 40670 cdlemg17a 40680 cdlemg18b 40698 cdlemg27a 40711 cdlemg33b0 40720 cdlemg35 40732 cdlemg42 40748 cdlemg46 40754 trljco 40759 tendopltp 40799 cdlemk3 40852 cdlemk10 40862 cdlemk1u 40878 cdlemk39 40935 dialss 41065 dia2dimlem1 41083 dia2dimlem10 41092 dia2dimlem12 41094 cdlemm10N 41137 djajN 41156 diblss 41189 cdlemn2 41214 dihord2pre2 41245 dib2dim 41262 dih2dimb 41263 dih2dimbALTN 41264 dihmeetlem6 41328 dihjatcclem1 41437 |
| Copyright terms: Public domain | W3C validator |