| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > latjle12 | Structured version Visualization version GIF version | ||
| Description: A join is less than or equal to a third value iff each argument is less than or equal to the third value. (chlub 31493 analog.) (Contributed by NM, 17-Sep-2011.) |
| Ref | Expression |
|---|---|
| latlej.b | ⊢ 𝐵 = (Base‘𝐾) |
| latlej.l | ⊢ ≤ = (le‘𝐾) |
| latlej.j | ⊢ ∨ = (join‘𝐾) |
| Ref | Expression |
|---|---|
| latjle12 | ⊢ ((𝐾 ∈ Lat ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → ((𝑋 ≤ 𝑍 ∧ 𝑌 ≤ 𝑍) ↔ (𝑋 ∨ 𝑌) ≤ 𝑍)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | latlej.b | . 2 ⊢ 𝐵 = (Base‘𝐾) | |
| 2 | latlej.l | . 2 ⊢ ≤ = (le‘𝐾) | |
| 3 | latlej.j | . 2 ⊢ ∨ = (join‘𝐾) | |
| 4 | latpos 18348 | . . 3 ⊢ (𝐾 ∈ Lat → 𝐾 ∈ Poset) | |
| 5 | 4 | adantr 480 | . 2 ⊢ ((𝐾 ∈ Lat ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → 𝐾 ∈ Poset) |
| 6 | simpr1 1195 | . 2 ⊢ ((𝐾 ∈ Lat ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → 𝑋 ∈ 𝐵) | |
| 7 | simpr2 1196 | . 2 ⊢ ((𝐾 ∈ Lat ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → 𝑌 ∈ 𝐵) | |
| 8 | simpr3 1197 | . 2 ⊢ ((𝐾 ∈ Lat ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → 𝑍 ∈ 𝐵) | |
| 9 | eqid 2733 | . . . 4 ⊢ (meet‘𝐾) = (meet‘𝐾) | |
| 10 | simpl 482 | . . . 4 ⊢ ((𝐾 ∈ Lat ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → 𝐾 ∈ Lat) | |
| 11 | 1, 3, 9, 10, 6, 7 | latcl2 18346 | . . 3 ⊢ ((𝐾 ∈ Lat ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → (〈𝑋, 𝑌〉 ∈ dom ∨ ∧ 〈𝑋, 𝑌〉 ∈ dom (meet‘𝐾))) |
| 12 | 11 | simpld 494 | . 2 ⊢ ((𝐾 ∈ Lat ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → 〈𝑋, 𝑌〉 ∈ dom ∨ ) |
| 13 | 1, 2, 3, 5, 6, 7, 8, 12 | joinle 18294 | 1 ⊢ ((𝐾 ∈ Lat ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → ((𝑋 ≤ 𝑍 ∧ 𝑌 ≤ 𝑍) ↔ (𝑋 ∨ 𝑌) ≤ 𝑍)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1086 = wceq 1541 ∈ wcel 2113 〈cop 4583 class class class wbr 5095 dom cdm 5621 ‘cfv 6488 (class class class)co 7354 Basecbs 17124 lecple 17172 Posetcpo 18217 joincjn 18221 meetcmee 18222 Latclat 18341 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-rep 5221 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7676 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-ral 3049 df-rex 3058 df-rmo 3347 df-reu 3348 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-nul 4283 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4861 df-iun 4945 df-br 5096 df-opab 5158 df-mpt 5177 df-id 5516 df-xp 5627 df-rel 5628 df-cnv 5629 df-co 5630 df-dm 5631 df-rn 5632 df-res 5633 df-ima 5634 df-iota 6444 df-fun 6490 df-fn 6491 df-f 6492 df-f1 6493 df-fo 6494 df-f1o 6495 df-fv 6496 df-riota 7311 df-ov 7357 df-oprab 7358 df-poset 18223 df-lub 18254 df-join 18256 df-lat 18342 |
| This theorem is referenced by: latleeqj1 18361 latjlej1 18363 latjidm 18372 latledi 18387 latjass 18393 mod1ile 18403 lubun 18425 oldmm1 39339 olj01 39347 cvlexchb1 39452 cvlcvr1 39461 hlrelat 39524 hlrelat2 39525 exatleN 39526 hlrelat3 39534 cvrexchlem 39541 cvratlem 39543 cvrat 39544 atlelt 39560 ps-1 39599 hlatexch3N 39602 hlatexch4 39603 3atlem1 39605 3atlem2 39606 lplnexllnN 39686 2llnjaN 39688 4atlem3 39718 4atlem10 39728 4atlem11b 39730 4atlem11 39731 4atlem12b 39733 4atlem12 39734 2lplnja 39741 dalem1 39781 dalem3 39786 dalem8 39792 dalem16 39801 dalem17 39802 dalem21 39816 dalem25 39820 dalem39 39833 dalem54 39848 dalem60 39854 linepsubN 39874 pmapsub 39890 lneq2at 39900 2llnma3r 39910 cdlema1N 39913 cdlemblem 39915 paddasslem5 39946 paddasslem12 39953 paddasslem13 39954 llnexchb2 39991 dalawlem3 39995 dalawlem5 39997 dalawlem8 40000 dalawlem11 40003 dalawlem12 40004 lhp2lt 40123 lhpexle2lem 40131 lhpexle3lem 40133 4atexlemtlw 40189 4atexlemnclw 40192 lautj 40215 cdlemd3 40322 cdleme3g 40356 cdleme3h 40357 cdleme7d 40368 cdleme11c 40383 cdleme15d 40399 cdleme17b 40409 cdleme19a 40425 cdleme20j 40440 cdleme21c 40449 cdleme22b 40463 cdleme22d 40465 cdleme28a 40492 cdleme35a 40570 cdleme35fnpq 40571 cdleme35b 40572 cdleme35f 40576 cdleme42c 40594 cdleme42i 40605 cdlemf1 40683 cdlemg4c 40734 cdlemg6c 40742 cdlemg8b 40750 cdlemg10 40763 cdlemg11b 40764 cdlemg13a 40773 cdlemg17a 40783 cdlemg18b 40801 cdlemg27a 40814 cdlemg33b0 40823 cdlemg35 40835 cdlemg42 40851 cdlemg46 40857 trljco 40862 tendopltp 40902 cdlemk3 40955 cdlemk10 40965 cdlemk1u 40981 cdlemk39 41038 dialss 41168 dia2dimlem1 41186 dia2dimlem10 41195 dia2dimlem12 41197 cdlemm10N 41240 djajN 41259 diblss 41292 cdlemn2 41317 dihord2pre2 41348 dib2dim 41365 dih2dimb 41366 dih2dimbALTN 41367 dihmeetlem6 41431 dihjatcclem1 41540 |
| Copyright terms: Public domain | W3C validator |