Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > latjle12 | Structured version Visualization version GIF version |
Description: A join is less than or equal to a third value iff each argument is less than or equal to the third value. (chlub 29772 analog.) (Contributed by NM, 17-Sep-2011.) |
Ref | Expression |
---|---|
latlej.b | ⊢ 𝐵 = (Base‘𝐾) |
latlej.l | ⊢ ≤ = (le‘𝐾) |
latlej.j | ⊢ ∨ = (join‘𝐾) |
Ref | Expression |
---|---|
latjle12 | ⊢ ((𝐾 ∈ Lat ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → ((𝑋 ≤ 𝑍 ∧ 𝑌 ≤ 𝑍) ↔ (𝑋 ∨ 𝑌) ≤ 𝑍)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | latlej.b | . 2 ⊢ 𝐵 = (Base‘𝐾) | |
2 | latlej.l | . 2 ⊢ ≤ = (le‘𝐾) | |
3 | latlej.j | . 2 ⊢ ∨ = (join‘𝐾) | |
4 | latpos 18071 | . . 3 ⊢ (𝐾 ∈ Lat → 𝐾 ∈ Poset) | |
5 | 4 | adantr 480 | . 2 ⊢ ((𝐾 ∈ Lat ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → 𝐾 ∈ Poset) |
6 | simpr1 1192 | . 2 ⊢ ((𝐾 ∈ Lat ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → 𝑋 ∈ 𝐵) | |
7 | simpr2 1193 | . 2 ⊢ ((𝐾 ∈ Lat ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → 𝑌 ∈ 𝐵) | |
8 | simpr3 1194 | . 2 ⊢ ((𝐾 ∈ Lat ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → 𝑍 ∈ 𝐵) | |
9 | eqid 2738 | . . . 4 ⊢ (meet‘𝐾) = (meet‘𝐾) | |
10 | simpl 482 | . . . 4 ⊢ ((𝐾 ∈ Lat ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → 𝐾 ∈ Lat) | |
11 | 1, 3, 9, 10, 6, 7 | latcl2 18069 | . . 3 ⊢ ((𝐾 ∈ Lat ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → (〈𝑋, 𝑌〉 ∈ dom ∨ ∧ 〈𝑋, 𝑌〉 ∈ dom (meet‘𝐾))) |
12 | 11 | simpld 494 | . 2 ⊢ ((𝐾 ∈ Lat ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → 〈𝑋, 𝑌〉 ∈ dom ∨ ) |
13 | 1, 2, 3, 5, 6, 7, 8, 12 | joinle 18019 | 1 ⊢ ((𝐾 ∈ Lat ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → ((𝑋 ≤ 𝑍 ∧ 𝑌 ≤ 𝑍) ↔ (𝑋 ∨ 𝑌) ≤ 𝑍)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 ∧ w3a 1085 = wceq 1539 ∈ wcel 2108 〈cop 4564 class class class wbr 5070 dom cdm 5580 ‘cfv 6418 (class class class)co 7255 Basecbs 16840 lecple 16895 Posetcpo 17940 joincjn 17944 meetcmee 17945 Latclat 18064 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-rep 5205 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-ral 3068 df-rex 3069 df-reu 3070 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-id 5480 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-riota 7212 df-ov 7258 df-oprab 7259 df-poset 17946 df-lub 17979 df-join 17981 df-lat 18065 |
This theorem is referenced by: latleeqj1 18084 latjlej1 18086 latjidm 18095 latledi 18110 latjass 18116 mod1ile 18126 lubun 18148 oldmm1 37158 olj01 37166 cvlexchb1 37271 cvlcvr1 37280 hlrelat 37343 hlrelat2 37344 exatleN 37345 hlrelat3 37353 cvrexchlem 37360 cvratlem 37362 cvrat 37363 atlelt 37379 ps-1 37418 hlatexch3N 37421 hlatexch4 37422 3atlem1 37424 3atlem2 37425 lplnexllnN 37505 2llnjaN 37507 4atlem3 37537 4atlem10 37547 4atlem11b 37549 4atlem11 37550 4atlem12b 37552 4atlem12 37553 2lplnja 37560 dalem1 37600 dalem3 37605 dalem8 37611 dalem16 37620 dalem17 37621 dalem21 37635 dalem25 37639 dalem39 37652 dalem54 37667 dalem60 37673 linepsubN 37693 pmapsub 37709 lneq2at 37719 2llnma3r 37729 cdlema1N 37732 cdlemblem 37734 paddasslem5 37765 paddasslem12 37772 paddasslem13 37773 llnexchb2 37810 dalawlem3 37814 dalawlem5 37816 dalawlem8 37819 dalawlem11 37822 dalawlem12 37823 lhp2lt 37942 lhpexle2lem 37950 lhpexle3lem 37952 4atexlemtlw 38008 4atexlemnclw 38011 lautj 38034 cdlemd3 38141 cdleme3g 38175 cdleme3h 38176 cdleme7d 38187 cdleme11c 38202 cdleme15d 38218 cdleme17b 38228 cdleme19a 38244 cdleme20j 38259 cdleme21c 38268 cdleme22b 38282 cdleme22d 38284 cdleme28a 38311 cdleme35a 38389 cdleme35fnpq 38390 cdleme35b 38391 cdleme35f 38395 cdleme42c 38413 cdleme42i 38424 cdlemf1 38502 cdlemg4c 38553 cdlemg6c 38561 cdlemg8b 38569 cdlemg10 38582 cdlemg11b 38583 cdlemg13a 38592 cdlemg17a 38602 cdlemg18b 38620 cdlemg27a 38633 cdlemg33b0 38642 cdlemg35 38654 cdlemg42 38670 cdlemg46 38676 trljco 38681 tendopltp 38721 cdlemk3 38774 cdlemk10 38784 cdlemk1u 38800 cdlemk39 38857 dialss 38987 dia2dimlem1 39005 dia2dimlem10 39014 dia2dimlem12 39016 cdlemm10N 39059 djajN 39078 diblss 39111 cdlemn2 39136 dihord2pre2 39167 dib2dim 39184 dih2dimb 39185 dih2dimbALTN 39186 dihmeetlem6 39250 dihjatcclem1 39359 |
Copyright terms: Public domain | W3C validator |