| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > latjle12 | Structured version Visualization version GIF version | ||
| Description: A join is less than or equal to a third value iff each argument is less than or equal to the third value. (chlub 31487 analog.) (Contributed by NM, 17-Sep-2011.) |
| Ref | Expression |
|---|---|
| latlej.b | ⊢ 𝐵 = (Base‘𝐾) |
| latlej.l | ⊢ ≤ = (le‘𝐾) |
| latlej.j | ⊢ ∨ = (join‘𝐾) |
| Ref | Expression |
|---|---|
| latjle12 | ⊢ ((𝐾 ∈ Lat ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → ((𝑋 ≤ 𝑍 ∧ 𝑌 ≤ 𝑍) ↔ (𝑋 ∨ 𝑌) ≤ 𝑍)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | latlej.b | . 2 ⊢ 𝐵 = (Base‘𝐾) | |
| 2 | latlej.l | . 2 ⊢ ≤ = (le‘𝐾) | |
| 3 | latlej.j | . 2 ⊢ ∨ = (join‘𝐾) | |
| 4 | latpos 18344 | . . 3 ⊢ (𝐾 ∈ Lat → 𝐾 ∈ Poset) | |
| 5 | 4 | adantr 480 | . 2 ⊢ ((𝐾 ∈ Lat ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → 𝐾 ∈ Poset) |
| 6 | simpr1 1195 | . 2 ⊢ ((𝐾 ∈ Lat ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → 𝑋 ∈ 𝐵) | |
| 7 | simpr2 1196 | . 2 ⊢ ((𝐾 ∈ Lat ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → 𝑌 ∈ 𝐵) | |
| 8 | simpr3 1197 | . 2 ⊢ ((𝐾 ∈ Lat ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → 𝑍 ∈ 𝐵) | |
| 9 | eqid 2731 | . . . 4 ⊢ (meet‘𝐾) = (meet‘𝐾) | |
| 10 | simpl 482 | . . . 4 ⊢ ((𝐾 ∈ Lat ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → 𝐾 ∈ Lat) | |
| 11 | 1, 3, 9, 10, 6, 7 | latcl2 18342 | . . 3 ⊢ ((𝐾 ∈ Lat ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → (〈𝑋, 𝑌〉 ∈ dom ∨ ∧ 〈𝑋, 𝑌〉 ∈ dom (meet‘𝐾))) |
| 12 | 11 | simpld 494 | . 2 ⊢ ((𝐾 ∈ Lat ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → 〈𝑋, 𝑌〉 ∈ dom ∨ ) |
| 13 | 1, 2, 3, 5, 6, 7, 8, 12 | joinle 18290 | 1 ⊢ ((𝐾 ∈ Lat ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → ((𝑋 ≤ 𝑍 ∧ 𝑌 ≤ 𝑍) ↔ (𝑋 ∨ 𝑌) ≤ 𝑍)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1086 = wceq 1541 ∈ wcel 2111 〈cop 4582 class class class wbr 5091 dom cdm 5616 ‘cfv 6481 (class class class)co 7346 Basecbs 17120 lecple 17168 Posetcpo 18213 joincjn 18217 meetcmee 18218 Latclat 18337 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5217 ax-sep 5234 ax-nul 5244 ax-pow 5303 ax-pr 5370 ax-un 7668 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3742 df-csb 3851 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-nul 4284 df-if 4476 df-pw 4552 df-sn 4577 df-pr 4579 df-op 4583 df-uni 4860 df-iun 4943 df-br 5092 df-opab 5154 df-mpt 5173 df-id 5511 df-xp 5622 df-rel 5623 df-cnv 5624 df-co 5625 df-dm 5626 df-rn 5627 df-res 5628 df-ima 5629 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-riota 7303 df-ov 7349 df-oprab 7350 df-poset 18219 df-lub 18250 df-join 18252 df-lat 18338 |
| This theorem is referenced by: latleeqj1 18357 latjlej1 18359 latjidm 18368 latledi 18383 latjass 18389 mod1ile 18399 lubun 18421 oldmm1 39262 olj01 39270 cvlexchb1 39375 cvlcvr1 39384 hlrelat 39447 hlrelat2 39448 exatleN 39449 hlrelat3 39457 cvrexchlem 39464 cvratlem 39466 cvrat 39467 atlelt 39483 ps-1 39522 hlatexch3N 39525 hlatexch4 39526 3atlem1 39528 3atlem2 39529 lplnexllnN 39609 2llnjaN 39611 4atlem3 39641 4atlem10 39651 4atlem11b 39653 4atlem11 39654 4atlem12b 39656 4atlem12 39657 2lplnja 39664 dalem1 39704 dalem3 39709 dalem8 39715 dalem16 39724 dalem17 39725 dalem21 39739 dalem25 39743 dalem39 39756 dalem54 39771 dalem60 39777 linepsubN 39797 pmapsub 39813 lneq2at 39823 2llnma3r 39833 cdlema1N 39836 cdlemblem 39838 paddasslem5 39869 paddasslem12 39876 paddasslem13 39877 llnexchb2 39914 dalawlem3 39918 dalawlem5 39920 dalawlem8 39923 dalawlem11 39926 dalawlem12 39927 lhp2lt 40046 lhpexle2lem 40054 lhpexle3lem 40056 4atexlemtlw 40112 4atexlemnclw 40115 lautj 40138 cdlemd3 40245 cdleme3g 40279 cdleme3h 40280 cdleme7d 40291 cdleme11c 40306 cdleme15d 40322 cdleme17b 40332 cdleme19a 40348 cdleme20j 40363 cdleme21c 40372 cdleme22b 40386 cdleme22d 40388 cdleme28a 40415 cdleme35a 40493 cdleme35fnpq 40494 cdleme35b 40495 cdleme35f 40499 cdleme42c 40517 cdleme42i 40528 cdlemf1 40606 cdlemg4c 40657 cdlemg6c 40665 cdlemg8b 40673 cdlemg10 40686 cdlemg11b 40687 cdlemg13a 40696 cdlemg17a 40706 cdlemg18b 40724 cdlemg27a 40737 cdlemg33b0 40746 cdlemg35 40758 cdlemg42 40774 cdlemg46 40780 trljco 40785 tendopltp 40825 cdlemk3 40878 cdlemk10 40888 cdlemk1u 40904 cdlemk39 40961 dialss 41091 dia2dimlem1 41109 dia2dimlem10 41118 dia2dimlem12 41120 cdlemm10N 41163 djajN 41182 diblss 41215 cdlemn2 41240 dihord2pre2 41271 dib2dim 41288 dih2dimb 41289 dih2dimbALTN 41290 dihmeetlem6 41354 dihjatcclem1 41463 |
| Copyright terms: Public domain | W3C validator |