Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > latjle12 | Structured version Visualization version GIF version |
Description: A join is less than or equal to a third value iff each argument is less than or equal to the third value. (chlub 29880 analog.) (Contributed by NM, 17-Sep-2011.) |
Ref | Expression |
---|---|
latlej.b | ⊢ 𝐵 = (Base‘𝐾) |
latlej.l | ⊢ ≤ = (le‘𝐾) |
latlej.j | ⊢ ∨ = (join‘𝐾) |
Ref | Expression |
---|---|
latjle12 | ⊢ ((𝐾 ∈ Lat ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → ((𝑋 ≤ 𝑍 ∧ 𝑌 ≤ 𝑍) ↔ (𝑋 ∨ 𝑌) ≤ 𝑍)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | latlej.b | . 2 ⊢ 𝐵 = (Base‘𝐾) | |
2 | latlej.l | . 2 ⊢ ≤ = (le‘𝐾) | |
3 | latlej.j | . 2 ⊢ ∨ = (join‘𝐾) | |
4 | latpos 18165 | . . 3 ⊢ (𝐾 ∈ Lat → 𝐾 ∈ Poset) | |
5 | 4 | adantr 481 | . 2 ⊢ ((𝐾 ∈ Lat ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → 𝐾 ∈ Poset) |
6 | simpr1 1193 | . 2 ⊢ ((𝐾 ∈ Lat ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → 𝑋 ∈ 𝐵) | |
7 | simpr2 1194 | . 2 ⊢ ((𝐾 ∈ Lat ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → 𝑌 ∈ 𝐵) | |
8 | simpr3 1195 | . 2 ⊢ ((𝐾 ∈ Lat ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → 𝑍 ∈ 𝐵) | |
9 | eqid 2739 | . . . 4 ⊢ (meet‘𝐾) = (meet‘𝐾) | |
10 | simpl 483 | . . . 4 ⊢ ((𝐾 ∈ Lat ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → 𝐾 ∈ Lat) | |
11 | 1, 3, 9, 10, 6, 7 | latcl2 18163 | . . 3 ⊢ ((𝐾 ∈ Lat ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → (〈𝑋, 𝑌〉 ∈ dom ∨ ∧ 〈𝑋, 𝑌〉 ∈ dom (meet‘𝐾))) |
12 | 11 | simpld 495 | . 2 ⊢ ((𝐾 ∈ Lat ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → 〈𝑋, 𝑌〉 ∈ dom ∨ ) |
13 | 1, 2, 3, 5, 6, 7, 8, 12 | joinle 18113 | 1 ⊢ ((𝐾 ∈ Lat ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → ((𝑋 ≤ 𝑍 ∧ 𝑌 ≤ 𝑍) ↔ (𝑋 ∨ 𝑌) ≤ 𝑍)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 396 ∧ w3a 1086 = wceq 1539 ∈ wcel 2107 〈cop 4568 class class class wbr 5075 dom cdm 5590 ‘cfv 6437 (class class class)co 7284 Basecbs 16921 lecple 16978 Posetcpo 18034 joincjn 18038 meetcmee 18039 Latclat 18158 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2710 ax-rep 5210 ax-sep 5224 ax-nul 5231 ax-pow 5289 ax-pr 5353 ax-un 7597 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2541 df-eu 2570 df-clab 2717 df-cleq 2731 df-clel 2817 df-nfc 2890 df-ne 2945 df-ral 3070 df-rex 3071 df-reu 3073 df-rab 3074 df-v 3435 df-sbc 3718 df-csb 3834 df-dif 3891 df-un 3893 df-in 3895 df-ss 3905 df-nul 4258 df-if 4461 df-pw 4536 df-sn 4563 df-pr 4565 df-op 4569 df-uni 4841 df-iun 4927 df-br 5076 df-opab 5138 df-mpt 5159 df-id 5490 df-xp 5596 df-rel 5597 df-cnv 5598 df-co 5599 df-dm 5600 df-rn 5601 df-res 5602 df-ima 5603 df-iota 6395 df-fun 6439 df-fn 6440 df-f 6441 df-f1 6442 df-fo 6443 df-f1o 6444 df-fv 6445 df-riota 7241 df-ov 7287 df-oprab 7288 df-poset 18040 df-lub 18073 df-join 18075 df-lat 18159 |
This theorem is referenced by: latleeqj1 18178 latjlej1 18180 latjidm 18189 latledi 18204 latjass 18210 mod1ile 18220 lubun 18242 oldmm1 37238 olj01 37246 cvlexchb1 37351 cvlcvr1 37360 hlrelat 37423 hlrelat2 37424 exatleN 37425 hlrelat3 37433 cvrexchlem 37440 cvratlem 37442 cvrat 37443 atlelt 37459 ps-1 37498 hlatexch3N 37501 hlatexch4 37502 3atlem1 37504 3atlem2 37505 lplnexllnN 37585 2llnjaN 37587 4atlem3 37617 4atlem10 37627 4atlem11b 37629 4atlem11 37630 4atlem12b 37632 4atlem12 37633 2lplnja 37640 dalem1 37680 dalem3 37685 dalem8 37691 dalem16 37700 dalem17 37701 dalem21 37715 dalem25 37719 dalem39 37732 dalem54 37747 dalem60 37753 linepsubN 37773 pmapsub 37789 lneq2at 37799 2llnma3r 37809 cdlema1N 37812 cdlemblem 37814 paddasslem5 37845 paddasslem12 37852 paddasslem13 37853 llnexchb2 37890 dalawlem3 37894 dalawlem5 37896 dalawlem8 37899 dalawlem11 37902 dalawlem12 37903 lhp2lt 38022 lhpexle2lem 38030 lhpexle3lem 38032 4atexlemtlw 38088 4atexlemnclw 38091 lautj 38114 cdlemd3 38221 cdleme3g 38255 cdleme3h 38256 cdleme7d 38267 cdleme11c 38282 cdleme15d 38298 cdleme17b 38308 cdleme19a 38324 cdleme20j 38339 cdleme21c 38348 cdleme22b 38362 cdleme22d 38364 cdleme28a 38391 cdleme35a 38469 cdleme35fnpq 38470 cdleme35b 38471 cdleme35f 38475 cdleme42c 38493 cdleme42i 38504 cdlemf1 38582 cdlemg4c 38633 cdlemg6c 38641 cdlemg8b 38649 cdlemg10 38662 cdlemg11b 38663 cdlemg13a 38672 cdlemg17a 38682 cdlemg18b 38700 cdlemg27a 38713 cdlemg33b0 38722 cdlemg35 38734 cdlemg42 38750 cdlemg46 38756 trljco 38761 tendopltp 38801 cdlemk3 38854 cdlemk10 38864 cdlemk1u 38880 cdlemk39 38937 dialss 39067 dia2dimlem1 39085 dia2dimlem10 39094 dia2dimlem12 39096 cdlemm10N 39139 djajN 39158 diblss 39191 cdlemn2 39216 dihord2pre2 39247 dib2dim 39264 dih2dimb 39265 dih2dimbALTN 39266 dihmeetlem6 39330 dihjatcclem1 39439 |
Copyright terms: Public domain | W3C validator |