| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > latjle12 | Structured version Visualization version GIF version | ||
| Description: A join is less than or equal to a third value iff each argument is less than or equal to the third value. (chlub 31445 analog.) (Contributed by NM, 17-Sep-2011.) |
| Ref | Expression |
|---|---|
| latlej.b | ⊢ 𝐵 = (Base‘𝐾) |
| latlej.l | ⊢ ≤ = (le‘𝐾) |
| latlej.j | ⊢ ∨ = (join‘𝐾) |
| Ref | Expression |
|---|---|
| latjle12 | ⊢ ((𝐾 ∈ Lat ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → ((𝑋 ≤ 𝑍 ∧ 𝑌 ≤ 𝑍) ↔ (𝑋 ∨ 𝑌) ≤ 𝑍)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | latlej.b | . 2 ⊢ 𝐵 = (Base‘𝐾) | |
| 2 | latlej.l | . 2 ⊢ ≤ = (le‘𝐾) | |
| 3 | latlej.j | . 2 ⊢ ∨ = (join‘𝐾) | |
| 4 | latpos 18404 | . . 3 ⊢ (𝐾 ∈ Lat → 𝐾 ∈ Poset) | |
| 5 | 4 | adantr 480 | . 2 ⊢ ((𝐾 ∈ Lat ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → 𝐾 ∈ Poset) |
| 6 | simpr1 1195 | . 2 ⊢ ((𝐾 ∈ Lat ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → 𝑋 ∈ 𝐵) | |
| 7 | simpr2 1196 | . 2 ⊢ ((𝐾 ∈ Lat ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → 𝑌 ∈ 𝐵) | |
| 8 | simpr3 1197 | . 2 ⊢ ((𝐾 ∈ Lat ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → 𝑍 ∈ 𝐵) | |
| 9 | eqid 2730 | . . . 4 ⊢ (meet‘𝐾) = (meet‘𝐾) | |
| 10 | simpl 482 | . . . 4 ⊢ ((𝐾 ∈ Lat ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → 𝐾 ∈ Lat) | |
| 11 | 1, 3, 9, 10, 6, 7 | latcl2 18402 | . . 3 ⊢ ((𝐾 ∈ Lat ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → (〈𝑋, 𝑌〉 ∈ dom ∨ ∧ 〈𝑋, 𝑌〉 ∈ dom (meet‘𝐾))) |
| 12 | 11 | simpld 494 | . 2 ⊢ ((𝐾 ∈ Lat ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → 〈𝑋, 𝑌〉 ∈ dom ∨ ) |
| 13 | 1, 2, 3, 5, 6, 7, 8, 12 | joinle 18352 | 1 ⊢ ((𝐾 ∈ Lat ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → ((𝑋 ≤ 𝑍 ∧ 𝑌 ≤ 𝑍) ↔ (𝑋 ∨ 𝑌) ≤ 𝑍)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 〈cop 4598 class class class wbr 5110 dom cdm 5641 ‘cfv 6514 (class class class)co 7390 Basecbs 17186 lecple 17234 Posetcpo 18275 joincjn 18279 meetcmee 18280 Latclat 18397 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-rep 5237 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-ral 3046 df-rex 3055 df-rmo 3356 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-iun 4960 df-br 5111 df-opab 5173 df-mpt 5192 df-id 5536 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-fv 6522 df-riota 7347 df-ov 7393 df-oprab 7394 df-poset 18281 df-lub 18312 df-join 18314 df-lat 18398 |
| This theorem is referenced by: latleeqj1 18417 latjlej1 18419 latjidm 18428 latledi 18443 latjass 18449 mod1ile 18459 lubun 18481 oldmm1 39217 olj01 39225 cvlexchb1 39330 cvlcvr1 39339 hlrelat 39403 hlrelat2 39404 exatleN 39405 hlrelat3 39413 cvrexchlem 39420 cvratlem 39422 cvrat 39423 atlelt 39439 ps-1 39478 hlatexch3N 39481 hlatexch4 39482 3atlem1 39484 3atlem2 39485 lplnexllnN 39565 2llnjaN 39567 4atlem3 39597 4atlem10 39607 4atlem11b 39609 4atlem11 39610 4atlem12b 39612 4atlem12 39613 2lplnja 39620 dalem1 39660 dalem3 39665 dalem8 39671 dalem16 39680 dalem17 39681 dalem21 39695 dalem25 39699 dalem39 39712 dalem54 39727 dalem60 39733 linepsubN 39753 pmapsub 39769 lneq2at 39779 2llnma3r 39789 cdlema1N 39792 cdlemblem 39794 paddasslem5 39825 paddasslem12 39832 paddasslem13 39833 llnexchb2 39870 dalawlem3 39874 dalawlem5 39876 dalawlem8 39879 dalawlem11 39882 dalawlem12 39883 lhp2lt 40002 lhpexle2lem 40010 lhpexle3lem 40012 4atexlemtlw 40068 4atexlemnclw 40071 lautj 40094 cdlemd3 40201 cdleme3g 40235 cdleme3h 40236 cdleme7d 40247 cdleme11c 40262 cdleme15d 40278 cdleme17b 40288 cdleme19a 40304 cdleme20j 40319 cdleme21c 40328 cdleme22b 40342 cdleme22d 40344 cdleme28a 40371 cdleme35a 40449 cdleme35fnpq 40450 cdleme35b 40451 cdleme35f 40455 cdleme42c 40473 cdleme42i 40484 cdlemf1 40562 cdlemg4c 40613 cdlemg6c 40621 cdlemg8b 40629 cdlemg10 40642 cdlemg11b 40643 cdlemg13a 40652 cdlemg17a 40662 cdlemg18b 40680 cdlemg27a 40693 cdlemg33b0 40702 cdlemg35 40714 cdlemg42 40730 cdlemg46 40736 trljco 40741 tendopltp 40781 cdlemk3 40834 cdlemk10 40844 cdlemk1u 40860 cdlemk39 40917 dialss 41047 dia2dimlem1 41065 dia2dimlem10 41074 dia2dimlem12 41076 cdlemm10N 41119 djajN 41138 diblss 41171 cdlemn2 41196 dihord2pre2 41227 dib2dim 41244 dih2dimb 41245 dih2dimbALTN 41246 dihmeetlem6 41310 dihjatcclem1 41419 |
| Copyright terms: Public domain | W3C validator |