| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > latjle12 | Structured version Visualization version GIF version | ||
| Description: A join is less than or equal to a third value iff each argument is less than or equal to the third value. (chlub 31438 analog.) (Contributed by NM, 17-Sep-2011.) |
| Ref | Expression |
|---|---|
| latlej.b | ⊢ 𝐵 = (Base‘𝐾) |
| latlej.l | ⊢ ≤ = (le‘𝐾) |
| latlej.j | ⊢ ∨ = (join‘𝐾) |
| Ref | Expression |
|---|---|
| latjle12 | ⊢ ((𝐾 ∈ Lat ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → ((𝑋 ≤ 𝑍 ∧ 𝑌 ≤ 𝑍) ↔ (𝑋 ∨ 𝑌) ≤ 𝑍)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | latlej.b | . 2 ⊢ 𝐵 = (Base‘𝐾) | |
| 2 | latlej.l | . 2 ⊢ ≤ = (le‘𝐾) | |
| 3 | latlej.j | . 2 ⊢ ∨ = (join‘𝐾) | |
| 4 | latpos 18397 | . . 3 ⊢ (𝐾 ∈ Lat → 𝐾 ∈ Poset) | |
| 5 | 4 | adantr 480 | . 2 ⊢ ((𝐾 ∈ Lat ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → 𝐾 ∈ Poset) |
| 6 | simpr1 1195 | . 2 ⊢ ((𝐾 ∈ Lat ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → 𝑋 ∈ 𝐵) | |
| 7 | simpr2 1196 | . 2 ⊢ ((𝐾 ∈ Lat ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → 𝑌 ∈ 𝐵) | |
| 8 | simpr3 1197 | . 2 ⊢ ((𝐾 ∈ Lat ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → 𝑍 ∈ 𝐵) | |
| 9 | eqid 2729 | . . . 4 ⊢ (meet‘𝐾) = (meet‘𝐾) | |
| 10 | simpl 482 | . . . 4 ⊢ ((𝐾 ∈ Lat ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → 𝐾 ∈ Lat) | |
| 11 | 1, 3, 9, 10, 6, 7 | latcl2 18395 | . . 3 ⊢ ((𝐾 ∈ Lat ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → (〈𝑋, 𝑌〉 ∈ dom ∨ ∧ 〈𝑋, 𝑌〉 ∈ dom (meet‘𝐾))) |
| 12 | 11 | simpld 494 | . 2 ⊢ ((𝐾 ∈ Lat ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → 〈𝑋, 𝑌〉 ∈ dom ∨ ) |
| 13 | 1, 2, 3, 5, 6, 7, 8, 12 | joinle 18345 | 1 ⊢ ((𝐾 ∈ Lat ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → ((𝑋 ≤ 𝑍 ∧ 𝑌 ≤ 𝑍) ↔ (𝑋 ∨ 𝑌) ≤ 𝑍)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 〈cop 4595 class class class wbr 5107 dom cdm 5638 ‘cfv 6511 (class class class)co 7387 Basecbs 17179 lecple 17227 Posetcpo 18268 joincjn 18272 meetcmee 18273 Latclat 18390 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5234 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rmo 3354 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-iun 4957 df-br 5108 df-opab 5170 df-mpt 5189 df-id 5533 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-riota 7344 df-ov 7390 df-oprab 7391 df-poset 18274 df-lub 18305 df-join 18307 df-lat 18391 |
| This theorem is referenced by: latleeqj1 18410 latjlej1 18412 latjidm 18421 latledi 18436 latjass 18442 mod1ile 18452 lubun 18474 oldmm1 39210 olj01 39218 cvlexchb1 39323 cvlcvr1 39332 hlrelat 39396 hlrelat2 39397 exatleN 39398 hlrelat3 39406 cvrexchlem 39413 cvratlem 39415 cvrat 39416 atlelt 39432 ps-1 39471 hlatexch3N 39474 hlatexch4 39475 3atlem1 39477 3atlem2 39478 lplnexllnN 39558 2llnjaN 39560 4atlem3 39590 4atlem10 39600 4atlem11b 39602 4atlem11 39603 4atlem12b 39605 4atlem12 39606 2lplnja 39613 dalem1 39653 dalem3 39658 dalem8 39664 dalem16 39673 dalem17 39674 dalem21 39688 dalem25 39692 dalem39 39705 dalem54 39720 dalem60 39726 linepsubN 39746 pmapsub 39762 lneq2at 39772 2llnma3r 39782 cdlema1N 39785 cdlemblem 39787 paddasslem5 39818 paddasslem12 39825 paddasslem13 39826 llnexchb2 39863 dalawlem3 39867 dalawlem5 39869 dalawlem8 39872 dalawlem11 39875 dalawlem12 39876 lhp2lt 39995 lhpexle2lem 40003 lhpexle3lem 40005 4atexlemtlw 40061 4atexlemnclw 40064 lautj 40087 cdlemd3 40194 cdleme3g 40228 cdleme3h 40229 cdleme7d 40240 cdleme11c 40255 cdleme15d 40271 cdleme17b 40281 cdleme19a 40297 cdleme20j 40312 cdleme21c 40321 cdleme22b 40335 cdleme22d 40337 cdleme28a 40364 cdleme35a 40442 cdleme35fnpq 40443 cdleme35b 40444 cdleme35f 40448 cdleme42c 40466 cdleme42i 40477 cdlemf1 40555 cdlemg4c 40606 cdlemg6c 40614 cdlemg8b 40622 cdlemg10 40635 cdlemg11b 40636 cdlemg13a 40645 cdlemg17a 40655 cdlemg18b 40673 cdlemg27a 40686 cdlemg33b0 40695 cdlemg35 40707 cdlemg42 40723 cdlemg46 40729 trljco 40734 tendopltp 40774 cdlemk3 40827 cdlemk10 40837 cdlemk1u 40853 cdlemk39 40910 dialss 41040 dia2dimlem1 41058 dia2dimlem10 41067 dia2dimlem12 41069 cdlemm10N 41112 djajN 41131 diblss 41164 cdlemn2 41189 dihord2pre2 41220 dib2dim 41237 dih2dimb 41238 dih2dimbALTN 41239 dihmeetlem6 41303 dihjatcclem1 41412 |
| Copyright terms: Public domain | W3C validator |