| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > latjle12 | Structured version Visualization version GIF version | ||
| Description: A join is less than or equal to a third value iff each argument is less than or equal to the third value. (chlub 31471 analog.) (Contributed by NM, 17-Sep-2011.) |
| Ref | Expression |
|---|---|
| latlej.b | ⊢ 𝐵 = (Base‘𝐾) |
| latlej.l | ⊢ ≤ = (le‘𝐾) |
| latlej.j | ⊢ ∨ = (join‘𝐾) |
| Ref | Expression |
|---|---|
| latjle12 | ⊢ ((𝐾 ∈ Lat ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → ((𝑋 ≤ 𝑍 ∧ 𝑌 ≤ 𝑍) ↔ (𝑋 ∨ 𝑌) ≤ 𝑍)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | latlej.b | . 2 ⊢ 𝐵 = (Base‘𝐾) | |
| 2 | latlej.l | . 2 ⊢ ≤ = (le‘𝐾) | |
| 3 | latlej.j | . 2 ⊢ ∨ = (join‘𝐾) | |
| 4 | latpos 18362 | . . 3 ⊢ (𝐾 ∈ Lat → 𝐾 ∈ Poset) | |
| 5 | 4 | adantr 480 | . 2 ⊢ ((𝐾 ∈ Lat ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → 𝐾 ∈ Poset) |
| 6 | simpr1 1195 | . 2 ⊢ ((𝐾 ∈ Lat ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → 𝑋 ∈ 𝐵) | |
| 7 | simpr2 1196 | . 2 ⊢ ((𝐾 ∈ Lat ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → 𝑌 ∈ 𝐵) | |
| 8 | simpr3 1197 | . 2 ⊢ ((𝐾 ∈ Lat ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → 𝑍 ∈ 𝐵) | |
| 9 | eqid 2729 | . . . 4 ⊢ (meet‘𝐾) = (meet‘𝐾) | |
| 10 | simpl 482 | . . . 4 ⊢ ((𝐾 ∈ Lat ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → 𝐾 ∈ Lat) | |
| 11 | 1, 3, 9, 10, 6, 7 | latcl2 18360 | . . 3 ⊢ ((𝐾 ∈ Lat ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → (〈𝑋, 𝑌〉 ∈ dom ∨ ∧ 〈𝑋, 𝑌〉 ∈ dom (meet‘𝐾))) |
| 12 | 11 | simpld 494 | . 2 ⊢ ((𝐾 ∈ Lat ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → 〈𝑋, 𝑌〉 ∈ dom ∨ ) |
| 13 | 1, 2, 3, 5, 6, 7, 8, 12 | joinle 18308 | 1 ⊢ ((𝐾 ∈ Lat ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → ((𝑋 ≤ 𝑍 ∧ 𝑌 ≤ 𝑍) ↔ (𝑋 ∨ 𝑌) ≤ 𝑍)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 〈cop 4585 class class class wbr 5095 dom cdm 5623 ‘cfv 6486 (class class class)co 7353 Basecbs 17138 lecple 17186 Posetcpo 18231 joincjn 18235 meetcmee 18236 Latclat 18355 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5221 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7675 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rmo 3345 df-reu 3346 df-rab 3397 df-v 3440 df-sbc 3745 df-csb 3854 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-nul 4287 df-if 4479 df-pw 4555 df-sn 4580 df-pr 4582 df-op 4586 df-uni 4862 df-iun 4946 df-br 5096 df-opab 5158 df-mpt 5177 df-id 5518 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-rn 5634 df-res 5635 df-ima 5636 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-riota 7310 df-ov 7356 df-oprab 7357 df-poset 18237 df-lub 18268 df-join 18270 df-lat 18356 |
| This theorem is referenced by: latleeqj1 18375 latjlej1 18377 latjidm 18386 latledi 18401 latjass 18407 mod1ile 18417 lubun 18439 oldmm1 39198 olj01 39206 cvlexchb1 39311 cvlcvr1 39320 hlrelat 39384 hlrelat2 39385 exatleN 39386 hlrelat3 39394 cvrexchlem 39401 cvratlem 39403 cvrat 39404 atlelt 39420 ps-1 39459 hlatexch3N 39462 hlatexch4 39463 3atlem1 39465 3atlem2 39466 lplnexllnN 39546 2llnjaN 39548 4atlem3 39578 4atlem10 39588 4atlem11b 39590 4atlem11 39591 4atlem12b 39593 4atlem12 39594 2lplnja 39601 dalem1 39641 dalem3 39646 dalem8 39652 dalem16 39661 dalem17 39662 dalem21 39676 dalem25 39680 dalem39 39693 dalem54 39708 dalem60 39714 linepsubN 39734 pmapsub 39750 lneq2at 39760 2llnma3r 39770 cdlema1N 39773 cdlemblem 39775 paddasslem5 39806 paddasslem12 39813 paddasslem13 39814 llnexchb2 39851 dalawlem3 39855 dalawlem5 39857 dalawlem8 39860 dalawlem11 39863 dalawlem12 39864 lhp2lt 39983 lhpexle2lem 39991 lhpexle3lem 39993 4atexlemtlw 40049 4atexlemnclw 40052 lautj 40075 cdlemd3 40182 cdleme3g 40216 cdleme3h 40217 cdleme7d 40228 cdleme11c 40243 cdleme15d 40259 cdleme17b 40269 cdleme19a 40285 cdleme20j 40300 cdleme21c 40309 cdleme22b 40323 cdleme22d 40325 cdleme28a 40352 cdleme35a 40430 cdleme35fnpq 40431 cdleme35b 40432 cdleme35f 40436 cdleme42c 40454 cdleme42i 40465 cdlemf1 40543 cdlemg4c 40594 cdlemg6c 40602 cdlemg8b 40610 cdlemg10 40623 cdlemg11b 40624 cdlemg13a 40633 cdlemg17a 40643 cdlemg18b 40661 cdlemg27a 40674 cdlemg33b0 40683 cdlemg35 40695 cdlemg42 40711 cdlemg46 40717 trljco 40722 tendopltp 40762 cdlemk3 40815 cdlemk10 40825 cdlemk1u 40841 cdlemk39 40898 dialss 41028 dia2dimlem1 41046 dia2dimlem10 41055 dia2dimlem12 41057 cdlemm10N 41100 djajN 41119 diblss 41152 cdlemn2 41177 dihord2pre2 41208 dib2dim 41225 dih2dimb 41226 dih2dimbALTN 41227 dihmeetlem6 41291 dihjatcclem1 41400 |
| Copyright terms: Public domain | W3C validator |