![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > latjle12 | Structured version Visualization version GIF version |
Description: A join is less than or equal to a third value iff each argument is less than or equal to the third value. (chlub 31541 analog.) (Contributed by NM, 17-Sep-2011.) |
Ref | Expression |
---|---|
latlej.b | ⊢ 𝐵 = (Base‘𝐾) |
latlej.l | ⊢ ≤ = (le‘𝐾) |
latlej.j | ⊢ ∨ = (join‘𝐾) |
Ref | Expression |
---|---|
latjle12 | ⊢ ((𝐾 ∈ Lat ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → ((𝑋 ≤ 𝑍 ∧ 𝑌 ≤ 𝑍) ↔ (𝑋 ∨ 𝑌) ≤ 𝑍)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | latlej.b | . 2 ⊢ 𝐵 = (Base‘𝐾) | |
2 | latlej.l | . 2 ⊢ ≤ = (le‘𝐾) | |
3 | latlej.j | . 2 ⊢ ∨ = (join‘𝐾) | |
4 | latpos 18508 | . . 3 ⊢ (𝐾 ∈ Lat → 𝐾 ∈ Poset) | |
5 | 4 | adantr 480 | . 2 ⊢ ((𝐾 ∈ Lat ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → 𝐾 ∈ Poset) |
6 | simpr1 1194 | . 2 ⊢ ((𝐾 ∈ Lat ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → 𝑋 ∈ 𝐵) | |
7 | simpr2 1195 | . 2 ⊢ ((𝐾 ∈ Lat ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → 𝑌 ∈ 𝐵) | |
8 | simpr3 1196 | . 2 ⊢ ((𝐾 ∈ Lat ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → 𝑍 ∈ 𝐵) | |
9 | eqid 2740 | . . . 4 ⊢ (meet‘𝐾) = (meet‘𝐾) | |
10 | simpl 482 | . . . 4 ⊢ ((𝐾 ∈ Lat ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → 𝐾 ∈ Lat) | |
11 | 1, 3, 9, 10, 6, 7 | latcl2 18506 | . . 3 ⊢ ((𝐾 ∈ Lat ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → (〈𝑋, 𝑌〉 ∈ dom ∨ ∧ 〈𝑋, 𝑌〉 ∈ dom (meet‘𝐾))) |
12 | 11 | simpld 494 | . 2 ⊢ ((𝐾 ∈ Lat ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → 〈𝑋, 𝑌〉 ∈ dom ∨ ) |
13 | 1, 2, 3, 5, 6, 7, 8, 12 | joinle 18456 | 1 ⊢ ((𝐾 ∈ Lat ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → ((𝑋 ≤ 𝑍 ∧ 𝑌 ≤ 𝑍) ↔ (𝑋 ∨ 𝑌) ≤ 𝑍)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1087 = wceq 1537 ∈ wcel 2108 〈cop 4654 class class class wbr 5166 dom cdm 5700 ‘cfv 6573 (class class class)co 7448 Basecbs 17258 lecple 17318 Posetcpo 18377 joincjn 18381 meetcmee 18382 Latclat 18501 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-rep 5303 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-ral 3068 df-rex 3077 df-rmo 3388 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-iun 5017 df-br 5167 df-opab 5229 df-mpt 5250 df-id 5593 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-riota 7404 df-ov 7451 df-oprab 7452 df-poset 18383 df-lub 18416 df-join 18418 df-lat 18502 |
This theorem is referenced by: latleeqj1 18521 latjlej1 18523 latjidm 18532 latledi 18547 latjass 18553 mod1ile 18563 lubun 18585 oldmm1 39173 olj01 39181 cvlexchb1 39286 cvlcvr1 39295 hlrelat 39359 hlrelat2 39360 exatleN 39361 hlrelat3 39369 cvrexchlem 39376 cvratlem 39378 cvrat 39379 atlelt 39395 ps-1 39434 hlatexch3N 39437 hlatexch4 39438 3atlem1 39440 3atlem2 39441 lplnexllnN 39521 2llnjaN 39523 4atlem3 39553 4atlem10 39563 4atlem11b 39565 4atlem11 39566 4atlem12b 39568 4atlem12 39569 2lplnja 39576 dalem1 39616 dalem3 39621 dalem8 39627 dalem16 39636 dalem17 39637 dalem21 39651 dalem25 39655 dalem39 39668 dalem54 39683 dalem60 39689 linepsubN 39709 pmapsub 39725 lneq2at 39735 2llnma3r 39745 cdlema1N 39748 cdlemblem 39750 paddasslem5 39781 paddasslem12 39788 paddasslem13 39789 llnexchb2 39826 dalawlem3 39830 dalawlem5 39832 dalawlem8 39835 dalawlem11 39838 dalawlem12 39839 lhp2lt 39958 lhpexle2lem 39966 lhpexle3lem 39968 4atexlemtlw 40024 4atexlemnclw 40027 lautj 40050 cdlemd3 40157 cdleme3g 40191 cdleme3h 40192 cdleme7d 40203 cdleme11c 40218 cdleme15d 40234 cdleme17b 40244 cdleme19a 40260 cdleme20j 40275 cdleme21c 40284 cdleme22b 40298 cdleme22d 40300 cdleme28a 40327 cdleme35a 40405 cdleme35fnpq 40406 cdleme35b 40407 cdleme35f 40411 cdleme42c 40429 cdleme42i 40440 cdlemf1 40518 cdlemg4c 40569 cdlemg6c 40577 cdlemg8b 40585 cdlemg10 40598 cdlemg11b 40599 cdlemg13a 40608 cdlemg17a 40618 cdlemg18b 40636 cdlemg27a 40649 cdlemg33b0 40658 cdlemg35 40670 cdlemg42 40686 cdlemg46 40692 trljco 40697 tendopltp 40737 cdlemk3 40790 cdlemk10 40800 cdlemk1u 40816 cdlemk39 40873 dialss 41003 dia2dimlem1 41021 dia2dimlem10 41030 dia2dimlem12 41032 cdlemm10N 41075 djajN 41094 diblss 41127 cdlemn2 41152 dihord2pre2 41183 dib2dim 41200 dih2dimb 41201 dih2dimbALTN 41202 dihmeetlem6 41266 dihjatcclem1 41375 |
Copyright terms: Public domain | W3C validator |