![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > latjle12 | Structured version Visualization version GIF version |
Description: A join is less than or equal to a third value iff each argument is less than or equal to the third value. (chlub 31538 analog.) (Contributed by NM, 17-Sep-2011.) |
Ref | Expression |
---|---|
latlej.b | ⊢ 𝐵 = (Base‘𝐾) |
latlej.l | ⊢ ≤ = (le‘𝐾) |
latlej.j | ⊢ ∨ = (join‘𝐾) |
Ref | Expression |
---|---|
latjle12 | ⊢ ((𝐾 ∈ Lat ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → ((𝑋 ≤ 𝑍 ∧ 𝑌 ≤ 𝑍) ↔ (𝑋 ∨ 𝑌) ≤ 𝑍)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | latlej.b | . 2 ⊢ 𝐵 = (Base‘𝐾) | |
2 | latlej.l | . 2 ⊢ ≤ = (le‘𝐾) | |
3 | latlej.j | . 2 ⊢ ∨ = (join‘𝐾) | |
4 | latpos 18496 | . . 3 ⊢ (𝐾 ∈ Lat → 𝐾 ∈ Poset) | |
5 | 4 | adantr 480 | . 2 ⊢ ((𝐾 ∈ Lat ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → 𝐾 ∈ Poset) |
6 | simpr1 1193 | . 2 ⊢ ((𝐾 ∈ Lat ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → 𝑋 ∈ 𝐵) | |
7 | simpr2 1194 | . 2 ⊢ ((𝐾 ∈ Lat ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → 𝑌 ∈ 𝐵) | |
8 | simpr3 1195 | . 2 ⊢ ((𝐾 ∈ Lat ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → 𝑍 ∈ 𝐵) | |
9 | eqid 2735 | . . . 4 ⊢ (meet‘𝐾) = (meet‘𝐾) | |
10 | simpl 482 | . . . 4 ⊢ ((𝐾 ∈ Lat ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → 𝐾 ∈ Lat) | |
11 | 1, 3, 9, 10, 6, 7 | latcl2 18494 | . . 3 ⊢ ((𝐾 ∈ Lat ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → (〈𝑋, 𝑌〉 ∈ dom ∨ ∧ 〈𝑋, 𝑌〉 ∈ dom (meet‘𝐾))) |
12 | 11 | simpld 494 | . 2 ⊢ ((𝐾 ∈ Lat ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → 〈𝑋, 𝑌〉 ∈ dom ∨ ) |
13 | 1, 2, 3, 5, 6, 7, 8, 12 | joinle 18444 | 1 ⊢ ((𝐾 ∈ Lat ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → ((𝑋 ≤ 𝑍 ∧ 𝑌 ≤ 𝑍) ↔ (𝑋 ∨ 𝑌) ≤ 𝑍)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1086 = wceq 1537 ∈ wcel 2106 〈cop 4637 class class class wbr 5148 dom cdm 5689 ‘cfv 6563 (class class class)co 7431 Basecbs 17245 lecple 17305 Posetcpo 18365 joincjn 18369 meetcmee 18370 Latclat 18489 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-11 2155 ax-12 2175 ax-ext 2706 ax-rep 5285 ax-sep 5302 ax-nul 5312 ax-pow 5371 ax-pr 5438 ax-un 7754 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-nf 1781 df-sb 2063 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2727 df-clel 2814 df-nfc 2890 df-ne 2939 df-ral 3060 df-rex 3069 df-rmo 3378 df-reu 3379 df-rab 3434 df-v 3480 df-sbc 3792 df-csb 3909 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-nul 4340 df-if 4532 df-pw 4607 df-sn 4632 df-pr 4634 df-op 4638 df-uni 4913 df-iun 4998 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5583 df-xp 5695 df-rel 5696 df-cnv 5697 df-co 5698 df-dm 5699 df-rn 5700 df-res 5701 df-ima 5702 df-iota 6516 df-fun 6565 df-fn 6566 df-f 6567 df-f1 6568 df-fo 6569 df-f1o 6570 df-fv 6571 df-riota 7388 df-ov 7434 df-oprab 7435 df-poset 18371 df-lub 18404 df-join 18406 df-lat 18490 |
This theorem is referenced by: latleeqj1 18509 latjlej1 18511 latjidm 18520 latledi 18535 latjass 18541 mod1ile 18551 lubun 18573 oldmm1 39199 olj01 39207 cvlexchb1 39312 cvlcvr1 39321 hlrelat 39385 hlrelat2 39386 exatleN 39387 hlrelat3 39395 cvrexchlem 39402 cvratlem 39404 cvrat 39405 atlelt 39421 ps-1 39460 hlatexch3N 39463 hlatexch4 39464 3atlem1 39466 3atlem2 39467 lplnexllnN 39547 2llnjaN 39549 4atlem3 39579 4atlem10 39589 4atlem11b 39591 4atlem11 39592 4atlem12b 39594 4atlem12 39595 2lplnja 39602 dalem1 39642 dalem3 39647 dalem8 39653 dalem16 39662 dalem17 39663 dalem21 39677 dalem25 39681 dalem39 39694 dalem54 39709 dalem60 39715 linepsubN 39735 pmapsub 39751 lneq2at 39761 2llnma3r 39771 cdlema1N 39774 cdlemblem 39776 paddasslem5 39807 paddasslem12 39814 paddasslem13 39815 llnexchb2 39852 dalawlem3 39856 dalawlem5 39858 dalawlem8 39861 dalawlem11 39864 dalawlem12 39865 lhp2lt 39984 lhpexle2lem 39992 lhpexle3lem 39994 4atexlemtlw 40050 4atexlemnclw 40053 lautj 40076 cdlemd3 40183 cdleme3g 40217 cdleme3h 40218 cdleme7d 40229 cdleme11c 40244 cdleme15d 40260 cdleme17b 40270 cdleme19a 40286 cdleme20j 40301 cdleme21c 40310 cdleme22b 40324 cdleme22d 40326 cdleme28a 40353 cdleme35a 40431 cdleme35fnpq 40432 cdleme35b 40433 cdleme35f 40437 cdleme42c 40455 cdleme42i 40466 cdlemf1 40544 cdlemg4c 40595 cdlemg6c 40603 cdlemg8b 40611 cdlemg10 40624 cdlemg11b 40625 cdlemg13a 40634 cdlemg17a 40644 cdlemg18b 40662 cdlemg27a 40675 cdlemg33b0 40684 cdlemg35 40696 cdlemg42 40712 cdlemg46 40718 trljco 40723 tendopltp 40763 cdlemk3 40816 cdlemk10 40826 cdlemk1u 40842 cdlemk39 40899 dialss 41029 dia2dimlem1 41047 dia2dimlem10 41056 dia2dimlem12 41058 cdlemm10N 41101 djajN 41120 diblss 41153 cdlemn2 41178 dihord2pre2 41209 dib2dim 41226 dih2dimb 41227 dih2dimbALTN 41228 dihmeetlem6 41292 dihjatcclem1 41401 |
Copyright terms: Public domain | W3C validator |