![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > latjle12 | Structured version Visualization version GIF version |
Description: A join is less than or equal to a third value iff each argument is less than or equal to the third value. (chlub 31347 analog.) (Contributed by NM, 17-Sep-2011.) |
Ref | Expression |
---|---|
latlej.b | β’ π΅ = (BaseβπΎ) |
latlej.l | β’ β€ = (leβπΎ) |
latlej.j | β’ β¨ = (joinβπΎ) |
Ref | Expression |
---|---|
latjle12 | β’ ((πΎ β Lat β§ (π β π΅ β§ π β π΅ β§ π β π΅)) β ((π β€ π β§ π β€ π) β (π β¨ π) β€ π)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | latlej.b | . 2 β’ π΅ = (BaseβπΎ) | |
2 | latlej.l | . 2 β’ β€ = (leβπΎ) | |
3 | latlej.j | . 2 β’ β¨ = (joinβπΎ) | |
4 | latpos 18439 | . . 3 β’ (πΎ β Lat β πΎ β Poset) | |
5 | 4 | adantr 479 | . 2 β’ ((πΎ β Lat β§ (π β π΅ β§ π β π΅ β§ π β π΅)) β πΎ β Poset) |
6 | simpr1 1191 | . 2 β’ ((πΎ β Lat β§ (π β π΅ β§ π β π΅ β§ π β π΅)) β π β π΅) | |
7 | simpr2 1192 | . 2 β’ ((πΎ β Lat β§ (π β π΅ β§ π β π΅ β§ π β π΅)) β π β π΅) | |
8 | simpr3 1193 | . 2 β’ ((πΎ β Lat β§ (π β π΅ β§ π β π΅ β§ π β π΅)) β π β π΅) | |
9 | eqid 2728 | . . . 4 β’ (meetβπΎ) = (meetβπΎ) | |
10 | simpl 481 | . . . 4 β’ ((πΎ β Lat β§ (π β π΅ β§ π β π΅ β§ π β π΅)) β πΎ β Lat) | |
11 | 1, 3, 9, 10, 6, 7 | latcl2 18437 | . . 3 β’ ((πΎ β Lat β§ (π β π΅ β§ π β π΅ β§ π β π΅)) β (β¨π, πβ© β dom β¨ β§ β¨π, πβ© β dom (meetβπΎ))) |
12 | 11 | simpld 493 | . 2 β’ ((πΎ β Lat β§ (π β π΅ β§ π β π΅ β§ π β π΅)) β β¨π, πβ© β dom β¨ ) |
13 | 1, 2, 3, 5, 6, 7, 8, 12 | joinle 18387 | 1 β’ ((πΎ β Lat β§ (π β π΅ β§ π β π΅ β§ π β π΅)) β ((π β€ π β§ π β€ π) β (π β¨ π) β€ π)) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β wb 205 β§ wa 394 β§ w3a 1084 = wceq 1533 β wcel 2098 β¨cop 4638 class class class wbr 5152 dom cdm 5682 βcfv 6553 (class class class)co 7426 Basecbs 17189 lecple 17249 Posetcpo 18308 joincjn 18312 meetcmee 18313 Latclat 18432 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2699 ax-rep 5289 ax-sep 5303 ax-nul 5310 ax-pow 5369 ax-pr 5433 ax-un 7748 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2529 df-eu 2558 df-clab 2706 df-cleq 2720 df-clel 2806 df-nfc 2881 df-ne 2938 df-ral 3059 df-rex 3068 df-rmo 3374 df-reu 3375 df-rab 3431 df-v 3475 df-sbc 3779 df-csb 3895 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-nul 4327 df-if 4533 df-pw 4608 df-sn 4633 df-pr 4635 df-op 4639 df-uni 4913 df-iun 5002 df-br 5153 df-opab 5215 df-mpt 5236 df-id 5580 df-xp 5688 df-rel 5689 df-cnv 5690 df-co 5691 df-dm 5692 df-rn 5693 df-res 5694 df-ima 5695 df-iota 6505 df-fun 6555 df-fn 6556 df-f 6557 df-f1 6558 df-fo 6559 df-f1o 6560 df-fv 6561 df-riota 7382 df-ov 7429 df-oprab 7430 df-poset 18314 df-lub 18347 df-join 18349 df-lat 18433 |
This theorem is referenced by: latleeqj1 18452 latjlej1 18454 latjidm 18463 latledi 18478 latjass 18484 mod1ile 18494 lubun 18516 oldmm1 38729 olj01 38737 cvlexchb1 38842 cvlcvr1 38851 hlrelat 38915 hlrelat2 38916 exatleN 38917 hlrelat3 38925 cvrexchlem 38932 cvratlem 38934 cvrat 38935 atlelt 38951 ps-1 38990 hlatexch3N 38993 hlatexch4 38994 3atlem1 38996 3atlem2 38997 lplnexllnN 39077 2llnjaN 39079 4atlem3 39109 4atlem10 39119 4atlem11b 39121 4atlem11 39122 4atlem12b 39124 4atlem12 39125 2lplnja 39132 dalem1 39172 dalem3 39177 dalem8 39183 dalem16 39192 dalem17 39193 dalem21 39207 dalem25 39211 dalem39 39224 dalem54 39239 dalem60 39245 linepsubN 39265 pmapsub 39281 lneq2at 39291 2llnma3r 39301 cdlema1N 39304 cdlemblem 39306 paddasslem5 39337 paddasslem12 39344 paddasslem13 39345 llnexchb2 39382 dalawlem3 39386 dalawlem5 39388 dalawlem8 39391 dalawlem11 39394 dalawlem12 39395 lhp2lt 39514 lhpexle2lem 39522 lhpexle3lem 39524 4atexlemtlw 39580 4atexlemnclw 39583 lautj 39606 cdlemd3 39713 cdleme3g 39747 cdleme3h 39748 cdleme7d 39759 cdleme11c 39774 cdleme15d 39790 cdleme17b 39800 cdleme19a 39816 cdleme20j 39831 cdleme21c 39840 cdleme22b 39854 cdleme22d 39856 cdleme28a 39883 cdleme35a 39961 cdleme35fnpq 39962 cdleme35b 39963 cdleme35f 39967 cdleme42c 39985 cdleme42i 39996 cdlemf1 40074 cdlemg4c 40125 cdlemg6c 40133 cdlemg8b 40141 cdlemg10 40154 cdlemg11b 40155 cdlemg13a 40164 cdlemg17a 40174 cdlemg18b 40192 cdlemg27a 40205 cdlemg33b0 40214 cdlemg35 40226 cdlemg42 40242 cdlemg46 40248 trljco 40253 tendopltp 40293 cdlemk3 40346 cdlemk10 40356 cdlemk1u 40372 cdlemk39 40429 dialss 40559 dia2dimlem1 40577 dia2dimlem10 40586 dia2dimlem12 40588 cdlemm10N 40631 djajN 40650 diblss 40683 cdlemn2 40708 dihord2pre2 40739 dib2dim 40756 dih2dimb 40757 dih2dimbALTN 40758 dihmeetlem6 40822 dihjatcclem1 40931 |
Copyright terms: Public domain | W3C validator |