| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > latjle12 | Structured version Visualization version GIF version | ||
| Description: A join is less than or equal to a third value iff each argument is less than or equal to the third value. (chlub 31457 analog.) (Contributed by NM, 17-Sep-2011.) |
| Ref | Expression |
|---|---|
| latlej.b | ⊢ 𝐵 = (Base‘𝐾) |
| latlej.l | ⊢ ≤ = (le‘𝐾) |
| latlej.j | ⊢ ∨ = (join‘𝐾) |
| Ref | Expression |
|---|---|
| latjle12 | ⊢ ((𝐾 ∈ Lat ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → ((𝑋 ≤ 𝑍 ∧ 𝑌 ≤ 𝑍) ↔ (𝑋 ∨ 𝑌) ≤ 𝑍)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | latlej.b | . 2 ⊢ 𝐵 = (Base‘𝐾) | |
| 2 | latlej.l | . 2 ⊢ ≤ = (le‘𝐾) | |
| 3 | latlej.j | . 2 ⊢ ∨ = (join‘𝐾) | |
| 4 | latpos 18453 | . . 3 ⊢ (𝐾 ∈ Lat → 𝐾 ∈ Poset) | |
| 5 | 4 | adantr 480 | . 2 ⊢ ((𝐾 ∈ Lat ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → 𝐾 ∈ Poset) |
| 6 | simpr1 1194 | . 2 ⊢ ((𝐾 ∈ Lat ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → 𝑋 ∈ 𝐵) | |
| 7 | simpr2 1195 | . 2 ⊢ ((𝐾 ∈ Lat ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → 𝑌 ∈ 𝐵) | |
| 8 | simpr3 1196 | . 2 ⊢ ((𝐾 ∈ Lat ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → 𝑍 ∈ 𝐵) | |
| 9 | eqid 2734 | . . . 4 ⊢ (meet‘𝐾) = (meet‘𝐾) | |
| 10 | simpl 482 | . . . 4 ⊢ ((𝐾 ∈ Lat ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → 𝐾 ∈ Lat) | |
| 11 | 1, 3, 9, 10, 6, 7 | latcl2 18451 | . . 3 ⊢ ((𝐾 ∈ Lat ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → (〈𝑋, 𝑌〉 ∈ dom ∨ ∧ 〈𝑋, 𝑌〉 ∈ dom (meet‘𝐾))) |
| 12 | 11 | simpld 494 | . 2 ⊢ ((𝐾 ∈ Lat ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → 〈𝑋, 𝑌〉 ∈ dom ∨ ) |
| 13 | 1, 2, 3, 5, 6, 7, 8, 12 | joinle 18401 | 1 ⊢ ((𝐾 ∈ Lat ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → ((𝑋 ≤ 𝑍 ∧ 𝑌 ≤ 𝑍) ↔ (𝑋 ∨ 𝑌) ≤ 𝑍)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1086 = wceq 1539 ∈ wcel 2107 〈cop 4612 class class class wbr 5123 dom cdm 5665 ‘cfv 6541 (class class class)co 7413 Basecbs 17230 lecple 17281 Posetcpo 18324 joincjn 18328 meetcmee 18329 Latclat 18446 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-rep 5259 ax-sep 5276 ax-nul 5286 ax-pow 5345 ax-pr 5412 ax-un 7737 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-ne 2932 df-ral 3051 df-rex 3060 df-rmo 3363 df-reu 3364 df-rab 3420 df-v 3465 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4888 df-iun 4973 df-br 5124 df-opab 5186 df-mpt 5206 df-id 5558 df-xp 5671 df-rel 5672 df-cnv 5673 df-co 5674 df-dm 5675 df-rn 5676 df-res 5677 df-ima 5678 df-iota 6494 df-fun 6543 df-fn 6544 df-f 6545 df-f1 6546 df-fo 6547 df-f1o 6548 df-fv 6549 df-riota 7370 df-ov 7416 df-oprab 7417 df-poset 18330 df-lub 18361 df-join 18363 df-lat 18447 |
| This theorem is referenced by: latleeqj1 18466 latjlej1 18468 latjidm 18477 latledi 18492 latjass 18498 mod1ile 18508 lubun 18530 oldmm1 39193 olj01 39201 cvlexchb1 39306 cvlcvr1 39315 hlrelat 39379 hlrelat2 39380 exatleN 39381 hlrelat3 39389 cvrexchlem 39396 cvratlem 39398 cvrat 39399 atlelt 39415 ps-1 39454 hlatexch3N 39457 hlatexch4 39458 3atlem1 39460 3atlem2 39461 lplnexllnN 39541 2llnjaN 39543 4atlem3 39573 4atlem10 39583 4atlem11b 39585 4atlem11 39586 4atlem12b 39588 4atlem12 39589 2lplnja 39596 dalem1 39636 dalem3 39641 dalem8 39647 dalem16 39656 dalem17 39657 dalem21 39671 dalem25 39675 dalem39 39688 dalem54 39703 dalem60 39709 linepsubN 39729 pmapsub 39745 lneq2at 39755 2llnma3r 39765 cdlema1N 39768 cdlemblem 39770 paddasslem5 39801 paddasslem12 39808 paddasslem13 39809 llnexchb2 39846 dalawlem3 39850 dalawlem5 39852 dalawlem8 39855 dalawlem11 39858 dalawlem12 39859 lhp2lt 39978 lhpexle2lem 39986 lhpexle3lem 39988 4atexlemtlw 40044 4atexlemnclw 40047 lautj 40070 cdlemd3 40177 cdleme3g 40211 cdleme3h 40212 cdleme7d 40223 cdleme11c 40238 cdleme15d 40254 cdleme17b 40264 cdleme19a 40280 cdleme20j 40295 cdleme21c 40304 cdleme22b 40318 cdleme22d 40320 cdleme28a 40347 cdleme35a 40425 cdleme35fnpq 40426 cdleme35b 40427 cdleme35f 40431 cdleme42c 40449 cdleme42i 40460 cdlemf1 40538 cdlemg4c 40589 cdlemg6c 40597 cdlemg8b 40605 cdlemg10 40618 cdlemg11b 40619 cdlemg13a 40628 cdlemg17a 40638 cdlemg18b 40656 cdlemg27a 40669 cdlemg33b0 40678 cdlemg35 40690 cdlemg42 40706 cdlemg46 40712 trljco 40717 tendopltp 40757 cdlemk3 40810 cdlemk10 40820 cdlemk1u 40836 cdlemk39 40893 dialss 41023 dia2dimlem1 41041 dia2dimlem10 41050 dia2dimlem12 41052 cdlemm10N 41095 djajN 41114 diblss 41147 cdlemn2 41172 dihord2pre2 41203 dib2dim 41220 dih2dimb 41221 dih2dimbALTN 41222 dihmeetlem6 41286 dihjatcclem1 41395 |
| Copyright terms: Public domain | W3C validator |