| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > latleeqj1 | Structured version Visualization version GIF version | ||
| Description: "Less than or equal to" in terms of join. (chlejb1 31441 analog.) (Contributed by NM, 21-Oct-2011.) |
| Ref | Expression |
|---|---|
| latlej.b | ⊢ 𝐵 = (Base‘𝐾) |
| latlej.l | ⊢ ≤ = (le‘𝐾) |
| latlej.j | ⊢ ∨ = (join‘𝐾) |
| Ref | Expression |
|---|---|
| latleeqj1 | ⊢ ((𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 ≤ 𝑌 ↔ (𝑋 ∨ 𝑌) = 𝑌)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | latlej.b | . . . . . . 7 ⊢ 𝐵 = (Base‘𝐾) | |
| 2 | latlej.l | . . . . . . 7 ⊢ ≤ = (le‘𝐾) | |
| 3 | 1, 2 | latref 18400 | . . . . . 6 ⊢ ((𝐾 ∈ Lat ∧ 𝑌 ∈ 𝐵) → 𝑌 ≤ 𝑌) |
| 4 | 3 | 3adant2 1131 | . . . . 5 ⊢ ((𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → 𝑌 ≤ 𝑌) |
| 5 | 4 | biantrud 531 | . . . 4 ⊢ ((𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 ≤ 𝑌 ↔ (𝑋 ≤ 𝑌 ∧ 𝑌 ≤ 𝑌))) |
| 6 | simp1 1136 | . . . . 5 ⊢ ((𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → 𝐾 ∈ Lat) | |
| 7 | simp2 1137 | . . . . 5 ⊢ ((𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → 𝑋 ∈ 𝐵) | |
| 8 | simp3 1138 | . . . . 5 ⊢ ((𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → 𝑌 ∈ 𝐵) | |
| 9 | latlej.j | . . . . . 6 ⊢ ∨ = (join‘𝐾) | |
| 10 | 1, 2, 9 | latjle12 18409 | . . . . 5 ⊢ ((𝐾 ∈ Lat ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵)) → ((𝑋 ≤ 𝑌 ∧ 𝑌 ≤ 𝑌) ↔ (𝑋 ∨ 𝑌) ≤ 𝑌)) |
| 11 | 6, 7, 8, 8, 10 | syl13anc 1374 | . . . 4 ⊢ ((𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → ((𝑋 ≤ 𝑌 ∧ 𝑌 ≤ 𝑌) ↔ (𝑋 ∨ 𝑌) ≤ 𝑌)) |
| 12 | 5, 11 | bitrd 279 | . . 3 ⊢ ((𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 ≤ 𝑌 ↔ (𝑋 ∨ 𝑌) ≤ 𝑌)) |
| 13 | 1, 2, 9 | latlej2 18408 | . . . 4 ⊢ ((𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → 𝑌 ≤ (𝑋 ∨ 𝑌)) |
| 14 | 13 | biantrud 531 | . . 3 ⊢ ((𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → ((𝑋 ∨ 𝑌) ≤ 𝑌 ↔ ((𝑋 ∨ 𝑌) ≤ 𝑌 ∧ 𝑌 ≤ (𝑋 ∨ 𝑌)))) |
| 15 | 12, 14 | bitrd 279 | . 2 ⊢ ((𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 ≤ 𝑌 ↔ ((𝑋 ∨ 𝑌) ≤ 𝑌 ∧ 𝑌 ≤ (𝑋 ∨ 𝑌)))) |
| 16 | latpos 18397 | . . . 4 ⊢ (𝐾 ∈ Lat → 𝐾 ∈ Poset) | |
| 17 | 16 | 3ad2ant1 1133 | . . 3 ⊢ ((𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → 𝐾 ∈ Poset) |
| 18 | 1, 9 | latjcl 18398 | . . 3 ⊢ ((𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 ∨ 𝑌) ∈ 𝐵) |
| 19 | 1, 2 | posasymb 18280 | . . 3 ⊢ ((𝐾 ∈ Poset ∧ (𝑋 ∨ 𝑌) ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (((𝑋 ∨ 𝑌) ≤ 𝑌 ∧ 𝑌 ≤ (𝑋 ∨ 𝑌)) ↔ (𝑋 ∨ 𝑌) = 𝑌)) |
| 20 | 17, 18, 8, 19 | syl3anc 1373 | . 2 ⊢ ((𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (((𝑋 ∨ 𝑌) ≤ 𝑌 ∧ 𝑌 ≤ (𝑋 ∨ 𝑌)) ↔ (𝑋 ∨ 𝑌) = 𝑌)) |
| 21 | 15, 20 | bitrd 279 | 1 ⊢ ((𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 ≤ 𝑌 ↔ (𝑋 ∨ 𝑌) = 𝑌)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 class class class wbr 5107 ‘cfv 6511 (class class class)co 7387 Basecbs 17179 lecple 17227 Posetcpo 18268 joincjn 18272 Latclat 18390 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5234 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rmo 3354 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-iun 4957 df-br 5108 df-opab 5170 df-mpt 5189 df-id 5533 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-riota 7344 df-ov 7390 df-oprab 7391 df-proset 18255 df-poset 18274 df-lub 18305 df-glb 18306 df-join 18307 df-meet 18308 df-lat 18391 |
| This theorem is referenced by: latleeqj2 18411 latnle 18432 cvlsupr2 39336 hlrelat5N 39395 3dim3 39463 dalem-cly 39665 dalem44 39710 cdleme30a 40372 |
| Copyright terms: Public domain | W3C validator |