![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > latleeqj1 | Structured version Visualization version GIF version |
Description: "Less than or equal to" in terms of join. (chlejb1 30628 analog.) (Contributed by NM, 21-Oct-2011.) |
Ref | Expression |
---|---|
latlej.b | ⊢ 𝐵 = (Base‘𝐾) |
latlej.l | ⊢ ≤ = (le‘𝐾) |
latlej.j | ⊢ ∨ = (join‘𝐾) |
Ref | Expression |
---|---|
latleeqj1 | ⊢ ((𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 ≤ 𝑌 ↔ (𝑋 ∨ 𝑌) = 𝑌)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | latlej.b | . . . . . . 7 ⊢ 𝐵 = (Base‘𝐾) | |
2 | latlej.l | . . . . . . 7 ⊢ ≤ = (le‘𝐾) | |
3 | 1, 2 | latref 18376 | . . . . . 6 ⊢ ((𝐾 ∈ Lat ∧ 𝑌 ∈ 𝐵) → 𝑌 ≤ 𝑌) |
4 | 3 | 3adant2 1131 | . . . . 5 ⊢ ((𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → 𝑌 ≤ 𝑌) |
5 | 4 | biantrud 532 | . . . 4 ⊢ ((𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 ≤ 𝑌 ↔ (𝑋 ≤ 𝑌 ∧ 𝑌 ≤ 𝑌))) |
6 | simp1 1136 | . . . . 5 ⊢ ((𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → 𝐾 ∈ Lat) | |
7 | simp2 1137 | . . . . 5 ⊢ ((𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → 𝑋 ∈ 𝐵) | |
8 | simp3 1138 | . . . . 5 ⊢ ((𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → 𝑌 ∈ 𝐵) | |
9 | latlej.j | . . . . . 6 ⊢ ∨ = (join‘𝐾) | |
10 | 1, 2, 9 | latjle12 18385 | . . . . 5 ⊢ ((𝐾 ∈ Lat ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵)) → ((𝑋 ≤ 𝑌 ∧ 𝑌 ≤ 𝑌) ↔ (𝑋 ∨ 𝑌) ≤ 𝑌)) |
11 | 6, 7, 8, 8, 10 | syl13anc 1372 | . . . 4 ⊢ ((𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → ((𝑋 ≤ 𝑌 ∧ 𝑌 ≤ 𝑌) ↔ (𝑋 ∨ 𝑌) ≤ 𝑌)) |
12 | 5, 11 | bitrd 278 | . . 3 ⊢ ((𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 ≤ 𝑌 ↔ (𝑋 ∨ 𝑌) ≤ 𝑌)) |
13 | 1, 2, 9 | latlej2 18384 | . . . 4 ⊢ ((𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → 𝑌 ≤ (𝑋 ∨ 𝑌)) |
14 | 13 | biantrud 532 | . . 3 ⊢ ((𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → ((𝑋 ∨ 𝑌) ≤ 𝑌 ↔ ((𝑋 ∨ 𝑌) ≤ 𝑌 ∧ 𝑌 ≤ (𝑋 ∨ 𝑌)))) |
15 | 12, 14 | bitrd 278 | . 2 ⊢ ((𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 ≤ 𝑌 ↔ ((𝑋 ∨ 𝑌) ≤ 𝑌 ∧ 𝑌 ≤ (𝑋 ∨ 𝑌)))) |
16 | latpos 18373 | . . . 4 ⊢ (𝐾 ∈ Lat → 𝐾 ∈ Poset) | |
17 | 16 | 3ad2ant1 1133 | . . 3 ⊢ ((𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → 𝐾 ∈ Poset) |
18 | 1, 9 | latjcl 18374 | . . 3 ⊢ ((𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 ∨ 𝑌) ∈ 𝐵) |
19 | 1, 2 | posasymb 18254 | . . 3 ⊢ ((𝐾 ∈ Poset ∧ (𝑋 ∨ 𝑌) ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (((𝑋 ∨ 𝑌) ≤ 𝑌 ∧ 𝑌 ≤ (𝑋 ∨ 𝑌)) ↔ (𝑋 ∨ 𝑌) = 𝑌)) |
20 | 17, 18, 8, 19 | syl3anc 1371 | . 2 ⊢ ((𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (((𝑋 ∨ 𝑌) ≤ 𝑌 ∧ 𝑌 ≤ (𝑋 ∨ 𝑌)) ↔ (𝑋 ∨ 𝑌) = 𝑌)) |
21 | 15, 20 | bitrd 278 | 1 ⊢ ((𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 ≤ 𝑌 ↔ (𝑋 ∨ 𝑌) = 𝑌)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 396 ∧ w3a 1087 = wceq 1541 ∈ wcel 2106 class class class wbr 5141 ‘cfv 6532 (class class class)co 7393 Basecbs 17126 lecple 17186 Posetcpo 18242 joincjn 18246 Latclat 18366 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2702 ax-rep 5278 ax-sep 5292 ax-nul 5299 ax-pow 5356 ax-pr 5420 ax-un 7708 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2533 df-eu 2562 df-clab 2709 df-cleq 2723 df-clel 2809 df-nfc 2884 df-ne 2940 df-ral 3061 df-rex 3070 df-rmo 3375 df-reu 3376 df-rab 3432 df-v 3475 df-sbc 3774 df-csb 3890 df-dif 3947 df-un 3949 df-in 3951 df-ss 3961 df-nul 4319 df-if 4523 df-pw 4598 df-sn 4623 df-pr 4625 df-op 4629 df-uni 4902 df-iun 4992 df-br 5142 df-opab 5204 df-mpt 5225 df-id 5567 df-xp 5675 df-rel 5676 df-cnv 5677 df-co 5678 df-dm 5679 df-rn 5680 df-res 5681 df-ima 5682 df-iota 6484 df-fun 6534 df-fn 6535 df-f 6536 df-f1 6537 df-fo 6538 df-f1o 6539 df-fv 6540 df-riota 7349 df-ov 7396 df-oprab 7397 df-proset 18230 df-poset 18248 df-lub 18281 df-glb 18282 df-join 18283 df-meet 18284 df-lat 18367 |
This theorem is referenced by: latleeqj2 18387 latnle 18408 cvlsupr2 38018 hlrelat5N 38077 3dim3 38145 dalem-cly 38347 dalem44 38392 cdleme30a 39054 |
Copyright terms: Public domain | W3C validator |