| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > latleeqj1 | Structured version Visualization version GIF version | ||
| Description: "Less than or equal to" in terms of join. (chlejb1 31494 analog.) (Contributed by NM, 21-Oct-2011.) |
| Ref | Expression |
|---|---|
| latlej.b | ⊢ 𝐵 = (Base‘𝐾) |
| latlej.l | ⊢ ≤ = (le‘𝐾) |
| latlej.j | ⊢ ∨ = (join‘𝐾) |
| Ref | Expression |
|---|---|
| latleeqj1 | ⊢ ((𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 ≤ 𝑌 ↔ (𝑋 ∨ 𝑌) = 𝑌)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | latlej.b | . . . . . . 7 ⊢ 𝐵 = (Base‘𝐾) | |
| 2 | latlej.l | . . . . . . 7 ⊢ ≤ = (le‘𝐾) | |
| 3 | 1, 2 | latref 18349 | . . . . . 6 ⊢ ((𝐾 ∈ Lat ∧ 𝑌 ∈ 𝐵) → 𝑌 ≤ 𝑌) |
| 4 | 3 | 3adant2 1131 | . . . . 5 ⊢ ((𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → 𝑌 ≤ 𝑌) |
| 5 | 4 | biantrud 531 | . . . 4 ⊢ ((𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 ≤ 𝑌 ↔ (𝑋 ≤ 𝑌 ∧ 𝑌 ≤ 𝑌))) |
| 6 | simp1 1136 | . . . . 5 ⊢ ((𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → 𝐾 ∈ Lat) | |
| 7 | simp2 1137 | . . . . 5 ⊢ ((𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → 𝑋 ∈ 𝐵) | |
| 8 | simp3 1138 | . . . . 5 ⊢ ((𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → 𝑌 ∈ 𝐵) | |
| 9 | latlej.j | . . . . . 6 ⊢ ∨ = (join‘𝐾) | |
| 10 | 1, 2, 9 | latjle12 18358 | . . . . 5 ⊢ ((𝐾 ∈ Lat ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵)) → ((𝑋 ≤ 𝑌 ∧ 𝑌 ≤ 𝑌) ↔ (𝑋 ∨ 𝑌) ≤ 𝑌)) |
| 11 | 6, 7, 8, 8, 10 | syl13anc 1374 | . . . 4 ⊢ ((𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → ((𝑋 ≤ 𝑌 ∧ 𝑌 ≤ 𝑌) ↔ (𝑋 ∨ 𝑌) ≤ 𝑌)) |
| 12 | 5, 11 | bitrd 279 | . . 3 ⊢ ((𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 ≤ 𝑌 ↔ (𝑋 ∨ 𝑌) ≤ 𝑌)) |
| 13 | 1, 2, 9 | latlej2 18357 | . . . 4 ⊢ ((𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → 𝑌 ≤ (𝑋 ∨ 𝑌)) |
| 14 | 13 | biantrud 531 | . . 3 ⊢ ((𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → ((𝑋 ∨ 𝑌) ≤ 𝑌 ↔ ((𝑋 ∨ 𝑌) ≤ 𝑌 ∧ 𝑌 ≤ (𝑋 ∨ 𝑌)))) |
| 15 | 12, 14 | bitrd 279 | . 2 ⊢ ((𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 ≤ 𝑌 ↔ ((𝑋 ∨ 𝑌) ≤ 𝑌 ∧ 𝑌 ≤ (𝑋 ∨ 𝑌)))) |
| 16 | latpos 18346 | . . . 4 ⊢ (𝐾 ∈ Lat → 𝐾 ∈ Poset) | |
| 17 | 16 | 3ad2ant1 1133 | . . 3 ⊢ ((𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → 𝐾 ∈ Poset) |
| 18 | 1, 9 | latjcl 18347 | . . 3 ⊢ ((𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 ∨ 𝑌) ∈ 𝐵) |
| 19 | 1, 2 | posasymb 18227 | . . 3 ⊢ ((𝐾 ∈ Poset ∧ (𝑋 ∨ 𝑌) ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (((𝑋 ∨ 𝑌) ≤ 𝑌 ∧ 𝑌 ≤ (𝑋 ∨ 𝑌)) ↔ (𝑋 ∨ 𝑌) = 𝑌)) |
| 20 | 17, 18, 8, 19 | syl3anc 1373 | . 2 ⊢ ((𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (((𝑋 ∨ 𝑌) ≤ 𝑌 ∧ 𝑌 ≤ (𝑋 ∨ 𝑌)) ↔ (𝑋 ∨ 𝑌) = 𝑌)) |
| 21 | 15, 20 | bitrd 279 | 1 ⊢ ((𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 ≤ 𝑌 ↔ (𝑋 ∨ 𝑌) = 𝑌)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1086 = wceq 1541 ∈ wcel 2113 class class class wbr 5093 ‘cfv 6486 (class class class)co 7352 Basecbs 17122 lecple 17170 Posetcpo 18215 joincjn 18219 Latclat 18339 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-rep 5219 ax-sep 5236 ax-nul 5246 ax-pow 5305 ax-pr 5372 ax-un 7674 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-ral 3049 df-rex 3058 df-rmo 3347 df-reu 3348 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-nul 4283 df-if 4475 df-pw 4551 df-sn 4576 df-pr 4578 df-op 4582 df-uni 4859 df-iun 4943 df-br 5094 df-opab 5156 df-mpt 5175 df-id 5514 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-riota 7309 df-ov 7355 df-oprab 7356 df-proset 18202 df-poset 18221 df-lub 18252 df-glb 18253 df-join 18254 df-meet 18255 df-lat 18340 |
| This theorem is referenced by: latleeqj2 18360 latnle 18381 cvlsupr2 39462 hlrelat5N 39520 3dim3 39588 dalem-cly 39790 dalem44 39835 cdleme30a 40497 |
| Copyright terms: Public domain | W3C validator |