MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  latleeqj1 Structured version   Visualization version   GIF version

Theorem latleeqj1 17957
Description: "Less than or equal to" in terms of join. (chlejb1 29593 analog.) (Contributed by NM, 21-Oct-2011.)
Hypotheses
Ref Expression
latlej.b 𝐵 = (Base‘𝐾)
latlej.l = (le‘𝐾)
latlej.j = (join‘𝐾)
Assertion
Ref Expression
latleeqj1 ((𝐾 ∈ Lat ∧ 𝑋𝐵𝑌𝐵) → (𝑋 𝑌 ↔ (𝑋 𝑌) = 𝑌))

Proof of Theorem latleeqj1
StepHypRef Expression
1 latlej.b . . . . . . 7 𝐵 = (Base‘𝐾)
2 latlej.l . . . . . . 7 = (le‘𝐾)
31, 2latref 17947 . . . . . 6 ((𝐾 ∈ Lat ∧ 𝑌𝐵) → 𝑌 𝑌)
433adant2 1133 . . . . 5 ((𝐾 ∈ Lat ∧ 𝑋𝐵𝑌𝐵) → 𝑌 𝑌)
54biantrud 535 . . . 4 ((𝐾 ∈ Lat ∧ 𝑋𝐵𝑌𝐵) → (𝑋 𝑌 ↔ (𝑋 𝑌𝑌 𝑌)))
6 simp1 1138 . . . . 5 ((𝐾 ∈ Lat ∧ 𝑋𝐵𝑌𝐵) → 𝐾 ∈ Lat)
7 simp2 1139 . . . . 5 ((𝐾 ∈ Lat ∧ 𝑋𝐵𝑌𝐵) → 𝑋𝐵)
8 simp3 1140 . . . . 5 ((𝐾 ∈ Lat ∧ 𝑋𝐵𝑌𝐵) → 𝑌𝐵)
9 latlej.j . . . . . 6 = (join‘𝐾)
101, 2, 9latjle12 17956 . . . . 5 ((𝐾 ∈ Lat ∧ (𝑋𝐵𝑌𝐵𝑌𝐵)) → ((𝑋 𝑌𝑌 𝑌) ↔ (𝑋 𝑌) 𝑌))
116, 7, 8, 8, 10syl13anc 1374 . . . 4 ((𝐾 ∈ Lat ∧ 𝑋𝐵𝑌𝐵) → ((𝑋 𝑌𝑌 𝑌) ↔ (𝑋 𝑌) 𝑌))
125, 11bitrd 282 . . 3 ((𝐾 ∈ Lat ∧ 𝑋𝐵𝑌𝐵) → (𝑋 𝑌 ↔ (𝑋 𝑌) 𝑌))
131, 2, 9latlej2 17955 . . . 4 ((𝐾 ∈ Lat ∧ 𝑋𝐵𝑌𝐵) → 𝑌 (𝑋 𝑌))
1413biantrud 535 . . 3 ((𝐾 ∈ Lat ∧ 𝑋𝐵𝑌𝐵) → ((𝑋 𝑌) 𝑌 ↔ ((𝑋 𝑌) 𝑌𝑌 (𝑋 𝑌))))
1512, 14bitrd 282 . 2 ((𝐾 ∈ Lat ∧ 𝑋𝐵𝑌𝐵) → (𝑋 𝑌 ↔ ((𝑋 𝑌) 𝑌𝑌 (𝑋 𝑌))))
16 latpos 17944 . . . 4 (𝐾 ∈ Lat → 𝐾 ∈ Poset)
17163ad2ant1 1135 . . 3 ((𝐾 ∈ Lat ∧ 𝑋𝐵𝑌𝐵) → 𝐾 ∈ Poset)
181, 9latjcl 17945 . . 3 ((𝐾 ∈ Lat ∧ 𝑋𝐵𝑌𝐵) → (𝑋 𝑌) ∈ 𝐵)
191, 2posasymb 17826 . . 3 ((𝐾 ∈ Poset ∧ (𝑋 𝑌) ∈ 𝐵𝑌𝐵) → (((𝑋 𝑌) 𝑌𝑌 (𝑋 𝑌)) ↔ (𝑋 𝑌) = 𝑌))
2017, 18, 8, 19syl3anc 1373 . 2 ((𝐾 ∈ Lat ∧ 𝑋𝐵𝑌𝐵) → (((𝑋 𝑌) 𝑌𝑌 (𝑋 𝑌)) ↔ (𝑋 𝑌) = 𝑌))
2115, 20bitrd 282 1 ((𝐾 ∈ Lat ∧ 𝑋𝐵𝑌𝐵) → (𝑋 𝑌 ↔ (𝑋 𝑌) = 𝑌))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399  w3a 1089   = wceq 1543  wcel 2110   class class class wbr 5053  cfv 6380  (class class class)co 7213  Basecbs 16760  lecple 16809  Posetcpo 17814  joincjn 17818  Latclat 17937
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2016  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-ext 2708  ax-rep 5179  ax-sep 5192  ax-nul 5199  ax-pow 5258  ax-pr 5322  ax-un 7523
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2071  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2886  df-ne 2941  df-ral 3066  df-rex 3067  df-reu 3068  df-rab 3070  df-v 3410  df-sbc 3695  df-csb 3812  df-dif 3869  df-un 3871  df-in 3873  df-ss 3883  df-nul 4238  df-if 4440  df-pw 4515  df-sn 4542  df-pr 4544  df-op 4548  df-uni 4820  df-iun 4906  df-br 5054  df-opab 5116  df-mpt 5136  df-id 5455  df-xp 5557  df-rel 5558  df-cnv 5559  df-co 5560  df-dm 5561  df-rn 5562  df-res 5563  df-ima 5564  df-iota 6338  df-fun 6382  df-fn 6383  df-f 6384  df-f1 6385  df-fo 6386  df-f1o 6387  df-fv 6388  df-riota 7170  df-ov 7216  df-oprab 7217  df-proset 17802  df-poset 17820  df-lub 17852  df-glb 17853  df-join 17854  df-meet 17855  df-lat 17938
This theorem is referenced by:  latleeqj2  17958  latnle  17979  cvlsupr2  37094  hlrelat5N  37152  3dim3  37220  dalem-cly  37422  dalem44  37467  cdleme30a  38129
  Copyright terms: Public domain W3C validator