Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > latleeqj1 | Structured version Visualization version GIF version |
Description: "Less than or equal to" in terms of join. (chlejb1 29775 analog.) (Contributed by NM, 21-Oct-2011.) |
Ref | Expression |
---|---|
latlej.b | ⊢ 𝐵 = (Base‘𝐾) |
latlej.l | ⊢ ≤ = (le‘𝐾) |
latlej.j | ⊢ ∨ = (join‘𝐾) |
Ref | Expression |
---|---|
latleeqj1 | ⊢ ((𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 ≤ 𝑌 ↔ (𝑋 ∨ 𝑌) = 𝑌)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | latlej.b | . . . . . . 7 ⊢ 𝐵 = (Base‘𝐾) | |
2 | latlej.l | . . . . . . 7 ⊢ ≤ = (le‘𝐾) | |
3 | 1, 2 | latref 18074 | . . . . . 6 ⊢ ((𝐾 ∈ Lat ∧ 𝑌 ∈ 𝐵) → 𝑌 ≤ 𝑌) |
4 | 3 | 3adant2 1129 | . . . . 5 ⊢ ((𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → 𝑌 ≤ 𝑌) |
5 | 4 | biantrud 531 | . . . 4 ⊢ ((𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 ≤ 𝑌 ↔ (𝑋 ≤ 𝑌 ∧ 𝑌 ≤ 𝑌))) |
6 | simp1 1134 | . . . . 5 ⊢ ((𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → 𝐾 ∈ Lat) | |
7 | simp2 1135 | . . . . 5 ⊢ ((𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → 𝑋 ∈ 𝐵) | |
8 | simp3 1136 | . . . . 5 ⊢ ((𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → 𝑌 ∈ 𝐵) | |
9 | latlej.j | . . . . . 6 ⊢ ∨ = (join‘𝐾) | |
10 | 1, 2, 9 | latjle12 18083 | . . . . 5 ⊢ ((𝐾 ∈ Lat ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵)) → ((𝑋 ≤ 𝑌 ∧ 𝑌 ≤ 𝑌) ↔ (𝑋 ∨ 𝑌) ≤ 𝑌)) |
11 | 6, 7, 8, 8, 10 | syl13anc 1370 | . . . 4 ⊢ ((𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → ((𝑋 ≤ 𝑌 ∧ 𝑌 ≤ 𝑌) ↔ (𝑋 ∨ 𝑌) ≤ 𝑌)) |
12 | 5, 11 | bitrd 278 | . . 3 ⊢ ((𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 ≤ 𝑌 ↔ (𝑋 ∨ 𝑌) ≤ 𝑌)) |
13 | 1, 2, 9 | latlej2 18082 | . . . 4 ⊢ ((𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → 𝑌 ≤ (𝑋 ∨ 𝑌)) |
14 | 13 | biantrud 531 | . . 3 ⊢ ((𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → ((𝑋 ∨ 𝑌) ≤ 𝑌 ↔ ((𝑋 ∨ 𝑌) ≤ 𝑌 ∧ 𝑌 ≤ (𝑋 ∨ 𝑌)))) |
15 | 12, 14 | bitrd 278 | . 2 ⊢ ((𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 ≤ 𝑌 ↔ ((𝑋 ∨ 𝑌) ≤ 𝑌 ∧ 𝑌 ≤ (𝑋 ∨ 𝑌)))) |
16 | latpos 18071 | . . . 4 ⊢ (𝐾 ∈ Lat → 𝐾 ∈ Poset) | |
17 | 16 | 3ad2ant1 1131 | . . 3 ⊢ ((𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → 𝐾 ∈ Poset) |
18 | 1, 9 | latjcl 18072 | . . 3 ⊢ ((𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 ∨ 𝑌) ∈ 𝐵) |
19 | 1, 2 | posasymb 17952 | . . 3 ⊢ ((𝐾 ∈ Poset ∧ (𝑋 ∨ 𝑌) ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (((𝑋 ∨ 𝑌) ≤ 𝑌 ∧ 𝑌 ≤ (𝑋 ∨ 𝑌)) ↔ (𝑋 ∨ 𝑌) = 𝑌)) |
20 | 17, 18, 8, 19 | syl3anc 1369 | . 2 ⊢ ((𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (((𝑋 ∨ 𝑌) ≤ 𝑌 ∧ 𝑌 ≤ (𝑋 ∨ 𝑌)) ↔ (𝑋 ∨ 𝑌) = 𝑌)) |
21 | 15, 20 | bitrd 278 | 1 ⊢ ((𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 ≤ 𝑌 ↔ (𝑋 ∨ 𝑌) = 𝑌)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 ∧ w3a 1085 = wceq 1539 ∈ wcel 2108 class class class wbr 5070 ‘cfv 6418 (class class class)co 7255 Basecbs 16840 lecple 16895 Posetcpo 17940 joincjn 17944 Latclat 18064 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-rep 5205 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-ral 3068 df-rex 3069 df-reu 3070 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-id 5480 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-riota 7212 df-ov 7258 df-oprab 7259 df-proset 17928 df-poset 17946 df-lub 17979 df-glb 17980 df-join 17981 df-meet 17982 df-lat 18065 |
This theorem is referenced by: latleeqj2 18085 latnle 18106 cvlsupr2 37284 hlrelat5N 37342 3dim3 37410 dalem-cly 37612 dalem44 37657 cdleme30a 38319 |
Copyright terms: Public domain | W3C validator |