MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  latleeqj1 Structured version   Visualization version   GIF version

Theorem latleeqj1 17271
Description: Less-than-or-equal-to in terms of join. (chlejb1 28711 analog.) (Contributed by NM, 21-Oct-2011.)
Hypotheses
Ref Expression
latlej.b 𝐵 = (Base‘𝐾)
latlej.l = (le‘𝐾)
latlej.j = (join‘𝐾)
Assertion
Ref Expression
latleeqj1 ((𝐾 ∈ Lat ∧ 𝑋𝐵𝑌𝐵) → (𝑋 𝑌 ↔ (𝑋 𝑌) = 𝑌))

Proof of Theorem latleeqj1
StepHypRef Expression
1 latlej.b . . . . . . 7 𝐵 = (Base‘𝐾)
2 latlej.l . . . . . . 7 = (le‘𝐾)
31, 2latref 17261 . . . . . 6 ((𝐾 ∈ Lat ∧ 𝑌𝐵) → 𝑌 𝑌)
433adant2 1125 . . . . 5 ((𝐾 ∈ Lat ∧ 𝑋𝐵𝑌𝐵) → 𝑌 𝑌)
54biantrud 521 . . . 4 ((𝐾 ∈ Lat ∧ 𝑋𝐵𝑌𝐵) → (𝑋 𝑌 ↔ (𝑋 𝑌𝑌 𝑌)))
6 simp1 1130 . . . . 5 ((𝐾 ∈ Lat ∧ 𝑋𝐵𝑌𝐵) → 𝐾 ∈ Lat)
7 simp2 1131 . . . . 5 ((𝐾 ∈ Lat ∧ 𝑋𝐵𝑌𝐵) → 𝑋𝐵)
8 simp3 1132 . . . . 5 ((𝐾 ∈ Lat ∧ 𝑋𝐵𝑌𝐵) → 𝑌𝐵)
9 latlej.j . . . . . 6 = (join‘𝐾)
101, 2, 9latjle12 17270 . . . . 5 ((𝐾 ∈ Lat ∧ (𝑋𝐵𝑌𝐵𝑌𝐵)) → ((𝑋 𝑌𝑌 𝑌) ↔ (𝑋 𝑌) 𝑌))
116, 7, 8, 8, 10syl13anc 1478 . . . 4 ((𝐾 ∈ Lat ∧ 𝑋𝐵𝑌𝐵) → ((𝑋 𝑌𝑌 𝑌) ↔ (𝑋 𝑌) 𝑌))
125, 11bitrd 268 . . 3 ((𝐾 ∈ Lat ∧ 𝑋𝐵𝑌𝐵) → (𝑋 𝑌 ↔ (𝑋 𝑌) 𝑌))
131, 2, 9latlej2 17269 . . . 4 ((𝐾 ∈ Lat ∧ 𝑋𝐵𝑌𝐵) → 𝑌 (𝑋 𝑌))
1413biantrud 521 . . 3 ((𝐾 ∈ Lat ∧ 𝑋𝐵𝑌𝐵) → ((𝑋 𝑌) 𝑌 ↔ ((𝑋 𝑌) 𝑌𝑌 (𝑋 𝑌))))
1512, 14bitrd 268 . 2 ((𝐾 ∈ Lat ∧ 𝑋𝐵𝑌𝐵) → (𝑋 𝑌 ↔ ((𝑋 𝑌) 𝑌𝑌 (𝑋 𝑌))))
16 latpos 17258 . . . 4 (𝐾 ∈ Lat → 𝐾 ∈ Poset)
17163ad2ant1 1127 . . 3 ((𝐾 ∈ Lat ∧ 𝑋𝐵𝑌𝐵) → 𝐾 ∈ Poset)
181, 9latjcl 17259 . . 3 ((𝐾 ∈ Lat ∧ 𝑋𝐵𝑌𝐵) → (𝑋 𝑌) ∈ 𝐵)
191, 2posasymb 17160 . . 3 ((𝐾 ∈ Poset ∧ (𝑋 𝑌) ∈ 𝐵𝑌𝐵) → (((𝑋 𝑌) 𝑌𝑌 (𝑋 𝑌)) ↔ (𝑋 𝑌) = 𝑌))
2017, 18, 8, 19syl3anc 1476 . 2 ((𝐾 ∈ Lat ∧ 𝑋𝐵𝑌𝐵) → (((𝑋 𝑌) 𝑌𝑌 (𝑋 𝑌)) ↔ (𝑋 𝑌) = 𝑌))
2115, 20bitrd 268 1 ((𝐾 ∈ Lat ∧ 𝑋𝐵𝑌𝐵) → (𝑋 𝑌 ↔ (𝑋 𝑌) = 𝑌))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 382  w3a 1071   = wceq 1631  wcel 2145   class class class wbr 4787  cfv 6030  (class class class)co 6796  Basecbs 16064  lecple 16156  Posetcpo 17148  joincjn 17152  Latclat 17253
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1870  ax-4 1885  ax-5 1991  ax-6 2057  ax-7 2093  ax-8 2147  ax-9 2154  ax-10 2174  ax-11 2190  ax-12 2203  ax-13 2408  ax-ext 2751  ax-rep 4905  ax-sep 4916  ax-nul 4924  ax-pow 4975  ax-pr 5035  ax-un 7100
This theorem depends on definitions:  df-bi 197  df-an 383  df-or 837  df-3an 1073  df-tru 1634  df-ex 1853  df-nf 1858  df-sb 2050  df-eu 2622  df-mo 2623  df-clab 2758  df-cleq 2764  df-clel 2767  df-nfc 2902  df-ne 2944  df-ral 3066  df-rex 3067  df-reu 3068  df-rab 3070  df-v 3353  df-sbc 3588  df-csb 3683  df-dif 3726  df-un 3728  df-in 3730  df-ss 3737  df-nul 4064  df-if 4227  df-pw 4300  df-sn 4318  df-pr 4320  df-op 4324  df-uni 4576  df-iun 4657  df-br 4788  df-opab 4848  df-mpt 4865  df-id 5158  df-xp 5256  df-rel 5257  df-cnv 5258  df-co 5259  df-dm 5260  df-rn 5261  df-res 5262  df-ima 5263  df-iota 5993  df-fun 6032  df-fn 6033  df-f 6034  df-f1 6035  df-fo 6036  df-f1o 6037  df-fv 6038  df-riota 6757  df-ov 6799  df-oprab 6800  df-preset 17136  df-poset 17154  df-lub 17182  df-glb 17183  df-join 17184  df-meet 17185  df-lat 17254
This theorem is referenced by:  latleeqj2  17272  latnle  17293  cvlsupr2  35150  hlrelat5N  35208  3dim3  35276  dalem-cly  35478  dalem44  35523  cdleme30a  36186
  Copyright terms: Public domain W3C validator