![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > latleeqj1 | Structured version Visualization version GIF version |
Description: Less-than-or-equal-to in terms of join. (chlejb1 28711 analog.) (Contributed by NM, 21-Oct-2011.) |
Ref | Expression |
---|---|
latlej.b | ⊢ 𝐵 = (Base‘𝐾) |
latlej.l | ⊢ ≤ = (le‘𝐾) |
latlej.j | ⊢ ∨ = (join‘𝐾) |
Ref | Expression |
---|---|
latleeqj1 | ⊢ ((𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 ≤ 𝑌 ↔ (𝑋 ∨ 𝑌) = 𝑌)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | latlej.b | . . . . . . 7 ⊢ 𝐵 = (Base‘𝐾) | |
2 | latlej.l | . . . . . . 7 ⊢ ≤ = (le‘𝐾) | |
3 | 1, 2 | latref 17261 | . . . . . 6 ⊢ ((𝐾 ∈ Lat ∧ 𝑌 ∈ 𝐵) → 𝑌 ≤ 𝑌) |
4 | 3 | 3adant2 1125 | . . . . 5 ⊢ ((𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → 𝑌 ≤ 𝑌) |
5 | 4 | biantrud 521 | . . . 4 ⊢ ((𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 ≤ 𝑌 ↔ (𝑋 ≤ 𝑌 ∧ 𝑌 ≤ 𝑌))) |
6 | simp1 1130 | . . . . 5 ⊢ ((𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → 𝐾 ∈ Lat) | |
7 | simp2 1131 | . . . . 5 ⊢ ((𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → 𝑋 ∈ 𝐵) | |
8 | simp3 1132 | . . . . 5 ⊢ ((𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → 𝑌 ∈ 𝐵) | |
9 | latlej.j | . . . . . 6 ⊢ ∨ = (join‘𝐾) | |
10 | 1, 2, 9 | latjle12 17270 | . . . . 5 ⊢ ((𝐾 ∈ Lat ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵)) → ((𝑋 ≤ 𝑌 ∧ 𝑌 ≤ 𝑌) ↔ (𝑋 ∨ 𝑌) ≤ 𝑌)) |
11 | 6, 7, 8, 8, 10 | syl13anc 1478 | . . . 4 ⊢ ((𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → ((𝑋 ≤ 𝑌 ∧ 𝑌 ≤ 𝑌) ↔ (𝑋 ∨ 𝑌) ≤ 𝑌)) |
12 | 5, 11 | bitrd 268 | . . 3 ⊢ ((𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 ≤ 𝑌 ↔ (𝑋 ∨ 𝑌) ≤ 𝑌)) |
13 | 1, 2, 9 | latlej2 17269 | . . . 4 ⊢ ((𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → 𝑌 ≤ (𝑋 ∨ 𝑌)) |
14 | 13 | biantrud 521 | . . 3 ⊢ ((𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → ((𝑋 ∨ 𝑌) ≤ 𝑌 ↔ ((𝑋 ∨ 𝑌) ≤ 𝑌 ∧ 𝑌 ≤ (𝑋 ∨ 𝑌)))) |
15 | 12, 14 | bitrd 268 | . 2 ⊢ ((𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 ≤ 𝑌 ↔ ((𝑋 ∨ 𝑌) ≤ 𝑌 ∧ 𝑌 ≤ (𝑋 ∨ 𝑌)))) |
16 | latpos 17258 | . . . 4 ⊢ (𝐾 ∈ Lat → 𝐾 ∈ Poset) | |
17 | 16 | 3ad2ant1 1127 | . . 3 ⊢ ((𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → 𝐾 ∈ Poset) |
18 | 1, 9 | latjcl 17259 | . . 3 ⊢ ((𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 ∨ 𝑌) ∈ 𝐵) |
19 | 1, 2 | posasymb 17160 | . . 3 ⊢ ((𝐾 ∈ Poset ∧ (𝑋 ∨ 𝑌) ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (((𝑋 ∨ 𝑌) ≤ 𝑌 ∧ 𝑌 ≤ (𝑋 ∨ 𝑌)) ↔ (𝑋 ∨ 𝑌) = 𝑌)) |
20 | 17, 18, 8, 19 | syl3anc 1476 | . 2 ⊢ ((𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (((𝑋 ∨ 𝑌) ≤ 𝑌 ∧ 𝑌 ≤ (𝑋 ∨ 𝑌)) ↔ (𝑋 ∨ 𝑌) = 𝑌)) |
21 | 15, 20 | bitrd 268 | 1 ⊢ ((𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 ≤ 𝑌 ↔ (𝑋 ∨ 𝑌) = 𝑌)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 196 ∧ wa 382 ∧ w3a 1071 = wceq 1631 ∈ wcel 2145 class class class wbr 4787 ‘cfv 6030 (class class class)co 6796 Basecbs 16064 lecple 16156 Posetcpo 17148 joincjn 17152 Latclat 17253 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1870 ax-4 1885 ax-5 1991 ax-6 2057 ax-7 2093 ax-8 2147 ax-9 2154 ax-10 2174 ax-11 2190 ax-12 2203 ax-13 2408 ax-ext 2751 ax-rep 4905 ax-sep 4916 ax-nul 4924 ax-pow 4975 ax-pr 5035 ax-un 7100 |
This theorem depends on definitions: df-bi 197 df-an 383 df-or 837 df-3an 1073 df-tru 1634 df-ex 1853 df-nf 1858 df-sb 2050 df-eu 2622 df-mo 2623 df-clab 2758 df-cleq 2764 df-clel 2767 df-nfc 2902 df-ne 2944 df-ral 3066 df-rex 3067 df-reu 3068 df-rab 3070 df-v 3353 df-sbc 3588 df-csb 3683 df-dif 3726 df-un 3728 df-in 3730 df-ss 3737 df-nul 4064 df-if 4227 df-pw 4300 df-sn 4318 df-pr 4320 df-op 4324 df-uni 4576 df-iun 4657 df-br 4788 df-opab 4848 df-mpt 4865 df-id 5158 df-xp 5256 df-rel 5257 df-cnv 5258 df-co 5259 df-dm 5260 df-rn 5261 df-res 5262 df-ima 5263 df-iota 5993 df-fun 6032 df-fn 6033 df-f 6034 df-f1 6035 df-fo 6036 df-f1o 6037 df-fv 6038 df-riota 6757 df-ov 6799 df-oprab 6800 df-preset 17136 df-poset 17154 df-lub 17182 df-glb 17183 df-join 17184 df-meet 17185 df-lat 17254 |
This theorem is referenced by: latleeqj2 17272 latnle 17293 cvlsupr2 35150 hlrelat5N 35208 3dim3 35276 dalem-cly 35478 dalem44 35523 cdleme30a 36186 |
Copyright terms: Public domain | W3C validator |