| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > latjcl | Structured version Visualization version GIF version | ||
| Description: Closure of join operation in a lattice. (chjcom 31486 analog.) (Contributed by NM, 14-Sep-2011.) |
| Ref | Expression |
|---|---|
| latjcl.b | ⊢ 𝐵 = (Base‘𝐾) |
| latjcl.j | ⊢ ∨ = (join‘𝐾) |
| Ref | Expression |
|---|---|
| latjcl | ⊢ ((𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 ∨ 𝑌) ∈ 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | latjcl.b | . . 3 ⊢ 𝐵 = (Base‘𝐾) | |
| 2 | latjcl.j | . . 3 ⊢ ∨ = (join‘𝐾) | |
| 3 | eqid 2731 | . . 3 ⊢ (meet‘𝐾) = (meet‘𝐾) | |
| 4 | 1, 2, 3 | latlem 18343 | . 2 ⊢ ((𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → ((𝑋 ∨ 𝑌) ∈ 𝐵 ∧ (𝑋(meet‘𝐾)𝑌) ∈ 𝐵)) |
| 5 | 4 | simpld 494 | 1 ⊢ ((𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 ∨ 𝑌) ∈ 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ w3a 1086 = wceq 1541 ∈ wcel 2111 ‘cfv 6481 (class class class)co 7346 Basecbs 17120 joincjn 18217 meetcmee 18218 Latclat 18337 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5215 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 ax-un 7668 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4281 df-if 4473 df-pw 4549 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-iun 4941 df-br 5090 df-opab 5152 df-mpt 5171 df-id 5509 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-riota 7303 df-ov 7349 df-oprab 7350 df-lub 18250 df-glb 18251 df-join 18252 df-meet 18253 df-lat 18338 |
| This theorem is referenced by: latleeqj1 18357 latjlej1 18359 latjlej12 18361 latnlej2 18365 latjidm 18368 latnle 18379 latabs2 18382 latledi 18383 latmlej11 18384 latjass 18389 latj13 18392 latj31 18393 latj4 18395 mod1ile 18399 mod2ile 18400 latdisdlem 18402 lubun 18421 oldmm1 39315 olj01 39323 latmassOLD 39327 omllaw5N 39345 cmtcomlemN 39346 cmtbr2N 39351 cmtbr3N 39352 cmtbr4N 39353 lecmtN 39354 omlfh1N 39356 omlfh3N 39357 omlmod1i2N 39358 cvlexchb1 39428 cvlcvr1 39437 hlatjcl 39465 exatleN 39502 cvrval3 39511 cvrexchlem 39517 cvrexch 39518 cvratlem 39519 cvrat 39520 lnnat 39525 cvrat2 39527 atcvrj2b 39530 atltcvr 39533 atlelt 39536 2atlt 39537 atexchcvrN 39538 cvrat3 39540 cvrat4 39541 2atjm 39543 4noncolr3 39551 athgt 39554 3dim0 39555 3dimlem4a 39561 1cvratex 39571 1cvrjat 39573 1cvrat 39574 ps-2 39576 3atlem1 39581 3atlem2 39582 3at 39588 2atm 39625 lplni2 39635 lplnle 39638 2llnmj 39658 2atmat 39659 lplnexllnN 39662 2llnjaN 39664 lvoli3 39675 islvol5 39677 lvoli2 39679 lvolnle3at 39680 3atnelvolN 39684 islvol2aN 39690 4atlem3 39694 4atlem4d 39700 4atlem9 39701 4atlem10a 39702 4atlem10 39704 4atlem11a 39705 4atlem11b 39706 4atlem11 39707 4atlem12a 39708 4atlem12b 39709 4atlem12 39710 4at 39711 lplncvrlvol2 39713 2lplnja 39717 2lplnmj 39720 dalem5 39765 dalem8 39768 dalem-cly 39769 dalem38 39808 dalem39 39809 dalem44 39814 dalem54 39824 linepsubN 39850 pmapsub 39866 isline2 39872 linepmap 39873 isline3 39874 lncvrelatN 39879 2llnma1b 39884 cdlema1N 39889 cdlemblem 39891 cdlemb 39892 paddasslem5 39922 paddasslem12 39929 paddasslem13 39930 pmapjoin 39950 pmapjat1 39951 pmapjlln1 39953 hlmod1i 39954 llnmod1i2 39958 atmod2i1 39959 atmod2i2 39960 llnmod2i2 39961 atmod3i1 39962 atmod3i2 39963 dalawlem2 39970 dalawlem3 39971 dalawlem5 39973 dalawlem6 39974 dalawlem7 39975 dalawlem8 39976 dalawlem11 39979 dalawlem12 39980 pmapocjN 40028 paddatclN 40047 linepsubclN 40049 pl42lem1N 40077 pl42lem2N 40078 pl42N 40081 lhp2lt 40099 lhpj1 40120 lhpmod2i2 40136 lhpmod6i1 40137 4atexlemc 40167 lautj 40191 trlval2 40261 trlcl 40262 trljat1 40264 trljat2 40265 trlle 40282 cdlemc1 40289 cdlemc2 40290 cdlemc5 40293 cdlemd2 40297 cdlemd3 40298 cdleme0aa 40308 cdleme0b 40310 cdleme0c 40311 cdleme0cp 40312 cdleme0cq 40313 cdleme0fN 40316 cdleme1b 40324 cdleme1 40325 cdleme2 40326 cdleme3b 40327 cdleme3c 40328 cdleme4a 40337 cdleme5 40338 cdleme7e 40345 cdleme8 40348 cdleme9 40351 cdleme10 40352 cdleme11fN 40362 cdleme11g 40363 cdleme11k 40366 cdleme11 40368 cdleme15b 40373 cdleme15 40376 cdleme22gb 40392 cdleme19b 40402 cdleme20d 40410 cdleme20j 40416 cdleme20l 40420 cdleme20m 40421 cdleme22e 40442 cdleme22eALTN 40443 cdleme22f 40444 cdleme23b 40448 cdleme23c 40449 cdleme28a 40468 cdleme28b 40469 cdleme29ex 40472 cdleme30a 40476 cdlemefr29exN 40500 cdleme32e 40543 cdleme35fnpq 40547 cdleme35b 40548 cdleme35c 40549 cdleme42e 40577 cdleme42i 40581 cdleme42mgN 40586 cdlemg2fv2 40698 cdlemg7fvbwN 40705 cdlemg4c 40710 cdlemg6c 40718 cdlemg10 40739 cdlemg11b 40740 cdlemg31a 40795 cdlemg31b 40796 cdlemg35 40811 trlcolem 40824 cdlemg44a 40829 trljco 40838 tendopltp 40878 cdlemh1 40913 cdlemh2 40914 cdlemi1 40916 cdlemi 40918 cdlemk4 40932 cdlemkvcl 40940 cdlemk10 40941 cdlemk11 40947 cdlemk11u 40969 cdlemk37 41012 cdlemkid1 41020 cdlemk50 41050 cdlemk51 41051 cdlemk52 41052 dialss 41144 dia2dimlem2 41163 dia2dimlem3 41164 cdlemm10N 41216 docaclN 41222 doca2N 41224 djajN 41235 diblss 41268 cdlemn2 41293 cdlemn10 41304 dihord1 41316 dihord2pre2 41324 dihord5apre 41360 dihjatc1 41409 dihmeetlem10N 41414 dihmeetlem11N 41415 djhljjN 41500 djhj 41502 dihprrnlem1N 41522 dihprrnlem2 41523 dihjat6 41532 dihjat5N 41535 dvh4dimat 41536 |
| Copyright terms: Public domain | W3C validator |