Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > latjcl | Structured version Visualization version GIF version |
Description: Closure of join operation in a lattice. (chjcom 29769 analog.) (Contributed by NM, 14-Sep-2011.) |
Ref | Expression |
---|---|
latjcl.b | ⊢ 𝐵 = (Base‘𝐾) |
latjcl.j | ⊢ ∨ = (join‘𝐾) |
Ref | Expression |
---|---|
latjcl | ⊢ ((𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 ∨ 𝑌) ∈ 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | latjcl.b | . . 3 ⊢ 𝐵 = (Base‘𝐾) | |
2 | latjcl.j | . . 3 ⊢ ∨ = (join‘𝐾) | |
3 | eqid 2738 | . . 3 ⊢ (meet‘𝐾) = (meet‘𝐾) | |
4 | 1, 2, 3 | latlem 18070 | . 2 ⊢ ((𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → ((𝑋 ∨ 𝑌) ∈ 𝐵 ∧ (𝑋(meet‘𝐾)𝑌) ∈ 𝐵)) |
5 | 4 | simpld 494 | 1 ⊢ ((𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 ∨ 𝑌) ∈ 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ w3a 1085 = wceq 1539 ∈ wcel 2108 ‘cfv 6418 (class class class)co 7255 Basecbs 16840 joincjn 17944 meetcmee 17945 Latclat 18064 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-rep 5205 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-ral 3068 df-rex 3069 df-reu 3070 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-id 5480 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-riota 7212 df-ov 7258 df-oprab 7259 df-lub 17979 df-glb 17980 df-join 17981 df-meet 17982 df-lat 18065 |
This theorem is referenced by: latleeqj1 18084 latjlej1 18086 latjlej12 18088 latnlej2 18092 latjidm 18095 latnle 18106 latabs2 18109 latledi 18110 latmlej11 18111 latjass 18116 latj13 18119 latj31 18120 latj4 18122 mod1ile 18126 mod2ile 18127 latdisdlem 18129 lubun 18148 oldmm1 37158 olj01 37166 latmassOLD 37170 omllaw5N 37188 cmtcomlemN 37189 cmtbr2N 37194 cmtbr3N 37195 cmtbr4N 37196 lecmtN 37197 omlfh1N 37199 omlfh3N 37200 omlmod1i2N 37201 cvlexchb1 37271 cvlcvr1 37280 hlatjcl 37308 exatleN 37345 cvrval3 37354 cvrexchlem 37360 cvrexch 37361 cvratlem 37362 cvrat 37363 lnnat 37368 cvrat2 37370 atcvrj2b 37373 atltcvr 37376 atlelt 37379 2atlt 37380 atexchcvrN 37381 cvrat3 37383 cvrat4 37384 2atjm 37386 4noncolr3 37394 athgt 37397 3dim0 37398 3dimlem4a 37404 1cvratex 37414 1cvrjat 37416 1cvrat 37417 ps-2 37419 3atlem1 37424 3atlem2 37425 3at 37431 2atm 37468 lplni2 37478 lplnle 37481 2llnmj 37501 2atmat 37502 lplnexllnN 37505 2llnjaN 37507 lvoli3 37518 islvol5 37520 lvoli2 37522 lvolnle3at 37523 3atnelvolN 37527 islvol2aN 37533 4atlem3 37537 4atlem4d 37543 4atlem9 37544 4atlem10a 37545 4atlem10 37547 4atlem11a 37548 4atlem11b 37549 4atlem11 37550 4atlem12a 37551 4atlem12b 37552 4atlem12 37553 4at 37554 lplncvrlvol2 37556 2lplnja 37560 2lplnmj 37563 dalem5 37608 dalem8 37611 dalem-cly 37612 dalem38 37651 dalem39 37652 dalem44 37657 dalem54 37667 linepsubN 37693 pmapsub 37709 isline2 37715 linepmap 37716 isline3 37717 lncvrelatN 37722 2llnma1b 37727 cdlema1N 37732 cdlemblem 37734 cdlemb 37735 paddasslem5 37765 paddasslem12 37772 paddasslem13 37773 pmapjoin 37793 pmapjat1 37794 pmapjlln1 37796 hlmod1i 37797 llnmod1i2 37801 atmod2i1 37802 atmod2i2 37803 llnmod2i2 37804 atmod3i1 37805 atmod3i2 37806 dalawlem2 37813 dalawlem3 37814 dalawlem5 37816 dalawlem6 37817 dalawlem7 37818 dalawlem8 37819 dalawlem11 37822 dalawlem12 37823 pmapocjN 37871 paddatclN 37890 linepsubclN 37892 pl42lem1N 37920 pl42lem2N 37921 pl42N 37924 lhp2lt 37942 lhpj1 37963 lhpmod2i2 37979 lhpmod6i1 37980 4atexlemc 38010 lautj 38034 trlval2 38104 trlcl 38105 trljat1 38107 trljat2 38108 trlle 38125 cdlemc1 38132 cdlemc2 38133 cdlemc5 38136 cdlemd2 38140 cdlemd3 38141 cdleme0aa 38151 cdleme0b 38153 cdleme0c 38154 cdleme0cp 38155 cdleme0cq 38156 cdleme0fN 38159 cdleme1b 38167 cdleme1 38168 cdleme2 38169 cdleme3b 38170 cdleme3c 38171 cdleme4a 38180 cdleme5 38181 cdleme7e 38188 cdleme8 38191 cdleme9 38194 cdleme10 38195 cdleme11fN 38205 cdleme11g 38206 cdleme11k 38209 cdleme11 38211 cdleme15b 38216 cdleme15 38219 cdleme22gb 38235 cdleme19b 38245 cdleme20d 38253 cdleme20j 38259 cdleme20l 38263 cdleme20m 38264 cdleme22e 38285 cdleme22eALTN 38286 cdleme22f 38287 cdleme23b 38291 cdleme23c 38292 cdleme28a 38311 cdleme28b 38312 cdleme29ex 38315 cdleme30a 38319 cdlemefr29exN 38343 cdleme32e 38386 cdleme35fnpq 38390 cdleme35b 38391 cdleme35c 38392 cdleme42e 38420 cdleme42i 38424 cdleme42mgN 38429 cdlemg2fv2 38541 cdlemg7fvbwN 38548 cdlemg4c 38553 cdlemg6c 38561 cdlemg10 38582 cdlemg11b 38583 cdlemg31a 38638 cdlemg31b 38639 cdlemg35 38654 trlcolem 38667 cdlemg44a 38672 trljco 38681 tendopltp 38721 cdlemh1 38756 cdlemh2 38757 cdlemi1 38759 cdlemi 38761 cdlemk4 38775 cdlemkvcl 38783 cdlemk10 38784 cdlemk11 38790 cdlemk11u 38812 cdlemk37 38855 cdlemkid1 38863 cdlemk50 38893 cdlemk51 38894 cdlemk52 38895 dialss 38987 dia2dimlem2 39006 dia2dimlem3 39007 cdlemm10N 39059 docaclN 39065 doca2N 39067 djajN 39078 diblss 39111 cdlemn2 39136 cdlemn10 39147 dihord1 39159 dihord2pre2 39167 dihord5apre 39203 dihjatc1 39252 dihmeetlem10N 39257 dihmeetlem11N 39258 djhljjN 39343 djhj 39345 dihprrnlem1N 39365 dihprrnlem2 39366 dihjat6 39375 dihjat5N 39378 dvh4dimat 39379 |
Copyright terms: Public domain | W3C validator |