| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > latjcl | Structured version Visualization version GIF version | ||
| Description: Closure of join operation in a lattice. (chjcom 31485 analog.) (Contributed by NM, 14-Sep-2011.) |
| Ref | Expression |
|---|---|
| latjcl.b | ⊢ 𝐵 = (Base‘𝐾) |
| latjcl.j | ⊢ ∨ = (join‘𝐾) |
| Ref | Expression |
|---|---|
| latjcl | ⊢ ((𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 ∨ 𝑌) ∈ 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | latjcl.b | . . 3 ⊢ 𝐵 = (Base‘𝐾) | |
| 2 | latjcl.j | . . 3 ⊢ ∨ = (join‘𝐾) | |
| 3 | eqid 2729 | . . 3 ⊢ (meet‘𝐾) = (meet‘𝐾) | |
| 4 | 1, 2, 3 | latlem 18378 | . 2 ⊢ ((𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → ((𝑋 ∨ 𝑌) ∈ 𝐵 ∧ (𝑋(meet‘𝐾)𝑌) ∈ 𝐵)) |
| 5 | 4 | simpld 494 | 1 ⊢ ((𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 ∨ 𝑌) ∈ 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 ‘cfv 6499 (class class class)co 7369 Basecbs 17155 joincjn 18252 meetcmee 18253 Latclat 18372 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5229 ax-sep 5246 ax-nul 5256 ax-pow 5315 ax-pr 5382 ax-un 7691 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rmo 3351 df-reu 3352 df-rab 3403 df-v 3446 df-sbc 3751 df-csb 3860 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-iun 4953 df-br 5103 df-opab 5165 df-mpt 5184 df-id 5526 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-f1 6504 df-fo 6505 df-f1o 6506 df-fv 6507 df-riota 7326 df-ov 7372 df-oprab 7373 df-lub 18285 df-glb 18286 df-join 18287 df-meet 18288 df-lat 18373 |
| This theorem is referenced by: latleeqj1 18392 latjlej1 18394 latjlej12 18396 latnlej2 18400 latjidm 18403 latnle 18414 latabs2 18417 latledi 18418 latmlej11 18419 latjass 18424 latj13 18427 latj31 18428 latj4 18430 mod1ile 18434 mod2ile 18435 latdisdlem 18437 lubun 18456 oldmm1 39203 olj01 39211 latmassOLD 39215 omllaw5N 39233 cmtcomlemN 39234 cmtbr2N 39239 cmtbr3N 39240 cmtbr4N 39241 lecmtN 39242 omlfh1N 39244 omlfh3N 39245 omlmod1i2N 39246 cvlexchb1 39316 cvlcvr1 39325 hlatjcl 39353 exatleN 39391 cvrval3 39400 cvrexchlem 39406 cvrexch 39407 cvratlem 39408 cvrat 39409 lnnat 39414 cvrat2 39416 atcvrj2b 39419 atltcvr 39422 atlelt 39425 2atlt 39426 atexchcvrN 39427 cvrat3 39429 cvrat4 39430 2atjm 39432 4noncolr3 39440 athgt 39443 3dim0 39444 3dimlem4a 39450 1cvratex 39460 1cvrjat 39462 1cvrat 39463 ps-2 39465 3atlem1 39470 3atlem2 39471 3at 39477 2atm 39514 lplni2 39524 lplnle 39527 2llnmj 39547 2atmat 39548 lplnexllnN 39551 2llnjaN 39553 lvoli3 39564 islvol5 39566 lvoli2 39568 lvolnle3at 39569 3atnelvolN 39573 islvol2aN 39579 4atlem3 39583 4atlem4d 39589 4atlem9 39590 4atlem10a 39591 4atlem10 39593 4atlem11a 39594 4atlem11b 39595 4atlem11 39596 4atlem12a 39597 4atlem12b 39598 4atlem12 39599 4at 39600 lplncvrlvol2 39602 2lplnja 39606 2lplnmj 39609 dalem5 39654 dalem8 39657 dalem-cly 39658 dalem38 39697 dalem39 39698 dalem44 39703 dalem54 39713 linepsubN 39739 pmapsub 39755 isline2 39761 linepmap 39762 isline3 39763 lncvrelatN 39768 2llnma1b 39773 cdlema1N 39778 cdlemblem 39780 cdlemb 39781 paddasslem5 39811 paddasslem12 39818 paddasslem13 39819 pmapjoin 39839 pmapjat1 39840 pmapjlln1 39842 hlmod1i 39843 llnmod1i2 39847 atmod2i1 39848 atmod2i2 39849 llnmod2i2 39850 atmod3i1 39851 atmod3i2 39852 dalawlem2 39859 dalawlem3 39860 dalawlem5 39862 dalawlem6 39863 dalawlem7 39864 dalawlem8 39865 dalawlem11 39868 dalawlem12 39869 pmapocjN 39917 paddatclN 39936 linepsubclN 39938 pl42lem1N 39966 pl42lem2N 39967 pl42N 39970 lhp2lt 39988 lhpj1 40009 lhpmod2i2 40025 lhpmod6i1 40026 4atexlemc 40056 lautj 40080 trlval2 40150 trlcl 40151 trljat1 40153 trljat2 40154 trlle 40171 cdlemc1 40178 cdlemc2 40179 cdlemc5 40182 cdlemd2 40186 cdlemd3 40187 cdleme0aa 40197 cdleme0b 40199 cdleme0c 40200 cdleme0cp 40201 cdleme0cq 40202 cdleme0fN 40205 cdleme1b 40213 cdleme1 40214 cdleme2 40215 cdleme3b 40216 cdleme3c 40217 cdleme4a 40226 cdleme5 40227 cdleme7e 40234 cdleme8 40237 cdleme9 40240 cdleme10 40241 cdleme11fN 40251 cdleme11g 40252 cdleme11k 40255 cdleme11 40257 cdleme15b 40262 cdleme15 40265 cdleme22gb 40281 cdleme19b 40291 cdleme20d 40299 cdleme20j 40305 cdleme20l 40309 cdleme20m 40310 cdleme22e 40331 cdleme22eALTN 40332 cdleme22f 40333 cdleme23b 40337 cdleme23c 40338 cdleme28a 40357 cdleme28b 40358 cdleme29ex 40361 cdleme30a 40365 cdlemefr29exN 40389 cdleme32e 40432 cdleme35fnpq 40436 cdleme35b 40437 cdleme35c 40438 cdleme42e 40466 cdleme42i 40470 cdleme42mgN 40475 cdlemg2fv2 40587 cdlemg7fvbwN 40594 cdlemg4c 40599 cdlemg6c 40607 cdlemg10 40628 cdlemg11b 40629 cdlemg31a 40684 cdlemg31b 40685 cdlemg35 40700 trlcolem 40713 cdlemg44a 40718 trljco 40727 tendopltp 40767 cdlemh1 40802 cdlemh2 40803 cdlemi1 40805 cdlemi 40807 cdlemk4 40821 cdlemkvcl 40829 cdlemk10 40830 cdlemk11 40836 cdlemk11u 40858 cdlemk37 40901 cdlemkid1 40909 cdlemk50 40939 cdlemk51 40940 cdlemk52 40941 dialss 41033 dia2dimlem2 41052 dia2dimlem3 41053 cdlemm10N 41105 docaclN 41111 doca2N 41113 djajN 41124 diblss 41157 cdlemn2 41182 cdlemn10 41193 dihord1 41205 dihord2pre2 41213 dihord5apre 41249 dihjatc1 41298 dihmeetlem10N 41303 dihmeetlem11N 41304 djhljjN 41389 djhj 41391 dihprrnlem1N 41411 dihprrnlem2 41412 dihjat6 41421 dihjat5N 41424 dvh4dimat 41425 |
| Copyright terms: Public domain | W3C validator |