![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > latjcl | Structured version Visualization version GIF version |
Description: Closure of join operation in a lattice. (chjcom 31534 analog.) (Contributed by NM, 14-Sep-2011.) |
Ref | Expression |
---|---|
latjcl.b | ⊢ 𝐵 = (Base‘𝐾) |
latjcl.j | ⊢ ∨ = (join‘𝐾) |
Ref | Expression |
---|---|
latjcl | ⊢ ((𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 ∨ 𝑌) ∈ 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | latjcl.b | . . 3 ⊢ 𝐵 = (Base‘𝐾) | |
2 | latjcl.j | . . 3 ⊢ ∨ = (join‘𝐾) | |
3 | eqid 2734 | . . 3 ⊢ (meet‘𝐾) = (meet‘𝐾) | |
4 | 1, 2, 3 | latlem 18494 | . 2 ⊢ ((𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → ((𝑋 ∨ 𝑌) ∈ 𝐵 ∧ (𝑋(meet‘𝐾)𝑌) ∈ 𝐵)) |
5 | 4 | simpld 494 | 1 ⊢ ((𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 ∨ 𝑌) ∈ 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ w3a 1086 = wceq 1536 ∈ wcel 2105 ‘cfv 6562 (class class class)co 7430 Basecbs 17244 joincjn 18368 meetcmee 18369 Latclat 18488 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1791 ax-4 1805 ax-5 1907 ax-6 1964 ax-7 2004 ax-8 2107 ax-9 2115 ax-10 2138 ax-11 2154 ax-12 2174 ax-ext 2705 ax-rep 5284 ax-sep 5301 ax-nul 5311 ax-pow 5370 ax-pr 5437 ax-un 7753 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1539 df-fal 1549 df-ex 1776 df-nf 1780 df-sb 2062 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2726 df-clel 2813 df-nfc 2889 df-ne 2938 df-ral 3059 df-rex 3068 df-rmo 3377 df-reu 3378 df-rab 3433 df-v 3479 df-sbc 3791 df-csb 3908 df-dif 3965 df-un 3967 df-in 3969 df-ss 3979 df-nul 4339 df-if 4531 df-pw 4606 df-sn 4631 df-pr 4633 df-op 4637 df-uni 4912 df-iun 4997 df-br 5148 df-opab 5210 df-mpt 5231 df-id 5582 df-xp 5694 df-rel 5695 df-cnv 5696 df-co 5697 df-dm 5698 df-rn 5699 df-res 5700 df-ima 5701 df-iota 6515 df-fun 6564 df-fn 6565 df-f 6566 df-f1 6567 df-fo 6568 df-f1o 6569 df-fv 6570 df-riota 7387 df-ov 7433 df-oprab 7434 df-lub 18403 df-glb 18404 df-join 18405 df-meet 18406 df-lat 18489 |
This theorem is referenced by: latleeqj1 18508 latjlej1 18510 latjlej12 18512 latnlej2 18516 latjidm 18519 latnle 18530 latabs2 18533 latledi 18534 latmlej11 18535 latjass 18540 latj13 18543 latj31 18544 latj4 18546 mod1ile 18550 mod2ile 18551 latdisdlem 18553 lubun 18572 oldmm1 39198 olj01 39206 latmassOLD 39210 omllaw5N 39228 cmtcomlemN 39229 cmtbr2N 39234 cmtbr3N 39235 cmtbr4N 39236 lecmtN 39237 omlfh1N 39239 omlfh3N 39240 omlmod1i2N 39241 cvlexchb1 39311 cvlcvr1 39320 hlatjcl 39348 exatleN 39386 cvrval3 39395 cvrexchlem 39401 cvrexch 39402 cvratlem 39403 cvrat 39404 lnnat 39409 cvrat2 39411 atcvrj2b 39414 atltcvr 39417 atlelt 39420 2atlt 39421 atexchcvrN 39422 cvrat3 39424 cvrat4 39425 2atjm 39427 4noncolr3 39435 athgt 39438 3dim0 39439 3dimlem4a 39445 1cvratex 39455 1cvrjat 39457 1cvrat 39458 ps-2 39460 3atlem1 39465 3atlem2 39466 3at 39472 2atm 39509 lplni2 39519 lplnle 39522 2llnmj 39542 2atmat 39543 lplnexllnN 39546 2llnjaN 39548 lvoli3 39559 islvol5 39561 lvoli2 39563 lvolnle3at 39564 3atnelvolN 39568 islvol2aN 39574 4atlem3 39578 4atlem4d 39584 4atlem9 39585 4atlem10a 39586 4atlem10 39588 4atlem11a 39589 4atlem11b 39590 4atlem11 39591 4atlem12a 39592 4atlem12b 39593 4atlem12 39594 4at 39595 lplncvrlvol2 39597 2lplnja 39601 2lplnmj 39604 dalem5 39649 dalem8 39652 dalem-cly 39653 dalem38 39692 dalem39 39693 dalem44 39698 dalem54 39708 linepsubN 39734 pmapsub 39750 isline2 39756 linepmap 39757 isline3 39758 lncvrelatN 39763 2llnma1b 39768 cdlema1N 39773 cdlemblem 39775 cdlemb 39776 paddasslem5 39806 paddasslem12 39813 paddasslem13 39814 pmapjoin 39834 pmapjat1 39835 pmapjlln1 39837 hlmod1i 39838 llnmod1i2 39842 atmod2i1 39843 atmod2i2 39844 llnmod2i2 39845 atmod3i1 39846 atmod3i2 39847 dalawlem2 39854 dalawlem3 39855 dalawlem5 39857 dalawlem6 39858 dalawlem7 39859 dalawlem8 39860 dalawlem11 39863 dalawlem12 39864 pmapocjN 39912 paddatclN 39931 linepsubclN 39933 pl42lem1N 39961 pl42lem2N 39962 pl42N 39965 lhp2lt 39983 lhpj1 40004 lhpmod2i2 40020 lhpmod6i1 40021 4atexlemc 40051 lautj 40075 trlval2 40145 trlcl 40146 trljat1 40148 trljat2 40149 trlle 40166 cdlemc1 40173 cdlemc2 40174 cdlemc5 40177 cdlemd2 40181 cdlemd3 40182 cdleme0aa 40192 cdleme0b 40194 cdleme0c 40195 cdleme0cp 40196 cdleme0cq 40197 cdleme0fN 40200 cdleme1b 40208 cdleme1 40209 cdleme2 40210 cdleme3b 40211 cdleme3c 40212 cdleme4a 40221 cdleme5 40222 cdleme7e 40229 cdleme8 40232 cdleme9 40235 cdleme10 40236 cdleme11fN 40246 cdleme11g 40247 cdleme11k 40250 cdleme11 40252 cdleme15b 40257 cdleme15 40260 cdleme22gb 40276 cdleme19b 40286 cdleme20d 40294 cdleme20j 40300 cdleme20l 40304 cdleme20m 40305 cdleme22e 40326 cdleme22eALTN 40327 cdleme22f 40328 cdleme23b 40332 cdleme23c 40333 cdleme28a 40352 cdleme28b 40353 cdleme29ex 40356 cdleme30a 40360 cdlemefr29exN 40384 cdleme32e 40427 cdleme35fnpq 40431 cdleme35b 40432 cdleme35c 40433 cdleme42e 40461 cdleme42i 40465 cdleme42mgN 40470 cdlemg2fv2 40582 cdlemg7fvbwN 40589 cdlemg4c 40594 cdlemg6c 40602 cdlemg10 40623 cdlemg11b 40624 cdlemg31a 40679 cdlemg31b 40680 cdlemg35 40695 trlcolem 40708 cdlemg44a 40713 trljco 40722 tendopltp 40762 cdlemh1 40797 cdlemh2 40798 cdlemi1 40800 cdlemi 40802 cdlemk4 40816 cdlemkvcl 40824 cdlemk10 40825 cdlemk11 40831 cdlemk11u 40853 cdlemk37 40896 cdlemkid1 40904 cdlemk50 40934 cdlemk51 40935 cdlemk52 40936 dialss 41028 dia2dimlem2 41047 dia2dimlem3 41048 cdlemm10N 41100 docaclN 41106 doca2N 41108 djajN 41119 diblss 41152 cdlemn2 41177 cdlemn10 41188 dihord1 41200 dihord2pre2 41208 dihord5apre 41244 dihjatc1 41293 dihmeetlem10N 41298 dihmeetlem11N 41299 djhljjN 41384 djhj 41386 dihprrnlem1N 41406 dihprrnlem2 41407 dihjat6 41416 dihjat5N 41419 dvh4dimat 41420 |
Copyright terms: Public domain | W3C validator |