| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > latjcl | Structured version Visualization version GIF version | ||
| Description: Closure of join operation in a lattice. (chjcom 31435 analog.) (Contributed by NM, 14-Sep-2011.) |
| Ref | Expression |
|---|---|
| latjcl.b | ⊢ 𝐵 = (Base‘𝐾) |
| latjcl.j | ⊢ ∨ = (join‘𝐾) |
| Ref | Expression |
|---|---|
| latjcl | ⊢ ((𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 ∨ 𝑌) ∈ 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | latjcl.b | . . 3 ⊢ 𝐵 = (Base‘𝐾) | |
| 2 | latjcl.j | . . 3 ⊢ ∨ = (join‘𝐾) | |
| 3 | eqid 2729 | . . 3 ⊢ (meet‘𝐾) = (meet‘𝐾) | |
| 4 | 1, 2, 3 | latlem 18396 | . 2 ⊢ ((𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → ((𝑋 ∨ 𝑌) ∈ 𝐵 ∧ (𝑋(meet‘𝐾)𝑌) ∈ 𝐵)) |
| 5 | 4 | simpld 494 | 1 ⊢ ((𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 ∨ 𝑌) ∈ 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 ‘cfv 6511 (class class class)co 7387 Basecbs 17179 joincjn 18272 meetcmee 18273 Latclat 18390 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5234 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rmo 3354 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-iun 4957 df-br 5108 df-opab 5170 df-mpt 5189 df-id 5533 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-riota 7344 df-ov 7390 df-oprab 7391 df-lub 18305 df-glb 18306 df-join 18307 df-meet 18308 df-lat 18391 |
| This theorem is referenced by: latleeqj1 18410 latjlej1 18412 latjlej12 18414 latnlej2 18418 latjidm 18421 latnle 18432 latabs2 18435 latledi 18436 latmlej11 18437 latjass 18442 latj13 18445 latj31 18446 latj4 18448 mod1ile 18452 mod2ile 18453 latdisdlem 18455 lubun 18474 oldmm1 39210 olj01 39218 latmassOLD 39222 omllaw5N 39240 cmtcomlemN 39241 cmtbr2N 39246 cmtbr3N 39247 cmtbr4N 39248 lecmtN 39249 omlfh1N 39251 omlfh3N 39252 omlmod1i2N 39253 cvlexchb1 39323 cvlcvr1 39332 hlatjcl 39360 exatleN 39398 cvrval3 39407 cvrexchlem 39413 cvrexch 39414 cvratlem 39415 cvrat 39416 lnnat 39421 cvrat2 39423 atcvrj2b 39426 atltcvr 39429 atlelt 39432 2atlt 39433 atexchcvrN 39434 cvrat3 39436 cvrat4 39437 2atjm 39439 4noncolr3 39447 athgt 39450 3dim0 39451 3dimlem4a 39457 1cvratex 39467 1cvrjat 39469 1cvrat 39470 ps-2 39472 3atlem1 39477 3atlem2 39478 3at 39484 2atm 39521 lplni2 39531 lplnle 39534 2llnmj 39554 2atmat 39555 lplnexllnN 39558 2llnjaN 39560 lvoli3 39571 islvol5 39573 lvoli2 39575 lvolnle3at 39576 3atnelvolN 39580 islvol2aN 39586 4atlem3 39590 4atlem4d 39596 4atlem9 39597 4atlem10a 39598 4atlem10 39600 4atlem11a 39601 4atlem11b 39602 4atlem11 39603 4atlem12a 39604 4atlem12b 39605 4atlem12 39606 4at 39607 lplncvrlvol2 39609 2lplnja 39613 2lplnmj 39616 dalem5 39661 dalem8 39664 dalem-cly 39665 dalem38 39704 dalem39 39705 dalem44 39710 dalem54 39720 linepsubN 39746 pmapsub 39762 isline2 39768 linepmap 39769 isline3 39770 lncvrelatN 39775 2llnma1b 39780 cdlema1N 39785 cdlemblem 39787 cdlemb 39788 paddasslem5 39818 paddasslem12 39825 paddasslem13 39826 pmapjoin 39846 pmapjat1 39847 pmapjlln1 39849 hlmod1i 39850 llnmod1i2 39854 atmod2i1 39855 atmod2i2 39856 llnmod2i2 39857 atmod3i1 39858 atmod3i2 39859 dalawlem2 39866 dalawlem3 39867 dalawlem5 39869 dalawlem6 39870 dalawlem7 39871 dalawlem8 39872 dalawlem11 39875 dalawlem12 39876 pmapocjN 39924 paddatclN 39943 linepsubclN 39945 pl42lem1N 39973 pl42lem2N 39974 pl42N 39977 lhp2lt 39995 lhpj1 40016 lhpmod2i2 40032 lhpmod6i1 40033 4atexlemc 40063 lautj 40087 trlval2 40157 trlcl 40158 trljat1 40160 trljat2 40161 trlle 40178 cdlemc1 40185 cdlemc2 40186 cdlemc5 40189 cdlemd2 40193 cdlemd3 40194 cdleme0aa 40204 cdleme0b 40206 cdleme0c 40207 cdleme0cp 40208 cdleme0cq 40209 cdleme0fN 40212 cdleme1b 40220 cdleme1 40221 cdleme2 40222 cdleme3b 40223 cdleme3c 40224 cdleme4a 40233 cdleme5 40234 cdleme7e 40241 cdleme8 40244 cdleme9 40247 cdleme10 40248 cdleme11fN 40258 cdleme11g 40259 cdleme11k 40262 cdleme11 40264 cdleme15b 40269 cdleme15 40272 cdleme22gb 40288 cdleme19b 40298 cdleme20d 40306 cdleme20j 40312 cdleme20l 40316 cdleme20m 40317 cdleme22e 40338 cdleme22eALTN 40339 cdleme22f 40340 cdleme23b 40344 cdleme23c 40345 cdleme28a 40364 cdleme28b 40365 cdleme29ex 40368 cdleme30a 40372 cdlemefr29exN 40396 cdleme32e 40439 cdleme35fnpq 40443 cdleme35b 40444 cdleme35c 40445 cdleme42e 40473 cdleme42i 40477 cdleme42mgN 40482 cdlemg2fv2 40594 cdlemg7fvbwN 40601 cdlemg4c 40606 cdlemg6c 40614 cdlemg10 40635 cdlemg11b 40636 cdlemg31a 40691 cdlemg31b 40692 cdlemg35 40707 trlcolem 40720 cdlemg44a 40725 trljco 40734 tendopltp 40774 cdlemh1 40809 cdlemh2 40810 cdlemi1 40812 cdlemi 40814 cdlemk4 40828 cdlemkvcl 40836 cdlemk10 40837 cdlemk11 40843 cdlemk11u 40865 cdlemk37 40908 cdlemkid1 40916 cdlemk50 40946 cdlemk51 40947 cdlemk52 40948 dialss 41040 dia2dimlem2 41059 dia2dimlem3 41060 cdlemm10N 41112 docaclN 41118 doca2N 41120 djajN 41131 diblss 41164 cdlemn2 41189 cdlemn10 41200 dihord1 41212 dihord2pre2 41220 dihord5apre 41256 dihjatc1 41305 dihmeetlem10N 41310 dihmeetlem11N 41311 djhljjN 41396 djhj 41398 dihprrnlem1N 41418 dihprrnlem2 41419 dihjat6 41428 dihjat5N 41431 dvh4dimat 41432 |
| Copyright terms: Public domain | W3C validator |