| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > latjcl | Structured version Visualization version GIF version | ||
| Description: Closure of join operation in a lattice. (chjcom 31442 analog.) (Contributed by NM, 14-Sep-2011.) |
| Ref | Expression |
|---|---|
| latjcl.b | ⊢ 𝐵 = (Base‘𝐾) |
| latjcl.j | ⊢ ∨ = (join‘𝐾) |
| Ref | Expression |
|---|---|
| latjcl | ⊢ ((𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 ∨ 𝑌) ∈ 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | latjcl.b | . . 3 ⊢ 𝐵 = (Base‘𝐾) | |
| 2 | latjcl.j | . . 3 ⊢ ∨ = (join‘𝐾) | |
| 3 | eqid 2730 | . . 3 ⊢ (meet‘𝐾) = (meet‘𝐾) | |
| 4 | 1, 2, 3 | latlem 18403 | . 2 ⊢ ((𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → ((𝑋 ∨ 𝑌) ∈ 𝐵 ∧ (𝑋(meet‘𝐾)𝑌) ∈ 𝐵)) |
| 5 | 4 | simpld 494 | 1 ⊢ ((𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 ∨ 𝑌) ∈ 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 ‘cfv 6514 (class class class)co 7390 Basecbs 17186 joincjn 18279 meetcmee 18280 Latclat 18397 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-rep 5237 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-ral 3046 df-rex 3055 df-rmo 3356 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-iun 4960 df-br 5111 df-opab 5173 df-mpt 5192 df-id 5536 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-fv 6522 df-riota 7347 df-ov 7393 df-oprab 7394 df-lub 18312 df-glb 18313 df-join 18314 df-meet 18315 df-lat 18398 |
| This theorem is referenced by: latleeqj1 18417 latjlej1 18419 latjlej12 18421 latnlej2 18425 latjidm 18428 latnle 18439 latabs2 18442 latledi 18443 latmlej11 18444 latjass 18449 latj13 18452 latj31 18453 latj4 18455 mod1ile 18459 mod2ile 18460 latdisdlem 18462 lubun 18481 oldmm1 39217 olj01 39225 latmassOLD 39229 omllaw5N 39247 cmtcomlemN 39248 cmtbr2N 39253 cmtbr3N 39254 cmtbr4N 39255 lecmtN 39256 omlfh1N 39258 omlfh3N 39259 omlmod1i2N 39260 cvlexchb1 39330 cvlcvr1 39339 hlatjcl 39367 exatleN 39405 cvrval3 39414 cvrexchlem 39420 cvrexch 39421 cvratlem 39422 cvrat 39423 lnnat 39428 cvrat2 39430 atcvrj2b 39433 atltcvr 39436 atlelt 39439 2atlt 39440 atexchcvrN 39441 cvrat3 39443 cvrat4 39444 2atjm 39446 4noncolr3 39454 athgt 39457 3dim0 39458 3dimlem4a 39464 1cvratex 39474 1cvrjat 39476 1cvrat 39477 ps-2 39479 3atlem1 39484 3atlem2 39485 3at 39491 2atm 39528 lplni2 39538 lplnle 39541 2llnmj 39561 2atmat 39562 lplnexllnN 39565 2llnjaN 39567 lvoli3 39578 islvol5 39580 lvoli2 39582 lvolnle3at 39583 3atnelvolN 39587 islvol2aN 39593 4atlem3 39597 4atlem4d 39603 4atlem9 39604 4atlem10a 39605 4atlem10 39607 4atlem11a 39608 4atlem11b 39609 4atlem11 39610 4atlem12a 39611 4atlem12b 39612 4atlem12 39613 4at 39614 lplncvrlvol2 39616 2lplnja 39620 2lplnmj 39623 dalem5 39668 dalem8 39671 dalem-cly 39672 dalem38 39711 dalem39 39712 dalem44 39717 dalem54 39727 linepsubN 39753 pmapsub 39769 isline2 39775 linepmap 39776 isline3 39777 lncvrelatN 39782 2llnma1b 39787 cdlema1N 39792 cdlemblem 39794 cdlemb 39795 paddasslem5 39825 paddasslem12 39832 paddasslem13 39833 pmapjoin 39853 pmapjat1 39854 pmapjlln1 39856 hlmod1i 39857 llnmod1i2 39861 atmod2i1 39862 atmod2i2 39863 llnmod2i2 39864 atmod3i1 39865 atmod3i2 39866 dalawlem2 39873 dalawlem3 39874 dalawlem5 39876 dalawlem6 39877 dalawlem7 39878 dalawlem8 39879 dalawlem11 39882 dalawlem12 39883 pmapocjN 39931 paddatclN 39950 linepsubclN 39952 pl42lem1N 39980 pl42lem2N 39981 pl42N 39984 lhp2lt 40002 lhpj1 40023 lhpmod2i2 40039 lhpmod6i1 40040 4atexlemc 40070 lautj 40094 trlval2 40164 trlcl 40165 trljat1 40167 trljat2 40168 trlle 40185 cdlemc1 40192 cdlemc2 40193 cdlemc5 40196 cdlemd2 40200 cdlemd3 40201 cdleme0aa 40211 cdleme0b 40213 cdleme0c 40214 cdleme0cp 40215 cdleme0cq 40216 cdleme0fN 40219 cdleme1b 40227 cdleme1 40228 cdleme2 40229 cdleme3b 40230 cdleme3c 40231 cdleme4a 40240 cdleme5 40241 cdleme7e 40248 cdleme8 40251 cdleme9 40254 cdleme10 40255 cdleme11fN 40265 cdleme11g 40266 cdleme11k 40269 cdleme11 40271 cdleme15b 40276 cdleme15 40279 cdleme22gb 40295 cdleme19b 40305 cdleme20d 40313 cdleme20j 40319 cdleme20l 40323 cdleme20m 40324 cdleme22e 40345 cdleme22eALTN 40346 cdleme22f 40347 cdleme23b 40351 cdleme23c 40352 cdleme28a 40371 cdleme28b 40372 cdleme29ex 40375 cdleme30a 40379 cdlemefr29exN 40403 cdleme32e 40446 cdleme35fnpq 40450 cdleme35b 40451 cdleme35c 40452 cdleme42e 40480 cdleme42i 40484 cdleme42mgN 40489 cdlemg2fv2 40601 cdlemg7fvbwN 40608 cdlemg4c 40613 cdlemg6c 40621 cdlemg10 40642 cdlemg11b 40643 cdlemg31a 40698 cdlemg31b 40699 cdlemg35 40714 trlcolem 40727 cdlemg44a 40732 trljco 40741 tendopltp 40781 cdlemh1 40816 cdlemh2 40817 cdlemi1 40819 cdlemi 40821 cdlemk4 40835 cdlemkvcl 40843 cdlemk10 40844 cdlemk11 40850 cdlemk11u 40872 cdlemk37 40915 cdlemkid1 40923 cdlemk50 40953 cdlemk51 40954 cdlemk52 40955 dialss 41047 dia2dimlem2 41066 dia2dimlem3 41067 cdlemm10N 41119 docaclN 41125 doca2N 41127 djajN 41138 diblss 41171 cdlemn2 41196 cdlemn10 41207 dihord1 41219 dihord2pre2 41227 dihord5apre 41263 dihjatc1 41312 dihmeetlem10N 41317 dihmeetlem11N 41318 djhljjN 41403 djhj 41405 dihprrnlem1N 41425 dihprrnlem2 41426 dihjat6 41435 dihjat5N 41438 dvh4dimat 41439 |
| Copyright terms: Public domain | W3C validator |