![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > latjcl | Structured version Visualization version GIF version |
Description: Closure of join operation in a lattice. (chjcom 31538 analog.) (Contributed by NM, 14-Sep-2011.) |
Ref | Expression |
---|---|
latjcl.b | ⊢ 𝐵 = (Base‘𝐾) |
latjcl.j | ⊢ ∨ = (join‘𝐾) |
Ref | Expression |
---|---|
latjcl | ⊢ ((𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 ∨ 𝑌) ∈ 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | latjcl.b | . . 3 ⊢ 𝐵 = (Base‘𝐾) | |
2 | latjcl.j | . . 3 ⊢ ∨ = (join‘𝐾) | |
3 | eqid 2740 | . . 3 ⊢ (meet‘𝐾) = (meet‘𝐾) | |
4 | 1, 2, 3 | latlem 18507 | . 2 ⊢ ((𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → ((𝑋 ∨ 𝑌) ∈ 𝐵 ∧ (𝑋(meet‘𝐾)𝑌) ∈ 𝐵)) |
5 | 4 | simpld 494 | 1 ⊢ ((𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 ∨ 𝑌) ∈ 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ w3a 1087 = wceq 1537 ∈ wcel 2108 ‘cfv 6573 (class class class)co 7448 Basecbs 17258 joincjn 18381 meetcmee 18382 Latclat 18501 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-rep 5303 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-ral 3068 df-rex 3077 df-rmo 3388 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-iun 5017 df-br 5167 df-opab 5229 df-mpt 5250 df-id 5593 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-riota 7404 df-ov 7451 df-oprab 7452 df-lub 18416 df-glb 18417 df-join 18418 df-meet 18419 df-lat 18502 |
This theorem is referenced by: latleeqj1 18521 latjlej1 18523 latjlej12 18525 latnlej2 18529 latjidm 18532 latnle 18543 latabs2 18546 latledi 18547 latmlej11 18548 latjass 18553 latj13 18556 latj31 18557 latj4 18559 mod1ile 18563 mod2ile 18564 latdisdlem 18566 lubun 18585 oldmm1 39173 olj01 39181 latmassOLD 39185 omllaw5N 39203 cmtcomlemN 39204 cmtbr2N 39209 cmtbr3N 39210 cmtbr4N 39211 lecmtN 39212 omlfh1N 39214 omlfh3N 39215 omlmod1i2N 39216 cvlexchb1 39286 cvlcvr1 39295 hlatjcl 39323 exatleN 39361 cvrval3 39370 cvrexchlem 39376 cvrexch 39377 cvratlem 39378 cvrat 39379 lnnat 39384 cvrat2 39386 atcvrj2b 39389 atltcvr 39392 atlelt 39395 2atlt 39396 atexchcvrN 39397 cvrat3 39399 cvrat4 39400 2atjm 39402 4noncolr3 39410 athgt 39413 3dim0 39414 3dimlem4a 39420 1cvratex 39430 1cvrjat 39432 1cvrat 39433 ps-2 39435 3atlem1 39440 3atlem2 39441 3at 39447 2atm 39484 lplni2 39494 lplnle 39497 2llnmj 39517 2atmat 39518 lplnexllnN 39521 2llnjaN 39523 lvoli3 39534 islvol5 39536 lvoli2 39538 lvolnle3at 39539 3atnelvolN 39543 islvol2aN 39549 4atlem3 39553 4atlem4d 39559 4atlem9 39560 4atlem10a 39561 4atlem10 39563 4atlem11a 39564 4atlem11b 39565 4atlem11 39566 4atlem12a 39567 4atlem12b 39568 4atlem12 39569 4at 39570 lplncvrlvol2 39572 2lplnja 39576 2lplnmj 39579 dalem5 39624 dalem8 39627 dalem-cly 39628 dalem38 39667 dalem39 39668 dalem44 39673 dalem54 39683 linepsubN 39709 pmapsub 39725 isline2 39731 linepmap 39732 isline3 39733 lncvrelatN 39738 2llnma1b 39743 cdlema1N 39748 cdlemblem 39750 cdlemb 39751 paddasslem5 39781 paddasslem12 39788 paddasslem13 39789 pmapjoin 39809 pmapjat1 39810 pmapjlln1 39812 hlmod1i 39813 llnmod1i2 39817 atmod2i1 39818 atmod2i2 39819 llnmod2i2 39820 atmod3i1 39821 atmod3i2 39822 dalawlem2 39829 dalawlem3 39830 dalawlem5 39832 dalawlem6 39833 dalawlem7 39834 dalawlem8 39835 dalawlem11 39838 dalawlem12 39839 pmapocjN 39887 paddatclN 39906 linepsubclN 39908 pl42lem1N 39936 pl42lem2N 39937 pl42N 39940 lhp2lt 39958 lhpj1 39979 lhpmod2i2 39995 lhpmod6i1 39996 4atexlemc 40026 lautj 40050 trlval2 40120 trlcl 40121 trljat1 40123 trljat2 40124 trlle 40141 cdlemc1 40148 cdlemc2 40149 cdlemc5 40152 cdlemd2 40156 cdlemd3 40157 cdleme0aa 40167 cdleme0b 40169 cdleme0c 40170 cdleme0cp 40171 cdleme0cq 40172 cdleme0fN 40175 cdleme1b 40183 cdleme1 40184 cdleme2 40185 cdleme3b 40186 cdleme3c 40187 cdleme4a 40196 cdleme5 40197 cdleme7e 40204 cdleme8 40207 cdleme9 40210 cdleme10 40211 cdleme11fN 40221 cdleme11g 40222 cdleme11k 40225 cdleme11 40227 cdleme15b 40232 cdleme15 40235 cdleme22gb 40251 cdleme19b 40261 cdleme20d 40269 cdleme20j 40275 cdleme20l 40279 cdleme20m 40280 cdleme22e 40301 cdleme22eALTN 40302 cdleme22f 40303 cdleme23b 40307 cdleme23c 40308 cdleme28a 40327 cdleme28b 40328 cdleme29ex 40331 cdleme30a 40335 cdlemefr29exN 40359 cdleme32e 40402 cdleme35fnpq 40406 cdleme35b 40407 cdleme35c 40408 cdleme42e 40436 cdleme42i 40440 cdleme42mgN 40445 cdlemg2fv2 40557 cdlemg7fvbwN 40564 cdlemg4c 40569 cdlemg6c 40577 cdlemg10 40598 cdlemg11b 40599 cdlemg31a 40654 cdlemg31b 40655 cdlemg35 40670 trlcolem 40683 cdlemg44a 40688 trljco 40697 tendopltp 40737 cdlemh1 40772 cdlemh2 40773 cdlemi1 40775 cdlemi 40777 cdlemk4 40791 cdlemkvcl 40799 cdlemk10 40800 cdlemk11 40806 cdlemk11u 40828 cdlemk37 40871 cdlemkid1 40879 cdlemk50 40909 cdlemk51 40910 cdlemk52 40911 dialss 41003 dia2dimlem2 41022 dia2dimlem3 41023 cdlemm10N 41075 docaclN 41081 doca2N 41083 djajN 41094 diblss 41127 cdlemn2 41152 cdlemn10 41163 dihord1 41175 dihord2pre2 41183 dihord5apre 41219 dihjatc1 41268 dihmeetlem10N 41273 dihmeetlem11N 41274 djhljjN 41359 djhj 41361 dihprrnlem1N 41381 dihprrnlem2 41382 dihjat6 41391 dihjat5N 41394 dvh4dimat 41395 |
Copyright terms: Public domain | W3C validator |