Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > latjcl | Structured version Visualization version GIF version |
Description: Closure of join operation in a lattice. (chjcom 29877 analog.) (Contributed by NM, 14-Sep-2011.) |
Ref | Expression |
---|---|
latjcl.b | ⊢ 𝐵 = (Base‘𝐾) |
latjcl.j | ⊢ ∨ = (join‘𝐾) |
Ref | Expression |
---|---|
latjcl | ⊢ ((𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 ∨ 𝑌) ∈ 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | latjcl.b | . . 3 ⊢ 𝐵 = (Base‘𝐾) | |
2 | latjcl.j | . . 3 ⊢ ∨ = (join‘𝐾) | |
3 | eqid 2739 | . . 3 ⊢ (meet‘𝐾) = (meet‘𝐾) | |
4 | 1, 2, 3 | latlem 18164 | . 2 ⊢ ((𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → ((𝑋 ∨ 𝑌) ∈ 𝐵 ∧ (𝑋(meet‘𝐾)𝑌) ∈ 𝐵)) |
5 | 4 | simpld 495 | 1 ⊢ ((𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 ∨ 𝑌) ∈ 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ w3a 1086 = wceq 1539 ∈ wcel 2107 ‘cfv 6437 (class class class)co 7284 Basecbs 16921 joincjn 18038 meetcmee 18039 Latclat 18158 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2710 ax-rep 5210 ax-sep 5224 ax-nul 5231 ax-pow 5289 ax-pr 5353 ax-un 7597 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2541 df-eu 2570 df-clab 2717 df-cleq 2731 df-clel 2817 df-nfc 2890 df-ne 2945 df-ral 3070 df-rex 3071 df-reu 3073 df-rab 3074 df-v 3435 df-sbc 3718 df-csb 3834 df-dif 3891 df-un 3893 df-in 3895 df-ss 3905 df-nul 4258 df-if 4461 df-pw 4536 df-sn 4563 df-pr 4565 df-op 4569 df-uni 4841 df-iun 4927 df-br 5076 df-opab 5138 df-mpt 5159 df-id 5490 df-xp 5596 df-rel 5597 df-cnv 5598 df-co 5599 df-dm 5600 df-rn 5601 df-res 5602 df-ima 5603 df-iota 6395 df-fun 6439 df-fn 6440 df-f 6441 df-f1 6442 df-fo 6443 df-f1o 6444 df-fv 6445 df-riota 7241 df-ov 7287 df-oprab 7288 df-lub 18073 df-glb 18074 df-join 18075 df-meet 18076 df-lat 18159 |
This theorem is referenced by: latleeqj1 18178 latjlej1 18180 latjlej12 18182 latnlej2 18186 latjidm 18189 latnle 18200 latabs2 18203 latledi 18204 latmlej11 18205 latjass 18210 latj13 18213 latj31 18214 latj4 18216 mod1ile 18220 mod2ile 18221 latdisdlem 18223 lubun 18242 oldmm1 37238 olj01 37246 latmassOLD 37250 omllaw5N 37268 cmtcomlemN 37269 cmtbr2N 37274 cmtbr3N 37275 cmtbr4N 37276 lecmtN 37277 omlfh1N 37279 omlfh3N 37280 omlmod1i2N 37281 cvlexchb1 37351 cvlcvr1 37360 hlatjcl 37388 exatleN 37425 cvrval3 37434 cvrexchlem 37440 cvrexch 37441 cvratlem 37442 cvrat 37443 lnnat 37448 cvrat2 37450 atcvrj2b 37453 atltcvr 37456 atlelt 37459 2atlt 37460 atexchcvrN 37461 cvrat3 37463 cvrat4 37464 2atjm 37466 4noncolr3 37474 athgt 37477 3dim0 37478 3dimlem4a 37484 1cvratex 37494 1cvrjat 37496 1cvrat 37497 ps-2 37499 3atlem1 37504 3atlem2 37505 3at 37511 2atm 37548 lplni2 37558 lplnle 37561 2llnmj 37581 2atmat 37582 lplnexllnN 37585 2llnjaN 37587 lvoli3 37598 islvol5 37600 lvoli2 37602 lvolnle3at 37603 3atnelvolN 37607 islvol2aN 37613 4atlem3 37617 4atlem4d 37623 4atlem9 37624 4atlem10a 37625 4atlem10 37627 4atlem11a 37628 4atlem11b 37629 4atlem11 37630 4atlem12a 37631 4atlem12b 37632 4atlem12 37633 4at 37634 lplncvrlvol2 37636 2lplnja 37640 2lplnmj 37643 dalem5 37688 dalem8 37691 dalem-cly 37692 dalem38 37731 dalem39 37732 dalem44 37737 dalem54 37747 linepsubN 37773 pmapsub 37789 isline2 37795 linepmap 37796 isline3 37797 lncvrelatN 37802 2llnma1b 37807 cdlema1N 37812 cdlemblem 37814 cdlemb 37815 paddasslem5 37845 paddasslem12 37852 paddasslem13 37853 pmapjoin 37873 pmapjat1 37874 pmapjlln1 37876 hlmod1i 37877 llnmod1i2 37881 atmod2i1 37882 atmod2i2 37883 llnmod2i2 37884 atmod3i1 37885 atmod3i2 37886 dalawlem2 37893 dalawlem3 37894 dalawlem5 37896 dalawlem6 37897 dalawlem7 37898 dalawlem8 37899 dalawlem11 37902 dalawlem12 37903 pmapocjN 37951 paddatclN 37970 linepsubclN 37972 pl42lem1N 38000 pl42lem2N 38001 pl42N 38004 lhp2lt 38022 lhpj1 38043 lhpmod2i2 38059 lhpmod6i1 38060 4atexlemc 38090 lautj 38114 trlval2 38184 trlcl 38185 trljat1 38187 trljat2 38188 trlle 38205 cdlemc1 38212 cdlemc2 38213 cdlemc5 38216 cdlemd2 38220 cdlemd3 38221 cdleme0aa 38231 cdleme0b 38233 cdleme0c 38234 cdleme0cp 38235 cdleme0cq 38236 cdleme0fN 38239 cdleme1b 38247 cdleme1 38248 cdleme2 38249 cdleme3b 38250 cdleme3c 38251 cdleme4a 38260 cdleme5 38261 cdleme7e 38268 cdleme8 38271 cdleme9 38274 cdleme10 38275 cdleme11fN 38285 cdleme11g 38286 cdleme11k 38289 cdleme11 38291 cdleme15b 38296 cdleme15 38299 cdleme22gb 38315 cdleme19b 38325 cdleme20d 38333 cdleme20j 38339 cdleme20l 38343 cdleme20m 38344 cdleme22e 38365 cdleme22eALTN 38366 cdleme22f 38367 cdleme23b 38371 cdleme23c 38372 cdleme28a 38391 cdleme28b 38392 cdleme29ex 38395 cdleme30a 38399 cdlemefr29exN 38423 cdleme32e 38466 cdleme35fnpq 38470 cdleme35b 38471 cdleme35c 38472 cdleme42e 38500 cdleme42i 38504 cdleme42mgN 38509 cdlemg2fv2 38621 cdlemg7fvbwN 38628 cdlemg4c 38633 cdlemg6c 38641 cdlemg10 38662 cdlemg11b 38663 cdlemg31a 38718 cdlemg31b 38719 cdlemg35 38734 trlcolem 38747 cdlemg44a 38752 trljco 38761 tendopltp 38801 cdlemh1 38836 cdlemh2 38837 cdlemi1 38839 cdlemi 38841 cdlemk4 38855 cdlemkvcl 38863 cdlemk10 38864 cdlemk11 38870 cdlemk11u 38892 cdlemk37 38935 cdlemkid1 38943 cdlemk50 38973 cdlemk51 38974 cdlemk52 38975 dialss 39067 dia2dimlem2 39086 dia2dimlem3 39087 cdlemm10N 39139 docaclN 39145 doca2N 39147 djajN 39158 diblss 39191 cdlemn2 39216 cdlemn10 39227 dihord1 39239 dihord2pre2 39247 dihord5apre 39283 dihjatc1 39332 dihmeetlem10N 39337 dihmeetlem11N 39338 djhljjN 39423 djhj 39425 dihprrnlem1N 39445 dihprrnlem2 39446 dihjat6 39455 dihjat5N 39458 dvh4dimat 39459 |
Copyright terms: Public domain | W3C validator |