| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > latjcl | Structured version Visualization version GIF version | ||
| Description: Closure of join operation in a lattice. (chjcom 31433 analog.) (Contributed by NM, 14-Sep-2011.) |
| Ref | Expression |
|---|---|
| latjcl.b | ⊢ 𝐵 = (Base‘𝐾) |
| latjcl.j | ⊢ ∨ = (join‘𝐾) |
| Ref | Expression |
|---|---|
| latjcl | ⊢ ((𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 ∨ 𝑌) ∈ 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | latjcl.b | . . 3 ⊢ 𝐵 = (Base‘𝐾) | |
| 2 | latjcl.j | . . 3 ⊢ ∨ = (join‘𝐾) | |
| 3 | eqid 2735 | . . 3 ⊢ (meet‘𝐾) = (meet‘𝐾) | |
| 4 | 1, 2, 3 | latlem 18445 | . 2 ⊢ ((𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → ((𝑋 ∨ 𝑌) ∈ 𝐵 ∧ (𝑋(meet‘𝐾)𝑌) ∈ 𝐵)) |
| 5 | 4 | simpld 494 | 1 ⊢ ((𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 ∨ 𝑌) ∈ 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ w3a 1086 = wceq 1540 ∈ wcel 2108 ‘cfv 6530 (class class class)co 7403 Basecbs 17226 joincjn 18321 meetcmee 18322 Latclat 18439 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-rep 5249 ax-sep 5266 ax-nul 5276 ax-pow 5335 ax-pr 5402 ax-un 7727 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-ral 3052 df-rex 3061 df-rmo 3359 df-reu 3360 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-iun 4969 df-br 5120 df-opab 5182 df-mpt 5202 df-id 5548 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-iota 6483 df-fun 6532 df-fn 6533 df-f 6534 df-f1 6535 df-fo 6536 df-f1o 6537 df-fv 6538 df-riota 7360 df-ov 7406 df-oprab 7407 df-lub 18354 df-glb 18355 df-join 18356 df-meet 18357 df-lat 18440 |
| This theorem is referenced by: latleeqj1 18459 latjlej1 18461 latjlej12 18463 latnlej2 18467 latjidm 18470 latnle 18481 latabs2 18484 latledi 18485 latmlej11 18486 latjass 18491 latj13 18494 latj31 18495 latj4 18497 mod1ile 18501 mod2ile 18502 latdisdlem 18504 lubun 18523 oldmm1 39181 olj01 39189 latmassOLD 39193 omllaw5N 39211 cmtcomlemN 39212 cmtbr2N 39217 cmtbr3N 39218 cmtbr4N 39219 lecmtN 39220 omlfh1N 39222 omlfh3N 39223 omlmod1i2N 39224 cvlexchb1 39294 cvlcvr1 39303 hlatjcl 39331 exatleN 39369 cvrval3 39378 cvrexchlem 39384 cvrexch 39385 cvratlem 39386 cvrat 39387 lnnat 39392 cvrat2 39394 atcvrj2b 39397 atltcvr 39400 atlelt 39403 2atlt 39404 atexchcvrN 39405 cvrat3 39407 cvrat4 39408 2atjm 39410 4noncolr3 39418 athgt 39421 3dim0 39422 3dimlem4a 39428 1cvratex 39438 1cvrjat 39440 1cvrat 39441 ps-2 39443 3atlem1 39448 3atlem2 39449 3at 39455 2atm 39492 lplni2 39502 lplnle 39505 2llnmj 39525 2atmat 39526 lplnexllnN 39529 2llnjaN 39531 lvoli3 39542 islvol5 39544 lvoli2 39546 lvolnle3at 39547 3atnelvolN 39551 islvol2aN 39557 4atlem3 39561 4atlem4d 39567 4atlem9 39568 4atlem10a 39569 4atlem10 39571 4atlem11a 39572 4atlem11b 39573 4atlem11 39574 4atlem12a 39575 4atlem12b 39576 4atlem12 39577 4at 39578 lplncvrlvol2 39580 2lplnja 39584 2lplnmj 39587 dalem5 39632 dalem8 39635 dalem-cly 39636 dalem38 39675 dalem39 39676 dalem44 39681 dalem54 39691 linepsubN 39717 pmapsub 39733 isline2 39739 linepmap 39740 isline3 39741 lncvrelatN 39746 2llnma1b 39751 cdlema1N 39756 cdlemblem 39758 cdlemb 39759 paddasslem5 39789 paddasslem12 39796 paddasslem13 39797 pmapjoin 39817 pmapjat1 39818 pmapjlln1 39820 hlmod1i 39821 llnmod1i2 39825 atmod2i1 39826 atmod2i2 39827 llnmod2i2 39828 atmod3i1 39829 atmod3i2 39830 dalawlem2 39837 dalawlem3 39838 dalawlem5 39840 dalawlem6 39841 dalawlem7 39842 dalawlem8 39843 dalawlem11 39846 dalawlem12 39847 pmapocjN 39895 paddatclN 39914 linepsubclN 39916 pl42lem1N 39944 pl42lem2N 39945 pl42N 39948 lhp2lt 39966 lhpj1 39987 lhpmod2i2 40003 lhpmod6i1 40004 4atexlemc 40034 lautj 40058 trlval2 40128 trlcl 40129 trljat1 40131 trljat2 40132 trlle 40149 cdlemc1 40156 cdlemc2 40157 cdlemc5 40160 cdlemd2 40164 cdlemd3 40165 cdleme0aa 40175 cdleme0b 40177 cdleme0c 40178 cdleme0cp 40179 cdleme0cq 40180 cdleme0fN 40183 cdleme1b 40191 cdleme1 40192 cdleme2 40193 cdleme3b 40194 cdleme3c 40195 cdleme4a 40204 cdleme5 40205 cdleme7e 40212 cdleme8 40215 cdleme9 40218 cdleme10 40219 cdleme11fN 40229 cdleme11g 40230 cdleme11k 40233 cdleme11 40235 cdleme15b 40240 cdleme15 40243 cdleme22gb 40259 cdleme19b 40269 cdleme20d 40277 cdleme20j 40283 cdleme20l 40287 cdleme20m 40288 cdleme22e 40309 cdleme22eALTN 40310 cdleme22f 40311 cdleme23b 40315 cdleme23c 40316 cdleme28a 40335 cdleme28b 40336 cdleme29ex 40339 cdleme30a 40343 cdlemefr29exN 40367 cdleme32e 40410 cdleme35fnpq 40414 cdleme35b 40415 cdleme35c 40416 cdleme42e 40444 cdleme42i 40448 cdleme42mgN 40453 cdlemg2fv2 40565 cdlemg7fvbwN 40572 cdlemg4c 40577 cdlemg6c 40585 cdlemg10 40606 cdlemg11b 40607 cdlemg31a 40662 cdlemg31b 40663 cdlemg35 40678 trlcolem 40691 cdlemg44a 40696 trljco 40705 tendopltp 40745 cdlemh1 40780 cdlemh2 40781 cdlemi1 40783 cdlemi 40785 cdlemk4 40799 cdlemkvcl 40807 cdlemk10 40808 cdlemk11 40814 cdlemk11u 40836 cdlemk37 40879 cdlemkid1 40887 cdlemk50 40917 cdlemk51 40918 cdlemk52 40919 dialss 41011 dia2dimlem2 41030 dia2dimlem3 41031 cdlemm10N 41083 docaclN 41089 doca2N 41091 djajN 41102 diblss 41135 cdlemn2 41160 cdlemn10 41171 dihord1 41183 dihord2pre2 41191 dihord5apre 41227 dihjatc1 41276 dihmeetlem10N 41281 dihmeetlem11N 41282 djhljjN 41367 djhj 41369 dihprrnlem1N 41389 dihprrnlem2 41390 dihjat6 41399 dihjat5N 41402 dvh4dimat 41403 |
| Copyright terms: Public domain | W3C validator |