| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > latjcl | Structured version Visualization version GIF version | ||
| Description: Closure of join operation in a lattice. (chjcom 31450 analog.) (Contributed by NM, 14-Sep-2011.) |
| Ref | Expression |
|---|---|
| latjcl.b | ⊢ 𝐵 = (Base‘𝐾) |
| latjcl.j | ⊢ ∨ = (join‘𝐾) |
| Ref | Expression |
|---|---|
| latjcl | ⊢ ((𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 ∨ 𝑌) ∈ 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | latjcl.b | . . 3 ⊢ 𝐵 = (Base‘𝐾) | |
| 2 | latjcl.j | . . 3 ⊢ ∨ = (join‘𝐾) | |
| 3 | eqid 2729 | . . 3 ⊢ (meet‘𝐾) = (meet‘𝐾) | |
| 4 | 1, 2, 3 | latlem 18343 | . 2 ⊢ ((𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → ((𝑋 ∨ 𝑌) ∈ 𝐵 ∧ (𝑋(meet‘𝐾)𝑌) ∈ 𝐵)) |
| 5 | 4 | simpld 494 | 1 ⊢ ((𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 ∨ 𝑌) ∈ 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 ‘cfv 6482 (class class class)co 7349 Basecbs 17120 joincjn 18217 meetcmee 18218 Latclat 18337 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5218 ax-sep 5235 ax-nul 5245 ax-pow 5304 ax-pr 5371 ax-un 7671 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rmo 3343 df-reu 3344 df-rab 3395 df-v 3438 df-sbc 3743 df-csb 3852 df-dif 3906 df-un 3908 df-in 3910 df-ss 3920 df-nul 4285 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4859 df-iun 4943 df-br 5093 df-opab 5155 df-mpt 5174 df-id 5514 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-iota 6438 df-fun 6484 df-fn 6485 df-f 6486 df-f1 6487 df-fo 6488 df-f1o 6489 df-fv 6490 df-riota 7306 df-ov 7352 df-oprab 7353 df-lub 18250 df-glb 18251 df-join 18252 df-meet 18253 df-lat 18338 |
| This theorem is referenced by: latleeqj1 18357 latjlej1 18359 latjlej12 18361 latnlej2 18365 latjidm 18368 latnle 18379 latabs2 18382 latledi 18383 latmlej11 18384 latjass 18389 latj13 18392 latj31 18393 latj4 18395 mod1ile 18399 mod2ile 18400 latdisdlem 18402 lubun 18421 oldmm1 39206 olj01 39214 latmassOLD 39218 omllaw5N 39236 cmtcomlemN 39237 cmtbr2N 39242 cmtbr3N 39243 cmtbr4N 39244 lecmtN 39245 omlfh1N 39247 omlfh3N 39248 omlmod1i2N 39249 cvlexchb1 39319 cvlcvr1 39328 hlatjcl 39356 exatleN 39393 cvrval3 39402 cvrexchlem 39408 cvrexch 39409 cvratlem 39410 cvrat 39411 lnnat 39416 cvrat2 39418 atcvrj2b 39421 atltcvr 39424 atlelt 39427 2atlt 39428 atexchcvrN 39429 cvrat3 39431 cvrat4 39432 2atjm 39434 4noncolr3 39442 athgt 39445 3dim0 39446 3dimlem4a 39452 1cvratex 39462 1cvrjat 39464 1cvrat 39465 ps-2 39467 3atlem1 39472 3atlem2 39473 3at 39479 2atm 39516 lplni2 39526 lplnle 39529 2llnmj 39549 2atmat 39550 lplnexllnN 39553 2llnjaN 39555 lvoli3 39566 islvol5 39568 lvoli2 39570 lvolnle3at 39571 3atnelvolN 39575 islvol2aN 39581 4atlem3 39585 4atlem4d 39591 4atlem9 39592 4atlem10a 39593 4atlem10 39595 4atlem11a 39596 4atlem11b 39597 4atlem11 39598 4atlem12a 39599 4atlem12b 39600 4atlem12 39601 4at 39602 lplncvrlvol2 39604 2lplnja 39608 2lplnmj 39611 dalem5 39656 dalem8 39659 dalem-cly 39660 dalem38 39699 dalem39 39700 dalem44 39705 dalem54 39715 linepsubN 39741 pmapsub 39757 isline2 39763 linepmap 39764 isline3 39765 lncvrelatN 39770 2llnma1b 39775 cdlema1N 39780 cdlemblem 39782 cdlemb 39783 paddasslem5 39813 paddasslem12 39820 paddasslem13 39821 pmapjoin 39841 pmapjat1 39842 pmapjlln1 39844 hlmod1i 39845 llnmod1i2 39849 atmod2i1 39850 atmod2i2 39851 llnmod2i2 39852 atmod3i1 39853 atmod3i2 39854 dalawlem2 39861 dalawlem3 39862 dalawlem5 39864 dalawlem6 39865 dalawlem7 39866 dalawlem8 39867 dalawlem11 39870 dalawlem12 39871 pmapocjN 39919 paddatclN 39938 linepsubclN 39940 pl42lem1N 39968 pl42lem2N 39969 pl42N 39972 lhp2lt 39990 lhpj1 40011 lhpmod2i2 40027 lhpmod6i1 40028 4atexlemc 40058 lautj 40082 trlval2 40152 trlcl 40153 trljat1 40155 trljat2 40156 trlle 40173 cdlemc1 40180 cdlemc2 40181 cdlemc5 40184 cdlemd2 40188 cdlemd3 40189 cdleme0aa 40199 cdleme0b 40201 cdleme0c 40202 cdleme0cp 40203 cdleme0cq 40204 cdleme0fN 40207 cdleme1b 40215 cdleme1 40216 cdleme2 40217 cdleme3b 40218 cdleme3c 40219 cdleme4a 40228 cdleme5 40229 cdleme7e 40236 cdleme8 40239 cdleme9 40242 cdleme10 40243 cdleme11fN 40253 cdleme11g 40254 cdleme11k 40257 cdleme11 40259 cdleme15b 40264 cdleme15 40267 cdleme22gb 40283 cdleme19b 40293 cdleme20d 40301 cdleme20j 40307 cdleme20l 40311 cdleme20m 40312 cdleme22e 40333 cdleme22eALTN 40334 cdleme22f 40335 cdleme23b 40339 cdleme23c 40340 cdleme28a 40359 cdleme28b 40360 cdleme29ex 40363 cdleme30a 40367 cdlemefr29exN 40391 cdleme32e 40434 cdleme35fnpq 40438 cdleme35b 40439 cdleme35c 40440 cdleme42e 40468 cdleme42i 40472 cdleme42mgN 40477 cdlemg2fv2 40589 cdlemg7fvbwN 40596 cdlemg4c 40601 cdlemg6c 40609 cdlemg10 40630 cdlemg11b 40631 cdlemg31a 40686 cdlemg31b 40687 cdlemg35 40702 trlcolem 40715 cdlemg44a 40720 trljco 40729 tendopltp 40769 cdlemh1 40804 cdlemh2 40805 cdlemi1 40807 cdlemi 40809 cdlemk4 40823 cdlemkvcl 40831 cdlemk10 40832 cdlemk11 40838 cdlemk11u 40860 cdlemk37 40903 cdlemkid1 40911 cdlemk50 40941 cdlemk51 40942 cdlemk52 40943 dialss 41035 dia2dimlem2 41054 dia2dimlem3 41055 cdlemm10N 41107 docaclN 41113 doca2N 41115 djajN 41126 diblss 41159 cdlemn2 41184 cdlemn10 41195 dihord1 41207 dihord2pre2 41215 dihord5apre 41251 dihjatc1 41300 dihmeetlem10N 41305 dihmeetlem11N 41306 djhljjN 41391 djhj 41393 dihprrnlem1N 41413 dihprrnlem2 41414 dihjat6 41423 dihjat5N 41426 dvh4dimat 41427 |
| Copyright terms: Public domain | W3C validator |