Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > latjcl | Structured version Visualization version GIF version |
Description: Closure of join operation in a lattice. (chjcom 30000 analog.) (Contributed by NM, 14-Sep-2011.) |
Ref | Expression |
---|---|
latjcl.b | ⊢ 𝐵 = (Base‘𝐾) |
latjcl.j | ⊢ ∨ = (join‘𝐾) |
Ref | Expression |
---|---|
latjcl | ⊢ ((𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 ∨ 𝑌) ∈ 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | latjcl.b | . . 3 ⊢ 𝐵 = (Base‘𝐾) | |
2 | latjcl.j | . . 3 ⊢ ∨ = (join‘𝐾) | |
3 | eqid 2736 | . . 3 ⊢ (meet‘𝐾) = (meet‘𝐾) | |
4 | 1, 2, 3 | latlem 18229 | . 2 ⊢ ((𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → ((𝑋 ∨ 𝑌) ∈ 𝐵 ∧ (𝑋(meet‘𝐾)𝑌) ∈ 𝐵)) |
5 | 4 | simpld 495 | 1 ⊢ ((𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 ∨ 𝑌) ∈ 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ w3a 1086 = wceq 1540 ∈ wcel 2105 ‘cfv 6465 (class class class)co 7316 Basecbs 16986 joincjn 18103 meetcmee 18104 Latclat 18223 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2707 ax-rep 5223 ax-sep 5237 ax-nul 5244 ax-pow 5302 ax-pr 5366 ax-un 7629 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2886 df-ne 2941 df-ral 3062 df-rex 3071 df-reu 3350 df-rab 3404 df-v 3442 df-sbc 3726 df-csb 3842 df-dif 3899 df-un 3901 df-in 3903 df-ss 3913 df-nul 4267 df-if 4471 df-pw 4546 df-sn 4571 df-pr 4573 df-op 4577 df-uni 4850 df-iun 4938 df-br 5087 df-opab 5149 df-mpt 5170 df-id 5506 df-xp 5613 df-rel 5614 df-cnv 5615 df-co 5616 df-dm 5617 df-rn 5618 df-res 5619 df-ima 5620 df-iota 6417 df-fun 6467 df-fn 6468 df-f 6469 df-f1 6470 df-fo 6471 df-f1o 6472 df-fv 6473 df-riota 7273 df-ov 7319 df-oprab 7320 df-lub 18138 df-glb 18139 df-join 18140 df-meet 18141 df-lat 18224 |
This theorem is referenced by: latleeqj1 18243 latjlej1 18245 latjlej12 18247 latnlej2 18251 latjidm 18254 latnle 18265 latabs2 18268 latledi 18269 latmlej11 18270 latjass 18275 latj13 18278 latj31 18279 latj4 18281 mod1ile 18285 mod2ile 18286 latdisdlem 18288 lubun 18307 oldmm1 37456 olj01 37464 latmassOLD 37468 omllaw5N 37486 cmtcomlemN 37487 cmtbr2N 37492 cmtbr3N 37493 cmtbr4N 37494 lecmtN 37495 omlfh1N 37497 omlfh3N 37498 omlmod1i2N 37499 cvlexchb1 37569 cvlcvr1 37578 hlatjcl 37606 exatleN 37644 cvrval3 37653 cvrexchlem 37659 cvrexch 37660 cvratlem 37661 cvrat 37662 lnnat 37667 cvrat2 37669 atcvrj2b 37672 atltcvr 37675 atlelt 37678 2atlt 37679 atexchcvrN 37680 cvrat3 37682 cvrat4 37683 2atjm 37685 4noncolr3 37693 athgt 37696 3dim0 37697 3dimlem4a 37703 1cvratex 37713 1cvrjat 37715 1cvrat 37716 ps-2 37718 3atlem1 37723 3atlem2 37724 3at 37730 2atm 37767 lplni2 37777 lplnle 37780 2llnmj 37800 2atmat 37801 lplnexllnN 37804 2llnjaN 37806 lvoli3 37817 islvol5 37819 lvoli2 37821 lvolnle3at 37822 3atnelvolN 37826 islvol2aN 37832 4atlem3 37836 4atlem4d 37842 4atlem9 37843 4atlem10a 37844 4atlem10 37846 4atlem11a 37847 4atlem11b 37848 4atlem11 37849 4atlem12a 37850 4atlem12b 37851 4atlem12 37852 4at 37853 lplncvrlvol2 37855 2lplnja 37859 2lplnmj 37862 dalem5 37907 dalem8 37910 dalem-cly 37911 dalem38 37950 dalem39 37951 dalem44 37956 dalem54 37966 linepsubN 37992 pmapsub 38008 isline2 38014 linepmap 38015 isline3 38016 lncvrelatN 38021 2llnma1b 38026 cdlema1N 38031 cdlemblem 38033 cdlemb 38034 paddasslem5 38064 paddasslem12 38071 paddasslem13 38072 pmapjoin 38092 pmapjat1 38093 pmapjlln1 38095 hlmod1i 38096 llnmod1i2 38100 atmod2i1 38101 atmod2i2 38102 llnmod2i2 38103 atmod3i1 38104 atmod3i2 38105 dalawlem2 38112 dalawlem3 38113 dalawlem5 38115 dalawlem6 38116 dalawlem7 38117 dalawlem8 38118 dalawlem11 38121 dalawlem12 38122 pmapocjN 38170 paddatclN 38189 linepsubclN 38191 pl42lem1N 38219 pl42lem2N 38220 pl42N 38223 lhp2lt 38241 lhpj1 38262 lhpmod2i2 38278 lhpmod6i1 38279 4atexlemc 38309 lautj 38333 trlval2 38403 trlcl 38404 trljat1 38406 trljat2 38407 trlle 38424 cdlemc1 38431 cdlemc2 38432 cdlemc5 38435 cdlemd2 38439 cdlemd3 38440 cdleme0aa 38450 cdleme0b 38452 cdleme0c 38453 cdleme0cp 38454 cdleme0cq 38455 cdleme0fN 38458 cdleme1b 38466 cdleme1 38467 cdleme2 38468 cdleme3b 38469 cdleme3c 38470 cdleme4a 38479 cdleme5 38480 cdleme7e 38487 cdleme8 38490 cdleme9 38493 cdleme10 38494 cdleme11fN 38504 cdleme11g 38505 cdleme11k 38508 cdleme11 38510 cdleme15b 38515 cdleme15 38518 cdleme22gb 38534 cdleme19b 38544 cdleme20d 38552 cdleme20j 38558 cdleme20l 38562 cdleme20m 38563 cdleme22e 38584 cdleme22eALTN 38585 cdleme22f 38586 cdleme23b 38590 cdleme23c 38591 cdleme28a 38610 cdleme28b 38611 cdleme29ex 38614 cdleme30a 38618 cdlemefr29exN 38642 cdleme32e 38685 cdleme35fnpq 38689 cdleme35b 38690 cdleme35c 38691 cdleme42e 38719 cdleme42i 38723 cdleme42mgN 38728 cdlemg2fv2 38840 cdlemg7fvbwN 38847 cdlemg4c 38852 cdlemg6c 38860 cdlemg10 38881 cdlemg11b 38882 cdlemg31a 38937 cdlemg31b 38938 cdlemg35 38953 trlcolem 38966 cdlemg44a 38971 trljco 38980 tendopltp 39020 cdlemh1 39055 cdlemh2 39056 cdlemi1 39058 cdlemi 39060 cdlemk4 39074 cdlemkvcl 39082 cdlemk10 39083 cdlemk11 39089 cdlemk11u 39111 cdlemk37 39154 cdlemkid1 39162 cdlemk50 39192 cdlemk51 39193 cdlemk52 39194 dialss 39286 dia2dimlem2 39305 dia2dimlem3 39306 cdlemm10N 39358 docaclN 39364 doca2N 39366 djajN 39377 diblss 39410 cdlemn2 39435 cdlemn10 39446 dihord1 39458 dihord2pre2 39466 dihord5apre 39502 dihjatc1 39551 dihmeetlem10N 39556 dihmeetlem11N 39557 djhljjN 39642 djhj 39644 dihprrnlem1N 39664 dihprrnlem2 39665 dihjat6 39674 dihjat5N 39677 dvh4dimat 39678 |
Copyright terms: Public domain | W3C validator |