MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  latlem12 Structured version   Visualization version   GIF version

Theorem latlem12 18476
Description: An element is less than or equal to a meet iff the element is less than or equal to each argument of the meet. (Contributed by NM, 21-Oct-2011.)
Hypotheses
Ref Expression
latmle.b 𝐵 = (Base‘𝐾)
latmle.l = (le‘𝐾)
latmle.m = (meet‘𝐾)
Assertion
Ref Expression
latlem12 ((𝐾 ∈ Lat ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → ((𝑋 𝑌𝑋 𝑍) ↔ 𝑋 (𝑌 𝑍)))

Proof of Theorem latlem12
StepHypRef Expression
1 latmle.b . 2 𝐵 = (Base‘𝐾)
2 latmle.l . 2 = (le‘𝐾)
3 latmle.m . 2 = (meet‘𝐾)
4 latpos 18448 . . 3 (𝐾 ∈ Lat → 𝐾 ∈ Poset)
54adantr 480 . 2 ((𝐾 ∈ Lat ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → 𝐾 ∈ Poset)
6 simpr2 1196 . 2 ((𝐾 ∈ Lat ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → 𝑌𝐵)
7 simpr3 1197 . 2 ((𝐾 ∈ Lat ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → 𝑍𝐵)
8 simpr1 1195 . 2 ((𝐾 ∈ Lat ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → 𝑋𝐵)
9 eqid 2735 . . . 4 (join‘𝐾) = (join‘𝐾)
10 simpl 482 . . . 4 ((𝐾 ∈ Lat ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → 𝐾 ∈ Lat)
111, 9, 3, 10, 6, 7latcl2 18446 . . 3 ((𝐾 ∈ Lat ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → (⟨𝑌, 𝑍⟩ ∈ dom (join‘𝐾) ∧ ⟨𝑌, 𝑍⟩ ∈ dom ))
1211simprd 495 . 2 ((𝐾 ∈ Lat ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → ⟨𝑌, 𝑍⟩ ∈ dom )
131, 2, 3, 5, 6, 7, 8, 12meetle 18410 1 ((𝐾 ∈ Lat ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → ((𝑋 𝑌𝑋 𝑍) ↔ 𝑋 (𝑌 𝑍)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2108  cop 4607   class class class wbr 5119  dom cdm 5654  cfv 6531  (class class class)co 7405  Basecbs 17228  lecple 17278  Posetcpo 18319  joincjn 18323  meetcmee 18324  Latclat 18441
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-rep 5249  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7729
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-ral 3052  df-rex 3061  df-rmo 3359  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-iun 4969  df-br 5120  df-opab 5182  df-mpt 5202  df-id 5548  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-iota 6484  df-fun 6533  df-fn 6534  df-f 6535  df-f1 6536  df-fo 6537  df-f1o 6538  df-fv 6539  df-riota 7362  df-ov 7408  df-oprab 7409  df-poset 18325  df-glb 18357  df-meet 18359  df-lat 18442
This theorem is referenced by:  latleeqm1  18477  latmlem1  18479  latmidm  18484  latledi  18487  mod1ile  18503  oldmm1  39235  olm01  39254  cmtbr4N  39273  atnle  39335  atlatmstc  39337  hlrelat2  39422  cvrval5  39434  cvrexchlem  39438  2atjm  39464  atbtwn  39465  ps-2b  39501  2atm  39546  2llnm4  39589  2llnmeqat  39590  dalemcea  39679  dalem21  39713  dalem54  39745  dalem55  39746  dalem57  39748  2atm2atN  39804  2llnma1b  39805  cdlemblem  39812  dalawlem2  39891  dalawlem3  39892  dalawlem6  39895  dalawlem11  39900  dalawlem12  39901  lhpocnle  40035  lhpmcvr4N  40045  lhpat3  40065  4atexlemcnd  40091  lautm  40113  trlval3  40206  cdlemc5  40214  cdleme3  40256  cdleme7ga  40267  cdleme7  40268  cdleme11k  40287  cdleme16e  40301  cdleme16f  40302  cdlemednpq  40318  cdleme22aa  40358  cdleme22b  40360  cdleme22cN  40361  cdleme23c  40370  cdlemeg46req  40548  cdlemf2  40581  cdlemg10c  40658  cdlemg12f  40667  cdlemg17dALTN  40683  cdlemg19a  40702  cdlemg27b  40715  cdlemi  40839  cdlemk15  40874  cdlemk50  40971  dia2dimlem1  41083  dihopelvalcpre  41267  dihord5b  41278  dihmeetlem1N  41309  dihglblem5apreN  41310  dihglblem2N  41313  dihmeetlem3N  41324
  Copyright terms: Public domain W3C validator