![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > latlem12 | Structured version Visualization version GIF version |
Description: An element is less than or equal to a meet iff the element is less than or equal to each argument of the meet. (Contributed by NM, 21-Oct-2011.) |
Ref | Expression |
---|---|
latmle.b | ⊢ 𝐵 = (Base‘𝐾) |
latmle.l | ⊢ ≤ = (le‘𝐾) |
latmle.m | ⊢ ∧ = (meet‘𝐾) |
Ref | Expression |
---|---|
latlem12 | ⊢ ((𝐾 ∈ Lat ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → ((𝑋 ≤ 𝑌 ∧ 𝑋 ≤ 𝑍) ↔ 𝑋 ≤ (𝑌 ∧ 𝑍))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | latmle.b | . 2 ⊢ 𝐵 = (Base‘𝐾) | |
2 | latmle.l | . 2 ⊢ ≤ = (le‘𝐾) | |
3 | latmle.m | . 2 ⊢ ∧ = (meet‘𝐾) | |
4 | latpos 18508 | . . 3 ⊢ (𝐾 ∈ Lat → 𝐾 ∈ Poset) | |
5 | 4 | adantr 480 | . 2 ⊢ ((𝐾 ∈ Lat ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → 𝐾 ∈ Poset) |
6 | simpr2 1195 | . 2 ⊢ ((𝐾 ∈ Lat ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → 𝑌 ∈ 𝐵) | |
7 | simpr3 1196 | . 2 ⊢ ((𝐾 ∈ Lat ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → 𝑍 ∈ 𝐵) | |
8 | simpr1 1194 | . 2 ⊢ ((𝐾 ∈ Lat ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → 𝑋 ∈ 𝐵) | |
9 | eqid 2740 | . . . 4 ⊢ (join‘𝐾) = (join‘𝐾) | |
10 | simpl 482 | . . . 4 ⊢ ((𝐾 ∈ Lat ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → 𝐾 ∈ Lat) | |
11 | 1, 9, 3, 10, 6, 7 | latcl2 18506 | . . 3 ⊢ ((𝐾 ∈ Lat ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → (〈𝑌, 𝑍〉 ∈ dom (join‘𝐾) ∧ 〈𝑌, 𝑍〉 ∈ dom ∧ )) |
12 | 11 | simprd 495 | . 2 ⊢ ((𝐾 ∈ Lat ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → 〈𝑌, 𝑍〉 ∈ dom ∧ ) |
13 | 1, 2, 3, 5, 6, 7, 8, 12 | meetle 18470 | 1 ⊢ ((𝐾 ∈ Lat ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → ((𝑋 ≤ 𝑌 ∧ 𝑋 ≤ 𝑍) ↔ 𝑋 ≤ (𝑌 ∧ 𝑍))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1087 = wceq 1537 ∈ wcel 2108 〈cop 4654 class class class wbr 5166 dom cdm 5700 ‘cfv 6573 (class class class)co 7448 Basecbs 17258 lecple 17318 Posetcpo 18377 joincjn 18381 meetcmee 18382 Latclat 18501 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-rep 5303 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-ral 3068 df-rex 3077 df-rmo 3388 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-iun 5017 df-br 5167 df-opab 5229 df-mpt 5250 df-id 5593 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-riota 7404 df-ov 7451 df-oprab 7452 df-poset 18383 df-glb 18417 df-meet 18419 df-lat 18502 |
This theorem is referenced by: latleeqm1 18537 latmlem1 18539 latmidm 18544 latledi 18547 mod1ile 18563 oldmm1 39173 olm01 39192 cmtbr4N 39211 atnle 39273 atlatmstc 39275 hlrelat2 39360 cvrval5 39372 cvrexchlem 39376 2atjm 39402 atbtwn 39403 ps-2b 39439 2atm 39484 2llnm4 39527 2llnmeqat 39528 dalemcea 39617 dalem21 39651 dalem54 39683 dalem55 39684 dalem57 39686 2atm2atN 39742 2llnma1b 39743 cdlemblem 39750 dalawlem2 39829 dalawlem3 39830 dalawlem6 39833 dalawlem11 39838 dalawlem12 39839 lhpocnle 39973 lhpmcvr4N 39983 lhpat3 40003 4atexlemcnd 40029 lautm 40051 trlval3 40144 cdlemc5 40152 cdleme3 40194 cdleme7ga 40205 cdleme7 40206 cdleme11k 40225 cdleme16e 40239 cdleme16f 40240 cdlemednpq 40256 cdleme22aa 40296 cdleme22b 40298 cdleme22cN 40299 cdleme23c 40308 cdlemeg46req 40486 cdlemf2 40519 cdlemg10c 40596 cdlemg12f 40605 cdlemg17dALTN 40621 cdlemg19a 40640 cdlemg27b 40653 cdlemi 40777 cdlemk15 40812 cdlemk50 40909 dia2dimlem1 41021 dihopelvalcpre 41205 dihord5b 41216 dihmeetlem1N 41247 dihglblem5apreN 41248 dihglblem2N 41251 dihmeetlem3N 41262 |
Copyright terms: Public domain | W3C validator |