Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > latlem12 | Structured version Visualization version GIF version |
Description: An element is less than or equal to a meet iff the element is less than or equal to each argument of the meet. (Contributed by NM, 21-Oct-2011.) |
Ref | Expression |
---|---|
latmle.b | ⊢ 𝐵 = (Base‘𝐾) |
latmle.l | ⊢ ≤ = (le‘𝐾) |
latmle.m | ⊢ ∧ = (meet‘𝐾) |
Ref | Expression |
---|---|
latlem12 | ⊢ ((𝐾 ∈ Lat ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → ((𝑋 ≤ 𝑌 ∧ 𝑋 ≤ 𝑍) ↔ 𝑋 ≤ (𝑌 ∧ 𝑍))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | latmle.b | . 2 ⊢ 𝐵 = (Base‘𝐾) | |
2 | latmle.l | . 2 ⊢ ≤ = (le‘𝐾) | |
3 | latmle.m | . 2 ⊢ ∧ = (meet‘𝐾) | |
4 | latpos 18071 | . . 3 ⊢ (𝐾 ∈ Lat → 𝐾 ∈ Poset) | |
5 | 4 | adantr 480 | . 2 ⊢ ((𝐾 ∈ Lat ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → 𝐾 ∈ Poset) |
6 | simpr2 1193 | . 2 ⊢ ((𝐾 ∈ Lat ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → 𝑌 ∈ 𝐵) | |
7 | simpr3 1194 | . 2 ⊢ ((𝐾 ∈ Lat ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → 𝑍 ∈ 𝐵) | |
8 | simpr1 1192 | . 2 ⊢ ((𝐾 ∈ Lat ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → 𝑋 ∈ 𝐵) | |
9 | eqid 2738 | . . . 4 ⊢ (join‘𝐾) = (join‘𝐾) | |
10 | simpl 482 | . . . 4 ⊢ ((𝐾 ∈ Lat ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → 𝐾 ∈ Lat) | |
11 | 1, 9, 3, 10, 6, 7 | latcl2 18069 | . . 3 ⊢ ((𝐾 ∈ Lat ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → (〈𝑌, 𝑍〉 ∈ dom (join‘𝐾) ∧ 〈𝑌, 𝑍〉 ∈ dom ∧ )) |
12 | 11 | simprd 495 | . 2 ⊢ ((𝐾 ∈ Lat ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → 〈𝑌, 𝑍〉 ∈ dom ∧ ) |
13 | 1, 2, 3, 5, 6, 7, 8, 12 | meetle 18033 | 1 ⊢ ((𝐾 ∈ Lat ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → ((𝑋 ≤ 𝑌 ∧ 𝑋 ≤ 𝑍) ↔ 𝑋 ≤ (𝑌 ∧ 𝑍))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 ∧ w3a 1085 = wceq 1539 ∈ wcel 2108 〈cop 4564 class class class wbr 5070 dom cdm 5580 ‘cfv 6418 (class class class)co 7255 Basecbs 16840 lecple 16895 Posetcpo 17940 joincjn 17944 meetcmee 17945 Latclat 18064 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-rep 5205 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-ral 3068 df-rex 3069 df-reu 3070 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-id 5480 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-riota 7212 df-ov 7258 df-oprab 7259 df-poset 17946 df-glb 17980 df-meet 17982 df-lat 18065 |
This theorem is referenced by: latleeqm1 18100 latmlem1 18102 latmidm 18107 latledi 18110 mod1ile 18126 oldmm1 37158 olm01 37177 cmtbr4N 37196 atnle 37258 atlatmstc 37260 hlrelat2 37344 cvrval5 37356 cvrexchlem 37360 2atjm 37386 atbtwn 37387 ps-2b 37423 2atm 37468 2llnm4 37511 2llnmeqat 37512 dalemcea 37601 dalem21 37635 dalem54 37667 dalem55 37668 dalem57 37670 2atm2atN 37726 2llnma1b 37727 cdlemblem 37734 dalawlem2 37813 dalawlem3 37814 dalawlem6 37817 dalawlem11 37822 dalawlem12 37823 lhpocnle 37957 lhpmcvr4N 37967 lhpat3 37987 4atexlemcnd 38013 lautm 38035 trlval3 38128 cdlemc5 38136 cdleme3 38178 cdleme7ga 38189 cdleme7 38190 cdleme11k 38209 cdleme16e 38223 cdleme16f 38224 cdlemednpq 38240 cdleme22aa 38280 cdleme22b 38282 cdleme22cN 38283 cdleme23c 38292 cdlemeg46req 38470 cdlemf2 38503 cdlemg10c 38580 cdlemg12f 38589 cdlemg17dALTN 38605 cdlemg19a 38624 cdlemg27b 38637 cdlemi 38761 cdlemk15 38796 cdlemk50 38893 dia2dimlem1 39005 dihopelvalcpre 39189 dihord5b 39200 dihmeetlem1N 39231 dihglblem5apreN 39232 dihglblem2N 39235 dihmeetlem3N 39246 |
Copyright terms: Public domain | W3C validator |