| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > latlem12 | Structured version Visualization version GIF version | ||
| Description: An element is less than or equal to a meet iff the element is less than or equal to each argument of the meet. (Contributed by NM, 21-Oct-2011.) |
| Ref | Expression |
|---|---|
| latmle.b | ⊢ 𝐵 = (Base‘𝐾) |
| latmle.l | ⊢ ≤ = (le‘𝐾) |
| latmle.m | ⊢ ∧ = (meet‘𝐾) |
| Ref | Expression |
|---|---|
| latlem12 | ⊢ ((𝐾 ∈ Lat ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → ((𝑋 ≤ 𝑌 ∧ 𝑋 ≤ 𝑍) ↔ 𝑋 ≤ (𝑌 ∧ 𝑍))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | latmle.b | . 2 ⊢ 𝐵 = (Base‘𝐾) | |
| 2 | latmle.l | . 2 ⊢ ≤ = (le‘𝐾) | |
| 3 | latmle.m | . 2 ⊢ ∧ = (meet‘𝐾) | |
| 4 | latpos 18344 | . . 3 ⊢ (𝐾 ∈ Lat → 𝐾 ∈ Poset) | |
| 5 | 4 | adantr 480 | . 2 ⊢ ((𝐾 ∈ Lat ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → 𝐾 ∈ Poset) |
| 6 | simpr2 1196 | . 2 ⊢ ((𝐾 ∈ Lat ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → 𝑌 ∈ 𝐵) | |
| 7 | simpr3 1197 | . 2 ⊢ ((𝐾 ∈ Lat ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → 𝑍 ∈ 𝐵) | |
| 8 | simpr1 1195 | . 2 ⊢ ((𝐾 ∈ Lat ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → 𝑋 ∈ 𝐵) | |
| 9 | eqid 2729 | . . . 4 ⊢ (join‘𝐾) = (join‘𝐾) | |
| 10 | simpl 482 | . . . 4 ⊢ ((𝐾 ∈ Lat ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → 𝐾 ∈ Lat) | |
| 11 | 1, 9, 3, 10, 6, 7 | latcl2 18342 | . . 3 ⊢ ((𝐾 ∈ Lat ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → (〈𝑌, 𝑍〉 ∈ dom (join‘𝐾) ∧ 〈𝑌, 𝑍〉 ∈ dom ∧ )) |
| 12 | 11 | simprd 495 | . 2 ⊢ ((𝐾 ∈ Lat ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → 〈𝑌, 𝑍〉 ∈ dom ∧ ) |
| 13 | 1, 2, 3, 5, 6, 7, 8, 12 | meetle 18304 | 1 ⊢ ((𝐾 ∈ Lat ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → ((𝑋 ≤ 𝑌 ∧ 𝑋 ≤ 𝑍) ↔ 𝑋 ≤ (𝑌 ∧ 𝑍))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 〈cop 4583 class class class wbr 5092 dom cdm 5619 ‘cfv 6482 (class class class)co 7349 Basecbs 17120 lecple 17168 Posetcpo 18213 joincjn 18217 meetcmee 18218 Latclat 18337 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5218 ax-sep 5235 ax-nul 5245 ax-pow 5304 ax-pr 5371 ax-un 7671 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rmo 3343 df-reu 3344 df-rab 3395 df-v 3438 df-sbc 3743 df-csb 3852 df-dif 3906 df-un 3908 df-in 3910 df-ss 3920 df-nul 4285 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4859 df-iun 4943 df-br 5093 df-opab 5155 df-mpt 5174 df-id 5514 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-iota 6438 df-fun 6484 df-fn 6485 df-f 6486 df-f1 6487 df-fo 6488 df-f1o 6489 df-fv 6490 df-riota 7306 df-ov 7352 df-oprab 7353 df-poset 18219 df-glb 18251 df-meet 18253 df-lat 18338 |
| This theorem is referenced by: latleeqm1 18373 latmlem1 18375 latmidm 18380 latledi 18383 mod1ile 18399 oldmm1 39200 olm01 39219 cmtbr4N 39238 atnle 39300 atlatmstc 39302 hlrelat2 39386 cvrval5 39398 cvrexchlem 39402 2atjm 39428 atbtwn 39429 ps-2b 39465 2atm 39510 2llnm4 39553 2llnmeqat 39554 dalemcea 39643 dalem21 39677 dalem54 39709 dalem55 39710 dalem57 39712 2atm2atN 39768 2llnma1b 39769 cdlemblem 39776 dalawlem2 39855 dalawlem3 39856 dalawlem6 39859 dalawlem11 39864 dalawlem12 39865 lhpocnle 39999 lhpmcvr4N 40009 lhpat3 40029 4atexlemcnd 40055 lautm 40077 trlval3 40170 cdlemc5 40178 cdleme3 40220 cdleme7ga 40231 cdleme7 40232 cdleme11k 40251 cdleme16e 40265 cdleme16f 40266 cdlemednpq 40282 cdleme22aa 40322 cdleme22b 40324 cdleme22cN 40325 cdleme23c 40334 cdlemeg46req 40512 cdlemf2 40545 cdlemg10c 40622 cdlemg12f 40631 cdlemg17dALTN 40647 cdlemg19a 40666 cdlemg27b 40679 cdlemi 40803 cdlemk15 40838 cdlemk50 40935 dia2dimlem1 41047 dihopelvalcpre 41231 dihord5b 41242 dihmeetlem1N 41273 dihglblem5apreN 41274 dihglblem2N 41277 dihmeetlem3N 41288 |
| Copyright terms: Public domain | W3C validator |