Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > latlem12 | Structured version Visualization version GIF version |
Description: An element is less than or equal to a meet iff the element is less than or equal to each argument of the meet. (Contributed by NM, 21-Oct-2011.) |
Ref | Expression |
---|---|
latmle.b | ⊢ 𝐵 = (Base‘𝐾) |
latmle.l | ⊢ ≤ = (le‘𝐾) |
latmle.m | ⊢ ∧ = (meet‘𝐾) |
Ref | Expression |
---|---|
latlem12 | ⊢ ((𝐾 ∈ Lat ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → ((𝑋 ≤ 𝑌 ∧ 𝑋 ≤ 𝑍) ↔ 𝑋 ≤ (𝑌 ∧ 𝑍))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | latmle.b | . 2 ⊢ 𝐵 = (Base‘𝐾) | |
2 | latmle.l | . 2 ⊢ ≤ = (le‘𝐾) | |
3 | latmle.m | . 2 ⊢ ∧ = (meet‘𝐾) | |
4 | latpos 18154 | . . 3 ⊢ (𝐾 ∈ Lat → 𝐾 ∈ Poset) | |
5 | 4 | adantr 481 | . 2 ⊢ ((𝐾 ∈ Lat ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → 𝐾 ∈ Poset) |
6 | simpr2 1194 | . 2 ⊢ ((𝐾 ∈ Lat ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → 𝑌 ∈ 𝐵) | |
7 | simpr3 1195 | . 2 ⊢ ((𝐾 ∈ Lat ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → 𝑍 ∈ 𝐵) | |
8 | simpr1 1193 | . 2 ⊢ ((𝐾 ∈ Lat ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → 𝑋 ∈ 𝐵) | |
9 | eqid 2740 | . . . 4 ⊢ (join‘𝐾) = (join‘𝐾) | |
10 | simpl 483 | . . . 4 ⊢ ((𝐾 ∈ Lat ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → 𝐾 ∈ Lat) | |
11 | 1, 9, 3, 10, 6, 7 | latcl2 18152 | . . 3 ⊢ ((𝐾 ∈ Lat ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → (〈𝑌, 𝑍〉 ∈ dom (join‘𝐾) ∧ 〈𝑌, 𝑍〉 ∈ dom ∧ )) |
12 | 11 | simprd 496 | . 2 ⊢ ((𝐾 ∈ Lat ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → 〈𝑌, 𝑍〉 ∈ dom ∧ ) |
13 | 1, 2, 3, 5, 6, 7, 8, 12 | meetle 18116 | 1 ⊢ ((𝐾 ∈ Lat ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → ((𝑋 ≤ 𝑌 ∧ 𝑋 ≤ 𝑍) ↔ 𝑋 ≤ (𝑌 ∧ 𝑍))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 396 ∧ w3a 1086 = wceq 1542 ∈ wcel 2110 〈cop 4573 class class class wbr 5079 dom cdm 5590 ‘cfv 6432 (class class class)co 7271 Basecbs 16910 lecple 16967 Posetcpo 18023 joincjn 18027 meetcmee 18028 Latclat 18147 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1917 ax-6 1975 ax-7 2015 ax-8 2112 ax-9 2120 ax-10 2141 ax-11 2158 ax-12 2175 ax-ext 2711 ax-rep 5214 ax-sep 5227 ax-nul 5234 ax-pow 5292 ax-pr 5356 ax-un 7582 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1545 df-fal 1555 df-ex 1787 df-nf 1791 df-sb 2072 df-mo 2542 df-eu 2571 df-clab 2718 df-cleq 2732 df-clel 2818 df-nfc 2891 df-ne 2946 df-ral 3071 df-rex 3072 df-reu 3073 df-rab 3075 df-v 3433 df-sbc 3721 df-csb 3838 df-dif 3895 df-un 3897 df-in 3899 df-ss 3909 df-nul 4263 df-if 4466 df-pw 4541 df-sn 4568 df-pr 4570 df-op 4574 df-uni 4846 df-iun 4932 df-br 5080 df-opab 5142 df-mpt 5163 df-id 5490 df-xp 5596 df-rel 5597 df-cnv 5598 df-co 5599 df-dm 5600 df-rn 5601 df-res 5602 df-ima 5603 df-iota 6390 df-fun 6434 df-fn 6435 df-f 6436 df-f1 6437 df-fo 6438 df-f1o 6439 df-fv 6440 df-riota 7228 df-ov 7274 df-oprab 7275 df-poset 18029 df-glb 18063 df-meet 18065 df-lat 18148 |
This theorem is referenced by: latleeqm1 18183 latmlem1 18185 latmidm 18190 latledi 18193 mod1ile 18209 oldmm1 37227 olm01 37246 cmtbr4N 37265 atnle 37327 atlatmstc 37329 hlrelat2 37413 cvrval5 37425 cvrexchlem 37429 2atjm 37455 atbtwn 37456 ps-2b 37492 2atm 37537 2llnm4 37580 2llnmeqat 37581 dalemcea 37670 dalem21 37704 dalem54 37736 dalem55 37737 dalem57 37739 2atm2atN 37795 2llnma1b 37796 cdlemblem 37803 dalawlem2 37882 dalawlem3 37883 dalawlem6 37886 dalawlem11 37891 dalawlem12 37892 lhpocnle 38026 lhpmcvr4N 38036 lhpat3 38056 4atexlemcnd 38082 lautm 38104 trlval3 38197 cdlemc5 38205 cdleme3 38247 cdleme7ga 38258 cdleme7 38259 cdleme11k 38278 cdleme16e 38292 cdleme16f 38293 cdlemednpq 38309 cdleme22aa 38349 cdleme22b 38351 cdleme22cN 38352 cdleme23c 38361 cdlemeg46req 38539 cdlemf2 38572 cdlemg10c 38649 cdlemg12f 38658 cdlemg17dALTN 38674 cdlemg19a 38693 cdlemg27b 38706 cdlemi 38830 cdlemk15 38865 cdlemk50 38962 dia2dimlem1 39074 dihopelvalcpre 39258 dihord5b 39269 dihmeetlem1N 39300 dihglblem5apreN 39301 dihglblem2N 39304 dihmeetlem3N 39315 |
Copyright terms: Public domain | W3C validator |