Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > latleeqm1 | Structured version Visualization version GIF version |
Description: "Less than or equal to" in terms of meet. (Contributed by NM, 7-Nov-2011.) |
Ref | Expression |
---|---|
latmle.b | ⊢ 𝐵 = (Base‘𝐾) |
latmle.l | ⊢ ≤ = (le‘𝐾) |
latmle.m | ⊢ ∧ = (meet‘𝐾) |
Ref | Expression |
---|---|
latleeqm1 | ⊢ ((𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 ≤ 𝑌 ↔ (𝑋 ∧ 𝑌) = 𝑋)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | latmle.b | . . . . . . 7 ⊢ 𝐵 = (Base‘𝐾) | |
2 | latmle.l | . . . . . . 7 ⊢ ≤ = (le‘𝐾) | |
3 | 1, 2 | latref 18074 | . . . . . 6 ⊢ ((𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵) → 𝑋 ≤ 𝑋) |
4 | 3 | 3adant3 1130 | . . . . 5 ⊢ ((𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → 𝑋 ≤ 𝑋) |
5 | 4 | biantrurd 532 | . . . 4 ⊢ ((𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 ≤ 𝑌 ↔ (𝑋 ≤ 𝑋 ∧ 𝑋 ≤ 𝑌))) |
6 | simp1 1134 | . . . . 5 ⊢ ((𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → 𝐾 ∈ Lat) | |
7 | simp2 1135 | . . . . 5 ⊢ ((𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → 𝑋 ∈ 𝐵) | |
8 | simp3 1136 | . . . . 5 ⊢ ((𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → 𝑌 ∈ 𝐵) | |
9 | latmle.m | . . . . . 6 ⊢ ∧ = (meet‘𝐾) | |
10 | 1, 2, 9 | latlem12 18099 | . . . . 5 ⊢ ((𝐾 ∈ Lat ∧ (𝑋 ∈ 𝐵 ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵)) → ((𝑋 ≤ 𝑋 ∧ 𝑋 ≤ 𝑌) ↔ 𝑋 ≤ (𝑋 ∧ 𝑌))) |
11 | 6, 7, 7, 8, 10 | syl13anc 1370 | . . . 4 ⊢ ((𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → ((𝑋 ≤ 𝑋 ∧ 𝑋 ≤ 𝑌) ↔ 𝑋 ≤ (𝑋 ∧ 𝑌))) |
12 | 5, 11 | bitrd 278 | . . 3 ⊢ ((𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 ≤ 𝑌 ↔ 𝑋 ≤ (𝑋 ∧ 𝑌))) |
13 | 1, 2, 9 | latmle1 18097 | . . . 4 ⊢ ((𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 ∧ 𝑌) ≤ 𝑋) |
14 | 13 | biantrurd 532 | . . 3 ⊢ ((𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 ≤ (𝑋 ∧ 𝑌) ↔ ((𝑋 ∧ 𝑌) ≤ 𝑋 ∧ 𝑋 ≤ (𝑋 ∧ 𝑌)))) |
15 | 12, 14 | bitrd 278 | . 2 ⊢ ((𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 ≤ 𝑌 ↔ ((𝑋 ∧ 𝑌) ≤ 𝑋 ∧ 𝑋 ≤ (𝑋 ∧ 𝑌)))) |
16 | latpos 18071 | . . . 4 ⊢ (𝐾 ∈ Lat → 𝐾 ∈ Poset) | |
17 | 16 | 3ad2ant1 1131 | . . 3 ⊢ ((𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → 𝐾 ∈ Poset) |
18 | 1, 9 | latmcl 18073 | . . 3 ⊢ ((𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 ∧ 𝑌) ∈ 𝐵) |
19 | 1, 2 | posasymb 17952 | . . 3 ⊢ ((𝐾 ∈ Poset ∧ (𝑋 ∧ 𝑌) ∈ 𝐵 ∧ 𝑋 ∈ 𝐵) → (((𝑋 ∧ 𝑌) ≤ 𝑋 ∧ 𝑋 ≤ (𝑋 ∧ 𝑌)) ↔ (𝑋 ∧ 𝑌) = 𝑋)) |
20 | 17, 18, 7, 19 | syl3anc 1369 | . 2 ⊢ ((𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (((𝑋 ∧ 𝑌) ≤ 𝑋 ∧ 𝑋 ≤ (𝑋 ∧ 𝑌)) ↔ (𝑋 ∧ 𝑌) = 𝑋)) |
21 | 15, 20 | bitrd 278 | 1 ⊢ ((𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 ≤ 𝑌 ↔ (𝑋 ∧ 𝑌) = 𝑋)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 ∧ w3a 1085 = wceq 1539 ∈ wcel 2108 class class class wbr 5070 ‘cfv 6418 (class class class)co 7255 Basecbs 16840 lecple 16895 Posetcpo 17940 meetcmee 17945 Latclat 18064 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-rep 5205 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-ral 3068 df-rex 3069 df-reu 3070 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-id 5480 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-riota 7212 df-ov 7258 df-oprab 7259 df-proset 17928 df-poset 17946 df-lub 17979 df-glb 17980 df-join 17981 df-meet 17982 df-lat 18065 |
This theorem is referenced by: latleeqm2 18101 latnlemlt 18105 latabs2 18109 atnle 37258 2llnmat 37465 llnmlplnN 37480 dalem25 37639 2lnat 37725 lhpm0atN 37970 lhpmatb 37972 cdleme1 38168 cdleme5 38181 cdleme20d 38253 cdleme22e 38285 cdleme22eALTN 38286 cdleme23b 38291 cdleme32e 38386 doca2N 39067 djajN 39078 dihglblem5aN 39233 dihmeetbclemN 39245 |
Copyright terms: Public domain | W3C validator |