| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > latleeqm1 | Structured version Visualization version GIF version | ||
| Description: "Less than or equal to" in terms of meet. (Contributed by NM, 7-Nov-2011.) |
| Ref | Expression |
|---|---|
| latmle.b | ⊢ 𝐵 = (Base‘𝐾) |
| latmle.l | ⊢ ≤ = (le‘𝐾) |
| latmle.m | ⊢ ∧ = (meet‘𝐾) |
| Ref | Expression |
|---|---|
| latleeqm1 | ⊢ ((𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 ≤ 𝑌 ↔ (𝑋 ∧ 𝑌) = 𝑋)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | latmle.b | . . . . . . 7 ⊢ 𝐵 = (Base‘𝐾) | |
| 2 | latmle.l | . . . . . . 7 ⊢ ≤ = (le‘𝐾) | |
| 3 | 1, 2 | latref 18383 | . . . . . 6 ⊢ ((𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵) → 𝑋 ≤ 𝑋) |
| 4 | 3 | 3adant3 1132 | . . . . 5 ⊢ ((𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → 𝑋 ≤ 𝑋) |
| 5 | 4 | biantrurd 532 | . . . 4 ⊢ ((𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 ≤ 𝑌 ↔ (𝑋 ≤ 𝑋 ∧ 𝑋 ≤ 𝑌))) |
| 6 | simp1 1136 | . . . . 5 ⊢ ((𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → 𝐾 ∈ Lat) | |
| 7 | simp2 1137 | . . . . 5 ⊢ ((𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → 𝑋 ∈ 𝐵) | |
| 8 | simp3 1138 | . . . . 5 ⊢ ((𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → 𝑌 ∈ 𝐵) | |
| 9 | latmle.m | . . . . . 6 ⊢ ∧ = (meet‘𝐾) | |
| 10 | 1, 2, 9 | latlem12 18408 | . . . . 5 ⊢ ((𝐾 ∈ Lat ∧ (𝑋 ∈ 𝐵 ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵)) → ((𝑋 ≤ 𝑋 ∧ 𝑋 ≤ 𝑌) ↔ 𝑋 ≤ (𝑋 ∧ 𝑌))) |
| 11 | 6, 7, 7, 8, 10 | syl13anc 1374 | . . . 4 ⊢ ((𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → ((𝑋 ≤ 𝑋 ∧ 𝑋 ≤ 𝑌) ↔ 𝑋 ≤ (𝑋 ∧ 𝑌))) |
| 12 | 5, 11 | bitrd 279 | . . 3 ⊢ ((𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 ≤ 𝑌 ↔ 𝑋 ≤ (𝑋 ∧ 𝑌))) |
| 13 | 1, 2, 9 | latmle1 18406 | . . . 4 ⊢ ((𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 ∧ 𝑌) ≤ 𝑋) |
| 14 | 13 | biantrurd 532 | . . 3 ⊢ ((𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 ≤ (𝑋 ∧ 𝑌) ↔ ((𝑋 ∧ 𝑌) ≤ 𝑋 ∧ 𝑋 ≤ (𝑋 ∧ 𝑌)))) |
| 15 | 12, 14 | bitrd 279 | . 2 ⊢ ((𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 ≤ 𝑌 ↔ ((𝑋 ∧ 𝑌) ≤ 𝑋 ∧ 𝑋 ≤ (𝑋 ∧ 𝑌)))) |
| 16 | latpos 18380 | . . . 4 ⊢ (𝐾 ∈ Lat → 𝐾 ∈ Poset) | |
| 17 | 16 | 3ad2ant1 1133 | . . 3 ⊢ ((𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → 𝐾 ∈ Poset) |
| 18 | 1, 9 | latmcl 18382 | . . 3 ⊢ ((𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 ∧ 𝑌) ∈ 𝐵) |
| 19 | 1, 2 | posasymb 18261 | . . 3 ⊢ ((𝐾 ∈ Poset ∧ (𝑋 ∧ 𝑌) ∈ 𝐵 ∧ 𝑋 ∈ 𝐵) → (((𝑋 ∧ 𝑌) ≤ 𝑋 ∧ 𝑋 ≤ (𝑋 ∧ 𝑌)) ↔ (𝑋 ∧ 𝑌) = 𝑋)) |
| 20 | 17, 18, 7, 19 | syl3anc 1373 | . 2 ⊢ ((𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (((𝑋 ∧ 𝑌) ≤ 𝑋 ∧ 𝑋 ≤ (𝑋 ∧ 𝑌)) ↔ (𝑋 ∧ 𝑌) = 𝑋)) |
| 21 | 15, 20 | bitrd 279 | 1 ⊢ ((𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 ≤ 𝑌 ↔ (𝑋 ∧ 𝑌) = 𝑋)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 class class class wbr 5102 ‘cfv 6499 (class class class)co 7369 Basecbs 17156 lecple 17204 Posetcpo 18249 meetcmee 18254 Latclat 18373 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5229 ax-sep 5246 ax-nul 5256 ax-pow 5315 ax-pr 5382 ax-un 7691 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rmo 3351 df-reu 3352 df-rab 3403 df-v 3446 df-sbc 3751 df-csb 3860 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-iun 4953 df-br 5103 df-opab 5165 df-mpt 5184 df-id 5526 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-f1 6504 df-fo 6505 df-f1o 6506 df-fv 6507 df-riota 7326 df-ov 7372 df-oprab 7373 df-proset 18236 df-poset 18255 df-lub 18286 df-glb 18287 df-join 18288 df-meet 18289 df-lat 18374 |
| This theorem is referenced by: latleeqm2 18410 latnlemlt 18414 latabs2 18418 atnle 39304 2llnmat 39512 llnmlplnN 39527 dalem25 39686 2lnat 39772 lhpm0atN 40017 lhpmatb 40019 cdleme1 40215 cdleme5 40228 cdleme20d 40300 cdleme22e 40332 cdleme22eALTN 40333 cdleme23b 40338 cdleme32e 40433 doca2N 41114 djajN 41125 dihglblem5aN 41280 dihmeetbclemN 41292 |
| Copyright terms: Public domain | W3C validator |