MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  latleeqm1 Structured version   Visualization version   GIF version

Theorem latleeqm1 18477
Description: "Less than or equal to" in terms of meet. (Contributed by NM, 7-Nov-2011.)
Hypotheses
Ref Expression
latmle.b 𝐵 = (Base‘𝐾)
latmle.l = (le‘𝐾)
latmle.m = (meet‘𝐾)
Assertion
Ref Expression
latleeqm1 ((𝐾 ∈ Lat ∧ 𝑋𝐵𝑌𝐵) → (𝑋 𝑌 ↔ (𝑋 𝑌) = 𝑋))

Proof of Theorem latleeqm1
StepHypRef Expression
1 latmle.b . . . . . . 7 𝐵 = (Base‘𝐾)
2 latmle.l . . . . . . 7 = (le‘𝐾)
31, 2latref 18451 . . . . . 6 ((𝐾 ∈ Lat ∧ 𝑋𝐵) → 𝑋 𝑋)
433adant3 1132 . . . . 5 ((𝐾 ∈ Lat ∧ 𝑋𝐵𝑌𝐵) → 𝑋 𝑋)
54biantrurd 532 . . . 4 ((𝐾 ∈ Lat ∧ 𝑋𝐵𝑌𝐵) → (𝑋 𝑌 ↔ (𝑋 𝑋𝑋 𝑌)))
6 simp1 1136 . . . . 5 ((𝐾 ∈ Lat ∧ 𝑋𝐵𝑌𝐵) → 𝐾 ∈ Lat)
7 simp2 1137 . . . . 5 ((𝐾 ∈ Lat ∧ 𝑋𝐵𝑌𝐵) → 𝑋𝐵)
8 simp3 1138 . . . . 5 ((𝐾 ∈ Lat ∧ 𝑋𝐵𝑌𝐵) → 𝑌𝐵)
9 latmle.m . . . . . 6 = (meet‘𝐾)
101, 2, 9latlem12 18476 . . . . 5 ((𝐾 ∈ Lat ∧ (𝑋𝐵𝑋𝐵𝑌𝐵)) → ((𝑋 𝑋𝑋 𝑌) ↔ 𝑋 (𝑋 𝑌)))
116, 7, 7, 8, 10syl13anc 1374 . . . 4 ((𝐾 ∈ Lat ∧ 𝑋𝐵𝑌𝐵) → ((𝑋 𝑋𝑋 𝑌) ↔ 𝑋 (𝑋 𝑌)))
125, 11bitrd 279 . . 3 ((𝐾 ∈ Lat ∧ 𝑋𝐵𝑌𝐵) → (𝑋 𝑌𝑋 (𝑋 𝑌)))
131, 2, 9latmle1 18474 . . . 4 ((𝐾 ∈ Lat ∧ 𝑋𝐵𝑌𝐵) → (𝑋 𝑌) 𝑋)
1413biantrurd 532 . . 3 ((𝐾 ∈ Lat ∧ 𝑋𝐵𝑌𝐵) → (𝑋 (𝑋 𝑌) ↔ ((𝑋 𝑌) 𝑋𝑋 (𝑋 𝑌))))
1512, 14bitrd 279 . 2 ((𝐾 ∈ Lat ∧ 𝑋𝐵𝑌𝐵) → (𝑋 𝑌 ↔ ((𝑋 𝑌) 𝑋𝑋 (𝑋 𝑌))))
16 latpos 18448 . . . 4 (𝐾 ∈ Lat → 𝐾 ∈ Poset)
17163ad2ant1 1133 . . 3 ((𝐾 ∈ Lat ∧ 𝑋𝐵𝑌𝐵) → 𝐾 ∈ Poset)
181, 9latmcl 18450 . . 3 ((𝐾 ∈ Lat ∧ 𝑋𝐵𝑌𝐵) → (𝑋 𝑌) ∈ 𝐵)
191, 2posasymb 18331 . . 3 ((𝐾 ∈ Poset ∧ (𝑋 𝑌) ∈ 𝐵𝑋𝐵) → (((𝑋 𝑌) 𝑋𝑋 (𝑋 𝑌)) ↔ (𝑋 𝑌) = 𝑋))
2017, 18, 7, 19syl3anc 1373 . 2 ((𝐾 ∈ Lat ∧ 𝑋𝐵𝑌𝐵) → (((𝑋 𝑌) 𝑋𝑋 (𝑋 𝑌)) ↔ (𝑋 𝑌) = 𝑋))
2115, 20bitrd 279 1 ((𝐾 ∈ Lat ∧ 𝑋𝐵𝑌𝐵) → (𝑋 𝑌 ↔ (𝑋 𝑌) = 𝑋))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2108   class class class wbr 5119  cfv 6531  (class class class)co 7405  Basecbs 17228  lecple 17278  Posetcpo 18319  meetcmee 18324  Latclat 18441
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-rep 5249  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7729
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-ral 3052  df-rex 3061  df-rmo 3359  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-iun 4969  df-br 5120  df-opab 5182  df-mpt 5202  df-id 5548  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-iota 6484  df-fun 6533  df-fn 6534  df-f 6535  df-f1 6536  df-fo 6537  df-f1o 6538  df-fv 6539  df-riota 7362  df-ov 7408  df-oprab 7409  df-proset 18306  df-poset 18325  df-lub 18356  df-glb 18357  df-join 18358  df-meet 18359  df-lat 18442
This theorem is referenced by:  latleeqm2  18478  latnlemlt  18482  latabs2  18486  atnle  39335  2llnmat  39543  llnmlplnN  39558  dalem25  39717  2lnat  39803  lhpm0atN  40048  lhpmatb  40050  cdleme1  40246  cdleme5  40259  cdleme20d  40331  cdleme22e  40363  cdleme22eALTN  40364  cdleme23b  40369  cdleme32e  40464  doca2N  41145  djajN  41156  dihglblem5aN  41311  dihmeetbclemN  41323
  Copyright terms: Public domain W3C validator