MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  latleeqm1 Structured version   Visualization version   GIF version

Theorem latleeqm1 18512
Description: "Less than or equal to" in terms of meet. (Contributed by NM, 7-Nov-2011.)
Hypotheses
Ref Expression
latmle.b 𝐵 = (Base‘𝐾)
latmle.l = (le‘𝐾)
latmle.m = (meet‘𝐾)
Assertion
Ref Expression
latleeqm1 ((𝐾 ∈ Lat ∧ 𝑋𝐵𝑌𝐵) → (𝑋 𝑌 ↔ (𝑋 𝑌) = 𝑋))

Proof of Theorem latleeqm1
StepHypRef Expression
1 latmle.b . . . . . . 7 𝐵 = (Base‘𝐾)
2 latmle.l . . . . . . 7 = (le‘𝐾)
31, 2latref 18486 . . . . . 6 ((𝐾 ∈ Lat ∧ 𝑋𝐵) → 𝑋 𝑋)
433adant3 1133 . . . . 5 ((𝐾 ∈ Lat ∧ 𝑋𝐵𝑌𝐵) → 𝑋 𝑋)
54biantrurd 532 . . . 4 ((𝐾 ∈ Lat ∧ 𝑋𝐵𝑌𝐵) → (𝑋 𝑌 ↔ (𝑋 𝑋𝑋 𝑌)))
6 simp1 1137 . . . . 5 ((𝐾 ∈ Lat ∧ 𝑋𝐵𝑌𝐵) → 𝐾 ∈ Lat)
7 simp2 1138 . . . . 5 ((𝐾 ∈ Lat ∧ 𝑋𝐵𝑌𝐵) → 𝑋𝐵)
8 simp3 1139 . . . . 5 ((𝐾 ∈ Lat ∧ 𝑋𝐵𝑌𝐵) → 𝑌𝐵)
9 latmle.m . . . . . 6 = (meet‘𝐾)
101, 2, 9latlem12 18511 . . . . 5 ((𝐾 ∈ Lat ∧ (𝑋𝐵𝑋𝐵𝑌𝐵)) → ((𝑋 𝑋𝑋 𝑌) ↔ 𝑋 (𝑋 𝑌)))
116, 7, 7, 8, 10syl13anc 1374 . . . 4 ((𝐾 ∈ Lat ∧ 𝑋𝐵𝑌𝐵) → ((𝑋 𝑋𝑋 𝑌) ↔ 𝑋 (𝑋 𝑌)))
125, 11bitrd 279 . . 3 ((𝐾 ∈ Lat ∧ 𝑋𝐵𝑌𝐵) → (𝑋 𝑌𝑋 (𝑋 𝑌)))
131, 2, 9latmle1 18509 . . . 4 ((𝐾 ∈ Lat ∧ 𝑋𝐵𝑌𝐵) → (𝑋 𝑌) 𝑋)
1413biantrurd 532 . . 3 ((𝐾 ∈ Lat ∧ 𝑋𝐵𝑌𝐵) → (𝑋 (𝑋 𝑌) ↔ ((𝑋 𝑌) 𝑋𝑋 (𝑋 𝑌))))
1512, 14bitrd 279 . 2 ((𝐾 ∈ Lat ∧ 𝑋𝐵𝑌𝐵) → (𝑋 𝑌 ↔ ((𝑋 𝑌) 𝑋𝑋 (𝑋 𝑌))))
16 latpos 18483 . . . 4 (𝐾 ∈ Lat → 𝐾 ∈ Poset)
17163ad2ant1 1134 . . 3 ((𝐾 ∈ Lat ∧ 𝑋𝐵𝑌𝐵) → 𝐾 ∈ Poset)
181, 9latmcl 18485 . . 3 ((𝐾 ∈ Lat ∧ 𝑋𝐵𝑌𝐵) → (𝑋 𝑌) ∈ 𝐵)
191, 2posasymb 18365 . . 3 ((𝐾 ∈ Poset ∧ (𝑋 𝑌) ∈ 𝐵𝑋𝐵) → (((𝑋 𝑌) 𝑋𝑋 (𝑋 𝑌)) ↔ (𝑋 𝑌) = 𝑋))
2017, 18, 7, 19syl3anc 1373 . 2 ((𝐾 ∈ Lat ∧ 𝑋𝐵𝑌𝐵) → (((𝑋 𝑌) 𝑋𝑋 (𝑋 𝑌)) ↔ (𝑋 𝑌) = 𝑋))
2115, 20bitrd 279 1 ((𝐾 ∈ Lat ∧ 𝑋𝐵𝑌𝐵) → (𝑋 𝑌 ↔ (𝑋 𝑌) = 𝑋))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1087   = wceq 1540  wcel 2108   class class class wbr 5143  cfv 6561  (class class class)co 7431  Basecbs 17247  lecple 17304  Posetcpo 18353  meetcmee 18358  Latclat 18476
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-rep 5279  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-ral 3062  df-rex 3071  df-rmo 3380  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-iun 4993  df-br 5144  df-opab 5206  df-mpt 5226  df-id 5578  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-riota 7388  df-ov 7434  df-oprab 7435  df-proset 18340  df-poset 18359  df-lub 18391  df-glb 18392  df-join 18393  df-meet 18394  df-lat 18477
This theorem is referenced by:  latleeqm2  18513  latnlemlt  18517  latabs2  18521  atnle  39318  2llnmat  39526  llnmlplnN  39541  dalem25  39700  2lnat  39786  lhpm0atN  40031  lhpmatb  40033  cdleme1  40229  cdleme5  40242  cdleme20d  40314  cdleme22e  40346  cdleme22eALTN  40347  cdleme23b  40352  cdleme32e  40447  doca2N  41128  djajN  41139  dihglblem5aN  41294  dihmeetbclemN  41306
  Copyright terms: Public domain W3C validator