| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > latleeqm1 | Structured version Visualization version GIF version | ||
| Description: "Less than or equal to" in terms of meet. (Contributed by NM, 7-Nov-2011.) |
| Ref | Expression |
|---|---|
| latmle.b | ⊢ 𝐵 = (Base‘𝐾) |
| latmle.l | ⊢ ≤ = (le‘𝐾) |
| latmle.m | ⊢ ∧ = (meet‘𝐾) |
| Ref | Expression |
|---|---|
| latleeqm1 | ⊢ ((𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 ≤ 𝑌 ↔ (𝑋 ∧ 𝑌) = 𝑋)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | latmle.b | . . . . . . 7 ⊢ 𝐵 = (Base‘𝐾) | |
| 2 | latmle.l | . . . . . . 7 ⊢ ≤ = (le‘𝐾) | |
| 3 | 1, 2 | latref 18347 | . . . . . 6 ⊢ ((𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵) → 𝑋 ≤ 𝑋) |
| 4 | 3 | 3adant3 1132 | . . . . 5 ⊢ ((𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → 𝑋 ≤ 𝑋) |
| 5 | 4 | biantrurd 532 | . . . 4 ⊢ ((𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 ≤ 𝑌 ↔ (𝑋 ≤ 𝑋 ∧ 𝑋 ≤ 𝑌))) |
| 6 | simp1 1136 | . . . . 5 ⊢ ((𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → 𝐾 ∈ Lat) | |
| 7 | simp2 1137 | . . . . 5 ⊢ ((𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → 𝑋 ∈ 𝐵) | |
| 8 | simp3 1138 | . . . . 5 ⊢ ((𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → 𝑌 ∈ 𝐵) | |
| 9 | latmle.m | . . . . . 6 ⊢ ∧ = (meet‘𝐾) | |
| 10 | 1, 2, 9 | latlem12 18372 | . . . . 5 ⊢ ((𝐾 ∈ Lat ∧ (𝑋 ∈ 𝐵 ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵)) → ((𝑋 ≤ 𝑋 ∧ 𝑋 ≤ 𝑌) ↔ 𝑋 ≤ (𝑋 ∧ 𝑌))) |
| 11 | 6, 7, 7, 8, 10 | syl13anc 1374 | . . . 4 ⊢ ((𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → ((𝑋 ≤ 𝑋 ∧ 𝑋 ≤ 𝑌) ↔ 𝑋 ≤ (𝑋 ∧ 𝑌))) |
| 12 | 5, 11 | bitrd 279 | . . 3 ⊢ ((𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 ≤ 𝑌 ↔ 𝑋 ≤ (𝑋 ∧ 𝑌))) |
| 13 | 1, 2, 9 | latmle1 18370 | . . . 4 ⊢ ((𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 ∧ 𝑌) ≤ 𝑋) |
| 14 | 13 | biantrurd 532 | . . 3 ⊢ ((𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 ≤ (𝑋 ∧ 𝑌) ↔ ((𝑋 ∧ 𝑌) ≤ 𝑋 ∧ 𝑋 ≤ (𝑋 ∧ 𝑌)))) |
| 15 | 12, 14 | bitrd 279 | . 2 ⊢ ((𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 ≤ 𝑌 ↔ ((𝑋 ∧ 𝑌) ≤ 𝑋 ∧ 𝑋 ≤ (𝑋 ∧ 𝑌)))) |
| 16 | latpos 18344 | . . . 4 ⊢ (𝐾 ∈ Lat → 𝐾 ∈ Poset) | |
| 17 | 16 | 3ad2ant1 1133 | . . 3 ⊢ ((𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → 𝐾 ∈ Poset) |
| 18 | 1, 9 | latmcl 18346 | . . 3 ⊢ ((𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 ∧ 𝑌) ∈ 𝐵) |
| 19 | 1, 2 | posasymb 18225 | . . 3 ⊢ ((𝐾 ∈ Poset ∧ (𝑋 ∧ 𝑌) ∈ 𝐵 ∧ 𝑋 ∈ 𝐵) → (((𝑋 ∧ 𝑌) ≤ 𝑋 ∧ 𝑋 ≤ (𝑋 ∧ 𝑌)) ↔ (𝑋 ∧ 𝑌) = 𝑋)) |
| 20 | 17, 18, 7, 19 | syl3anc 1373 | . 2 ⊢ ((𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (((𝑋 ∧ 𝑌) ≤ 𝑋 ∧ 𝑋 ≤ (𝑋 ∧ 𝑌)) ↔ (𝑋 ∧ 𝑌) = 𝑋)) |
| 21 | 15, 20 | bitrd 279 | 1 ⊢ ((𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 ≤ 𝑌 ↔ (𝑋 ∧ 𝑌) = 𝑋)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 class class class wbr 5092 ‘cfv 6482 (class class class)co 7349 Basecbs 17120 lecple 17168 Posetcpo 18213 meetcmee 18218 Latclat 18337 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5218 ax-sep 5235 ax-nul 5245 ax-pow 5304 ax-pr 5371 ax-un 7671 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rmo 3343 df-reu 3344 df-rab 3395 df-v 3438 df-sbc 3743 df-csb 3852 df-dif 3906 df-un 3908 df-in 3910 df-ss 3920 df-nul 4285 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4859 df-iun 4943 df-br 5093 df-opab 5155 df-mpt 5174 df-id 5514 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-iota 6438 df-fun 6484 df-fn 6485 df-f 6486 df-f1 6487 df-fo 6488 df-f1o 6489 df-fv 6490 df-riota 7306 df-ov 7352 df-oprab 7353 df-proset 18200 df-poset 18219 df-lub 18250 df-glb 18251 df-join 18252 df-meet 18253 df-lat 18338 |
| This theorem is referenced by: latleeqm2 18374 latnlemlt 18378 latabs2 18382 atnle 39316 2llnmat 39523 llnmlplnN 39538 dalem25 39697 2lnat 39783 lhpm0atN 40028 lhpmatb 40030 cdleme1 40226 cdleme5 40239 cdleme20d 40311 cdleme22e 40343 cdleme22eALTN 40344 cdleme23b 40349 cdleme32e 40444 doca2N 41125 djajN 41136 dihglblem5aN 41291 dihmeetbclemN 41303 |
| Copyright terms: Public domain | W3C validator |