MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  latleeqm1 Structured version   Visualization version   GIF version

Theorem latleeqm1 18487
Description: "Less than or equal to" in terms of meet. (Contributed by NM, 7-Nov-2011.)
Hypotheses
Ref Expression
latmle.b 𝐵 = (Base‘𝐾)
latmle.l = (le‘𝐾)
latmle.m = (meet‘𝐾)
Assertion
Ref Expression
latleeqm1 ((𝐾 ∈ Lat ∧ 𝑋𝐵𝑌𝐵) → (𝑋 𝑌 ↔ (𝑋 𝑌) = 𝑋))

Proof of Theorem latleeqm1
StepHypRef Expression
1 latmle.b . . . . . . 7 𝐵 = (Base‘𝐾)
2 latmle.l . . . . . . 7 = (le‘𝐾)
31, 2latref 18461 . . . . . 6 ((𝐾 ∈ Lat ∧ 𝑋𝐵) → 𝑋 𝑋)
433adant3 1129 . . . . 5 ((𝐾 ∈ Lat ∧ 𝑋𝐵𝑌𝐵) → 𝑋 𝑋)
54biantrurd 531 . . . 4 ((𝐾 ∈ Lat ∧ 𝑋𝐵𝑌𝐵) → (𝑋 𝑌 ↔ (𝑋 𝑋𝑋 𝑌)))
6 simp1 1133 . . . . 5 ((𝐾 ∈ Lat ∧ 𝑋𝐵𝑌𝐵) → 𝐾 ∈ Lat)
7 simp2 1134 . . . . 5 ((𝐾 ∈ Lat ∧ 𝑋𝐵𝑌𝐵) → 𝑋𝐵)
8 simp3 1135 . . . . 5 ((𝐾 ∈ Lat ∧ 𝑋𝐵𝑌𝐵) → 𝑌𝐵)
9 latmle.m . . . . . 6 = (meet‘𝐾)
101, 2, 9latlem12 18486 . . . . 5 ((𝐾 ∈ Lat ∧ (𝑋𝐵𝑋𝐵𝑌𝐵)) → ((𝑋 𝑋𝑋 𝑌) ↔ 𝑋 (𝑋 𝑌)))
116, 7, 7, 8, 10syl13anc 1369 . . . 4 ((𝐾 ∈ Lat ∧ 𝑋𝐵𝑌𝐵) → ((𝑋 𝑋𝑋 𝑌) ↔ 𝑋 (𝑋 𝑌)))
125, 11bitrd 278 . . 3 ((𝐾 ∈ Lat ∧ 𝑋𝐵𝑌𝐵) → (𝑋 𝑌𝑋 (𝑋 𝑌)))
131, 2, 9latmle1 18484 . . . 4 ((𝐾 ∈ Lat ∧ 𝑋𝐵𝑌𝐵) → (𝑋 𝑌) 𝑋)
1413biantrurd 531 . . 3 ((𝐾 ∈ Lat ∧ 𝑋𝐵𝑌𝐵) → (𝑋 (𝑋 𝑌) ↔ ((𝑋 𝑌) 𝑋𝑋 (𝑋 𝑌))))
1512, 14bitrd 278 . 2 ((𝐾 ∈ Lat ∧ 𝑋𝐵𝑌𝐵) → (𝑋 𝑌 ↔ ((𝑋 𝑌) 𝑋𝑋 (𝑋 𝑌))))
16 latpos 18458 . . . 4 (𝐾 ∈ Lat → 𝐾 ∈ Poset)
17163ad2ant1 1130 . . 3 ((𝐾 ∈ Lat ∧ 𝑋𝐵𝑌𝐵) → 𝐾 ∈ Poset)
181, 9latmcl 18460 . . 3 ((𝐾 ∈ Lat ∧ 𝑋𝐵𝑌𝐵) → (𝑋 𝑌) ∈ 𝐵)
191, 2posasymb 18339 . . 3 ((𝐾 ∈ Poset ∧ (𝑋 𝑌) ∈ 𝐵𝑋𝐵) → (((𝑋 𝑌) 𝑋𝑋 (𝑋 𝑌)) ↔ (𝑋 𝑌) = 𝑋))
2017, 18, 7, 19syl3anc 1368 . 2 ((𝐾 ∈ Lat ∧ 𝑋𝐵𝑌𝐵) → (((𝑋 𝑌) 𝑋𝑋 (𝑋 𝑌)) ↔ (𝑋 𝑌) = 𝑋))
2115, 20bitrd 278 1 ((𝐾 ∈ Lat ∧ 𝑋𝐵𝑌𝐵) → (𝑋 𝑌 ↔ (𝑋 𝑌) = 𝑋))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 394  w3a 1084   = wceq 1533  wcel 2098   class class class wbr 5152  cfv 6553  (class class class)co 7423  Basecbs 17208  lecple 17268  Posetcpo 18327  meetcmee 18332  Latclat 18451
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2696  ax-rep 5289  ax-sep 5303  ax-nul 5310  ax-pow 5368  ax-pr 5432  ax-un 7745
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2703  df-cleq 2717  df-clel 2802  df-nfc 2877  df-ne 2930  df-ral 3051  df-rex 3060  df-rmo 3363  df-reu 3364  df-rab 3419  df-v 3463  df-sbc 3776  df-csb 3892  df-dif 3949  df-un 3951  df-in 3953  df-ss 3963  df-nul 4325  df-if 4533  df-pw 4608  df-sn 4633  df-pr 4635  df-op 4639  df-uni 4913  df-iun 5002  df-br 5153  df-opab 5215  df-mpt 5236  df-id 5579  df-xp 5687  df-rel 5688  df-cnv 5689  df-co 5690  df-dm 5691  df-rn 5692  df-res 5693  df-ima 5694  df-iota 6505  df-fun 6555  df-fn 6556  df-f 6557  df-f1 6558  df-fo 6559  df-f1o 6560  df-fv 6561  df-riota 7379  df-ov 7426  df-oprab 7427  df-proset 18315  df-poset 18333  df-lub 18366  df-glb 18367  df-join 18368  df-meet 18369  df-lat 18452
This theorem is referenced by:  latleeqm2  18488  latnlemlt  18492  latabs2  18496  atnle  38975  2llnmat  39183  llnmlplnN  39198  dalem25  39357  2lnat  39443  lhpm0atN  39688  lhpmatb  39690  cdleme1  39886  cdleme5  39899  cdleme20d  39971  cdleme22e  40003  cdleme22eALTN  40004  cdleme23b  40009  cdleme32e  40104  doca2N  40785  djajN  40796  dihglblem5aN  40951  dihmeetbclemN  40963
  Copyright terms: Public domain W3C validator