MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  latleeqm1 Structured version   Visualization version   GIF version

Theorem latleeqm1 18408
Description: "Less than or equal to" in terms of meet. (Contributed by NM, 7-Nov-2011.)
Hypotheses
Ref Expression
latmle.b 𝐵 = (Base‘𝐾)
latmle.l = (le‘𝐾)
latmle.m = (meet‘𝐾)
Assertion
Ref Expression
latleeqm1 ((𝐾 ∈ Lat ∧ 𝑋𝐵𝑌𝐵) → (𝑋 𝑌 ↔ (𝑋 𝑌) = 𝑋))

Proof of Theorem latleeqm1
StepHypRef Expression
1 latmle.b . . . . . . 7 𝐵 = (Base‘𝐾)
2 latmle.l . . . . . . 7 = (le‘𝐾)
31, 2latref 18382 . . . . . 6 ((𝐾 ∈ Lat ∧ 𝑋𝐵) → 𝑋 𝑋)
433adant3 1132 . . . . 5 ((𝐾 ∈ Lat ∧ 𝑋𝐵𝑌𝐵) → 𝑋 𝑋)
54biantrurd 532 . . . 4 ((𝐾 ∈ Lat ∧ 𝑋𝐵𝑌𝐵) → (𝑋 𝑌 ↔ (𝑋 𝑋𝑋 𝑌)))
6 simp1 1136 . . . . 5 ((𝐾 ∈ Lat ∧ 𝑋𝐵𝑌𝐵) → 𝐾 ∈ Lat)
7 simp2 1137 . . . . 5 ((𝐾 ∈ Lat ∧ 𝑋𝐵𝑌𝐵) → 𝑋𝐵)
8 simp3 1138 . . . . 5 ((𝐾 ∈ Lat ∧ 𝑋𝐵𝑌𝐵) → 𝑌𝐵)
9 latmle.m . . . . . 6 = (meet‘𝐾)
101, 2, 9latlem12 18407 . . . . 5 ((𝐾 ∈ Lat ∧ (𝑋𝐵𝑋𝐵𝑌𝐵)) → ((𝑋 𝑋𝑋 𝑌) ↔ 𝑋 (𝑋 𝑌)))
116, 7, 7, 8, 10syl13anc 1374 . . . 4 ((𝐾 ∈ Lat ∧ 𝑋𝐵𝑌𝐵) → ((𝑋 𝑋𝑋 𝑌) ↔ 𝑋 (𝑋 𝑌)))
125, 11bitrd 279 . . 3 ((𝐾 ∈ Lat ∧ 𝑋𝐵𝑌𝐵) → (𝑋 𝑌𝑋 (𝑋 𝑌)))
131, 2, 9latmle1 18405 . . . 4 ((𝐾 ∈ Lat ∧ 𝑋𝐵𝑌𝐵) → (𝑋 𝑌) 𝑋)
1413biantrurd 532 . . 3 ((𝐾 ∈ Lat ∧ 𝑋𝐵𝑌𝐵) → (𝑋 (𝑋 𝑌) ↔ ((𝑋 𝑌) 𝑋𝑋 (𝑋 𝑌))))
1512, 14bitrd 279 . 2 ((𝐾 ∈ Lat ∧ 𝑋𝐵𝑌𝐵) → (𝑋 𝑌 ↔ ((𝑋 𝑌) 𝑋𝑋 (𝑋 𝑌))))
16 latpos 18379 . . . 4 (𝐾 ∈ Lat → 𝐾 ∈ Poset)
17163ad2ant1 1133 . . 3 ((𝐾 ∈ Lat ∧ 𝑋𝐵𝑌𝐵) → 𝐾 ∈ Poset)
181, 9latmcl 18381 . . 3 ((𝐾 ∈ Lat ∧ 𝑋𝐵𝑌𝐵) → (𝑋 𝑌) ∈ 𝐵)
191, 2posasymb 18260 . . 3 ((𝐾 ∈ Poset ∧ (𝑋 𝑌) ∈ 𝐵𝑋𝐵) → (((𝑋 𝑌) 𝑋𝑋 (𝑋 𝑌)) ↔ (𝑋 𝑌) = 𝑋))
2017, 18, 7, 19syl3anc 1373 . 2 ((𝐾 ∈ Lat ∧ 𝑋𝐵𝑌𝐵) → (((𝑋 𝑌) 𝑋𝑋 (𝑋 𝑌)) ↔ (𝑋 𝑌) = 𝑋))
2115, 20bitrd 279 1 ((𝐾 ∈ Lat ∧ 𝑋𝐵𝑌𝐵) → (𝑋 𝑌 ↔ (𝑋 𝑌) = 𝑋))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109   class class class wbr 5102  cfv 6499  (class class class)co 7369  Basecbs 17155  lecple 17203  Posetcpo 18248  meetcmee 18253  Latclat 18372
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5229  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rmo 3351  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-iun 4953  df-br 5103  df-opab 5165  df-mpt 5184  df-id 5526  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-riota 7326  df-ov 7372  df-oprab 7373  df-proset 18235  df-poset 18254  df-lub 18285  df-glb 18286  df-join 18287  df-meet 18288  df-lat 18373
This theorem is referenced by:  latleeqm2  18409  latnlemlt  18413  latabs2  18417  atnle  39303  2llnmat  39511  llnmlplnN  39526  dalem25  39685  2lnat  39771  lhpm0atN  40016  lhpmatb  40018  cdleme1  40214  cdleme5  40227  cdleme20d  40299  cdleme22e  40331  cdleme22eALTN  40332  cdleme23b  40337  cdleme32e  40432  doca2N  41113  djajN  41124  dihglblem5aN  41279  dihmeetbclemN  41291
  Copyright terms: Public domain W3C validator