MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  latleeqm1 Structured version   Visualization version   GIF version

Theorem latleeqm1 18525
Description: "Less than or equal to" in terms of meet. (Contributed by NM, 7-Nov-2011.)
Hypotheses
Ref Expression
latmle.b 𝐵 = (Base‘𝐾)
latmle.l = (le‘𝐾)
latmle.m = (meet‘𝐾)
Assertion
Ref Expression
latleeqm1 ((𝐾 ∈ Lat ∧ 𝑋𝐵𝑌𝐵) → (𝑋 𝑌 ↔ (𝑋 𝑌) = 𝑋))

Proof of Theorem latleeqm1
StepHypRef Expression
1 latmle.b . . . . . . 7 𝐵 = (Base‘𝐾)
2 latmle.l . . . . . . 7 = (le‘𝐾)
31, 2latref 18499 . . . . . 6 ((𝐾 ∈ Lat ∧ 𝑋𝐵) → 𝑋 𝑋)
433adant3 1131 . . . . 5 ((𝐾 ∈ Lat ∧ 𝑋𝐵𝑌𝐵) → 𝑋 𝑋)
54biantrurd 532 . . . 4 ((𝐾 ∈ Lat ∧ 𝑋𝐵𝑌𝐵) → (𝑋 𝑌 ↔ (𝑋 𝑋𝑋 𝑌)))
6 simp1 1135 . . . . 5 ((𝐾 ∈ Lat ∧ 𝑋𝐵𝑌𝐵) → 𝐾 ∈ Lat)
7 simp2 1136 . . . . 5 ((𝐾 ∈ Lat ∧ 𝑋𝐵𝑌𝐵) → 𝑋𝐵)
8 simp3 1137 . . . . 5 ((𝐾 ∈ Lat ∧ 𝑋𝐵𝑌𝐵) → 𝑌𝐵)
9 latmle.m . . . . . 6 = (meet‘𝐾)
101, 2, 9latlem12 18524 . . . . 5 ((𝐾 ∈ Lat ∧ (𝑋𝐵𝑋𝐵𝑌𝐵)) → ((𝑋 𝑋𝑋 𝑌) ↔ 𝑋 (𝑋 𝑌)))
116, 7, 7, 8, 10syl13anc 1371 . . . 4 ((𝐾 ∈ Lat ∧ 𝑋𝐵𝑌𝐵) → ((𝑋 𝑋𝑋 𝑌) ↔ 𝑋 (𝑋 𝑌)))
125, 11bitrd 279 . . 3 ((𝐾 ∈ Lat ∧ 𝑋𝐵𝑌𝐵) → (𝑋 𝑌𝑋 (𝑋 𝑌)))
131, 2, 9latmle1 18522 . . . 4 ((𝐾 ∈ Lat ∧ 𝑋𝐵𝑌𝐵) → (𝑋 𝑌) 𝑋)
1413biantrurd 532 . . 3 ((𝐾 ∈ Lat ∧ 𝑋𝐵𝑌𝐵) → (𝑋 (𝑋 𝑌) ↔ ((𝑋 𝑌) 𝑋𝑋 (𝑋 𝑌))))
1512, 14bitrd 279 . 2 ((𝐾 ∈ Lat ∧ 𝑋𝐵𝑌𝐵) → (𝑋 𝑌 ↔ ((𝑋 𝑌) 𝑋𝑋 (𝑋 𝑌))))
16 latpos 18496 . . . 4 (𝐾 ∈ Lat → 𝐾 ∈ Poset)
17163ad2ant1 1132 . . 3 ((𝐾 ∈ Lat ∧ 𝑋𝐵𝑌𝐵) → 𝐾 ∈ Poset)
181, 9latmcl 18498 . . 3 ((𝐾 ∈ Lat ∧ 𝑋𝐵𝑌𝐵) → (𝑋 𝑌) ∈ 𝐵)
191, 2posasymb 18377 . . 3 ((𝐾 ∈ Poset ∧ (𝑋 𝑌) ∈ 𝐵𝑋𝐵) → (((𝑋 𝑌) 𝑋𝑋 (𝑋 𝑌)) ↔ (𝑋 𝑌) = 𝑋))
2017, 18, 7, 19syl3anc 1370 . 2 ((𝐾 ∈ Lat ∧ 𝑋𝐵𝑌𝐵) → (((𝑋 𝑌) 𝑋𝑋 (𝑋 𝑌)) ↔ (𝑋 𝑌) = 𝑋))
2115, 20bitrd 279 1 ((𝐾 ∈ Lat ∧ 𝑋𝐵𝑌𝐵) → (𝑋 𝑌 ↔ (𝑋 𝑌) = 𝑋))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1537  wcel 2106   class class class wbr 5148  cfv 6563  (class class class)co 7431  Basecbs 17245  lecple 17305  Posetcpo 18365  meetcmee 18370  Latclat 18489
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-rep 5285  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-ral 3060  df-rex 3069  df-rmo 3378  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5583  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-riota 7388  df-ov 7434  df-oprab 7435  df-proset 18352  df-poset 18371  df-lub 18404  df-glb 18405  df-join 18406  df-meet 18407  df-lat 18490
This theorem is referenced by:  latleeqm2  18526  latnlemlt  18530  latabs2  18534  atnle  39299  2llnmat  39507  llnmlplnN  39522  dalem25  39681  2lnat  39767  lhpm0atN  40012  lhpmatb  40014  cdleme1  40210  cdleme5  40223  cdleme20d  40295  cdleme22e  40327  cdleme22eALTN  40328  cdleme23b  40333  cdleme32e  40428  doca2N  41109  djajN  41120  dihglblem5aN  41275  dihmeetbclemN  41287
  Copyright terms: Public domain W3C validator