| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > latleeqm1 | Structured version Visualization version GIF version | ||
| Description: "Less than or equal to" in terms of meet. (Contributed by NM, 7-Nov-2011.) |
| Ref | Expression |
|---|---|
| latmle.b | ⊢ 𝐵 = (Base‘𝐾) |
| latmle.l | ⊢ ≤ = (le‘𝐾) |
| latmle.m | ⊢ ∧ = (meet‘𝐾) |
| Ref | Expression |
|---|---|
| latleeqm1 | ⊢ ((𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 ≤ 𝑌 ↔ (𝑋 ∧ 𝑌) = 𝑋)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | latmle.b | . . . . . . 7 ⊢ 𝐵 = (Base‘𝐾) | |
| 2 | latmle.l | . . . . . . 7 ⊢ ≤ = (le‘𝐾) | |
| 3 | 1, 2 | latref 18451 | . . . . . 6 ⊢ ((𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵) → 𝑋 ≤ 𝑋) |
| 4 | 3 | 3adant3 1132 | . . . . 5 ⊢ ((𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → 𝑋 ≤ 𝑋) |
| 5 | 4 | biantrurd 532 | . . . 4 ⊢ ((𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 ≤ 𝑌 ↔ (𝑋 ≤ 𝑋 ∧ 𝑋 ≤ 𝑌))) |
| 6 | simp1 1136 | . . . . 5 ⊢ ((𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → 𝐾 ∈ Lat) | |
| 7 | simp2 1137 | . . . . 5 ⊢ ((𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → 𝑋 ∈ 𝐵) | |
| 8 | simp3 1138 | . . . . 5 ⊢ ((𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → 𝑌 ∈ 𝐵) | |
| 9 | latmle.m | . . . . . 6 ⊢ ∧ = (meet‘𝐾) | |
| 10 | 1, 2, 9 | latlem12 18476 | . . . . 5 ⊢ ((𝐾 ∈ Lat ∧ (𝑋 ∈ 𝐵 ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵)) → ((𝑋 ≤ 𝑋 ∧ 𝑋 ≤ 𝑌) ↔ 𝑋 ≤ (𝑋 ∧ 𝑌))) |
| 11 | 6, 7, 7, 8, 10 | syl13anc 1374 | . . . 4 ⊢ ((𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → ((𝑋 ≤ 𝑋 ∧ 𝑋 ≤ 𝑌) ↔ 𝑋 ≤ (𝑋 ∧ 𝑌))) |
| 12 | 5, 11 | bitrd 279 | . . 3 ⊢ ((𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 ≤ 𝑌 ↔ 𝑋 ≤ (𝑋 ∧ 𝑌))) |
| 13 | 1, 2, 9 | latmle1 18474 | . . . 4 ⊢ ((𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 ∧ 𝑌) ≤ 𝑋) |
| 14 | 13 | biantrurd 532 | . . 3 ⊢ ((𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 ≤ (𝑋 ∧ 𝑌) ↔ ((𝑋 ∧ 𝑌) ≤ 𝑋 ∧ 𝑋 ≤ (𝑋 ∧ 𝑌)))) |
| 15 | 12, 14 | bitrd 279 | . 2 ⊢ ((𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 ≤ 𝑌 ↔ ((𝑋 ∧ 𝑌) ≤ 𝑋 ∧ 𝑋 ≤ (𝑋 ∧ 𝑌)))) |
| 16 | latpos 18448 | . . . 4 ⊢ (𝐾 ∈ Lat → 𝐾 ∈ Poset) | |
| 17 | 16 | 3ad2ant1 1133 | . . 3 ⊢ ((𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → 𝐾 ∈ Poset) |
| 18 | 1, 9 | latmcl 18450 | . . 3 ⊢ ((𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 ∧ 𝑌) ∈ 𝐵) |
| 19 | 1, 2 | posasymb 18331 | . . 3 ⊢ ((𝐾 ∈ Poset ∧ (𝑋 ∧ 𝑌) ∈ 𝐵 ∧ 𝑋 ∈ 𝐵) → (((𝑋 ∧ 𝑌) ≤ 𝑋 ∧ 𝑋 ≤ (𝑋 ∧ 𝑌)) ↔ (𝑋 ∧ 𝑌) = 𝑋)) |
| 20 | 17, 18, 7, 19 | syl3anc 1373 | . 2 ⊢ ((𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (((𝑋 ∧ 𝑌) ≤ 𝑋 ∧ 𝑋 ≤ (𝑋 ∧ 𝑌)) ↔ (𝑋 ∧ 𝑌) = 𝑋)) |
| 21 | 15, 20 | bitrd 279 | 1 ⊢ ((𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 ≤ 𝑌 ↔ (𝑋 ∧ 𝑌) = 𝑋)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2108 class class class wbr 5119 ‘cfv 6531 (class class class)co 7405 Basecbs 17228 lecple 17278 Posetcpo 18319 meetcmee 18324 Latclat 18441 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-rep 5249 ax-sep 5266 ax-nul 5276 ax-pow 5335 ax-pr 5402 ax-un 7729 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-ral 3052 df-rex 3061 df-rmo 3359 df-reu 3360 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-iun 4969 df-br 5120 df-opab 5182 df-mpt 5202 df-id 5548 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-iota 6484 df-fun 6533 df-fn 6534 df-f 6535 df-f1 6536 df-fo 6537 df-f1o 6538 df-fv 6539 df-riota 7362 df-ov 7408 df-oprab 7409 df-proset 18306 df-poset 18325 df-lub 18356 df-glb 18357 df-join 18358 df-meet 18359 df-lat 18442 |
| This theorem is referenced by: latleeqm2 18478 latnlemlt 18482 latabs2 18486 atnle 39335 2llnmat 39543 llnmlplnN 39558 dalem25 39717 2lnat 39803 lhpm0atN 40048 lhpmatb 40050 cdleme1 40246 cdleme5 40259 cdleme20d 40331 cdleme22e 40363 cdleme22eALTN 40364 cdleme23b 40369 cdleme32e 40464 doca2N 41145 djajN 41156 dihglblem5aN 41311 dihmeetbclemN 41323 |
| Copyright terms: Public domain | W3C validator |