Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > lbsextlem1 | Structured version Visualization version GIF version |
Description: Lemma for lbsext 20496. The set 𝑆 is the set of all linearly independent sets containing 𝐶; we show here that it is nonempty. (Contributed by Mario Carneiro, 25-Jun-2014.) |
Ref | Expression |
---|---|
lbsext.v | ⊢ 𝑉 = (Base‘𝑊) |
lbsext.j | ⊢ 𝐽 = (LBasis‘𝑊) |
lbsext.n | ⊢ 𝑁 = (LSpan‘𝑊) |
lbsext.w | ⊢ (𝜑 → 𝑊 ∈ LVec) |
lbsext.c | ⊢ (𝜑 → 𝐶 ⊆ 𝑉) |
lbsext.x | ⊢ (𝜑 → ∀𝑥 ∈ 𝐶 ¬ 𝑥 ∈ (𝑁‘(𝐶 ∖ {𝑥}))) |
lbsext.s | ⊢ 𝑆 = {𝑧 ∈ 𝒫 𝑉 ∣ (𝐶 ⊆ 𝑧 ∧ ∀𝑥 ∈ 𝑧 ¬ 𝑥 ∈ (𝑁‘(𝑧 ∖ {𝑥})))} |
Ref | Expression |
---|---|
lbsextlem1 | ⊢ (𝜑 → 𝑆 ≠ ∅) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lbsext.c | . . . 4 ⊢ (𝜑 → 𝐶 ⊆ 𝑉) | |
2 | lbsext.v | . . . . . 6 ⊢ 𝑉 = (Base‘𝑊) | |
3 | 2 | fvexi 6823 | . . . . 5 ⊢ 𝑉 ∈ V |
4 | 3 | elpw2 5282 | . . . 4 ⊢ (𝐶 ∈ 𝒫 𝑉 ↔ 𝐶 ⊆ 𝑉) |
5 | 1, 4 | sylibr 233 | . . 3 ⊢ (𝜑 → 𝐶 ∈ 𝒫 𝑉) |
6 | lbsext.x | . . . 4 ⊢ (𝜑 → ∀𝑥 ∈ 𝐶 ¬ 𝑥 ∈ (𝑁‘(𝐶 ∖ {𝑥}))) | |
7 | ssid 3952 | . . . 4 ⊢ 𝐶 ⊆ 𝐶 | |
8 | 6, 7 | jctil 520 | . . 3 ⊢ (𝜑 → (𝐶 ⊆ 𝐶 ∧ ∀𝑥 ∈ 𝐶 ¬ 𝑥 ∈ (𝑁‘(𝐶 ∖ {𝑥})))) |
9 | sseq2 3956 | . . . . 5 ⊢ (𝑧 = 𝐶 → (𝐶 ⊆ 𝑧 ↔ 𝐶 ⊆ 𝐶)) | |
10 | difeq1 4060 | . . . . . . . . 9 ⊢ (𝑧 = 𝐶 → (𝑧 ∖ {𝑥}) = (𝐶 ∖ {𝑥})) | |
11 | 10 | fveq2d 6813 | . . . . . . . 8 ⊢ (𝑧 = 𝐶 → (𝑁‘(𝑧 ∖ {𝑥})) = (𝑁‘(𝐶 ∖ {𝑥}))) |
12 | 11 | eleq2d 2823 | . . . . . . 7 ⊢ (𝑧 = 𝐶 → (𝑥 ∈ (𝑁‘(𝑧 ∖ {𝑥})) ↔ 𝑥 ∈ (𝑁‘(𝐶 ∖ {𝑥})))) |
13 | 12 | notbid 317 | . . . . . 6 ⊢ (𝑧 = 𝐶 → (¬ 𝑥 ∈ (𝑁‘(𝑧 ∖ {𝑥})) ↔ ¬ 𝑥 ∈ (𝑁‘(𝐶 ∖ {𝑥})))) |
14 | 13 | raleqbi1dv 3304 | . . . . 5 ⊢ (𝑧 = 𝐶 → (∀𝑥 ∈ 𝑧 ¬ 𝑥 ∈ (𝑁‘(𝑧 ∖ {𝑥})) ↔ ∀𝑥 ∈ 𝐶 ¬ 𝑥 ∈ (𝑁‘(𝐶 ∖ {𝑥})))) |
15 | 9, 14 | anbi12d 631 | . . . 4 ⊢ (𝑧 = 𝐶 → ((𝐶 ⊆ 𝑧 ∧ ∀𝑥 ∈ 𝑧 ¬ 𝑥 ∈ (𝑁‘(𝑧 ∖ {𝑥}))) ↔ (𝐶 ⊆ 𝐶 ∧ ∀𝑥 ∈ 𝐶 ¬ 𝑥 ∈ (𝑁‘(𝐶 ∖ {𝑥}))))) |
16 | lbsext.s | . . . 4 ⊢ 𝑆 = {𝑧 ∈ 𝒫 𝑉 ∣ (𝐶 ⊆ 𝑧 ∧ ∀𝑥 ∈ 𝑧 ¬ 𝑥 ∈ (𝑁‘(𝑧 ∖ {𝑥})))} | |
17 | 15, 16 | elrab2 3636 | . . 3 ⊢ (𝐶 ∈ 𝑆 ↔ (𝐶 ∈ 𝒫 𝑉 ∧ (𝐶 ⊆ 𝐶 ∧ ∀𝑥 ∈ 𝐶 ¬ 𝑥 ∈ (𝑁‘(𝐶 ∖ {𝑥}))))) |
18 | 5, 8, 17 | sylanbrc 583 | . 2 ⊢ (𝜑 → 𝐶 ∈ 𝑆) |
19 | 18 | ne0d 4279 | 1 ⊢ (𝜑 → 𝑆 ≠ ∅) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 396 = wceq 1540 ∈ wcel 2105 ≠ wne 2941 ∀wral 3062 {crab 3404 ∖ cdif 3893 ⊆ wss 3896 ∅c0 4266 𝒫 cpw 4543 {csn 4569 ‘cfv 6463 Basecbs 16979 LSpanclspn 20304 LBasisclbs 20407 LVecclvec 20435 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-ext 2708 ax-sep 5236 ax-nul 5243 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-sb 2067 df-clab 2715 df-cleq 2729 df-clel 2815 df-ne 2942 df-ral 3063 df-rab 3405 df-v 3443 df-dif 3899 df-un 3901 df-in 3903 df-ss 3913 df-nul 4267 df-if 4470 df-pw 4545 df-sn 4570 df-pr 4572 df-op 4576 df-uni 4849 df-br 5086 df-iota 6415 df-fv 6471 |
This theorem is referenced by: lbsextlem4 20494 |
Copyright terms: Public domain | W3C validator |