Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > lbsextlem1 | Structured version Visualization version GIF version |
Description: Lemma for lbsext 20425. The set 𝑆 is the set of all linearly independent sets containing 𝐶; we show here that it is nonempty. (Contributed by Mario Carneiro, 25-Jun-2014.) |
Ref | Expression |
---|---|
lbsext.v | ⊢ 𝑉 = (Base‘𝑊) |
lbsext.j | ⊢ 𝐽 = (LBasis‘𝑊) |
lbsext.n | ⊢ 𝑁 = (LSpan‘𝑊) |
lbsext.w | ⊢ (𝜑 → 𝑊 ∈ LVec) |
lbsext.c | ⊢ (𝜑 → 𝐶 ⊆ 𝑉) |
lbsext.x | ⊢ (𝜑 → ∀𝑥 ∈ 𝐶 ¬ 𝑥 ∈ (𝑁‘(𝐶 ∖ {𝑥}))) |
lbsext.s | ⊢ 𝑆 = {𝑧 ∈ 𝒫 𝑉 ∣ (𝐶 ⊆ 𝑧 ∧ ∀𝑥 ∈ 𝑧 ¬ 𝑥 ∈ (𝑁‘(𝑧 ∖ {𝑥})))} |
Ref | Expression |
---|---|
lbsextlem1 | ⊢ (𝜑 → 𝑆 ≠ ∅) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lbsext.c | . . . 4 ⊢ (𝜑 → 𝐶 ⊆ 𝑉) | |
2 | lbsext.v | . . . . . 6 ⊢ 𝑉 = (Base‘𝑊) | |
3 | 2 | fvexi 6788 | . . . . 5 ⊢ 𝑉 ∈ V |
4 | 3 | elpw2 5269 | . . . 4 ⊢ (𝐶 ∈ 𝒫 𝑉 ↔ 𝐶 ⊆ 𝑉) |
5 | 1, 4 | sylibr 233 | . . 3 ⊢ (𝜑 → 𝐶 ∈ 𝒫 𝑉) |
6 | lbsext.x | . . . 4 ⊢ (𝜑 → ∀𝑥 ∈ 𝐶 ¬ 𝑥 ∈ (𝑁‘(𝐶 ∖ {𝑥}))) | |
7 | ssid 3943 | . . . 4 ⊢ 𝐶 ⊆ 𝐶 | |
8 | 6, 7 | jctil 520 | . . 3 ⊢ (𝜑 → (𝐶 ⊆ 𝐶 ∧ ∀𝑥 ∈ 𝐶 ¬ 𝑥 ∈ (𝑁‘(𝐶 ∖ {𝑥})))) |
9 | sseq2 3947 | . . . . 5 ⊢ (𝑧 = 𝐶 → (𝐶 ⊆ 𝑧 ↔ 𝐶 ⊆ 𝐶)) | |
10 | difeq1 4050 | . . . . . . . . 9 ⊢ (𝑧 = 𝐶 → (𝑧 ∖ {𝑥}) = (𝐶 ∖ {𝑥})) | |
11 | 10 | fveq2d 6778 | . . . . . . . 8 ⊢ (𝑧 = 𝐶 → (𝑁‘(𝑧 ∖ {𝑥})) = (𝑁‘(𝐶 ∖ {𝑥}))) |
12 | 11 | eleq2d 2824 | . . . . . . 7 ⊢ (𝑧 = 𝐶 → (𝑥 ∈ (𝑁‘(𝑧 ∖ {𝑥})) ↔ 𝑥 ∈ (𝑁‘(𝐶 ∖ {𝑥})))) |
13 | 12 | notbid 318 | . . . . . 6 ⊢ (𝑧 = 𝐶 → (¬ 𝑥 ∈ (𝑁‘(𝑧 ∖ {𝑥})) ↔ ¬ 𝑥 ∈ (𝑁‘(𝐶 ∖ {𝑥})))) |
14 | 13 | raleqbi1dv 3340 | . . . . 5 ⊢ (𝑧 = 𝐶 → (∀𝑥 ∈ 𝑧 ¬ 𝑥 ∈ (𝑁‘(𝑧 ∖ {𝑥})) ↔ ∀𝑥 ∈ 𝐶 ¬ 𝑥 ∈ (𝑁‘(𝐶 ∖ {𝑥})))) |
15 | 9, 14 | anbi12d 631 | . . . 4 ⊢ (𝑧 = 𝐶 → ((𝐶 ⊆ 𝑧 ∧ ∀𝑥 ∈ 𝑧 ¬ 𝑥 ∈ (𝑁‘(𝑧 ∖ {𝑥}))) ↔ (𝐶 ⊆ 𝐶 ∧ ∀𝑥 ∈ 𝐶 ¬ 𝑥 ∈ (𝑁‘(𝐶 ∖ {𝑥}))))) |
16 | lbsext.s | . . . 4 ⊢ 𝑆 = {𝑧 ∈ 𝒫 𝑉 ∣ (𝐶 ⊆ 𝑧 ∧ ∀𝑥 ∈ 𝑧 ¬ 𝑥 ∈ (𝑁‘(𝑧 ∖ {𝑥})))} | |
17 | 15, 16 | elrab2 3627 | . . 3 ⊢ (𝐶 ∈ 𝑆 ↔ (𝐶 ∈ 𝒫 𝑉 ∧ (𝐶 ⊆ 𝐶 ∧ ∀𝑥 ∈ 𝐶 ¬ 𝑥 ∈ (𝑁‘(𝐶 ∖ {𝑥}))))) |
18 | 5, 8, 17 | sylanbrc 583 | . 2 ⊢ (𝜑 → 𝐶 ∈ 𝑆) |
19 | 18 | ne0d 4269 | 1 ⊢ (𝜑 → 𝑆 ≠ ∅) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 396 = wceq 1539 ∈ wcel 2106 ≠ wne 2943 ∀wral 3064 {crab 3068 ∖ cdif 3884 ⊆ wss 3887 ∅c0 4256 𝒫 cpw 4533 {csn 4561 ‘cfv 6433 Basecbs 16912 LSpanclspn 20233 LBasisclbs 20336 LVecclvec 20364 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-sep 5223 ax-nul 5230 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-ne 2944 df-ral 3069 df-rex 3070 df-rab 3073 df-v 3434 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-br 5075 df-iota 6391 df-fv 6441 |
This theorem is referenced by: lbsextlem4 20423 |
Copyright terms: Public domain | W3C validator |