![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > lbsextlem1 | Structured version Visualization version GIF version |
Description: Lemma for lbsext 21192. The set 𝑆 is the set of all linearly independent sets containing 𝐶; we show here that it is nonempty. (Contributed by Mario Carneiro, 25-Jun-2014.) |
Ref | Expression |
---|---|
lbsext.v | ⊢ 𝑉 = (Base‘𝑊) |
lbsext.j | ⊢ 𝐽 = (LBasis‘𝑊) |
lbsext.n | ⊢ 𝑁 = (LSpan‘𝑊) |
lbsext.w | ⊢ (𝜑 → 𝑊 ∈ LVec) |
lbsext.c | ⊢ (𝜑 → 𝐶 ⊆ 𝑉) |
lbsext.x | ⊢ (𝜑 → ∀𝑥 ∈ 𝐶 ¬ 𝑥 ∈ (𝑁‘(𝐶 ∖ {𝑥}))) |
lbsext.s | ⊢ 𝑆 = {𝑧 ∈ 𝒫 𝑉 ∣ (𝐶 ⊆ 𝑧 ∧ ∀𝑥 ∈ 𝑧 ¬ 𝑥 ∈ (𝑁‘(𝑧 ∖ {𝑥})))} |
Ref | Expression |
---|---|
lbsextlem1 | ⊢ (𝜑 → 𝑆 ≠ ∅) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lbsext.c | . . . 4 ⊢ (𝜑 → 𝐶 ⊆ 𝑉) | |
2 | lbsext.v | . . . . . 6 ⊢ 𝑉 = (Base‘𝑊) | |
3 | 2 | fvexi 6928 | . . . . 5 ⊢ 𝑉 ∈ V |
4 | 3 | elpw2 5343 | . . . 4 ⊢ (𝐶 ∈ 𝒫 𝑉 ↔ 𝐶 ⊆ 𝑉) |
5 | 1, 4 | sylibr 234 | . . 3 ⊢ (𝜑 → 𝐶 ∈ 𝒫 𝑉) |
6 | lbsext.x | . . . 4 ⊢ (𝜑 → ∀𝑥 ∈ 𝐶 ¬ 𝑥 ∈ (𝑁‘(𝐶 ∖ {𝑥}))) | |
7 | ssid 4021 | . . . 4 ⊢ 𝐶 ⊆ 𝐶 | |
8 | 6, 7 | jctil 519 | . . 3 ⊢ (𝜑 → (𝐶 ⊆ 𝐶 ∧ ∀𝑥 ∈ 𝐶 ¬ 𝑥 ∈ (𝑁‘(𝐶 ∖ {𝑥})))) |
9 | sseq2 4025 | . . . . 5 ⊢ (𝑧 = 𝐶 → (𝐶 ⊆ 𝑧 ↔ 𝐶 ⊆ 𝐶)) | |
10 | difeq1 4132 | . . . . . . . . 9 ⊢ (𝑧 = 𝐶 → (𝑧 ∖ {𝑥}) = (𝐶 ∖ {𝑥})) | |
11 | 10 | fveq2d 6918 | . . . . . . . 8 ⊢ (𝑧 = 𝐶 → (𝑁‘(𝑧 ∖ {𝑥})) = (𝑁‘(𝐶 ∖ {𝑥}))) |
12 | 11 | eleq2d 2827 | . . . . . . 7 ⊢ (𝑧 = 𝐶 → (𝑥 ∈ (𝑁‘(𝑧 ∖ {𝑥})) ↔ 𝑥 ∈ (𝑁‘(𝐶 ∖ {𝑥})))) |
13 | 12 | notbid 318 | . . . . . 6 ⊢ (𝑧 = 𝐶 → (¬ 𝑥 ∈ (𝑁‘(𝑧 ∖ {𝑥})) ↔ ¬ 𝑥 ∈ (𝑁‘(𝐶 ∖ {𝑥})))) |
14 | 13 | raleqbi1dv 3338 | . . . . 5 ⊢ (𝑧 = 𝐶 → (∀𝑥 ∈ 𝑧 ¬ 𝑥 ∈ (𝑁‘(𝑧 ∖ {𝑥})) ↔ ∀𝑥 ∈ 𝐶 ¬ 𝑥 ∈ (𝑁‘(𝐶 ∖ {𝑥})))) |
15 | 9, 14 | anbi12d 632 | . . . 4 ⊢ (𝑧 = 𝐶 → ((𝐶 ⊆ 𝑧 ∧ ∀𝑥 ∈ 𝑧 ¬ 𝑥 ∈ (𝑁‘(𝑧 ∖ {𝑥}))) ↔ (𝐶 ⊆ 𝐶 ∧ ∀𝑥 ∈ 𝐶 ¬ 𝑥 ∈ (𝑁‘(𝐶 ∖ {𝑥}))))) |
16 | lbsext.s | . . . 4 ⊢ 𝑆 = {𝑧 ∈ 𝒫 𝑉 ∣ (𝐶 ⊆ 𝑧 ∧ ∀𝑥 ∈ 𝑧 ¬ 𝑥 ∈ (𝑁‘(𝑧 ∖ {𝑥})))} | |
17 | 15, 16 | elrab2 3701 | . . 3 ⊢ (𝐶 ∈ 𝑆 ↔ (𝐶 ∈ 𝒫 𝑉 ∧ (𝐶 ⊆ 𝐶 ∧ ∀𝑥 ∈ 𝐶 ¬ 𝑥 ∈ (𝑁‘(𝐶 ∖ {𝑥}))))) |
18 | 5, 8, 17 | sylanbrc 583 | . 2 ⊢ (𝜑 → 𝐶 ∈ 𝑆) |
19 | 18 | ne0d 4351 | 1 ⊢ (𝜑 → 𝑆 ≠ ∅) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 = wceq 1539 ∈ wcel 2108 ≠ wne 2940 ∀wral 3061 {crab 3436 ∖ cdif 3963 ⊆ wss 3966 ∅c0 4342 𝒫 cpw 4608 {csn 4634 ‘cfv 6569 Basecbs 17254 LSpanclspn 20996 LBasisclbs 21100 LVecclvec 21128 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2708 ax-sep 5305 ax-nul 5315 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3an 1089 df-tru 1542 df-fal 1552 df-ex 1779 df-sb 2065 df-clab 2715 df-cleq 2729 df-clel 2816 df-ne 2941 df-ral 3062 df-rex 3071 df-rab 3437 df-v 3483 df-dif 3969 df-un 3971 df-in 3973 df-ss 3983 df-nul 4343 df-if 4535 df-pw 4610 df-sn 4635 df-pr 4637 df-op 4641 df-uni 4916 df-br 5152 df-iota 6522 df-fv 6577 |
This theorem is referenced by: lbsextlem4 21190 |
Copyright terms: Public domain | W3C validator |