MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lbsextlem1 Structured version   Visualization version   GIF version

Theorem lbsextlem1 21100
Description: Lemma for lbsext 21105. The set 𝑆 is the set of all linearly independent sets containing 𝐶; we show here that it is nonempty. (Contributed by Mario Carneiro, 25-Jun-2014.)
Hypotheses
Ref Expression
lbsext.v 𝑉 = (Base‘𝑊)
lbsext.j 𝐽 = (LBasis‘𝑊)
lbsext.n 𝑁 = (LSpan‘𝑊)
lbsext.w (𝜑𝑊 ∈ LVec)
lbsext.c (𝜑𝐶𝑉)
lbsext.x (𝜑 → ∀𝑥𝐶 ¬ 𝑥 ∈ (𝑁‘(𝐶 ∖ {𝑥})))
lbsext.s 𝑆 = {𝑧 ∈ 𝒫 𝑉 ∣ (𝐶𝑧 ∧ ∀𝑥𝑧 ¬ 𝑥 ∈ (𝑁‘(𝑧 ∖ {𝑥})))}
Assertion
Ref Expression
lbsextlem1 (𝜑𝑆 ≠ ∅)
Distinct variable groups:   𝑥,𝐽   𝜑,𝑥   𝑥,𝑆   𝑥,𝑧,𝐶   𝑥,𝑁,𝑧   𝑥,𝑉,𝑧   𝑥,𝑊
Allowed substitution hints:   𝜑(𝑧)   𝑆(𝑧)   𝐽(𝑧)   𝑊(𝑧)

Proof of Theorem lbsextlem1
StepHypRef Expression
1 lbsext.c . . . 4 (𝜑𝐶𝑉)
2 lbsext.v . . . . . 6 𝑉 = (Base‘𝑊)
32fvexi 6854 . . . . 5 𝑉 ∈ V
43elpw2 5284 . . . 4 (𝐶 ∈ 𝒫 𝑉𝐶𝑉)
51, 4sylibr 234 . . 3 (𝜑𝐶 ∈ 𝒫 𝑉)
6 lbsext.x . . . 4 (𝜑 → ∀𝑥𝐶 ¬ 𝑥 ∈ (𝑁‘(𝐶 ∖ {𝑥})))
7 ssid 3966 . . . 4 𝐶𝐶
86, 7jctil 519 . . 3 (𝜑 → (𝐶𝐶 ∧ ∀𝑥𝐶 ¬ 𝑥 ∈ (𝑁‘(𝐶 ∖ {𝑥}))))
9 sseq2 3970 . . . . 5 (𝑧 = 𝐶 → (𝐶𝑧𝐶𝐶))
10 difeq1 4078 . . . . . . . . 9 (𝑧 = 𝐶 → (𝑧 ∖ {𝑥}) = (𝐶 ∖ {𝑥}))
1110fveq2d 6844 . . . . . . . 8 (𝑧 = 𝐶 → (𝑁‘(𝑧 ∖ {𝑥})) = (𝑁‘(𝐶 ∖ {𝑥})))
1211eleq2d 2814 . . . . . . 7 (𝑧 = 𝐶 → (𝑥 ∈ (𝑁‘(𝑧 ∖ {𝑥})) ↔ 𝑥 ∈ (𝑁‘(𝐶 ∖ {𝑥}))))
1312notbid 318 . . . . . 6 (𝑧 = 𝐶 → (¬ 𝑥 ∈ (𝑁‘(𝑧 ∖ {𝑥})) ↔ ¬ 𝑥 ∈ (𝑁‘(𝐶 ∖ {𝑥}))))
1413raleqbi1dv 3308 . . . . 5 (𝑧 = 𝐶 → (∀𝑥𝑧 ¬ 𝑥 ∈ (𝑁‘(𝑧 ∖ {𝑥})) ↔ ∀𝑥𝐶 ¬ 𝑥 ∈ (𝑁‘(𝐶 ∖ {𝑥}))))
159, 14anbi12d 632 . . . 4 (𝑧 = 𝐶 → ((𝐶𝑧 ∧ ∀𝑥𝑧 ¬ 𝑥 ∈ (𝑁‘(𝑧 ∖ {𝑥}))) ↔ (𝐶𝐶 ∧ ∀𝑥𝐶 ¬ 𝑥 ∈ (𝑁‘(𝐶 ∖ {𝑥})))))
16 lbsext.s . . . 4 𝑆 = {𝑧 ∈ 𝒫 𝑉 ∣ (𝐶𝑧 ∧ ∀𝑥𝑧 ¬ 𝑥 ∈ (𝑁‘(𝑧 ∖ {𝑥})))}
1715, 16elrab2 3659 . . 3 (𝐶𝑆 ↔ (𝐶 ∈ 𝒫 𝑉 ∧ (𝐶𝐶 ∧ ∀𝑥𝐶 ¬ 𝑥 ∈ (𝑁‘(𝐶 ∖ {𝑥})))))
185, 8, 17sylanbrc 583 . 2 (𝜑𝐶𝑆)
1918ne0d 4301 1 (𝜑𝑆 ≠ ∅)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395   = wceq 1540  wcel 2109  wne 2925  wral 3044  {crab 3402  cdif 3908  wss 3911  c0 4292  𝒫 cpw 4559  {csn 4585  cfv 6499  Basecbs 17155  LSpanclspn 20909  LBasisclbs 21013  LVecclvec 21041
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2701  ax-sep 5246  ax-nul 5256
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3403  df-v 3446  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-br 5103  df-iota 6452  df-fv 6507
This theorem is referenced by:  lbsextlem4  21103
  Copyright terms: Public domain W3C validator