| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > lbsextlem1 | Structured version Visualization version GIF version | ||
| Description: Lemma for lbsext 21100. The set 𝑆 is the set of all linearly independent sets containing 𝐶; we show here that it is nonempty. (Contributed by Mario Carneiro, 25-Jun-2014.) |
| Ref | Expression |
|---|---|
| lbsext.v | ⊢ 𝑉 = (Base‘𝑊) |
| lbsext.j | ⊢ 𝐽 = (LBasis‘𝑊) |
| lbsext.n | ⊢ 𝑁 = (LSpan‘𝑊) |
| lbsext.w | ⊢ (𝜑 → 𝑊 ∈ LVec) |
| lbsext.c | ⊢ (𝜑 → 𝐶 ⊆ 𝑉) |
| lbsext.x | ⊢ (𝜑 → ∀𝑥 ∈ 𝐶 ¬ 𝑥 ∈ (𝑁‘(𝐶 ∖ {𝑥}))) |
| lbsext.s | ⊢ 𝑆 = {𝑧 ∈ 𝒫 𝑉 ∣ (𝐶 ⊆ 𝑧 ∧ ∀𝑥 ∈ 𝑧 ¬ 𝑥 ∈ (𝑁‘(𝑧 ∖ {𝑥})))} |
| Ref | Expression |
|---|---|
| lbsextlem1 | ⊢ (𝜑 → 𝑆 ≠ ∅) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lbsext.c | . . . 4 ⊢ (𝜑 → 𝐶 ⊆ 𝑉) | |
| 2 | lbsext.v | . . . . . 6 ⊢ 𝑉 = (Base‘𝑊) | |
| 3 | 2 | fvexi 6836 | . . . . 5 ⊢ 𝑉 ∈ V |
| 4 | 3 | elpw2 5270 | . . . 4 ⊢ (𝐶 ∈ 𝒫 𝑉 ↔ 𝐶 ⊆ 𝑉) |
| 5 | 1, 4 | sylibr 234 | . . 3 ⊢ (𝜑 → 𝐶 ∈ 𝒫 𝑉) |
| 6 | lbsext.x | . . . 4 ⊢ (𝜑 → ∀𝑥 ∈ 𝐶 ¬ 𝑥 ∈ (𝑁‘(𝐶 ∖ {𝑥}))) | |
| 7 | ssid 3952 | . . . 4 ⊢ 𝐶 ⊆ 𝐶 | |
| 8 | 6, 7 | jctil 519 | . . 3 ⊢ (𝜑 → (𝐶 ⊆ 𝐶 ∧ ∀𝑥 ∈ 𝐶 ¬ 𝑥 ∈ (𝑁‘(𝐶 ∖ {𝑥})))) |
| 9 | sseq2 3956 | . . . . 5 ⊢ (𝑧 = 𝐶 → (𝐶 ⊆ 𝑧 ↔ 𝐶 ⊆ 𝐶)) | |
| 10 | difeq1 4066 | . . . . . . . . 9 ⊢ (𝑧 = 𝐶 → (𝑧 ∖ {𝑥}) = (𝐶 ∖ {𝑥})) | |
| 11 | 10 | fveq2d 6826 | . . . . . . . 8 ⊢ (𝑧 = 𝐶 → (𝑁‘(𝑧 ∖ {𝑥})) = (𝑁‘(𝐶 ∖ {𝑥}))) |
| 12 | 11 | eleq2d 2817 | . . . . . . 7 ⊢ (𝑧 = 𝐶 → (𝑥 ∈ (𝑁‘(𝑧 ∖ {𝑥})) ↔ 𝑥 ∈ (𝑁‘(𝐶 ∖ {𝑥})))) |
| 13 | 12 | notbid 318 | . . . . . 6 ⊢ (𝑧 = 𝐶 → (¬ 𝑥 ∈ (𝑁‘(𝑧 ∖ {𝑥})) ↔ ¬ 𝑥 ∈ (𝑁‘(𝐶 ∖ {𝑥})))) |
| 14 | 13 | raleqbi1dv 3304 | . . . . 5 ⊢ (𝑧 = 𝐶 → (∀𝑥 ∈ 𝑧 ¬ 𝑥 ∈ (𝑁‘(𝑧 ∖ {𝑥})) ↔ ∀𝑥 ∈ 𝐶 ¬ 𝑥 ∈ (𝑁‘(𝐶 ∖ {𝑥})))) |
| 15 | 9, 14 | anbi12d 632 | . . . 4 ⊢ (𝑧 = 𝐶 → ((𝐶 ⊆ 𝑧 ∧ ∀𝑥 ∈ 𝑧 ¬ 𝑥 ∈ (𝑁‘(𝑧 ∖ {𝑥}))) ↔ (𝐶 ⊆ 𝐶 ∧ ∀𝑥 ∈ 𝐶 ¬ 𝑥 ∈ (𝑁‘(𝐶 ∖ {𝑥}))))) |
| 16 | lbsext.s | . . . 4 ⊢ 𝑆 = {𝑧 ∈ 𝒫 𝑉 ∣ (𝐶 ⊆ 𝑧 ∧ ∀𝑥 ∈ 𝑧 ¬ 𝑥 ∈ (𝑁‘(𝑧 ∖ {𝑥})))} | |
| 17 | 15, 16 | elrab2 3645 | . . 3 ⊢ (𝐶 ∈ 𝑆 ↔ (𝐶 ∈ 𝒫 𝑉 ∧ (𝐶 ⊆ 𝐶 ∧ ∀𝑥 ∈ 𝐶 ¬ 𝑥 ∈ (𝑁‘(𝐶 ∖ {𝑥}))))) |
| 18 | 5, 8, 17 | sylanbrc 583 | . 2 ⊢ (𝜑 → 𝐶 ∈ 𝑆) |
| 19 | 18 | ne0d 4289 | 1 ⊢ (𝜑 → 𝑆 ≠ ∅) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2111 ≠ wne 2928 ∀wral 3047 {crab 3395 ∖ cdif 3894 ⊆ wss 3897 ∅c0 4280 𝒫 cpw 4547 {csn 4573 ‘cfv 6481 Basecbs 17120 LSpanclspn 20904 LBasisclbs 21008 LVecclvec 21036 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 ax-sep 5232 ax-nul 5242 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-ne 2929 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4281 df-if 4473 df-pw 4549 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-br 5090 df-iota 6437 df-fv 6489 |
| This theorem is referenced by: lbsextlem4 21098 |
| Copyright terms: Public domain | W3C validator |