MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lbsextlem1 Structured version   Visualization version   GIF version

Theorem lbsextlem1 21185
Description: Lemma for lbsext 21190. The set 𝑆 is the set of all linearly independent sets containing 𝐶; we show here that it is nonempty. (Contributed by Mario Carneiro, 25-Jun-2014.)
Hypotheses
Ref Expression
lbsext.v 𝑉 = (Base‘𝑊)
lbsext.j 𝐽 = (LBasis‘𝑊)
lbsext.n 𝑁 = (LSpan‘𝑊)
lbsext.w (𝜑𝑊 ∈ LVec)
lbsext.c (𝜑𝐶𝑉)
lbsext.x (𝜑 → ∀𝑥𝐶 ¬ 𝑥 ∈ (𝑁‘(𝐶 ∖ {𝑥})))
lbsext.s 𝑆 = {𝑧 ∈ 𝒫 𝑉 ∣ (𝐶𝑧 ∧ ∀𝑥𝑧 ¬ 𝑥 ∈ (𝑁‘(𝑧 ∖ {𝑥})))}
Assertion
Ref Expression
lbsextlem1 (𝜑𝑆 ≠ ∅)
Distinct variable groups:   𝑥,𝐽   𝜑,𝑥   𝑥,𝑆   𝑥,𝑧,𝐶   𝑥,𝑁,𝑧   𝑥,𝑉,𝑧   𝑥,𝑊
Allowed substitution hints:   𝜑(𝑧)   𝑆(𝑧)   𝐽(𝑧)   𝑊(𝑧)

Proof of Theorem lbsextlem1
StepHypRef Expression
1 lbsext.c . . . 4 (𝜑𝐶𝑉)
2 lbsext.v . . . . . 6 𝑉 = (Base‘𝑊)
32fvexi 6936 . . . . 5 𝑉 ∈ V
43elpw2 5352 . . . 4 (𝐶 ∈ 𝒫 𝑉𝐶𝑉)
51, 4sylibr 234 . . 3 (𝜑𝐶 ∈ 𝒫 𝑉)
6 lbsext.x . . . 4 (𝜑 → ∀𝑥𝐶 ¬ 𝑥 ∈ (𝑁‘(𝐶 ∖ {𝑥})))
7 ssid 4031 . . . 4 𝐶𝐶
86, 7jctil 519 . . 3 (𝜑 → (𝐶𝐶 ∧ ∀𝑥𝐶 ¬ 𝑥 ∈ (𝑁‘(𝐶 ∖ {𝑥}))))
9 sseq2 4035 . . . . 5 (𝑧 = 𝐶 → (𝐶𝑧𝐶𝐶))
10 difeq1 4142 . . . . . . . . 9 (𝑧 = 𝐶 → (𝑧 ∖ {𝑥}) = (𝐶 ∖ {𝑥}))
1110fveq2d 6926 . . . . . . . 8 (𝑧 = 𝐶 → (𝑁‘(𝑧 ∖ {𝑥})) = (𝑁‘(𝐶 ∖ {𝑥})))
1211eleq2d 2830 . . . . . . 7 (𝑧 = 𝐶 → (𝑥 ∈ (𝑁‘(𝑧 ∖ {𝑥})) ↔ 𝑥 ∈ (𝑁‘(𝐶 ∖ {𝑥}))))
1312notbid 318 . . . . . 6 (𝑧 = 𝐶 → (¬ 𝑥 ∈ (𝑁‘(𝑧 ∖ {𝑥})) ↔ ¬ 𝑥 ∈ (𝑁‘(𝐶 ∖ {𝑥}))))
1413raleqbi1dv 3346 . . . . 5 (𝑧 = 𝐶 → (∀𝑥𝑧 ¬ 𝑥 ∈ (𝑁‘(𝑧 ∖ {𝑥})) ↔ ∀𝑥𝐶 ¬ 𝑥 ∈ (𝑁‘(𝐶 ∖ {𝑥}))))
159, 14anbi12d 631 . . . 4 (𝑧 = 𝐶 → ((𝐶𝑧 ∧ ∀𝑥𝑧 ¬ 𝑥 ∈ (𝑁‘(𝑧 ∖ {𝑥}))) ↔ (𝐶𝐶 ∧ ∀𝑥𝐶 ¬ 𝑥 ∈ (𝑁‘(𝐶 ∖ {𝑥})))))
16 lbsext.s . . . 4 𝑆 = {𝑧 ∈ 𝒫 𝑉 ∣ (𝐶𝑧 ∧ ∀𝑥𝑧 ¬ 𝑥 ∈ (𝑁‘(𝑧 ∖ {𝑥})))}
1715, 16elrab2 3711 . . 3 (𝐶𝑆 ↔ (𝐶 ∈ 𝒫 𝑉 ∧ (𝐶𝐶 ∧ ∀𝑥𝐶 ¬ 𝑥 ∈ (𝑁‘(𝐶 ∖ {𝑥})))))
185, 8, 17sylanbrc 582 . 2 (𝜑𝐶𝑆)
1918ne0d 4365 1 (𝜑𝑆 ≠ ∅)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395   = wceq 1537  wcel 2108  wne 2946  wral 3067  {crab 3443  cdif 3973  wss 3976  c0 4352  𝒫 cpw 4622  {csn 4648  cfv 6575  Basecbs 17260  LSpanclspn 20994  LBasisclbs 21098  LVecclvec 21126
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2711  ax-sep 5317  ax-nul 5324
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-sb 2065  df-clab 2718  df-cleq 2732  df-clel 2819  df-ne 2947  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-br 5167  df-iota 6527  df-fv 6583
This theorem is referenced by:  lbsextlem4  21188
  Copyright terms: Public domain W3C validator