MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lbsextlem1 Structured version   Visualization version   GIF version

Theorem lbsextlem1 19930
Description: Lemma for lbsext 19935. The set 𝑆 is the set of all linearly independent sets containing 𝐶; we show here that it is nonempty. (Contributed by Mario Carneiro, 25-Jun-2014.)
Hypotheses
Ref Expression
lbsext.v 𝑉 = (Base‘𝑊)
lbsext.j 𝐽 = (LBasis‘𝑊)
lbsext.n 𝑁 = (LSpan‘𝑊)
lbsext.w (𝜑𝑊 ∈ LVec)
lbsext.c (𝜑𝐶𝑉)
lbsext.x (𝜑 → ∀𝑥𝐶 ¬ 𝑥 ∈ (𝑁‘(𝐶 ∖ {𝑥})))
lbsext.s 𝑆 = {𝑧 ∈ 𝒫 𝑉 ∣ (𝐶𝑧 ∧ ∀𝑥𝑧 ¬ 𝑥 ∈ (𝑁‘(𝑧 ∖ {𝑥})))}
Assertion
Ref Expression
lbsextlem1 (𝜑𝑆 ≠ ∅)
Distinct variable groups:   𝑥,𝐽   𝜑,𝑥   𝑥,𝑆   𝑥,𝑧,𝐶   𝑥,𝑁,𝑧   𝑥,𝑉,𝑧   𝑥,𝑊
Allowed substitution hints:   𝜑(𝑧)   𝑆(𝑧)   𝐽(𝑧)   𝑊(𝑧)

Proof of Theorem lbsextlem1
StepHypRef Expression
1 lbsext.c . . . 4 (𝜑𝐶𝑉)
2 lbsext.v . . . . . 6 𝑉 = (Base‘𝑊)
32fvexi 6684 . . . . 5 𝑉 ∈ V
43elpw2 5248 . . . 4 (𝐶 ∈ 𝒫 𝑉𝐶𝑉)
51, 4sylibr 236 . . 3 (𝜑𝐶 ∈ 𝒫 𝑉)
6 lbsext.x . . . 4 (𝜑 → ∀𝑥𝐶 ¬ 𝑥 ∈ (𝑁‘(𝐶 ∖ {𝑥})))
7 ssid 3989 . . . 4 𝐶𝐶
86, 7jctil 522 . . 3 (𝜑 → (𝐶𝐶 ∧ ∀𝑥𝐶 ¬ 𝑥 ∈ (𝑁‘(𝐶 ∖ {𝑥}))))
9 sseq2 3993 . . . . 5 (𝑧 = 𝐶 → (𝐶𝑧𝐶𝐶))
10 difeq1 4092 . . . . . . . . 9 (𝑧 = 𝐶 → (𝑧 ∖ {𝑥}) = (𝐶 ∖ {𝑥}))
1110fveq2d 6674 . . . . . . . 8 (𝑧 = 𝐶 → (𝑁‘(𝑧 ∖ {𝑥})) = (𝑁‘(𝐶 ∖ {𝑥})))
1211eleq2d 2898 . . . . . . 7 (𝑧 = 𝐶 → (𝑥 ∈ (𝑁‘(𝑧 ∖ {𝑥})) ↔ 𝑥 ∈ (𝑁‘(𝐶 ∖ {𝑥}))))
1312notbid 320 . . . . . 6 (𝑧 = 𝐶 → (¬ 𝑥 ∈ (𝑁‘(𝑧 ∖ {𝑥})) ↔ ¬ 𝑥 ∈ (𝑁‘(𝐶 ∖ {𝑥}))))
1413raleqbi1dv 3403 . . . . 5 (𝑧 = 𝐶 → (∀𝑥𝑧 ¬ 𝑥 ∈ (𝑁‘(𝑧 ∖ {𝑥})) ↔ ∀𝑥𝐶 ¬ 𝑥 ∈ (𝑁‘(𝐶 ∖ {𝑥}))))
159, 14anbi12d 632 . . . 4 (𝑧 = 𝐶 → ((𝐶𝑧 ∧ ∀𝑥𝑧 ¬ 𝑥 ∈ (𝑁‘(𝑧 ∖ {𝑥}))) ↔ (𝐶𝐶 ∧ ∀𝑥𝐶 ¬ 𝑥 ∈ (𝑁‘(𝐶 ∖ {𝑥})))))
16 lbsext.s . . . 4 𝑆 = {𝑧 ∈ 𝒫 𝑉 ∣ (𝐶𝑧 ∧ ∀𝑥𝑧 ¬ 𝑥 ∈ (𝑁‘(𝑧 ∖ {𝑥})))}
1715, 16elrab2 3683 . . 3 (𝐶𝑆 ↔ (𝐶 ∈ 𝒫 𝑉 ∧ (𝐶𝐶 ∧ ∀𝑥𝐶 ¬ 𝑥 ∈ (𝑁‘(𝐶 ∖ {𝑥})))))
185, 8, 17sylanbrc 585 . 2 (𝜑𝐶𝑆)
1918ne0d 4301 1 (𝜑𝑆 ≠ ∅)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 398   = wceq 1537  wcel 2114  wne 3016  wral 3138  {crab 3142  cdif 3933  wss 3936  c0 4291  𝒫 cpw 4539  {csn 4567  cfv 6355  Basecbs 16483  LSpanclspn 19743  LBasisclbs 19846  LVecclvec 19874
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2793  ax-sep 5203  ax-nul 5210
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-ral 3143  df-rex 3144  df-rab 3147  df-v 3496  df-sbc 3773  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-nul 4292  df-if 4468  df-pw 4541  df-sn 4568  df-pr 4570  df-op 4574  df-uni 4839  df-br 5067  df-iota 6314  df-fv 6363
This theorem is referenced by:  lbsextlem4  19933
  Copyright terms: Public domain W3C validator