Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > lbsextlem1 | Structured version Visualization version GIF version |
Description: Lemma for lbsext 20008. The set 𝑆 is the set of all linearly independent sets containing 𝐶; we show here that it is nonempty. (Contributed by Mario Carneiro, 25-Jun-2014.) |
Ref | Expression |
---|---|
lbsext.v | ⊢ 𝑉 = (Base‘𝑊) |
lbsext.j | ⊢ 𝐽 = (LBasis‘𝑊) |
lbsext.n | ⊢ 𝑁 = (LSpan‘𝑊) |
lbsext.w | ⊢ (𝜑 → 𝑊 ∈ LVec) |
lbsext.c | ⊢ (𝜑 → 𝐶 ⊆ 𝑉) |
lbsext.x | ⊢ (𝜑 → ∀𝑥 ∈ 𝐶 ¬ 𝑥 ∈ (𝑁‘(𝐶 ∖ {𝑥}))) |
lbsext.s | ⊢ 𝑆 = {𝑧 ∈ 𝒫 𝑉 ∣ (𝐶 ⊆ 𝑧 ∧ ∀𝑥 ∈ 𝑧 ¬ 𝑥 ∈ (𝑁‘(𝑧 ∖ {𝑥})))} |
Ref | Expression |
---|---|
lbsextlem1 | ⊢ (𝜑 → 𝑆 ≠ ∅) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lbsext.c | . . . 4 ⊢ (𝜑 → 𝐶 ⊆ 𝑉) | |
2 | lbsext.v | . . . . . 6 ⊢ 𝑉 = (Base‘𝑊) | |
3 | 2 | fvexi 6676 | . . . . 5 ⊢ 𝑉 ∈ V |
4 | 3 | elpw2 5218 | . . . 4 ⊢ (𝐶 ∈ 𝒫 𝑉 ↔ 𝐶 ⊆ 𝑉) |
5 | 1, 4 | sylibr 237 | . . 3 ⊢ (𝜑 → 𝐶 ∈ 𝒫 𝑉) |
6 | lbsext.x | . . . 4 ⊢ (𝜑 → ∀𝑥 ∈ 𝐶 ¬ 𝑥 ∈ (𝑁‘(𝐶 ∖ {𝑥}))) | |
7 | ssid 3916 | . . . 4 ⊢ 𝐶 ⊆ 𝐶 | |
8 | 6, 7 | jctil 523 | . . 3 ⊢ (𝜑 → (𝐶 ⊆ 𝐶 ∧ ∀𝑥 ∈ 𝐶 ¬ 𝑥 ∈ (𝑁‘(𝐶 ∖ {𝑥})))) |
9 | sseq2 3920 | . . . . 5 ⊢ (𝑧 = 𝐶 → (𝐶 ⊆ 𝑧 ↔ 𝐶 ⊆ 𝐶)) | |
10 | difeq1 4023 | . . . . . . . . 9 ⊢ (𝑧 = 𝐶 → (𝑧 ∖ {𝑥}) = (𝐶 ∖ {𝑥})) | |
11 | 10 | fveq2d 6666 | . . . . . . . 8 ⊢ (𝑧 = 𝐶 → (𝑁‘(𝑧 ∖ {𝑥})) = (𝑁‘(𝐶 ∖ {𝑥}))) |
12 | 11 | eleq2d 2837 | . . . . . . 7 ⊢ (𝑧 = 𝐶 → (𝑥 ∈ (𝑁‘(𝑧 ∖ {𝑥})) ↔ 𝑥 ∈ (𝑁‘(𝐶 ∖ {𝑥})))) |
13 | 12 | notbid 321 | . . . . . 6 ⊢ (𝑧 = 𝐶 → (¬ 𝑥 ∈ (𝑁‘(𝑧 ∖ {𝑥})) ↔ ¬ 𝑥 ∈ (𝑁‘(𝐶 ∖ {𝑥})))) |
14 | 13 | raleqbi1dv 3321 | . . . . 5 ⊢ (𝑧 = 𝐶 → (∀𝑥 ∈ 𝑧 ¬ 𝑥 ∈ (𝑁‘(𝑧 ∖ {𝑥})) ↔ ∀𝑥 ∈ 𝐶 ¬ 𝑥 ∈ (𝑁‘(𝐶 ∖ {𝑥})))) |
15 | 9, 14 | anbi12d 633 | . . . 4 ⊢ (𝑧 = 𝐶 → ((𝐶 ⊆ 𝑧 ∧ ∀𝑥 ∈ 𝑧 ¬ 𝑥 ∈ (𝑁‘(𝑧 ∖ {𝑥}))) ↔ (𝐶 ⊆ 𝐶 ∧ ∀𝑥 ∈ 𝐶 ¬ 𝑥 ∈ (𝑁‘(𝐶 ∖ {𝑥}))))) |
16 | lbsext.s | . . . 4 ⊢ 𝑆 = {𝑧 ∈ 𝒫 𝑉 ∣ (𝐶 ⊆ 𝑧 ∧ ∀𝑥 ∈ 𝑧 ¬ 𝑥 ∈ (𝑁‘(𝑧 ∖ {𝑥})))} | |
17 | 15, 16 | elrab2 3607 | . . 3 ⊢ (𝐶 ∈ 𝑆 ↔ (𝐶 ∈ 𝒫 𝑉 ∧ (𝐶 ⊆ 𝐶 ∧ ∀𝑥 ∈ 𝐶 ¬ 𝑥 ∈ (𝑁‘(𝐶 ∖ {𝑥}))))) |
18 | 5, 8, 17 | sylanbrc 586 | . 2 ⊢ (𝜑 → 𝐶 ∈ 𝑆) |
19 | 18 | ne0d 4236 | 1 ⊢ (𝜑 → 𝑆 ≠ ∅) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 399 = wceq 1538 ∈ wcel 2111 ≠ wne 2951 ∀wral 3070 {crab 3074 ∖ cdif 3857 ⊆ wss 3860 ∅c0 4227 𝒫 cpw 4497 {csn 4525 ‘cfv 6339 Basecbs 16546 LSpanclspn 19816 LBasisclbs 19919 LVecclvec 19947 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1911 ax-6 1970 ax-7 2015 ax-8 2113 ax-9 2121 ax-10 2142 ax-11 2158 ax-12 2175 ax-ext 2729 ax-sep 5172 ax-nul 5179 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 845 df-3an 1086 df-tru 1541 df-fal 1551 df-ex 1782 df-nf 1786 df-sb 2070 df-mo 2557 df-eu 2588 df-clab 2736 df-cleq 2750 df-clel 2830 df-nfc 2901 df-ne 2952 df-ral 3075 df-rex 3076 df-rab 3079 df-v 3411 df-sbc 3699 df-dif 3863 df-un 3865 df-in 3867 df-ss 3877 df-nul 4228 df-pw 4499 df-sn 4526 df-pr 4528 df-op 4532 df-uni 4802 df-br 5036 df-iota 6298 df-fv 6347 |
This theorem is referenced by: lbsextlem4 20006 |
Copyright terms: Public domain | W3C validator |