MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lenlti Structured version   Visualization version   GIF version

Theorem lenlti 11093
Description: 'Less than or equal to' in terms of 'less than'. (Contributed by NM, 24-May-1999.)
Hypotheses
Ref Expression
lt.1 𝐴 ∈ ℝ
lt.2 𝐵 ∈ ℝ
Assertion
Ref Expression
lenlti (𝐴𝐵 ↔ ¬ 𝐵 < 𝐴)

Proof of Theorem lenlti
StepHypRef Expression
1 lt.1 . 2 𝐴 ∈ ℝ
2 lt.2 . 2 𝐵 ∈ ℝ
3 lenlt 11052 . 2 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴𝐵 ↔ ¬ 𝐵 < 𝐴))
41, 2, 3mp2an 689 1 (𝐴𝐵 ↔ ¬ 𝐵 < 𝐴)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wb 205  wcel 2110   class class class wbr 5079  cr 10869   < clt 11008  cle 11009
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1802  ax-4 1816  ax-5 1917  ax-6 1975  ax-7 2015  ax-8 2112  ax-9 2120  ax-ext 2711  ax-sep 5227  ax-nul 5234  ax-pr 5356
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1545  df-fal 1555  df-ex 1787  df-sb 2072  df-clab 2718  df-cleq 2732  df-clel 2818  df-ral 3071  df-rex 3072  df-rab 3075  df-v 3433  df-dif 3895  df-un 3897  df-in 3899  df-ss 3909  df-nul 4263  df-if 4466  df-sn 4568  df-pr 4570  df-op 4574  df-br 5080  df-opab 5142  df-xp 5595  df-cnv 5597  df-xr 11012  df-le 11014
This theorem is referenced by:  ltnlei  11094  hashgt12el  14133  hashgt12el2  14134  georeclim  15580  geoisumr  15586  divalglem6  16103  umgrislfupgrlem  27488  ballotlem4  32459  signswch  32534  limsup10ex  43283
  Copyright terms: Public domain W3C validator