MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lenlti Structured version   Visualization version   GIF version

Theorem lenlti 11365
Description: 'Less than or equal to' in terms of 'less than'. (Contributed by NM, 24-May-1999.)
Hypotheses
Ref Expression
lt.1 𝐴 ∈ ℝ
lt.2 𝐵 ∈ ℝ
Assertion
Ref Expression
lenlti (𝐴𝐵 ↔ ¬ 𝐵 < 𝐴)

Proof of Theorem lenlti
StepHypRef Expression
1 lt.1 . 2 𝐴 ∈ ℝ
2 lt.2 . 2 𝐵 ∈ ℝ
3 lenlt 11323 . 2 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴𝐵 ↔ ¬ 𝐵 < 𝐴))
41, 2, 3mp2an 691 1 (𝐴𝐵 ↔ ¬ 𝐵 < 𝐴)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wb 205  wcel 2099   class class class wbr 5148  cr 11138   < clt 11279  cle 11280
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-ext 2699  ax-sep 5299  ax-nul 5306  ax-pr 5429
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 847  df-3an 1087  df-tru 1537  df-fal 1547  df-ex 1775  df-sb 2061  df-clab 2706  df-cleq 2720  df-clel 2806  df-ral 3059  df-rex 3068  df-rab 3430  df-v 3473  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-nul 4324  df-if 4530  df-sn 4630  df-pr 4632  df-op 4636  df-br 5149  df-opab 5211  df-xp 5684  df-cnv 5686  df-xr 11283  df-le 11285
This theorem is referenced by:  ltnlei  11366  hashgt12el  14414  hashgt12el2  14415  georeclim  15851  geoisumr  15857  divalglem6  16375  umgrislfupgrlem  28948  ballotlem4  34118  signswch  34193  limsup10ex  45161
  Copyright terms: Public domain W3C validator