| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > lenlti | Structured version Visualization version GIF version | ||
| Description: 'Less than or equal to' in terms of 'less than'. (Contributed by NM, 24-May-1999.) |
| Ref | Expression |
|---|---|
| lt.1 | ⊢ 𝐴 ∈ ℝ |
| lt.2 | ⊢ 𝐵 ∈ ℝ |
| Ref | Expression |
|---|---|
| lenlti | ⊢ (𝐴 ≤ 𝐵 ↔ ¬ 𝐵 < 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lt.1 | . 2 ⊢ 𝐴 ∈ ℝ | |
| 2 | lt.2 | . 2 ⊢ 𝐵 ∈ ℝ | |
| 3 | lenlt 11186 | . 2 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 ≤ 𝐵 ↔ ¬ 𝐵 < 𝐴)) | |
| 4 | 1, 2, 3 | mp2an 692 | 1 ⊢ (𝐴 ≤ 𝐵 ↔ ¬ 𝐵 < 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 ↔ wb 206 ∈ wcel 2111 class class class wbr 5086 ℝcr 11000 < clt 11141 ≤ cle 11142 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 ax-sep 5229 ax-nul 5239 ax-pr 5365 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-dif 3900 df-un 3902 df-ss 3914 df-nul 4279 df-if 4471 df-sn 4572 df-pr 4574 df-op 4578 df-br 5087 df-opab 5149 df-xp 5617 df-cnv 5619 df-xr 11145 df-le 11147 |
| This theorem is referenced by: ltnlei 11229 hashgt12el 14324 hashgt12el2 14325 georeclim 15774 geoisumr 15780 divalglem6 16304 umgrislfupgrlem 29095 ballotlem4 34504 signswch 34566 limsup10ex 45811 |
| Copyright terms: Public domain | W3C validator |