![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ltnlei | Structured version Visualization version GIF version |
Description: 'Less than' in terms of 'less than or equal to'. (Contributed by NM, 11-Jul-2005.) |
Ref | Expression |
---|---|
lt.1 | ⊢ 𝐴 ∈ ℝ |
lt.2 | ⊢ 𝐵 ∈ ℝ |
Ref | Expression |
---|---|
ltnlei | ⊢ (𝐴 < 𝐵 ↔ ¬ 𝐵 ≤ 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lt.2 | . . 3 ⊢ 𝐵 ∈ ℝ | |
2 | lt.1 | . . 3 ⊢ 𝐴 ∈ ℝ | |
3 | 1, 2 | lenlti 11410 | . 2 ⊢ (𝐵 ≤ 𝐴 ↔ ¬ 𝐴 < 𝐵) |
4 | 3 | con2bii 357 | 1 ⊢ (𝐴 < 𝐵 ↔ ¬ 𝐵 ≤ 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ↔ wb 206 ∈ wcel 2108 class class class wbr 5166 ℝcr 11183 < clt 11324 ≤ cle 11325 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pr 5447 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-ss 3993 df-nul 4353 df-if 4549 df-sn 4649 df-pr 4651 df-op 4655 df-br 5167 df-opab 5229 df-xp 5706 df-cnv 5708 df-xr 11328 df-le 11330 |
This theorem is referenced by: letrii 11415 nn0ge2m1nn 12622 0nelfz1 13603 fzpreddisj 13633 hashnn0n0nn 14440 hashge2el2dif 14529 hash3tpde 14542 divalglem5 16445 divalglem6 16446 sadcadd 16504 htpycc 25031 pco1 25067 pcohtpylem 25071 pcopt 25074 pcopt2 25075 pcoass 25076 pcorevlem 25078 vitalilem5 25666 vieta1lem2 26371 ppiltx 27238 ppiublem1 27264 chtub 27274 axlowdimlem16 28990 axlowdim 28994 lfgrnloop 29160 lfuhgr1v0e 29289 lfgrwlkprop 29723 ballotlem2 34453 subfacp1lem1 35147 subfacp1lem5 35152 bcneg1 35698 poimirlem9 37589 poimirlem16 37596 poimirlem17 37597 poimirlem19 37599 poimirlem20 37600 poimirlem22 37602 fdc 37705 pellexlem6 42790 jm2.23 42953 |
Copyright terms: Public domain | W3C validator |