| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ltnlei | Structured version Visualization version GIF version | ||
| Description: 'Less than' in terms of 'less than or equal to'. (Contributed by NM, 11-Jul-2005.) |
| Ref | Expression |
|---|---|
| lt.1 | ⊢ 𝐴 ∈ ℝ |
| lt.2 | ⊢ 𝐵 ∈ ℝ |
| Ref | Expression |
|---|---|
| ltnlei | ⊢ (𝐴 < 𝐵 ↔ ¬ 𝐵 ≤ 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lt.2 | . . 3 ⊢ 𝐵 ∈ ℝ | |
| 2 | lt.1 | . . 3 ⊢ 𝐴 ∈ ℝ | |
| 3 | 1, 2 | lenlti 11270 | . 2 ⊢ (𝐵 ≤ 𝐴 ↔ ¬ 𝐴 < 𝐵) |
| 4 | 3 | con2bii 357 | 1 ⊢ (𝐴 < 𝐵 ↔ ¬ 𝐵 ≤ 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 ↔ wb 206 ∈ wcel 2109 class class class wbr 5102 ℝcr 11043 < clt 11184 ≤ cle 11185 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 ax-sep 5246 ax-nul 5256 ax-pr 5382 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-ral 3045 df-rex 3054 df-rab 3403 df-v 3446 df-dif 3914 df-un 3916 df-ss 3928 df-nul 4293 df-if 4485 df-sn 4586 df-pr 4588 df-op 4592 df-br 5103 df-opab 5165 df-xp 5637 df-cnv 5639 df-xr 11188 df-le 11190 |
| This theorem is referenced by: letrii 11275 nn0ge2m1nn 12488 0nelfz1 13480 fzpreddisj 13510 hashnn0n0nn 14332 hashge2el2dif 14421 hash3tpde 14434 divalglem5 16343 divalglem6 16344 sadcadd 16404 htpycc 24912 pco1 24948 pcohtpylem 24952 pcopt 24955 pcopt2 24956 pcoass 24957 pcorevlem 24959 vitalilem5 25546 vieta1lem2 26252 ppiltx 27120 ppiublem1 27146 chtub 27156 axlowdimlem16 28937 axlowdim 28941 lfgrnloop 29105 lfuhgr1v0e 29234 lfgrwlkprop 29666 ballotlem2 34473 subfacp1lem1 35159 subfacp1lem5 35164 bcneg1 35716 poimirlem9 37616 poimirlem16 37623 poimirlem17 37624 poimirlem19 37626 poimirlem20 37627 poimirlem22 37629 fdc 37732 pellexlem6 42815 jm2.23 42978 |
| Copyright terms: Public domain | W3C validator |