| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ltnlei | Structured version Visualization version GIF version | ||
| Description: 'Less than' in terms of 'less than or equal to'. (Contributed by NM, 11-Jul-2005.) |
| Ref | Expression |
|---|---|
| lt.1 | ⊢ 𝐴 ∈ ℝ |
| lt.2 | ⊢ 𝐵 ∈ ℝ |
| Ref | Expression |
|---|---|
| ltnlei | ⊢ (𝐴 < 𝐵 ↔ ¬ 𝐵 ≤ 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lt.2 | . . 3 ⊢ 𝐵 ∈ ℝ | |
| 2 | lt.1 | . . 3 ⊢ 𝐴 ∈ ℝ | |
| 3 | 1, 2 | lenlti 11363 | . 2 ⊢ (𝐵 ≤ 𝐴 ↔ ¬ 𝐴 < 𝐵) |
| 4 | 3 | con2bii 357 | 1 ⊢ (𝐴 < 𝐵 ↔ ¬ 𝐵 ≤ 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 ↔ wb 206 ∈ wcel 2107 class class class wbr 5123 ℝcr 11136 < clt 11277 ≤ cle 11278 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-ext 2706 ax-sep 5276 ax-nul 5286 ax-pr 5412 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-sb 2064 df-clab 2713 df-cleq 2726 df-clel 2808 df-ral 3051 df-rex 3060 df-rab 3420 df-v 3465 df-dif 3934 df-un 3936 df-ss 3948 df-nul 4314 df-if 4506 df-sn 4607 df-pr 4609 df-op 4613 df-br 5124 df-opab 5186 df-xp 5671 df-cnv 5673 df-xr 11281 df-le 11283 |
| This theorem is referenced by: letrii 11368 nn0ge2m1nn 12579 0nelfz1 13565 fzpreddisj 13595 hashnn0n0nn 14412 hashge2el2dif 14501 hash3tpde 14514 divalglem5 16416 divalglem6 16417 sadcadd 16477 htpycc 24948 pco1 24984 pcohtpylem 24988 pcopt 24991 pcopt2 24992 pcoass 24993 pcorevlem 24995 vitalilem5 25583 vieta1lem2 26289 ppiltx 27156 ppiublem1 27182 chtub 27192 axlowdimlem16 28902 axlowdim 28906 lfgrnloop 29070 lfuhgr1v0e 29199 lfgrwlkprop 29633 ballotlem2 34450 subfacp1lem1 35143 subfacp1lem5 35148 bcneg1 35695 poimirlem9 37595 poimirlem16 37602 poimirlem17 37603 poimirlem19 37605 poimirlem20 37606 poimirlem22 37608 fdc 37711 pellexlem6 42808 jm2.23 42971 |
| Copyright terms: Public domain | W3C validator |