| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ltnlei | Structured version Visualization version GIF version | ||
| Description: 'Less than' in terms of 'less than or equal to'. (Contributed by NM, 11-Jul-2005.) |
| Ref | Expression |
|---|---|
| lt.1 | ⊢ 𝐴 ∈ ℝ |
| lt.2 | ⊢ 𝐵 ∈ ℝ |
| Ref | Expression |
|---|---|
| ltnlei | ⊢ (𝐴 < 𝐵 ↔ ¬ 𝐵 ≤ 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lt.2 | . . 3 ⊢ 𝐵 ∈ ℝ | |
| 2 | lt.1 | . . 3 ⊢ 𝐴 ∈ ℝ | |
| 3 | 1, 2 | lenlti 11382 | . 2 ⊢ (𝐵 ≤ 𝐴 ↔ ¬ 𝐴 < 𝐵) |
| 4 | 3 | con2bii 357 | 1 ⊢ (𝐴 < 𝐵 ↔ ¬ 𝐵 ≤ 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 ↔ wb 206 ∈ wcel 2107 class class class wbr 5142 ℝcr 11155 < clt 11296 ≤ cle 11297 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-ext 2707 ax-sep 5295 ax-nul 5305 ax-pr 5431 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-sb 2064 df-clab 2714 df-cleq 2728 df-clel 2815 df-ral 3061 df-rex 3070 df-rab 3436 df-v 3481 df-dif 3953 df-un 3955 df-ss 3967 df-nul 4333 df-if 4525 df-sn 4626 df-pr 4628 df-op 4632 df-br 5143 df-opab 5205 df-xp 5690 df-cnv 5692 df-xr 11300 df-le 11302 |
| This theorem is referenced by: letrii 11387 nn0ge2m1nn 12598 0nelfz1 13584 fzpreddisj 13614 hashnn0n0nn 14431 hashge2el2dif 14520 hash3tpde 14533 divalglem5 16435 divalglem6 16436 sadcadd 16496 htpycc 25013 pco1 25049 pcohtpylem 25053 pcopt 25056 pcopt2 25057 pcoass 25058 pcorevlem 25060 vitalilem5 25648 vieta1lem2 26354 ppiltx 27221 ppiublem1 27247 chtub 27257 axlowdimlem16 28973 axlowdim 28977 lfgrnloop 29143 lfuhgr1v0e 29272 lfgrwlkprop 29706 ballotlem2 34492 subfacp1lem1 35185 subfacp1lem5 35190 bcneg1 35737 poimirlem9 37637 poimirlem16 37644 poimirlem17 37645 poimirlem19 37647 poimirlem20 37648 poimirlem22 37650 fdc 37753 pellexlem6 42850 jm2.23 43013 |
| Copyright terms: Public domain | W3C validator |