![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ltnlei | Structured version Visualization version GIF version |
Description: 'Less than' in terms of 'less than or equal to'. (Contributed by NM, 11-Jul-2005.) |
Ref | Expression |
---|---|
lt.1 | ⊢ 𝐴 ∈ ℝ |
lt.2 | ⊢ 𝐵 ∈ ℝ |
Ref | Expression |
---|---|
ltnlei | ⊢ (𝐴 < 𝐵 ↔ ¬ 𝐵 ≤ 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lt.2 | . . 3 ⊢ 𝐵 ∈ ℝ | |
2 | lt.1 | . . 3 ⊢ 𝐴 ∈ ℝ | |
3 | 1, 2 | lenlti 11379 | . 2 ⊢ (𝐵 ≤ 𝐴 ↔ ¬ 𝐴 < 𝐵) |
4 | 3 | con2bii 357 | 1 ⊢ (𝐴 < 𝐵 ↔ ¬ 𝐵 ≤ 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ↔ wb 206 ∈ wcel 2106 class class class wbr 5148 ℝcr 11152 < clt 11293 ≤ cle 11294 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-ext 2706 ax-sep 5302 ax-nul 5312 ax-pr 5438 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-sb 2063 df-clab 2713 df-cleq 2727 df-clel 2814 df-ral 3060 df-rex 3069 df-rab 3434 df-v 3480 df-dif 3966 df-un 3968 df-ss 3980 df-nul 4340 df-if 4532 df-sn 4632 df-pr 4634 df-op 4638 df-br 5149 df-opab 5211 df-xp 5695 df-cnv 5697 df-xr 11297 df-le 11299 |
This theorem is referenced by: letrii 11384 nn0ge2m1nn 12594 0nelfz1 13580 fzpreddisj 13610 hashnn0n0nn 14427 hashge2el2dif 14516 hash3tpde 14529 divalglem5 16431 divalglem6 16432 sadcadd 16492 htpycc 25026 pco1 25062 pcohtpylem 25066 pcopt 25069 pcopt2 25070 pcoass 25071 pcorevlem 25073 vitalilem5 25661 vieta1lem2 26368 ppiltx 27235 ppiublem1 27261 chtub 27271 axlowdimlem16 28987 axlowdim 28991 lfgrnloop 29157 lfuhgr1v0e 29286 lfgrwlkprop 29720 ballotlem2 34470 subfacp1lem1 35164 subfacp1lem5 35169 bcneg1 35716 poimirlem9 37616 poimirlem16 37623 poimirlem17 37624 poimirlem19 37626 poimirlem20 37627 poimirlem22 37629 fdc 37732 pellexlem6 42822 jm2.23 42985 |
Copyright terms: Public domain | W3C validator |