Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > ltnlei | Structured version Visualization version GIF version |
Description: 'Less than' in terms of 'less than or equal to'. (Contributed by NM, 11-Jul-2005.) |
Ref | Expression |
---|---|
lt.1 | ⊢ 𝐴 ∈ ℝ |
lt.2 | ⊢ 𝐵 ∈ ℝ |
Ref | Expression |
---|---|
ltnlei | ⊢ (𝐴 < 𝐵 ↔ ¬ 𝐵 ≤ 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lt.2 | . . 3 ⊢ 𝐵 ∈ ℝ | |
2 | lt.1 | . . 3 ⊢ 𝐴 ∈ ℝ | |
3 | 1, 2 | lenlti 11025 | . 2 ⊢ (𝐵 ≤ 𝐴 ↔ ¬ 𝐴 < 𝐵) |
4 | 3 | con2bii 357 | 1 ⊢ (𝐴 < 𝐵 ↔ ¬ 𝐵 ≤ 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ↔ wb 205 ∈ wcel 2108 class class class wbr 5070 ℝcr 10801 < clt 10940 ≤ cle 10941 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pr 5347 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-sn 4559 df-pr 4561 df-op 4565 df-br 5071 df-opab 5133 df-xp 5586 df-cnv 5588 df-xr 10944 df-le 10946 |
This theorem is referenced by: letrii 11030 nn0ge2m1nn 12232 0nelfz1 13204 fzpreddisj 13234 hashnn0n0nn 14034 hashge2el2dif 14122 divalglem5 16034 divalglem6 16035 sadcadd 16093 htpycc 24049 pco1 24084 pcohtpylem 24088 pcopt 24091 pcopt2 24092 pcoass 24093 pcorevlem 24095 vitalilem5 24681 vieta1lem2 25376 ppiltx 26231 ppiublem1 26255 chtub 26265 axlowdimlem16 27228 axlowdim 27232 lfgrnloop 27398 lfuhgr1v0e 27524 lfgrwlkprop 27957 ballotlem2 32355 subfacp1lem1 33041 subfacp1lem5 33046 bcneg1 33608 poimirlem9 35713 poimirlem16 35720 poimirlem17 35721 poimirlem19 35723 poimirlem20 35724 poimirlem22 35726 fdc 35830 pellexlem6 40572 jm2.23 40734 |
Copyright terms: Public domain | W3C validator |