| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ltnlei | Structured version Visualization version GIF version | ||
| Description: 'Less than' in terms of 'less than or equal to'. (Contributed by NM, 11-Jul-2005.) |
| Ref | Expression |
|---|---|
| lt.1 | ⊢ 𝐴 ∈ ℝ |
| lt.2 | ⊢ 𝐵 ∈ ℝ |
| Ref | Expression |
|---|---|
| ltnlei | ⊢ (𝐴 < 𝐵 ↔ ¬ 𝐵 ≤ 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lt.2 | . . 3 ⊢ 𝐵 ∈ ℝ | |
| 2 | lt.1 | . . 3 ⊢ 𝐴 ∈ ℝ | |
| 3 | 1, 2 | lenlti 11360 | . 2 ⊢ (𝐵 ≤ 𝐴 ↔ ¬ 𝐴 < 𝐵) |
| 4 | 3 | con2bii 357 | 1 ⊢ (𝐴 < 𝐵 ↔ ¬ 𝐵 ≤ 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 ↔ wb 206 ∈ wcel 2109 class class class wbr 5124 ℝcr 11133 < clt 11274 ≤ cle 11275 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2708 ax-sep 5271 ax-nul 5281 ax-pr 5407 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2715 df-cleq 2728 df-clel 2810 df-ral 3053 df-rex 3062 df-rab 3421 df-v 3466 df-dif 3934 df-un 3936 df-ss 3948 df-nul 4314 df-if 4506 df-sn 4607 df-pr 4609 df-op 4613 df-br 5125 df-opab 5187 df-xp 5665 df-cnv 5667 df-xr 11278 df-le 11280 |
| This theorem is referenced by: letrii 11365 nn0ge2m1nn 12576 0nelfz1 13565 fzpreddisj 13595 hashnn0n0nn 14414 hashge2el2dif 14503 hash3tpde 14516 divalglem5 16421 divalglem6 16422 sadcadd 16482 htpycc 24935 pco1 24971 pcohtpylem 24975 pcopt 24978 pcopt2 24979 pcoass 24980 pcorevlem 24982 vitalilem5 25570 vieta1lem2 26276 ppiltx 27144 ppiublem1 27170 chtub 27180 axlowdimlem16 28941 axlowdim 28945 lfgrnloop 29109 lfuhgr1v0e 29238 lfgrwlkprop 29672 ballotlem2 34526 subfacp1lem1 35206 subfacp1lem5 35211 bcneg1 35758 poimirlem9 37658 poimirlem16 37665 poimirlem17 37666 poimirlem19 37668 poimirlem20 37669 poimirlem22 37671 fdc 37774 pellexlem6 42832 jm2.23 42995 |
| Copyright terms: Public domain | W3C validator |