MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ltnlei Structured version   Visualization version   GIF version

Theorem ltnlei 11383
Description: 'Less than' in terms of 'less than or equal to'. (Contributed by NM, 11-Jul-2005.)
Hypotheses
Ref Expression
lt.1 𝐴 ∈ ℝ
lt.2 𝐵 ∈ ℝ
Assertion
Ref Expression
ltnlei (𝐴 < 𝐵 ↔ ¬ 𝐵𝐴)

Proof of Theorem ltnlei
StepHypRef Expression
1 lt.2 . . 3 𝐵 ∈ ℝ
2 lt.1 . . 3 𝐴 ∈ ℝ
31, 2lenlti 11382 . 2 (𝐵𝐴 ↔ ¬ 𝐴 < 𝐵)
43con2bii 357 1 (𝐴 < 𝐵 ↔ ¬ 𝐵𝐴)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wb 206  wcel 2107   class class class wbr 5142  cr 11155   < clt 11296  cle 11297
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-ext 2707  ax-sep 5295  ax-nul 5305  ax-pr 5431
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-sb 2064  df-clab 2714  df-cleq 2728  df-clel 2815  df-ral 3061  df-rex 3070  df-rab 3436  df-v 3481  df-dif 3953  df-un 3955  df-ss 3967  df-nul 4333  df-if 4525  df-sn 4626  df-pr 4628  df-op 4632  df-br 5143  df-opab 5205  df-xp 5690  df-cnv 5692  df-xr 11300  df-le 11302
This theorem is referenced by:  letrii  11387  nn0ge2m1nn  12598  0nelfz1  13584  fzpreddisj  13614  hashnn0n0nn  14431  hashge2el2dif  14520  hash3tpde  14533  divalglem5  16435  divalglem6  16436  sadcadd  16496  htpycc  25013  pco1  25049  pcohtpylem  25053  pcopt  25056  pcopt2  25057  pcoass  25058  pcorevlem  25060  vitalilem5  25648  vieta1lem2  26354  ppiltx  27221  ppiublem1  27247  chtub  27257  axlowdimlem16  28973  axlowdim  28977  lfgrnloop  29143  lfuhgr1v0e  29272  lfgrwlkprop  29706  ballotlem2  34492  subfacp1lem1  35185  subfacp1lem5  35190  bcneg1  35737  poimirlem9  37637  poimirlem16  37644  poimirlem17  37645  poimirlem19  37647  poimirlem20  37648  poimirlem22  37650  fdc  37753  pellexlem6  42850  jm2.23  43013
  Copyright terms: Public domain W3C validator