MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ltnlei Structured version   Visualization version   GIF version

Theorem ltnlei 11096
Description: 'Less than' in terms of 'less than or equal to'. (Contributed by NM, 11-Jul-2005.)
Hypotheses
Ref Expression
lt.1 𝐴 ∈ ℝ
lt.2 𝐵 ∈ ℝ
Assertion
Ref Expression
ltnlei (𝐴 < 𝐵 ↔ ¬ 𝐵𝐴)

Proof of Theorem ltnlei
StepHypRef Expression
1 lt.2 . . 3 𝐵 ∈ ℝ
2 lt.1 . . 3 𝐴 ∈ ℝ
31, 2lenlti 11095 . 2 (𝐵𝐴 ↔ ¬ 𝐴 < 𝐵)
43con2bii 358 1 (𝐴 < 𝐵 ↔ ¬ 𝐵𝐴)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wb 205  wcel 2106   class class class wbr 5074  cr 10870   < clt 11009  cle 11010
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pr 5352
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-sb 2068  df-clab 2716  df-cleq 2730  df-clel 2816  df-ral 3069  df-rex 3070  df-rab 3073  df-v 3434  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-sn 4562  df-pr 4564  df-op 4568  df-br 5075  df-opab 5137  df-xp 5595  df-cnv 5597  df-xr 11013  df-le 11015
This theorem is referenced by:  letrii  11100  nn0ge2m1nn  12302  0nelfz1  13275  fzpreddisj  13305  hashnn0n0nn  14106  hashge2el2dif  14194  divalglem5  16106  divalglem6  16107  sadcadd  16165  htpycc  24143  pco1  24178  pcohtpylem  24182  pcopt  24185  pcopt2  24186  pcoass  24187  pcorevlem  24189  vitalilem5  24776  vieta1lem2  25471  ppiltx  26326  ppiublem1  26350  chtub  26360  axlowdimlem16  27325  axlowdim  27329  lfgrnloop  27495  lfuhgr1v0e  27621  lfgrwlkprop  28055  ballotlem2  32455  subfacp1lem1  33141  subfacp1lem5  33146  bcneg1  33702  poimirlem9  35786  poimirlem16  35793  poimirlem17  35794  poimirlem19  35796  poimirlem20  35797  poimirlem22  35799  fdc  35903  pellexlem6  40656  jm2.23  40818
  Copyright terms: Public domain W3C validator