| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ltnlei | Structured version Visualization version GIF version | ||
| Description: 'Less than' in terms of 'less than or equal to'. (Contributed by NM, 11-Jul-2005.) |
| Ref | Expression |
|---|---|
| lt.1 | ⊢ 𝐴 ∈ ℝ |
| lt.2 | ⊢ 𝐵 ∈ ℝ |
| Ref | Expression |
|---|---|
| ltnlei | ⊢ (𝐴 < 𝐵 ↔ ¬ 𝐵 ≤ 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lt.2 | . . 3 ⊢ 𝐵 ∈ ℝ | |
| 2 | lt.1 | . . 3 ⊢ 𝐴 ∈ ℝ | |
| 3 | 1, 2 | lenlti 11236 | . 2 ⊢ (𝐵 ≤ 𝐴 ↔ ¬ 𝐴 < 𝐵) |
| 4 | 3 | con2bii 357 | 1 ⊢ (𝐴 < 𝐵 ↔ ¬ 𝐵 ≤ 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 ↔ wb 206 ∈ wcel 2109 class class class wbr 5092 ℝcr 11008 < clt 11149 ≤ cle 11150 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 ax-sep 5235 ax-nul 5245 ax-pr 5371 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-ral 3045 df-rex 3054 df-rab 3395 df-v 3438 df-dif 3906 df-un 3908 df-ss 3920 df-nul 4285 df-if 4477 df-sn 4578 df-pr 4580 df-op 4584 df-br 5093 df-opab 5155 df-xp 5625 df-cnv 5627 df-xr 11153 df-le 11155 |
| This theorem is referenced by: letrii 11241 nn0ge2m1nn 12454 0nelfz1 13446 fzpreddisj 13476 hashnn0n0nn 14298 hashge2el2dif 14387 hash3tpde 14400 divalglem5 16308 divalglem6 16309 sadcadd 16369 htpycc 24877 pco1 24913 pcohtpylem 24917 pcopt 24920 pcopt2 24921 pcoass 24922 pcorevlem 24924 vitalilem5 25511 vieta1lem2 26217 ppiltx 27085 ppiublem1 27111 chtub 27121 axlowdimlem16 28902 axlowdim 28906 lfgrnloop 29070 lfuhgr1v0e 29199 lfgrwlkprop 29631 ballotlem2 34457 subfacp1lem1 35156 subfacp1lem5 35161 bcneg1 35713 poimirlem9 37613 poimirlem16 37620 poimirlem17 37621 poimirlem19 37623 poimirlem20 37624 poimirlem22 37626 fdc 37729 pellexlem6 42811 jm2.23 42973 |
| Copyright terms: Public domain | W3C validator |