Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > ltnlei | Structured version Visualization version GIF version |
Description: 'Less than' in terms of 'less than or equal to'. (Contributed by NM, 11-Jul-2005.) |
Ref | Expression |
---|---|
lt.1 | ⊢ 𝐴 ∈ ℝ |
lt.2 | ⊢ 𝐵 ∈ ℝ |
Ref | Expression |
---|---|
ltnlei | ⊢ (𝐴 < 𝐵 ↔ ¬ 𝐵 ≤ 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lt.2 | . . 3 ⊢ 𝐵 ∈ ℝ | |
2 | lt.1 | . . 3 ⊢ 𝐴 ∈ ℝ | |
3 | 1, 2 | lenlti 11095 | . 2 ⊢ (𝐵 ≤ 𝐴 ↔ ¬ 𝐴 < 𝐵) |
4 | 3 | con2bii 358 | 1 ⊢ (𝐴 < 𝐵 ↔ ¬ 𝐵 ≤ 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ↔ wb 205 ∈ wcel 2106 class class class wbr 5074 ℝcr 10870 < clt 11009 ≤ cle 11010 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pr 5352 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-sb 2068 df-clab 2716 df-cleq 2730 df-clel 2816 df-ral 3069 df-rex 3070 df-rab 3073 df-v 3434 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-sn 4562 df-pr 4564 df-op 4568 df-br 5075 df-opab 5137 df-xp 5595 df-cnv 5597 df-xr 11013 df-le 11015 |
This theorem is referenced by: letrii 11100 nn0ge2m1nn 12302 0nelfz1 13275 fzpreddisj 13305 hashnn0n0nn 14106 hashge2el2dif 14194 divalglem5 16106 divalglem6 16107 sadcadd 16165 htpycc 24143 pco1 24178 pcohtpylem 24182 pcopt 24185 pcopt2 24186 pcoass 24187 pcorevlem 24189 vitalilem5 24776 vieta1lem2 25471 ppiltx 26326 ppiublem1 26350 chtub 26360 axlowdimlem16 27325 axlowdim 27329 lfgrnloop 27495 lfuhgr1v0e 27621 lfgrwlkprop 28055 ballotlem2 32455 subfacp1lem1 33141 subfacp1lem5 33146 bcneg1 33702 poimirlem9 35786 poimirlem16 35793 poimirlem17 35794 poimirlem19 35796 poimirlem20 35797 poimirlem22 35799 fdc 35903 pellexlem6 40656 jm2.23 40818 |
Copyright terms: Public domain | W3C validator |