MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ltnlei Structured version   Visualization version   GIF version

Theorem ltnlei 11026
Description: 'Less than' in terms of 'less than or equal to'. (Contributed by NM, 11-Jul-2005.)
Hypotheses
Ref Expression
lt.1 𝐴 ∈ ℝ
lt.2 𝐵 ∈ ℝ
Assertion
Ref Expression
ltnlei (𝐴 < 𝐵 ↔ ¬ 𝐵𝐴)

Proof of Theorem ltnlei
StepHypRef Expression
1 lt.2 . . 3 𝐵 ∈ ℝ
2 lt.1 . . 3 𝐴 ∈ ℝ
31, 2lenlti 11025 . 2 (𝐵𝐴 ↔ ¬ 𝐴 < 𝐵)
43con2bii 357 1 (𝐴 < 𝐵 ↔ ¬ 𝐵𝐴)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wb 205  wcel 2108   class class class wbr 5070  cr 10801   < clt 10940  cle 10941
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pr 5347
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-sb 2069  df-clab 2716  df-cleq 2730  df-clel 2817  df-ral 3068  df-rex 3069  df-rab 3072  df-v 3424  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-sn 4559  df-pr 4561  df-op 4565  df-br 5071  df-opab 5133  df-xp 5586  df-cnv 5588  df-xr 10944  df-le 10946
This theorem is referenced by:  letrii  11030  nn0ge2m1nn  12232  0nelfz1  13204  fzpreddisj  13234  hashnn0n0nn  14034  hashge2el2dif  14122  divalglem5  16034  divalglem6  16035  sadcadd  16093  htpycc  24049  pco1  24084  pcohtpylem  24088  pcopt  24091  pcopt2  24092  pcoass  24093  pcorevlem  24095  vitalilem5  24681  vieta1lem2  25376  ppiltx  26231  ppiublem1  26255  chtub  26265  axlowdimlem16  27228  axlowdim  27232  lfgrnloop  27398  lfuhgr1v0e  27524  lfgrwlkprop  27957  ballotlem2  32355  subfacp1lem1  33041  subfacp1lem5  33046  bcneg1  33608  poimirlem9  35713  poimirlem16  35720  poimirlem17  35721  poimirlem19  35723  poimirlem20  35724  poimirlem22  35726  fdc  35830  pellexlem6  40572  jm2.23  40734
  Copyright terms: Public domain W3C validator