| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ltnlei | Structured version Visualization version GIF version | ||
| Description: 'Less than' in terms of 'less than or equal to'. (Contributed by NM, 11-Jul-2005.) |
| Ref | Expression |
|---|---|
| lt.1 | ⊢ 𝐴 ∈ ℝ |
| lt.2 | ⊢ 𝐵 ∈ ℝ |
| Ref | Expression |
|---|---|
| ltnlei | ⊢ (𝐴 < 𝐵 ↔ ¬ 𝐵 ≤ 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lt.2 | . . 3 ⊢ 𝐵 ∈ ℝ | |
| 2 | lt.1 | . . 3 ⊢ 𝐴 ∈ ℝ | |
| 3 | 1, 2 | lenlti 11233 | . 2 ⊢ (𝐵 ≤ 𝐴 ↔ ¬ 𝐴 < 𝐵) |
| 4 | 3 | con2bii 357 | 1 ⊢ (𝐴 < 𝐵 ↔ ¬ 𝐵 ≤ 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 ↔ wb 206 ∈ wcel 2111 class class class wbr 5089 ℝcr 11005 < clt 11146 ≤ cle 11147 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 ax-sep 5232 ax-nul 5242 ax-pr 5368 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-dif 3900 df-un 3902 df-ss 3914 df-nul 4281 df-if 4473 df-sn 4574 df-pr 4576 df-op 4580 df-br 5090 df-opab 5152 df-xp 5620 df-cnv 5622 df-xr 11150 df-le 11152 |
| This theorem is referenced by: letrii 11238 nn0ge2m1nn 12451 0nelfz1 13443 fzpreddisj 13473 hashnn0n0nn 14298 hashge2el2dif 14387 hash3tpde 14400 divalglem5 16308 divalglem6 16309 sadcadd 16369 htpycc 24906 pco1 24942 pcohtpylem 24946 pcopt 24949 pcopt2 24950 pcoass 24951 pcorevlem 24953 vitalilem5 25540 vieta1lem2 26246 ppiltx 27114 ppiublem1 27140 chtub 27150 axlowdimlem16 28935 axlowdim 28939 lfgrnloop 29103 lfuhgr1v0e 29232 lfgrwlkprop 29664 ballotlem2 34502 subfacp1lem1 35223 subfacp1lem5 35228 bcneg1 35780 poimirlem9 37679 poimirlem16 37686 poimirlem17 37687 poimirlem19 37689 poimirlem20 37690 poimirlem22 37692 fdc 37795 pellexlem6 42937 jm2.23 43099 |
| Copyright terms: Public domain | W3C validator |