| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ltnsymi | Structured version Visualization version GIF version | ||
| Description: 'Less than' is not symmetric. (Contributed by NM, 6-May-1999.) |
| Ref | Expression |
|---|---|
| lt.1 | ⊢ 𝐴 ∈ ℝ |
| lt.2 | ⊢ 𝐵 ∈ ℝ |
| Ref | Expression |
|---|---|
| ltnsymi | ⊢ (𝐴 < 𝐵 → ¬ 𝐵 < 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lt.1 | . 2 ⊢ 𝐴 ∈ ℝ | |
| 2 | lt.2 | . 2 ⊢ 𝐵 ∈ ℝ | |
| 3 | ltnsym 11359 | . 2 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 < 𝐵 → ¬ 𝐵 < 𝐴)) | |
| 4 | 1, 2, 3 | mp2an 692 | 1 ⊢ (𝐴 < 𝐵 → ¬ 𝐵 < 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∈ wcel 2108 class class class wbr 5143 ℝcr 11154 < clt 11295 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2708 ax-sep 5296 ax-nul 5306 ax-pow 5365 ax-pr 5432 ax-un 7755 ax-resscn 11212 ax-pre-lttri 11229 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3an 1089 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2892 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-rab 3437 df-v 3482 df-sbc 3789 df-csb 3900 df-dif 3954 df-un 3956 df-in 3958 df-ss 3968 df-nul 4334 df-if 4526 df-pw 4602 df-sn 4627 df-pr 4629 df-op 4633 df-uni 4908 df-br 5144 df-opab 5206 df-mpt 5226 df-id 5578 df-xp 5691 df-rel 5692 df-cnv 5693 df-co 5694 df-dm 5695 df-rn 5696 df-res 5697 df-ima 5698 df-iota 6514 df-fun 6563 df-fn 6564 df-f 6565 df-f1 6566 df-fo 6567 df-f1o 6568 df-fv 6569 df-er 8745 df-en 8986 df-dom 8987 df-sdom 8988 df-pnf 11297 df-mnf 11298 df-ltxr 11300 |
| This theorem is referenced by: recgt0 12113 recgt0ii 12174 inelr 12256 sinhalfpilem 26505 konigsberg 30276 knoppndvlem13 36525 sn-inelr 42497 imsqrtvalex 43659 relexp01min 43726 |
| Copyright terms: Public domain | W3C validator |