![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > geoisumr | Structured version Visualization version GIF version |
Description: The infinite sum of reciprocals 1 + (1 / 𝐴)↑1 + (1 / 𝐴)↑2... is 𝐴 / (𝐴 − 1). (Contributed by rpenner, 3-Nov-2007.) (Revised by Mario Carneiro, 26-Apr-2014.) |
Ref | Expression |
---|---|
geoisumr | ⊢ ((𝐴 ∈ ℂ ∧ 1 < (abs‘𝐴)) → Σ𝑘 ∈ ℕ0 ((1 / 𝐴)↑𝑘) = (𝐴 / (𝐴 − 1))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nn0uz 11966 | . 2 ⊢ ℕ0 = (ℤ≥‘0) | |
2 | 0zd 11678 | . 2 ⊢ ((𝐴 ∈ ℂ ∧ 1 < (abs‘𝐴)) → 0 ∈ ℤ) | |
3 | oveq2 6886 | . . . 4 ⊢ (𝑛 = 𝑘 → ((1 / 𝐴)↑𝑛) = ((1 / 𝐴)↑𝑘)) | |
4 | eqid 2799 | . . . 4 ⊢ (𝑛 ∈ ℕ0 ↦ ((1 / 𝐴)↑𝑛)) = (𝑛 ∈ ℕ0 ↦ ((1 / 𝐴)↑𝑛)) | |
5 | ovex 6910 | . . . 4 ⊢ ((1 / 𝐴)↑𝑘) ∈ V | |
6 | 3, 4, 5 | fvmpt 6507 | . . 3 ⊢ (𝑘 ∈ ℕ0 → ((𝑛 ∈ ℕ0 ↦ ((1 / 𝐴)↑𝑛))‘𝑘) = ((1 / 𝐴)↑𝑘)) |
7 | 6 | adantl 474 | . 2 ⊢ (((𝐴 ∈ ℂ ∧ 1 < (abs‘𝐴)) ∧ 𝑘 ∈ ℕ0) → ((𝑛 ∈ ℕ0 ↦ ((1 / 𝐴)↑𝑛))‘𝑘) = ((1 / 𝐴)↑𝑘)) |
8 | 0le1 10843 | . . . . . . 7 ⊢ 0 ≤ 1 | |
9 | 0re 10330 | . . . . . . . 8 ⊢ 0 ∈ ℝ | |
10 | 1re 10328 | . . . . . . . 8 ⊢ 1 ∈ ℝ | |
11 | 9, 10 | lenlti 10447 | . . . . . . 7 ⊢ (0 ≤ 1 ↔ ¬ 1 < 0) |
12 | 8, 11 | mpbi 222 | . . . . . 6 ⊢ ¬ 1 < 0 |
13 | fveq2 6411 | . . . . . . . 8 ⊢ (𝐴 = 0 → (abs‘𝐴) = (abs‘0)) | |
14 | abs0 14366 | . . . . . . . 8 ⊢ (abs‘0) = 0 | |
15 | 13, 14 | syl6eq 2849 | . . . . . . 7 ⊢ (𝐴 = 0 → (abs‘𝐴) = 0) |
16 | 15 | breq2d 4855 | . . . . . 6 ⊢ (𝐴 = 0 → (1 < (abs‘𝐴) ↔ 1 < 0)) |
17 | 12, 16 | mtbiri 319 | . . . . 5 ⊢ (𝐴 = 0 → ¬ 1 < (abs‘𝐴)) |
18 | 17 | necon2ai 3000 | . . . 4 ⊢ (1 < (abs‘𝐴) → 𝐴 ≠ 0) |
19 | reccl 10984 | . . . 4 ⊢ ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → (1 / 𝐴) ∈ ℂ) | |
20 | 18, 19 | sylan2 587 | . . 3 ⊢ ((𝐴 ∈ ℂ ∧ 1 < (abs‘𝐴)) → (1 / 𝐴) ∈ ℂ) |
21 | expcl 13132 | . . 3 ⊢ (((1 / 𝐴) ∈ ℂ ∧ 𝑘 ∈ ℕ0) → ((1 / 𝐴)↑𝑘) ∈ ℂ) | |
22 | 20, 21 | sylan 576 | . 2 ⊢ (((𝐴 ∈ ℂ ∧ 1 < (abs‘𝐴)) ∧ 𝑘 ∈ ℕ0) → ((1 / 𝐴)↑𝑘) ∈ ℂ) |
23 | simpl 475 | . . 3 ⊢ ((𝐴 ∈ ℂ ∧ 1 < (abs‘𝐴)) → 𝐴 ∈ ℂ) | |
24 | simpr 478 | . . 3 ⊢ ((𝐴 ∈ ℂ ∧ 1 < (abs‘𝐴)) → 1 < (abs‘𝐴)) | |
25 | 23, 24, 7 | georeclim 14941 | . 2 ⊢ ((𝐴 ∈ ℂ ∧ 1 < (abs‘𝐴)) → seq0( + , (𝑛 ∈ ℕ0 ↦ ((1 / 𝐴)↑𝑛))) ⇝ (𝐴 / (𝐴 − 1))) |
26 | 1, 2, 7, 22, 25 | isumclim 14827 | 1 ⊢ ((𝐴 ∈ ℂ ∧ 1 < (abs‘𝐴)) → Σ𝑘 ∈ ℕ0 ((1 / 𝐴)↑𝑘) = (𝐴 / (𝐴 − 1))) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 385 = wceq 1653 ∈ wcel 2157 ≠ wne 2971 class class class wbr 4843 ↦ cmpt 4922 ‘cfv 6101 (class class class)co 6878 ℂcc 10222 0cc0 10224 1c1 10225 < clt 10363 ≤ cle 10364 − cmin 10556 / cdiv 10976 ℕ0cn0 11580 ↑cexp 13114 abscabs 14315 Σcsu 14757 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1891 ax-4 1905 ax-5 2006 ax-6 2072 ax-7 2107 ax-8 2159 ax-9 2166 ax-10 2185 ax-11 2200 ax-12 2213 ax-13 2377 ax-ext 2777 ax-rep 4964 ax-sep 4975 ax-nul 4983 ax-pow 5035 ax-pr 5097 ax-un 7183 ax-inf2 8788 ax-cnex 10280 ax-resscn 10281 ax-1cn 10282 ax-icn 10283 ax-addcl 10284 ax-addrcl 10285 ax-mulcl 10286 ax-mulrcl 10287 ax-mulcom 10288 ax-addass 10289 ax-mulass 10290 ax-distr 10291 ax-i2m1 10292 ax-1ne0 10293 ax-1rid 10294 ax-rnegex 10295 ax-rrecex 10296 ax-cnre 10297 ax-pre-lttri 10298 ax-pre-lttrn 10299 ax-pre-ltadd 10300 ax-pre-mulgt0 10301 ax-pre-sup 10302 |
This theorem depends on definitions: df-bi 199 df-an 386 df-or 875 df-3or 1109 df-3an 1110 df-tru 1657 df-fal 1667 df-ex 1876 df-nf 1880 df-sb 2065 df-mo 2591 df-eu 2609 df-clab 2786 df-cleq 2792 df-clel 2795 df-nfc 2930 df-ne 2972 df-nel 3075 df-ral 3094 df-rex 3095 df-reu 3096 df-rmo 3097 df-rab 3098 df-v 3387 df-sbc 3634 df-csb 3729 df-dif 3772 df-un 3774 df-in 3776 df-ss 3783 df-pss 3785 df-nul 4116 df-if 4278 df-pw 4351 df-sn 4369 df-pr 4371 df-tp 4373 df-op 4375 df-uni 4629 df-int 4668 df-iun 4712 df-br 4844 df-opab 4906 df-mpt 4923 df-tr 4946 df-id 5220 df-eprel 5225 df-po 5233 df-so 5234 df-fr 5271 df-se 5272 df-we 5273 df-xp 5318 df-rel 5319 df-cnv 5320 df-co 5321 df-dm 5322 df-rn 5323 df-res 5324 df-ima 5325 df-pred 5898 df-ord 5944 df-on 5945 df-lim 5946 df-suc 5947 df-iota 6064 df-fun 6103 df-fn 6104 df-f 6105 df-f1 6106 df-fo 6107 df-f1o 6108 df-fv 6109 df-isom 6110 df-riota 6839 df-ov 6881 df-oprab 6882 df-mpt2 6883 df-om 7300 df-1st 7401 df-2nd 7402 df-wrecs 7645 df-recs 7707 df-rdg 7745 df-1o 7799 df-oadd 7803 df-er 7982 df-pm 8098 df-en 8196 df-dom 8197 df-sdom 8198 df-fin 8199 df-sup 8590 df-inf 8591 df-oi 8657 df-card 9051 df-pnf 10365 df-mnf 10366 df-xr 10367 df-ltxr 10368 df-le 10369 df-sub 10558 df-neg 10559 df-div 10977 df-nn 11313 df-2 11376 df-3 11377 df-n0 11581 df-z 11667 df-uz 11931 df-rp 12075 df-fz 12581 df-fzo 12721 df-fl 12848 df-seq 13056 df-exp 13115 df-hash 13371 df-cj 14180 df-re 14181 df-im 14182 df-sqrt 14316 df-abs 14317 df-clim 14560 df-rlim 14561 df-sum 14758 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |