| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > geoisumr | Structured version Visualization version GIF version | ||
| Description: The infinite sum of reciprocals 1 + (1 / 𝐴)↑1 + (1 / 𝐴)↑2... is 𝐴 / (𝐴 − 1). (Contributed by rpenner, 3-Nov-2007.) (Revised by Mario Carneiro, 26-Apr-2014.) |
| Ref | Expression |
|---|---|
| geoisumr | ⊢ ((𝐴 ∈ ℂ ∧ 1 < (abs‘𝐴)) → Σ𝑘 ∈ ℕ0 ((1 / 𝐴)↑𝑘) = (𝐴 / (𝐴 − 1))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nn0uz 12894 | . 2 ⊢ ℕ0 = (ℤ≥‘0) | |
| 2 | 0zd 12600 | . 2 ⊢ ((𝐴 ∈ ℂ ∧ 1 < (abs‘𝐴)) → 0 ∈ ℤ) | |
| 3 | oveq2 7413 | . . . 4 ⊢ (𝑛 = 𝑘 → ((1 / 𝐴)↑𝑛) = ((1 / 𝐴)↑𝑘)) | |
| 4 | eqid 2735 | . . . 4 ⊢ (𝑛 ∈ ℕ0 ↦ ((1 / 𝐴)↑𝑛)) = (𝑛 ∈ ℕ0 ↦ ((1 / 𝐴)↑𝑛)) | |
| 5 | ovex 7438 | . . . 4 ⊢ ((1 / 𝐴)↑𝑘) ∈ V | |
| 6 | 3, 4, 5 | fvmpt 6986 | . . 3 ⊢ (𝑘 ∈ ℕ0 → ((𝑛 ∈ ℕ0 ↦ ((1 / 𝐴)↑𝑛))‘𝑘) = ((1 / 𝐴)↑𝑘)) |
| 7 | 6 | adantl 481 | . 2 ⊢ (((𝐴 ∈ ℂ ∧ 1 < (abs‘𝐴)) ∧ 𝑘 ∈ ℕ0) → ((𝑛 ∈ ℕ0 ↦ ((1 / 𝐴)↑𝑛))‘𝑘) = ((1 / 𝐴)↑𝑘)) |
| 8 | 0le1 11760 | . . . . . . 7 ⊢ 0 ≤ 1 | |
| 9 | 0re 11237 | . . . . . . . 8 ⊢ 0 ∈ ℝ | |
| 10 | 1re 11235 | . . . . . . . 8 ⊢ 1 ∈ ℝ | |
| 11 | 9, 10 | lenlti 11355 | . . . . . . 7 ⊢ (0 ≤ 1 ↔ ¬ 1 < 0) |
| 12 | 8, 11 | mpbi 230 | . . . . . 6 ⊢ ¬ 1 < 0 |
| 13 | fveq2 6876 | . . . . . . . 8 ⊢ (𝐴 = 0 → (abs‘𝐴) = (abs‘0)) | |
| 14 | abs0 15304 | . . . . . . . 8 ⊢ (abs‘0) = 0 | |
| 15 | 13, 14 | eqtrdi 2786 | . . . . . . 7 ⊢ (𝐴 = 0 → (abs‘𝐴) = 0) |
| 16 | 15 | breq2d 5131 | . . . . . 6 ⊢ (𝐴 = 0 → (1 < (abs‘𝐴) ↔ 1 < 0)) |
| 17 | 12, 16 | mtbiri 327 | . . . . 5 ⊢ (𝐴 = 0 → ¬ 1 < (abs‘𝐴)) |
| 18 | 17 | necon2ai 2961 | . . . 4 ⊢ (1 < (abs‘𝐴) → 𝐴 ≠ 0) |
| 19 | reccl 11903 | . . . 4 ⊢ ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → (1 / 𝐴) ∈ ℂ) | |
| 20 | 18, 19 | sylan2 593 | . . 3 ⊢ ((𝐴 ∈ ℂ ∧ 1 < (abs‘𝐴)) → (1 / 𝐴) ∈ ℂ) |
| 21 | expcl 14097 | . . 3 ⊢ (((1 / 𝐴) ∈ ℂ ∧ 𝑘 ∈ ℕ0) → ((1 / 𝐴)↑𝑘) ∈ ℂ) | |
| 22 | 20, 21 | sylan 580 | . 2 ⊢ (((𝐴 ∈ ℂ ∧ 1 < (abs‘𝐴)) ∧ 𝑘 ∈ ℕ0) → ((1 / 𝐴)↑𝑘) ∈ ℂ) |
| 23 | simpl 482 | . . 3 ⊢ ((𝐴 ∈ ℂ ∧ 1 < (abs‘𝐴)) → 𝐴 ∈ ℂ) | |
| 24 | simpr 484 | . . 3 ⊢ ((𝐴 ∈ ℂ ∧ 1 < (abs‘𝐴)) → 1 < (abs‘𝐴)) | |
| 25 | 23, 24, 7 | georeclim 15888 | . 2 ⊢ ((𝐴 ∈ ℂ ∧ 1 < (abs‘𝐴)) → seq0( + , (𝑛 ∈ ℕ0 ↦ ((1 / 𝐴)↑𝑛))) ⇝ (𝐴 / (𝐴 − 1))) |
| 26 | 1, 2, 7, 22, 25 | isumclim 15773 | 1 ⊢ ((𝐴 ∈ ℂ ∧ 1 < (abs‘𝐴)) → Σ𝑘 ∈ ℕ0 ((1 / 𝐴)↑𝑘) = (𝐴 / (𝐴 − 1))) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2108 ≠ wne 2932 class class class wbr 5119 ↦ cmpt 5201 ‘cfv 6531 (class class class)co 7405 ℂcc 11127 0cc0 11129 1c1 11130 < clt 11269 ≤ cle 11270 − cmin 11466 / cdiv 11894 ℕ0cn0 12501 ↑cexp 14079 abscabs 15253 Σcsu 15702 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-rep 5249 ax-sep 5266 ax-nul 5276 ax-pow 5335 ax-pr 5402 ax-un 7729 ax-inf2 9655 ax-cnex 11185 ax-resscn 11186 ax-1cn 11187 ax-icn 11188 ax-addcl 11189 ax-addrcl 11190 ax-mulcl 11191 ax-mulrcl 11192 ax-mulcom 11193 ax-addass 11194 ax-mulass 11195 ax-distr 11196 ax-i2m1 11197 ax-1ne0 11198 ax-1rid 11199 ax-rnegex 11200 ax-rrecex 11201 ax-cnre 11202 ax-pre-lttri 11203 ax-pre-lttrn 11204 ax-pre-ltadd 11205 ax-pre-mulgt0 11206 ax-pre-sup 11207 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-nel 3037 df-ral 3052 df-rex 3061 df-rmo 3359 df-reu 3360 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-pss 3946 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-int 4923 df-iun 4969 df-br 5120 df-opab 5182 df-mpt 5202 df-tr 5230 df-id 5548 df-eprel 5553 df-po 5561 df-so 5562 df-fr 5606 df-se 5607 df-we 5608 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-pred 6290 df-ord 6355 df-on 6356 df-lim 6357 df-suc 6358 df-iota 6484 df-fun 6533 df-fn 6534 df-f 6535 df-f1 6536 df-fo 6537 df-f1o 6538 df-fv 6539 df-isom 6540 df-riota 7362 df-ov 7408 df-oprab 7409 df-mpo 7410 df-om 7862 df-1st 7988 df-2nd 7989 df-frecs 8280 df-wrecs 8311 df-recs 8385 df-rdg 8424 df-1o 8480 df-er 8719 df-pm 8843 df-en 8960 df-dom 8961 df-sdom 8962 df-fin 8963 df-sup 9454 df-inf 9455 df-oi 9524 df-card 9953 df-pnf 11271 df-mnf 11272 df-xr 11273 df-ltxr 11274 df-le 11275 df-sub 11468 df-neg 11469 df-div 11895 df-nn 12241 df-2 12303 df-3 12304 df-n0 12502 df-z 12589 df-uz 12853 df-rp 13009 df-fz 13525 df-fzo 13672 df-fl 13809 df-seq 14020 df-exp 14080 df-hash 14349 df-cj 15118 df-re 15119 df-im 15120 df-sqrt 15254 df-abs 15255 df-clim 15504 df-rlim 15505 df-sum 15703 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |