Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > geoisumr | Structured version Visualization version GIF version |
Description: The infinite sum of reciprocals 1 + (1 / 𝐴)↑1 + (1 / 𝐴)↑2... is 𝐴 / (𝐴 − 1). (Contributed by rpenner, 3-Nov-2007.) (Revised by Mario Carneiro, 26-Apr-2014.) |
Ref | Expression |
---|---|
geoisumr | ⊢ ((𝐴 ∈ ℂ ∧ 1 < (abs‘𝐴)) → Σ𝑘 ∈ ℕ0 ((1 / 𝐴)↑𝑘) = (𝐴 / (𝐴 − 1))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nn0uz 12362 | . 2 ⊢ ℕ0 = (ℤ≥‘0) | |
2 | 0zd 12074 | . 2 ⊢ ((𝐴 ∈ ℂ ∧ 1 < (abs‘𝐴)) → 0 ∈ ℤ) | |
3 | oveq2 7178 | . . . 4 ⊢ (𝑛 = 𝑘 → ((1 / 𝐴)↑𝑛) = ((1 / 𝐴)↑𝑘)) | |
4 | eqid 2738 | . . . 4 ⊢ (𝑛 ∈ ℕ0 ↦ ((1 / 𝐴)↑𝑛)) = (𝑛 ∈ ℕ0 ↦ ((1 / 𝐴)↑𝑛)) | |
5 | ovex 7203 | . . . 4 ⊢ ((1 / 𝐴)↑𝑘) ∈ V | |
6 | 3, 4, 5 | fvmpt 6775 | . . 3 ⊢ (𝑘 ∈ ℕ0 → ((𝑛 ∈ ℕ0 ↦ ((1 / 𝐴)↑𝑛))‘𝑘) = ((1 / 𝐴)↑𝑘)) |
7 | 6 | adantl 485 | . 2 ⊢ (((𝐴 ∈ ℂ ∧ 1 < (abs‘𝐴)) ∧ 𝑘 ∈ ℕ0) → ((𝑛 ∈ ℕ0 ↦ ((1 / 𝐴)↑𝑛))‘𝑘) = ((1 / 𝐴)↑𝑘)) |
8 | 0le1 11241 | . . . . . . 7 ⊢ 0 ≤ 1 | |
9 | 0re 10721 | . . . . . . . 8 ⊢ 0 ∈ ℝ | |
10 | 1re 10719 | . . . . . . . 8 ⊢ 1 ∈ ℝ | |
11 | 9, 10 | lenlti 10838 | . . . . . . 7 ⊢ (0 ≤ 1 ↔ ¬ 1 < 0) |
12 | 8, 11 | mpbi 233 | . . . . . 6 ⊢ ¬ 1 < 0 |
13 | fveq2 6674 | . . . . . . . 8 ⊢ (𝐴 = 0 → (abs‘𝐴) = (abs‘0)) | |
14 | abs0 14735 | . . . . . . . 8 ⊢ (abs‘0) = 0 | |
15 | 13, 14 | eqtrdi 2789 | . . . . . . 7 ⊢ (𝐴 = 0 → (abs‘𝐴) = 0) |
16 | 15 | breq2d 5042 | . . . . . 6 ⊢ (𝐴 = 0 → (1 < (abs‘𝐴) ↔ 1 < 0)) |
17 | 12, 16 | mtbiri 330 | . . . . 5 ⊢ (𝐴 = 0 → ¬ 1 < (abs‘𝐴)) |
18 | 17 | necon2ai 2963 | . . . 4 ⊢ (1 < (abs‘𝐴) → 𝐴 ≠ 0) |
19 | reccl 11383 | . . . 4 ⊢ ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → (1 / 𝐴) ∈ ℂ) | |
20 | 18, 19 | sylan2 596 | . . 3 ⊢ ((𝐴 ∈ ℂ ∧ 1 < (abs‘𝐴)) → (1 / 𝐴) ∈ ℂ) |
21 | expcl 13539 | . . 3 ⊢ (((1 / 𝐴) ∈ ℂ ∧ 𝑘 ∈ ℕ0) → ((1 / 𝐴)↑𝑘) ∈ ℂ) | |
22 | 20, 21 | sylan 583 | . 2 ⊢ (((𝐴 ∈ ℂ ∧ 1 < (abs‘𝐴)) ∧ 𝑘 ∈ ℕ0) → ((1 / 𝐴)↑𝑘) ∈ ℂ) |
23 | simpl 486 | . . 3 ⊢ ((𝐴 ∈ ℂ ∧ 1 < (abs‘𝐴)) → 𝐴 ∈ ℂ) | |
24 | simpr 488 | . . 3 ⊢ ((𝐴 ∈ ℂ ∧ 1 < (abs‘𝐴)) → 1 < (abs‘𝐴)) | |
25 | 23, 24, 7 | georeclim 15320 | . 2 ⊢ ((𝐴 ∈ ℂ ∧ 1 < (abs‘𝐴)) → seq0( + , (𝑛 ∈ ℕ0 ↦ ((1 / 𝐴)↑𝑛))) ⇝ (𝐴 / (𝐴 − 1))) |
26 | 1, 2, 7, 22, 25 | isumclim 15205 | 1 ⊢ ((𝐴 ∈ ℂ ∧ 1 < (abs‘𝐴)) → Σ𝑘 ∈ ℕ0 ((1 / 𝐴)↑𝑘) = (𝐴 / (𝐴 − 1))) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 399 = wceq 1542 ∈ wcel 2114 ≠ wne 2934 class class class wbr 5030 ↦ cmpt 5110 ‘cfv 6339 (class class class)co 7170 ℂcc 10613 0cc0 10615 1c1 10616 < clt 10753 ≤ cle 10754 − cmin 10948 / cdiv 11375 ℕ0cn0 11976 ↑cexp 13521 abscabs 14683 Σcsu 15135 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1917 ax-6 1975 ax-7 2020 ax-8 2116 ax-9 2124 ax-10 2145 ax-11 2162 ax-12 2179 ax-ext 2710 ax-rep 5154 ax-sep 5167 ax-nul 5174 ax-pow 5232 ax-pr 5296 ax-un 7479 ax-inf2 9177 ax-cnex 10671 ax-resscn 10672 ax-1cn 10673 ax-icn 10674 ax-addcl 10675 ax-addrcl 10676 ax-mulcl 10677 ax-mulrcl 10678 ax-mulcom 10679 ax-addass 10680 ax-mulass 10681 ax-distr 10682 ax-i2m1 10683 ax-1ne0 10684 ax-1rid 10685 ax-rnegex 10686 ax-rrecex 10687 ax-cnre 10688 ax-pre-lttri 10689 ax-pre-lttrn 10690 ax-pre-ltadd 10691 ax-pre-mulgt0 10692 ax-pre-sup 10693 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 847 df-3or 1089 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1787 df-nf 1791 df-sb 2075 df-mo 2540 df-eu 2570 df-clab 2717 df-cleq 2730 df-clel 2811 df-nfc 2881 df-ne 2935 df-nel 3039 df-ral 3058 df-rex 3059 df-reu 3060 df-rmo 3061 df-rab 3062 df-v 3400 df-sbc 3681 df-csb 3791 df-dif 3846 df-un 3848 df-in 3850 df-ss 3860 df-pss 3862 df-nul 4212 df-if 4415 df-pw 4490 df-sn 4517 df-pr 4519 df-tp 4521 df-op 4523 df-uni 4797 df-int 4837 df-iun 4883 df-br 5031 df-opab 5093 df-mpt 5111 df-tr 5137 df-id 5429 df-eprel 5434 df-po 5442 df-so 5443 df-fr 5483 df-se 5484 df-we 5485 df-xp 5531 df-rel 5532 df-cnv 5533 df-co 5534 df-dm 5535 df-rn 5536 df-res 5537 df-ima 5538 df-pred 6129 df-ord 6175 df-on 6176 df-lim 6177 df-suc 6178 df-iota 6297 df-fun 6341 df-fn 6342 df-f 6343 df-f1 6344 df-fo 6345 df-f1o 6346 df-fv 6347 df-isom 6348 df-riota 7127 df-ov 7173 df-oprab 7174 df-mpo 7175 df-om 7600 df-1st 7714 df-2nd 7715 df-wrecs 7976 df-recs 8037 df-rdg 8075 df-1o 8131 df-er 8320 df-pm 8440 df-en 8556 df-dom 8557 df-sdom 8558 df-fin 8559 df-sup 8979 df-inf 8980 df-oi 9047 df-card 9441 df-pnf 10755 df-mnf 10756 df-xr 10757 df-ltxr 10758 df-le 10759 df-sub 10950 df-neg 10951 df-div 11376 df-nn 11717 df-2 11779 df-3 11780 df-n0 11977 df-z 12063 df-uz 12325 df-rp 12473 df-fz 12982 df-fzo 13125 df-fl 13253 df-seq 13461 df-exp 13522 df-hash 13783 df-cj 14548 df-re 14549 df-im 14550 df-sqrt 14684 df-abs 14685 df-clim 14935 df-rlim 14936 df-sum 15136 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |