MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  geoisumr Structured version   Visualization version   GIF version

Theorem geoisumr 15785
Description: The infinite sum of reciprocals 1 + (1 / 𝐴)↑1 + (1 / 𝐴)↑2... is 𝐴 / (𝐴 − 1). (Contributed by rpenner, 3-Nov-2007.) (Revised by Mario Carneiro, 26-Apr-2014.)
Assertion
Ref Expression
geoisumr ((𝐴 ∈ ℂ ∧ 1 < (abs‘𝐴)) → Σ𝑘 ∈ ℕ0 ((1 / 𝐴)↑𝑘) = (𝐴 / (𝐴 − 1)))
Distinct variable group:   𝐴,𝑘

Proof of Theorem geoisumr
Dummy variable 𝑛 is distinct from all other variables.
StepHypRef Expression
1 nn0uz 12774 . 2 0 = (ℤ‘0)
2 0zd 12480 . 2 ((𝐴 ∈ ℂ ∧ 1 < (abs‘𝐴)) → 0 ∈ ℤ)
3 oveq2 7354 . . . 4 (𝑛 = 𝑘 → ((1 / 𝐴)↑𝑛) = ((1 / 𝐴)↑𝑘))
4 eqid 2731 . . . 4 (𝑛 ∈ ℕ0 ↦ ((1 / 𝐴)↑𝑛)) = (𝑛 ∈ ℕ0 ↦ ((1 / 𝐴)↑𝑛))
5 ovex 7379 . . . 4 ((1 / 𝐴)↑𝑘) ∈ V
63, 4, 5fvmpt 6929 . . 3 (𝑘 ∈ ℕ0 → ((𝑛 ∈ ℕ0 ↦ ((1 / 𝐴)↑𝑛))‘𝑘) = ((1 / 𝐴)↑𝑘))
76adantl 481 . 2 (((𝐴 ∈ ℂ ∧ 1 < (abs‘𝐴)) ∧ 𝑘 ∈ ℕ0) → ((𝑛 ∈ ℕ0 ↦ ((1 / 𝐴)↑𝑛))‘𝑘) = ((1 / 𝐴)↑𝑘))
8 0le1 11640 . . . . . . 7 0 ≤ 1
9 0re 11114 . . . . . . . 8 0 ∈ ℝ
10 1re 11112 . . . . . . . 8 1 ∈ ℝ
119, 10lenlti 11233 . . . . . . 7 (0 ≤ 1 ↔ ¬ 1 < 0)
128, 11mpbi 230 . . . . . 6 ¬ 1 < 0
13 fveq2 6822 . . . . . . . 8 (𝐴 = 0 → (abs‘𝐴) = (abs‘0))
14 abs0 15192 . . . . . . . 8 (abs‘0) = 0
1513, 14eqtrdi 2782 . . . . . . 7 (𝐴 = 0 → (abs‘𝐴) = 0)
1615breq2d 5101 . . . . . 6 (𝐴 = 0 → (1 < (abs‘𝐴) ↔ 1 < 0))
1712, 16mtbiri 327 . . . . 5 (𝐴 = 0 → ¬ 1 < (abs‘𝐴))
1817necon2ai 2957 . . . 4 (1 < (abs‘𝐴) → 𝐴 ≠ 0)
19 reccl 11783 . . . 4 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → (1 / 𝐴) ∈ ℂ)
2018, 19sylan2 593 . . 3 ((𝐴 ∈ ℂ ∧ 1 < (abs‘𝐴)) → (1 / 𝐴) ∈ ℂ)
21 expcl 13986 . . 3 (((1 / 𝐴) ∈ ℂ ∧ 𝑘 ∈ ℕ0) → ((1 / 𝐴)↑𝑘) ∈ ℂ)
2220, 21sylan 580 . 2 (((𝐴 ∈ ℂ ∧ 1 < (abs‘𝐴)) ∧ 𝑘 ∈ ℕ0) → ((1 / 𝐴)↑𝑘) ∈ ℂ)
23 simpl 482 . . 3 ((𝐴 ∈ ℂ ∧ 1 < (abs‘𝐴)) → 𝐴 ∈ ℂ)
24 simpr 484 . . 3 ((𝐴 ∈ ℂ ∧ 1 < (abs‘𝐴)) → 1 < (abs‘𝐴))
2523, 24, 7georeclim 15779 . 2 ((𝐴 ∈ ℂ ∧ 1 < (abs‘𝐴)) → seq0( + , (𝑛 ∈ ℕ0 ↦ ((1 / 𝐴)↑𝑛))) ⇝ (𝐴 / (𝐴 − 1)))
261, 2, 7, 22, 25isumclim 15664 1 ((𝐴 ∈ ℂ ∧ 1 < (abs‘𝐴)) → Σ𝑘 ∈ ℕ0 ((1 / 𝐴)↑𝑘) = (𝐴 / (𝐴 − 1)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395   = wceq 1541  wcel 2111  wne 2928   class class class wbr 5089  cmpt 5170  cfv 6481  (class class class)co 7346  cc 11004  0cc0 11006  1c1 11007   < clt 11146  cle 11147  cmin 11344   / cdiv 11774  0cn0 12381  cexp 13968  abscabs 15141  Σcsu 15593
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5215  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7668  ax-inf2 9531  ax-cnex 11062  ax-resscn 11063  ax-1cn 11064  ax-icn 11065  ax-addcl 11066  ax-addrcl 11067  ax-mulcl 11068  ax-mulrcl 11069  ax-mulcom 11070  ax-addass 11071  ax-mulass 11072  ax-distr 11073  ax-i2m1 11074  ax-1ne0 11075  ax-1rid 11076  ax-rnegex 11077  ax-rrecex 11078  ax-cnre 11079  ax-pre-lttri 11080  ax-pre-lttrn 11081  ax-pre-ltadd 11082  ax-pre-mulgt0 11083  ax-pre-sup 11084
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-int 4896  df-iun 4941  df-br 5090  df-opab 5152  df-mpt 5171  df-tr 5197  df-id 5509  df-eprel 5514  df-po 5522  df-so 5523  df-fr 5567  df-se 5568  df-we 5569  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-isom 6490  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-om 7797  df-1st 7921  df-2nd 7922  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-1o 8385  df-er 8622  df-pm 8753  df-en 8870  df-dom 8871  df-sdom 8872  df-fin 8873  df-sup 9326  df-inf 9327  df-oi 9396  df-card 9832  df-pnf 11148  df-mnf 11149  df-xr 11150  df-ltxr 11151  df-le 11152  df-sub 11346  df-neg 11347  df-div 11775  df-nn 12126  df-2 12188  df-3 12189  df-n0 12382  df-z 12469  df-uz 12733  df-rp 12891  df-fz 13408  df-fzo 13555  df-fl 13696  df-seq 13909  df-exp 13969  df-hash 14238  df-cj 15006  df-re 15007  df-im 15008  df-sqrt 15142  df-abs 15143  df-clim 15395  df-rlim 15396  df-sum 15594
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator