MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  georeclim Structured version   Visualization version   GIF version

Theorem georeclim 15779
Description: The limit of a geometric series of reciprocals. (Contributed by Paul Chapman, 28-Dec-2007.) (Revised by Mario Carneiro, 26-Apr-2014.)
Hypotheses
Ref Expression
georeclim.1 (𝜑𝐴 ∈ ℂ)
georeclim.2 (𝜑 → 1 < (abs‘𝐴))
georeclim.3 ((𝜑𝑘 ∈ ℕ0) → (𝐹𝑘) = ((1 / 𝐴)↑𝑘))
Assertion
Ref Expression
georeclim (𝜑 → seq0( + , 𝐹) ⇝ (𝐴 / (𝐴 − 1)))
Distinct variable groups:   𝐴,𝑘   𝑘,𝐹   𝜑,𝑘

Proof of Theorem georeclim
StepHypRef Expression
1 georeclim.1 . . . 4 (𝜑𝐴 ∈ ℂ)
2 georeclim.2 . . . . 5 (𝜑 → 1 < (abs‘𝐴))
3 0le1 11640 . . . . . . . 8 0 ≤ 1
4 0re 11114 . . . . . . . . 9 0 ∈ ℝ
5 1re 11112 . . . . . . . . 9 1 ∈ ℝ
64, 5lenlti 11233 . . . . . . . 8 (0 ≤ 1 ↔ ¬ 1 < 0)
73, 6mpbi 230 . . . . . . 7 ¬ 1 < 0
8 fveq2 6822 . . . . . . . . 9 (𝐴 = 0 → (abs‘𝐴) = (abs‘0))
9 abs0 15192 . . . . . . . . 9 (abs‘0) = 0
108, 9eqtrdi 2782 . . . . . . . 8 (𝐴 = 0 → (abs‘𝐴) = 0)
1110breq2d 5103 . . . . . . 7 (𝐴 = 0 → (1 < (abs‘𝐴) ↔ 1 < 0))
127, 11mtbiri 327 . . . . . 6 (𝐴 = 0 → ¬ 1 < (abs‘𝐴))
1312necon2ai 2957 . . . . 5 (1 < (abs‘𝐴) → 𝐴 ≠ 0)
142, 13syl 17 . . . 4 (𝜑𝐴 ≠ 0)
151, 14reccld 11890 . . 3 (𝜑 → (1 / 𝐴) ∈ ℂ)
16 1cnd 11107 . . . . . 6 (𝜑 → 1 ∈ ℂ)
1716, 1, 14absdivd 15365 . . . . 5 (𝜑 → (abs‘(1 / 𝐴)) = ((abs‘1) / (abs‘𝐴)))
18 abs1 15204 . . . . . 6 (abs‘1) = 1
1918oveq1i 7356 . . . . 5 ((abs‘1) / (abs‘𝐴)) = (1 / (abs‘𝐴))
2017, 19eqtrdi 2782 . . . 4 (𝜑 → (abs‘(1 / 𝐴)) = (1 / (abs‘𝐴)))
211, 14absrpcld 15358 . . . . . 6 (𝜑 → (abs‘𝐴) ∈ ℝ+)
2221recgt1d 12948 . . . . 5 (𝜑 → (1 < (abs‘𝐴) ↔ (1 / (abs‘𝐴)) < 1))
232, 22mpbid 232 . . . 4 (𝜑 → (1 / (abs‘𝐴)) < 1)
2420, 23eqbrtrd 5113 . . 3 (𝜑 → (abs‘(1 / 𝐴)) < 1)
25 georeclim.3 . . 3 ((𝜑𝑘 ∈ ℕ0) → (𝐹𝑘) = ((1 / 𝐴)↑𝑘))
2615, 24, 25geolim 15777 . 2 (𝜑 → seq0( + , 𝐹) ⇝ (1 / (1 − (1 / 𝐴))))
271, 16, 1, 14divsubdird 11936 . . . . 5 (𝜑 → ((𝐴 − 1) / 𝐴) = ((𝐴 / 𝐴) − (1 / 𝐴)))
281, 14dividd 11895 . . . . . 6 (𝜑 → (𝐴 / 𝐴) = 1)
2928oveq1d 7361 . . . . 5 (𝜑 → ((𝐴 / 𝐴) − (1 / 𝐴)) = (1 − (1 / 𝐴)))
3027, 29eqtrd 2766 . . . 4 (𝜑 → ((𝐴 − 1) / 𝐴) = (1 − (1 / 𝐴)))
3130oveq2d 7362 . . 3 (𝜑 → (1 / ((𝐴 − 1) / 𝐴)) = (1 / (1 − (1 / 𝐴))))
32 ax-1cn 11064 . . . . 5 1 ∈ ℂ
33 subcl 11359 . . . . 5 ((𝐴 ∈ ℂ ∧ 1 ∈ ℂ) → (𝐴 − 1) ∈ ℂ)
341, 32, 33sylancl 586 . . . 4 (𝜑 → (𝐴 − 1) ∈ ℂ)
355ltnri 11222 . . . . . . . 8 ¬ 1 < 1
36 fveq2 6822 . . . . . . . . . 10 (𝐴 = 1 → (abs‘𝐴) = (abs‘1))
3736, 18eqtrdi 2782 . . . . . . . . 9 (𝐴 = 1 → (abs‘𝐴) = 1)
3837breq2d 5103 . . . . . . . 8 (𝐴 = 1 → (1 < (abs‘𝐴) ↔ 1 < 1))
3935, 38mtbiri 327 . . . . . . 7 (𝐴 = 1 → ¬ 1 < (abs‘𝐴))
4039necon2ai 2957 . . . . . 6 (1 < (abs‘𝐴) → 𝐴 ≠ 1)
412, 40syl 17 . . . . 5 (𝜑𝐴 ≠ 1)
42 subeq0 11387 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 1 ∈ ℂ) → ((𝐴 − 1) = 0 ↔ 𝐴 = 1))
431, 32, 42sylancl 586 . . . . . 6 (𝜑 → ((𝐴 − 1) = 0 ↔ 𝐴 = 1))
4443necon3bid 2972 . . . . 5 (𝜑 → ((𝐴 − 1) ≠ 0 ↔ 𝐴 ≠ 1))
4541, 44mpbird 257 . . . 4 (𝜑 → (𝐴 − 1) ≠ 0)
4634, 1, 45, 14recdivd 11914 . . 3 (𝜑 → (1 / ((𝐴 − 1) / 𝐴)) = (𝐴 / (𝐴 − 1)))
4731, 46eqtr3d 2768 . 2 (𝜑 → (1 / (1 − (1 / 𝐴))) = (𝐴 / (𝐴 − 1)))
4826, 47breqtrd 5117 1 (𝜑 → seq0( + , 𝐹) ⇝ (𝐴 / (𝐴 − 1)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395   = wceq 1541  wcel 2111  wne 2928   class class class wbr 5091  cfv 6481  (class class class)co 7346  cc 11004  0cc0 11006  1c1 11007   + caddc 11009   < clt 11146  cle 11147  cmin 11344   / cdiv 11774  0cn0 12381  seqcseq 13908  cexp 13968  abscabs 15141  cli 15391
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5217  ax-sep 5234  ax-nul 5244  ax-pow 5303  ax-pr 5370  ax-un 7668  ax-inf2 9531  ax-cnex 11062  ax-resscn 11063  ax-1cn 11064  ax-icn 11065  ax-addcl 11066  ax-addrcl 11067  ax-mulcl 11068  ax-mulrcl 11069  ax-mulcom 11070  ax-addass 11071  ax-mulass 11072  ax-distr 11073  ax-i2m1 11074  ax-1ne0 11075  ax-1rid 11076  ax-rnegex 11077  ax-rrecex 11078  ax-cnre 11079  ax-pre-lttri 11080  ax-pre-lttrn 11081  ax-pre-ltadd 11082  ax-pre-mulgt0 11083  ax-pre-sup 11084
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3742  df-csb 3851  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-pss 3922  df-nul 4284  df-if 4476  df-pw 4552  df-sn 4577  df-pr 4579  df-op 4583  df-uni 4860  df-int 4898  df-iun 4943  df-br 5092  df-opab 5154  df-mpt 5173  df-tr 5199  df-id 5511  df-eprel 5516  df-po 5524  df-so 5525  df-fr 5569  df-se 5570  df-we 5571  df-xp 5622  df-rel 5623  df-cnv 5624  df-co 5625  df-dm 5626  df-rn 5627  df-res 5628  df-ima 5629  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-isom 6490  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-om 7797  df-1st 7921  df-2nd 7922  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-1o 8385  df-er 8622  df-pm 8753  df-en 8870  df-dom 8871  df-sdom 8872  df-fin 8873  df-sup 9326  df-inf 9327  df-oi 9396  df-card 9832  df-pnf 11148  df-mnf 11149  df-xr 11150  df-ltxr 11151  df-le 11152  df-sub 11346  df-neg 11347  df-div 11775  df-nn 12126  df-2 12188  df-3 12189  df-n0 12382  df-z 12469  df-uz 12733  df-rp 12891  df-fz 13408  df-fzo 13555  df-fl 13696  df-seq 13909  df-exp 13969  df-hash 14238  df-cj 15006  df-re 15007  df-im 15008  df-sqrt 15142  df-abs 15143  df-clim 15395  df-rlim 15396  df-sum 15594
This theorem is referenced by:  geoisumr  15785  ege2le3  15997  eftlub  16018
  Copyright terms: Public domain W3C validator