| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > georeclim | Structured version Visualization version GIF version | ||
| Description: The limit of a geometric series of reciprocals. (Contributed by Paul Chapman, 28-Dec-2007.) (Revised by Mario Carneiro, 26-Apr-2014.) |
| Ref | Expression |
|---|---|
| georeclim.1 | ⊢ (𝜑 → 𝐴 ∈ ℂ) |
| georeclim.2 | ⊢ (𝜑 → 1 < (abs‘𝐴)) |
| georeclim.3 | ⊢ ((𝜑 ∧ 𝑘 ∈ ℕ0) → (𝐹‘𝑘) = ((1 / 𝐴)↑𝑘)) |
| Ref | Expression |
|---|---|
| georeclim | ⊢ (𝜑 → seq0( + , 𝐹) ⇝ (𝐴 / (𝐴 − 1))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | georeclim.1 | . . . 4 ⊢ (𝜑 → 𝐴 ∈ ℂ) | |
| 2 | georeclim.2 | . . . . 5 ⊢ (𝜑 → 1 < (abs‘𝐴)) | |
| 3 | 0le1 11765 | . . . . . . . 8 ⊢ 0 ≤ 1 | |
| 4 | 0re 11242 | . . . . . . . . 9 ⊢ 0 ∈ ℝ | |
| 5 | 1re 11240 | . . . . . . . . 9 ⊢ 1 ∈ ℝ | |
| 6 | 4, 5 | lenlti 11360 | . . . . . . . 8 ⊢ (0 ≤ 1 ↔ ¬ 1 < 0) |
| 7 | 3, 6 | mpbi 230 | . . . . . . 7 ⊢ ¬ 1 < 0 |
| 8 | fveq2 6881 | . . . . . . . . 9 ⊢ (𝐴 = 0 → (abs‘𝐴) = (abs‘0)) | |
| 9 | abs0 15309 | . . . . . . . . 9 ⊢ (abs‘0) = 0 | |
| 10 | 8, 9 | eqtrdi 2787 | . . . . . . . 8 ⊢ (𝐴 = 0 → (abs‘𝐴) = 0) |
| 11 | 10 | breq2d 5136 | . . . . . . 7 ⊢ (𝐴 = 0 → (1 < (abs‘𝐴) ↔ 1 < 0)) |
| 12 | 7, 11 | mtbiri 327 | . . . . . 6 ⊢ (𝐴 = 0 → ¬ 1 < (abs‘𝐴)) |
| 13 | 12 | necon2ai 2962 | . . . . 5 ⊢ (1 < (abs‘𝐴) → 𝐴 ≠ 0) |
| 14 | 2, 13 | syl 17 | . . . 4 ⊢ (𝜑 → 𝐴 ≠ 0) |
| 15 | 1, 14 | reccld 12015 | . . 3 ⊢ (𝜑 → (1 / 𝐴) ∈ ℂ) |
| 16 | 1cnd 11235 | . . . . . 6 ⊢ (𝜑 → 1 ∈ ℂ) | |
| 17 | 16, 1, 14 | absdivd 15479 | . . . . 5 ⊢ (𝜑 → (abs‘(1 / 𝐴)) = ((abs‘1) / (abs‘𝐴))) |
| 18 | abs1 15321 | . . . . . 6 ⊢ (abs‘1) = 1 | |
| 19 | 18 | oveq1i 7420 | . . . . 5 ⊢ ((abs‘1) / (abs‘𝐴)) = (1 / (abs‘𝐴)) |
| 20 | 17, 19 | eqtrdi 2787 | . . . 4 ⊢ (𝜑 → (abs‘(1 / 𝐴)) = (1 / (abs‘𝐴))) |
| 21 | 1, 14 | absrpcld 15472 | . . . . . 6 ⊢ (𝜑 → (abs‘𝐴) ∈ ℝ+) |
| 22 | 21 | recgt1d 13070 | . . . . 5 ⊢ (𝜑 → (1 < (abs‘𝐴) ↔ (1 / (abs‘𝐴)) < 1)) |
| 23 | 2, 22 | mpbid 232 | . . . 4 ⊢ (𝜑 → (1 / (abs‘𝐴)) < 1) |
| 24 | 20, 23 | eqbrtrd 5146 | . . 3 ⊢ (𝜑 → (abs‘(1 / 𝐴)) < 1) |
| 25 | georeclim.3 | . . 3 ⊢ ((𝜑 ∧ 𝑘 ∈ ℕ0) → (𝐹‘𝑘) = ((1 / 𝐴)↑𝑘)) | |
| 26 | 15, 24, 25 | geolim 15891 | . 2 ⊢ (𝜑 → seq0( + , 𝐹) ⇝ (1 / (1 − (1 / 𝐴)))) |
| 27 | 1, 16, 1, 14 | divsubdird 12061 | . . . . 5 ⊢ (𝜑 → ((𝐴 − 1) / 𝐴) = ((𝐴 / 𝐴) − (1 / 𝐴))) |
| 28 | 1, 14 | dividd 12020 | . . . . . 6 ⊢ (𝜑 → (𝐴 / 𝐴) = 1) |
| 29 | 28 | oveq1d 7425 | . . . . 5 ⊢ (𝜑 → ((𝐴 / 𝐴) − (1 / 𝐴)) = (1 − (1 / 𝐴))) |
| 30 | 27, 29 | eqtrd 2771 | . . . 4 ⊢ (𝜑 → ((𝐴 − 1) / 𝐴) = (1 − (1 / 𝐴))) |
| 31 | 30 | oveq2d 7426 | . . 3 ⊢ (𝜑 → (1 / ((𝐴 − 1) / 𝐴)) = (1 / (1 − (1 / 𝐴)))) |
| 32 | ax-1cn 11192 | . . . . 5 ⊢ 1 ∈ ℂ | |
| 33 | subcl 11486 | . . . . 5 ⊢ ((𝐴 ∈ ℂ ∧ 1 ∈ ℂ) → (𝐴 − 1) ∈ ℂ) | |
| 34 | 1, 32, 33 | sylancl 586 | . . . 4 ⊢ (𝜑 → (𝐴 − 1) ∈ ℂ) |
| 35 | 5 | ltnri 11349 | . . . . . . . 8 ⊢ ¬ 1 < 1 |
| 36 | fveq2 6881 | . . . . . . . . . 10 ⊢ (𝐴 = 1 → (abs‘𝐴) = (abs‘1)) | |
| 37 | 36, 18 | eqtrdi 2787 | . . . . . . . . 9 ⊢ (𝐴 = 1 → (abs‘𝐴) = 1) |
| 38 | 37 | breq2d 5136 | . . . . . . . 8 ⊢ (𝐴 = 1 → (1 < (abs‘𝐴) ↔ 1 < 1)) |
| 39 | 35, 38 | mtbiri 327 | . . . . . . 7 ⊢ (𝐴 = 1 → ¬ 1 < (abs‘𝐴)) |
| 40 | 39 | necon2ai 2962 | . . . . . 6 ⊢ (1 < (abs‘𝐴) → 𝐴 ≠ 1) |
| 41 | 2, 40 | syl 17 | . . . . 5 ⊢ (𝜑 → 𝐴 ≠ 1) |
| 42 | subeq0 11514 | . . . . . . 7 ⊢ ((𝐴 ∈ ℂ ∧ 1 ∈ ℂ) → ((𝐴 − 1) = 0 ↔ 𝐴 = 1)) | |
| 43 | 1, 32, 42 | sylancl 586 | . . . . . 6 ⊢ (𝜑 → ((𝐴 − 1) = 0 ↔ 𝐴 = 1)) |
| 44 | 43 | necon3bid 2977 | . . . . 5 ⊢ (𝜑 → ((𝐴 − 1) ≠ 0 ↔ 𝐴 ≠ 1)) |
| 45 | 41, 44 | mpbird 257 | . . . 4 ⊢ (𝜑 → (𝐴 − 1) ≠ 0) |
| 46 | 34, 1, 45, 14 | recdivd 12039 | . . 3 ⊢ (𝜑 → (1 / ((𝐴 − 1) / 𝐴)) = (𝐴 / (𝐴 − 1))) |
| 47 | 31, 46 | eqtr3d 2773 | . 2 ⊢ (𝜑 → (1 / (1 − (1 / 𝐴))) = (𝐴 / (𝐴 − 1))) |
| 48 | 26, 47 | breqtrd 5150 | 1 ⊢ (𝜑 → seq0( + , 𝐹) ⇝ (𝐴 / (𝐴 − 1))) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ≠ wne 2933 class class class wbr 5124 ‘cfv 6536 (class class class)co 7410 ℂcc 11132 0cc0 11134 1c1 11135 + caddc 11137 < clt 11274 ≤ cle 11275 − cmin 11471 / cdiv 11899 ℕ0cn0 12506 seqcseq 14024 ↑cexp 14084 abscabs 15258 ⇝ cli 15505 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2708 ax-rep 5254 ax-sep 5271 ax-nul 5281 ax-pow 5340 ax-pr 5407 ax-un 7734 ax-inf2 9660 ax-cnex 11190 ax-resscn 11191 ax-1cn 11192 ax-icn 11193 ax-addcl 11194 ax-addrcl 11195 ax-mulcl 11196 ax-mulrcl 11197 ax-mulcom 11198 ax-addass 11199 ax-mulass 11200 ax-distr 11201 ax-i2m1 11202 ax-1ne0 11203 ax-1rid 11204 ax-rnegex 11205 ax-rrecex 11206 ax-cnre 11207 ax-pre-lttri 11208 ax-pre-lttrn 11209 ax-pre-ltadd 11210 ax-pre-mulgt0 11211 ax-pre-sup 11212 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2728 df-clel 2810 df-nfc 2886 df-ne 2934 df-nel 3038 df-ral 3053 df-rex 3062 df-rmo 3364 df-reu 3365 df-rab 3421 df-v 3466 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-pss 3951 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4889 df-int 4928 df-iun 4974 df-br 5125 df-opab 5187 df-mpt 5207 df-tr 5235 df-id 5553 df-eprel 5558 df-po 5566 df-so 5567 df-fr 5611 df-se 5612 df-we 5613 df-xp 5665 df-rel 5666 df-cnv 5667 df-co 5668 df-dm 5669 df-rn 5670 df-res 5671 df-ima 5672 df-pred 6295 df-ord 6360 df-on 6361 df-lim 6362 df-suc 6363 df-iota 6489 df-fun 6538 df-fn 6539 df-f 6540 df-f1 6541 df-fo 6542 df-f1o 6543 df-fv 6544 df-isom 6545 df-riota 7367 df-ov 7413 df-oprab 7414 df-mpo 7415 df-om 7867 df-1st 7993 df-2nd 7994 df-frecs 8285 df-wrecs 8316 df-recs 8390 df-rdg 8429 df-1o 8485 df-er 8724 df-pm 8848 df-en 8965 df-dom 8966 df-sdom 8967 df-fin 8968 df-sup 9459 df-inf 9460 df-oi 9529 df-card 9958 df-pnf 11276 df-mnf 11277 df-xr 11278 df-ltxr 11279 df-le 11280 df-sub 11473 df-neg 11474 df-div 11900 df-nn 12246 df-2 12308 df-3 12309 df-n0 12507 df-z 12594 df-uz 12858 df-rp 13014 df-fz 13530 df-fzo 13677 df-fl 13814 df-seq 14025 df-exp 14085 df-hash 14354 df-cj 15123 df-re 15124 df-im 15125 df-sqrt 15259 df-abs 15260 df-clim 15509 df-rlim 15510 df-sum 15708 |
| This theorem is referenced by: geoisumr 15899 ege2le3 16111 eftlub 16132 |
| Copyright terms: Public domain | W3C validator |