Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > georeclim | Structured version Visualization version GIF version |
Description: The limit of a geometric series of reciprocals. (Contributed by Paul Chapman, 28-Dec-2007.) (Revised by Mario Carneiro, 26-Apr-2014.) |
Ref | Expression |
---|---|
georeclim.1 | ⊢ (𝜑 → 𝐴 ∈ ℂ) |
georeclim.2 | ⊢ (𝜑 → 1 < (abs‘𝐴)) |
georeclim.3 | ⊢ ((𝜑 ∧ 𝑘 ∈ ℕ0) → (𝐹‘𝑘) = ((1 / 𝐴)↑𝑘)) |
Ref | Expression |
---|---|
georeclim | ⊢ (𝜑 → seq0( + , 𝐹) ⇝ (𝐴 / (𝐴 − 1))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | georeclim.1 | . . . 4 ⊢ (𝜑 → 𝐴 ∈ ℂ) | |
2 | georeclim.2 | . . . . 5 ⊢ (𝜑 → 1 < (abs‘𝐴)) | |
3 | 0le1 11428 | . . . . . . . 8 ⊢ 0 ≤ 1 | |
4 | 0re 10908 | . . . . . . . . 9 ⊢ 0 ∈ ℝ | |
5 | 1re 10906 | . . . . . . . . 9 ⊢ 1 ∈ ℝ | |
6 | 4, 5 | lenlti 11025 | . . . . . . . 8 ⊢ (0 ≤ 1 ↔ ¬ 1 < 0) |
7 | 3, 6 | mpbi 229 | . . . . . . 7 ⊢ ¬ 1 < 0 |
8 | fveq2 6756 | . . . . . . . . 9 ⊢ (𝐴 = 0 → (abs‘𝐴) = (abs‘0)) | |
9 | abs0 14925 | . . . . . . . . 9 ⊢ (abs‘0) = 0 | |
10 | 8, 9 | eqtrdi 2795 | . . . . . . . 8 ⊢ (𝐴 = 0 → (abs‘𝐴) = 0) |
11 | 10 | breq2d 5082 | . . . . . . 7 ⊢ (𝐴 = 0 → (1 < (abs‘𝐴) ↔ 1 < 0)) |
12 | 7, 11 | mtbiri 326 | . . . . . 6 ⊢ (𝐴 = 0 → ¬ 1 < (abs‘𝐴)) |
13 | 12 | necon2ai 2972 | . . . . 5 ⊢ (1 < (abs‘𝐴) → 𝐴 ≠ 0) |
14 | 2, 13 | syl 17 | . . . 4 ⊢ (𝜑 → 𝐴 ≠ 0) |
15 | 1, 14 | reccld 11674 | . . 3 ⊢ (𝜑 → (1 / 𝐴) ∈ ℂ) |
16 | 1cnd 10901 | . . . . . 6 ⊢ (𝜑 → 1 ∈ ℂ) | |
17 | 16, 1, 14 | absdivd 15095 | . . . . 5 ⊢ (𝜑 → (abs‘(1 / 𝐴)) = ((abs‘1) / (abs‘𝐴))) |
18 | abs1 14937 | . . . . . 6 ⊢ (abs‘1) = 1 | |
19 | 18 | oveq1i 7265 | . . . . 5 ⊢ ((abs‘1) / (abs‘𝐴)) = (1 / (abs‘𝐴)) |
20 | 17, 19 | eqtrdi 2795 | . . . 4 ⊢ (𝜑 → (abs‘(1 / 𝐴)) = (1 / (abs‘𝐴))) |
21 | 1, 14 | absrpcld 15088 | . . . . . 6 ⊢ (𝜑 → (abs‘𝐴) ∈ ℝ+) |
22 | 21 | recgt1d 12715 | . . . . 5 ⊢ (𝜑 → (1 < (abs‘𝐴) ↔ (1 / (abs‘𝐴)) < 1)) |
23 | 2, 22 | mpbid 231 | . . . 4 ⊢ (𝜑 → (1 / (abs‘𝐴)) < 1) |
24 | 20, 23 | eqbrtrd 5092 | . . 3 ⊢ (𝜑 → (abs‘(1 / 𝐴)) < 1) |
25 | georeclim.3 | . . 3 ⊢ ((𝜑 ∧ 𝑘 ∈ ℕ0) → (𝐹‘𝑘) = ((1 / 𝐴)↑𝑘)) | |
26 | 15, 24, 25 | geolim 15510 | . 2 ⊢ (𝜑 → seq0( + , 𝐹) ⇝ (1 / (1 − (1 / 𝐴)))) |
27 | 1, 16, 1, 14 | divsubdird 11720 | . . . . 5 ⊢ (𝜑 → ((𝐴 − 1) / 𝐴) = ((𝐴 / 𝐴) − (1 / 𝐴))) |
28 | 1, 14 | dividd 11679 | . . . . . 6 ⊢ (𝜑 → (𝐴 / 𝐴) = 1) |
29 | 28 | oveq1d 7270 | . . . . 5 ⊢ (𝜑 → ((𝐴 / 𝐴) − (1 / 𝐴)) = (1 − (1 / 𝐴))) |
30 | 27, 29 | eqtrd 2778 | . . . 4 ⊢ (𝜑 → ((𝐴 − 1) / 𝐴) = (1 − (1 / 𝐴))) |
31 | 30 | oveq2d 7271 | . . 3 ⊢ (𝜑 → (1 / ((𝐴 − 1) / 𝐴)) = (1 / (1 − (1 / 𝐴)))) |
32 | ax-1cn 10860 | . . . . 5 ⊢ 1 ∈ ℂ | |
33 | subcl 11150 | . . . . 5 ⊢ ((𝐴 ∈ ℂ ∧ 1 ∈ ℂ) → (𝐴 − 1) ∈ ℂ) | |
34 | 1, 32, 33 | sylancl 585 | . . . 4 ⊢ (𝜑 → (𝐴 − 1) ∈ ℂ) |
35 | 5 | ltnri 11014 | . . . . . . . 8 ⊢ ¬ 1 < 1 |
36 | fveq2 6756 | . . . . . . . . . 10 ⊢ (𝐴 = 1 → (abs‘𝐴) = (abs‘1)) | |
37 | 36, 18 | eqtrdi 2795 | . . . . . . . . 9 ⊢ (𝐴 = 1 → (abs‘𝐴) = 1) |
38 | 37 | breq2d 5082 | . . . . . . . 8 ⊢ (𝐴 = 1 → (1 < (abs‘𝐴) ↔ 1 < 1)) |
39 | 35, 38 | mtbiri 326 | . . . . . . 7 ⊢ (𝐴 = 1 → ¬ 1 < (abs‘𝐴)) |
40 | 39 | necon2ai 2972 | . . . . . 6 ⊢ (1 < (abs‘𝐴) → 𝐴 ≠ 1) |
41 | 2, 40 | syl 17 | . . . . 5 ⊢ (𝜑 → 𝐴 ≠ 1) |
42 | subeq0 11177 | . . . . . . 7 ⊢ ((𝐴 ∈ ℂ ∧ 1 ∈ ℂ) → ((𝐴 − 1) = 0 ↔ 𝐴 = 1)) | |
43 | 1, 32, 42 | sylancl 585 | . . . . . 6 ⊢ (𝜑 → ((𝐴 − 1) = 0 ↔ 𝐴 = 1)) |
44 | 43 | necon3bid 2987 | . . . . 5 ⊢ (𝜑 → ((𝐴 − 1) ≠ 0 ↔ 𝐴 ≠ 1)) |
45 | 41, 44 | mpbird 256 | . . . 4 ⊢ (𝜑 → (𝐴 − 1) ≠ 0) |
46 | 34, 1, 45, 14 | recdivd 11698 | . . 3 ⊢ (𝜑 → (1 / ((𝐴 − 1) / 𝐴)) = (𝐴 / (𝐴 − 1))) |
47 | 31, 46 | eqtr3d 2780 | . 2 ⊢ (𝜑 → (1 / (1 − (1 / 𝐴))) = (𝐴 / (𝐴 − 1))) |
48 | 26, 47 | breqtrd 5096 | 1 ⊢ (𝜑 → seq0( + , 𝐹) ⇝ (𝐴 / (𝐴 − 1))) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 205 ∧ wa 395 = wceq 1539 ∈ wcel 2108 ≠ wne 2942 class class class wbr 5070 ‘cfv 6418 (class class class)co 7255 ℂcc 10800 0cc0 10802 1c1 10803 + caddc 10805 < clt 10940 ≤ cle 10941 − cmin 11135 / cdiv 11562 ℕ0cn0 12163 seqcseq 13649 ↑cexp 13710 abscabs 14873 ⇝ cli 15121 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-rep 5205 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 ax-inf2 9329 ax-cnex 10858 ax-resscn 10859 ax-1cn 10860 ax-icn 10861 ax-addcl 10862 ax-addrcl 10863 ax-mulcl 10864 ax-mulrcl 10865 ax-mulcom 10866 ax-addass 10867 ax-mulass 10868 ax-distr 10869 ax-i2m1 10870 ax-1ne0 10871 ax-1rid 10872 ax-rnegex 10873 ax-rrecex 10874 ax-cnre 10875 ax-pre-lttri 10876 ax-pre-lttrn 10877 ax-pre-ltadd 10878 ax-pre-mulgt0 10879 ax-pre-sup 10880 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-nel 3049 df-ral 3068 df-rex 3069 df-reu 3070 df-rmo 3071 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-uni 4837 df-int 4877 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-tr 5188 df-id 5480 df-eprel 5486 df-po 5494 df-so 5495 df-fr 5535 df-se 5536 df-we 5537 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-pred 6191 df-ord 6254 df-on 6255 df-lim 6256 df-suc 6257 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-isom 6427 df-riota 7212 df-ov 7258 df-oprab 7259 df-mpo 7260 df-om 7688 df-1st 7804 df-2nd 7805 df-frecs 8068 df-wrecs 8099 df-recs 8173 df-rdg 8212 df-1o 8267 df-er 8456 df-pm 8576 df-en 8692 df-dom 8693 df-sdom 8694 df-fin 8695 df-sup 9131 df-inf 9132 df-oi 9199 df-card 9628 df-pnf 10942 df-mnf 10943 df-xr 10944 df-ltxr 10945 df-le 10946 df-sub 11137 df-neg 11138 df-div 11563 df-nn 11904 df-2 11966 df-3 11967 df-n0 12164 df-z 12250 df-uz 12512 df-rp 12660 df-fz 13169 df-fzo 13312 df-fl 13440 df-seq 13650 df-exp 13711 df-hash 13973 df-cj 14738 df-re 14739 df-im 14740 df-sqrt 14874 df-abs 14875 df-clim 15125 df-rlim 15126 df-sum 15326 |
This theorem is referenced by: geoisumr 15518 ege2le3 15727 eftlub 15746 |
Copyright terms: Public domain | W3C validator |