| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > georeclim | Structured version Visualization version GIF version | ||
| Description: The limit of a geometric series of reciprocals. (Contributed by Paul Chapman, 28-Dec-2007.) (Revised by Mario Carneiro, 26-Apr-2014.) |
| Ref | Expression |
|---|---|
| georeclim.1 | ⊢ (𝜑 → 𝐴 ∈ ℂ) |
| georeclim.2 | ⊢ (𝜑 → 1 < (abs‘𝐴)) |
| georeclim.3 | ⊢ ((𝜑 ∧ 𝑘 ∈ ℕ0) → (𝐹‘𝑘) = ((1 / 𝐴)↑𝑘)) |
| Ref | Expression |
|---|---|
| georeclim | ⊢ (𝜑 → seq0( + , 𝐹) ⇝ (𝐴 / (𝐴 − 1))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | georeclim.1 | . . . 4 ⊢ (𝜑 → 𝐴 ∈ ℂ) | |
| 2 | georeclim.2 | . . . . 5 ⊢ (𝜑 → 1 < (abs‘𝐴)) | |
| 3 | 0le1 11649 | . . . . . . . 8 ⊢ 0 ≤ 1 | |
| 4 | 0re 11123 | . . . . . . . . 9 ⊢ 0 ∈ ℝ | |
| 5 | 1re 11121 | . . . . . . . . 9 ⊢ 1 ∈ ℝ | |
| 6 | 4, 5 | lenlti 11242 | . . . . . . . 8 ⊢ (0 ≤ 1 ↔ ¬ 1 < 0) |
| 7 | 3, 6 | mpbi 230 | . . . . . . 7 ⊢ ¬ 1 < 0 |
| 8 | fveq2 6830 | . . . . . . . . 9 ⊢ (𝐴 = 0 → (abs‘𝐴) = (abs‘0)) | |
| 9 | abs0 15196 | . . . . . . . . 9 ⊢ (abs‘0) = 0 | |
| 10 | 8, 9 | eqtrdi 2784 | . . . . . . . 8 ⊢ (𝐴 = 0 → (abs‘𝐴) = 0) |
| 11 | 10 | breq2d 5107 | . . . . . . 7 ⊢ (𝐴 = 0 → (1 < (abs‘𝐴) ↔ 1 < 0)) |
| 12 | 7, 11 | mtbiri 327 | . . . . . 6 ⊢ (𝐴 = 0 → ¬ 1 < (abs‘𝐴)) |
| 13 | 12 | necon2ai 2958 | . . . . 5 ⊢ (1 < (abs‘𝐴) → 𝐴 ≠ 0) |
| 14 | 2, 13 | syl 17 | . . . 4 ⊢ (𝜑 → 𝐴 ≠ 0) |
| 15 | 1, 14 | reccld 11899 | . . 3 ⊢ (𝜑 → (1 / 𝐴) ∈ ℂ) |
| 16 | 1cnd 11116 | . . . . . 6 ⊢ (𝜑 → 1 ∈ ℂ) | |
| 17 | 16, 1, 14 | absdivd 15369 | . . . . 5 ⊢ (𝜑 → (abs‘(1 / 𝐴)) = ((abs‘1) / (abs‘𝐴))) |
| 18 | abs1 15208 | . . . . . 6 ⊢ (abs‘1) = 1 | |
| 19 | 18 | oveq1i 7364 | . . . . 5 ⊢ ((abs‘1) / (abs‘𝐴)) = (1 / (abs‘𝐴)) |
| 20 | 17, 19 | eqtrdi 2784 | . . . 4 ⊢ (𝜑 → (abs‘(1 / 𝐴)) = (1 / (abs‘𝐴))) |
| 21 | 1, 14 | absrpcld 15362 | . . . . . 6 ⊢ (𝜑 → (abs‘𝐴) ∈ ℝ+) |
| 22 | 21 | recgt1d 12952 | . . . . 5 ⊢ (𝜑 → (1 < (abs‘𝐴) ↔ (1 / (abs‘𝐴)) < 1)) |
| 23 | 2, 22 | mpbid 232 | . . . 4 ⊢ (𝜑 → (1 / (abs‘𝐴)) < 1) |
| 24 | 20, 23 | eqbrtrd 5117 | . . 3 ⊢ (𝜑 → (abs‘(1 / 𝐴)) < 1) |
| 25 | georeclim.3 | . . 3 ⊢ ((𝜑 ∧ 𝑘 ∈ ℕ0) → (𝐹‘𝑘) = ((1 / 𝐴)↑𝑘)) | |
| 26 | 15, 24, 25 | geolim 15781 | . 2 ⊢ (𝜑 → seq0( + , 𝐹) ⇝ (1 / (1 − (1 / 𝐴)))) |
| 27 | 1, 16, 1, 14 | divsubdird 11945 | . . . . 5 ⊢ (𝜑 → ((𝐴 − 1) / 𝐴) = ((𝐴 / 𝐴) − (1 / 𝐴))) |
| 28 | 1, 14 | dividd 11904 | . . . . . 6 ⊢ (𝜑 → (𝐴 / 𝐴) = 1) |
| 29 | 28 | oveq1d 7369 | . . . . 5 ⊢ (𝜑 → ((𝐴 / 𝐴) − (1 / 𝐴)) = (1 − (1 / 𝐴))) |
| 30 | 27, 29 | eqtrd 2768 | . . . 4 ⊢ (𝜑 → ((𝐴 − 1) / 𝐴) = (1 − (1 / 𝐴))) |
| 31 | 30 | oveq2d 7370 | . . 3 ⊢ (𝜑 → (1 / ((𝐴 − 1) / 𝐴)) = (1 / (1 − (1 / 𝐴)))) |
| 32 | ax-1cn 11073 | . . . . 5 ⊢ 1 ∈ ℂ | |
| 33 | subcl 11368 | . . . . 5 ⊢ ((𝐴 ∈ ℂ ∧ 1 ∈ ℂ) → (𝐴 − 1) ∈ ℂ) | |
| 34 | 1, 32, 33 | sylancl 586 | . . . 4 ⊢ (𝜑 → (𝐴 − 1) ∈ ℂ) |
| 35 | 5 | ltnri 11231 | . . . . . . . 8 ⊢ ¬ 1 < 1 |
| 36 | fveq2 6830 | . . . . . . . . . 10 ⊢ (𝐴 = 1 → (abs‘𝐴) = (abs‘1)) | |
| 37 | 36, 18 | eqtrdi 2784 | . . . . . . . . 9 ⊢ (𝐴 = 1 → (abs‘𝐴) = 1) |
| 38 | 37 | breq2d 5107 | . . . . . . . 8 ⊢ (𝐴 = 1 → (1 < (abs‘𝐴) ↔ 1 < 1)) |
| 39 | 35, 38 | mtbiri 327 | . . . . . . 7 ⊢ (𝐴 = 1 → ¬ 1 < (abs‘𝐴)) |
| 40 | 39 | necon2ai 2958 | . . . . . 6 ⊢ (1 < (abs‘𝐴) → 𝐴 ≠ 1) |
| 41 | 2, 40 | syl 17 | . . . . 5 ⊢ (𝜑 → 𝐴 ≠ 1) |
| 42 | subeq0 11396 | . . . . . . 7 ⊢ ((𝐴 ∈ ℂ ∧ 1 ∈ ℂ) → ((𝐴 − 1) = 0 ↔ 𝐴 = 1)) | |
| 43 | 1, 32, 42 | sylancl 586 | . . . . . 6 ⊢ (𝜑 → ((𝐴 − 1) = 0 ↔ 𝐴 = 1)) |
| 44 | 43 | necon3bid 2973 | . . . . 5 ⊢ (𝜑 → ((𝐴 − 1) ≠ 0 ↔ 𝐴 ≠ 1)) |
| 45 | 41, 44 | mpbird 257 | . . . 4 ⊢ (𝜑 → (𝐴 − 1) ≠ 0) |
| 46 | 34, 1, 45, 14 | recdivd 11923 | . . 3 ⊢ (𝜑 → (1 / ((𝐴 − 1) / 𝐴)) = (𝐴 / (𝐴 − 1))) |
| 47 | 31, 46 | eqtr3d 2770 | . 2 ⊢ (𝜑 → (1 / (1 − (1 / 𝐴))) = (𝐴 / (𝐴 − 1))) |
| 48 | 26, 47 | breqtrd 5121 | 1 ⊢ (𝜑 → seq0( + , 𝐹) ⇝ (𝐴 / (𝐴 − 1))) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1541 ∈ wcel 2113 ≠ wne 2929 class class class wbr 5095 ‘cfv 6488 (class class class)co 7354 ℂcc 11013 0cc0 11015 1c1 11016 + caddc 11018 < clt 11155 ≤ cle 11156 − cmin 11353 / cdiv 11783 ℕ0cn0 12390 seqcseq 13912 ↑cexp 13972 abscabs 15145 ⇝ cli 15395 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-rep 5221 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7676 ax-inf2 9540 ax-cnex 11071 ax-resscn 11072 ax-1cn 11073 ax-icn 11074 ax-addcl 11075 ax-addrcl 11076 ax-mulcl 11077 ax-mulrcl 11078 ax-mulcom 11079 ax-addass 11080 ax-mulass 11081 ax-distr 11082 ax-i2m1 11083 ax-1ne0 11084 ax-1rid 11085 ax-rnegex 11086 ax-rrecex 11087 ax-cnre 11088 ax-pre-lttri 11089 ax-pre-lttrn 11090 ax-pre-ltadd 11091 ax-pre-mulgt0 11092 ax-pre-sup 11093 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-nel 3034 df-ral 3049 df-rex 3058 df-rmo 3347 df-reu 3348 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-pss 3918 df-nul 4283 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4861 df-int 4900 df-iun 4945 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5516 df-eprel 5521 df-po 5529 df-so 5530 df-fr 5574 df-se 5575 df-we 5576 df-xp 5627 df-rel 5628 df-cnv 5629 df-co 5630 df-dm 5631 df-rn 5632 df-res 5633 df-ima 5634 df-pred 6255 df-ord 6316 df-on 6317 df-lim 6318 df-suc 6319 df-iota 6444 df-fun 6490 df-fn 6491 df-f 6492 df-f1 6493 df-fo 6494 df-f1o 6495 df-fv 6496 df-isom 6497 df-riota 7311 df-ov 7357 df-oprab 7358 df-mpo 7359 df-om 7805 df-1st 7929 df-2nd 7930 df-frecs 8219 df-wrecs 8250 df-recs 8299 df-rdg 8337 df-1o 8393 df-er 8630 df-pm 8761 df-en 8878 df-dom 8879 df-sdom 8880 df-fin 8881 df-sup 9335 df-inf 9336 df-oi 9405 df-card 9841 df-pnf 11157 df-mnf 11158 df-xr 11159 df-ltxr 11160 df-le 11161 df-sub 11355 df-neg 11356 df-div 11784 df-nn 12135 df-2 12197 df-3 12198 df-n0 12391 df-z 12478 df-uz 12741 df-rp 12895 df-fz 13412 df-fzo 13559 df-fl 13700 df-seq 13913 df-exp 13973 df-hash 14242 df-cj 15010 df-re 15011 df-im 15012 df-sqrt 15146 df-abs 15147 df-clim 15399 df-rlim 15400 df-sum 15598 |
| This theorem is referenced by: geoisumr 15789 ege2le3 16001 eftlub 16022 |
| Copyright terms: Public domain | W3C validator |