![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > georeclim | Structured version Visualization version GIF version |
Description: The limit of a geometric series of reciprocals. (Contributed by Paul Chapman, 28-Dec-2007.) (Revised by Mario Carneiro, 26-Apr-2014.) |
Ref | Expression |
---|---|
georeclim.1 | ⊢ (𝜑 → 𝐴 ∈ ℂ) |
georeclim.2 | ⊢ (𝜑 → 1 < (abs‘𝐴)) |
georeclim.3 | ⊢ ((𝜑 ∧ 𝑘 ∈ ℕ0) → (𝐹‘𝑘) = ((1 / 𝐴)↑𝑘)) |
Ref | Expression |
---|---|
georeclim | ⊢ (𝜑 → seq0( + , 𝐹) ⇝ (𝐴 / (𝐴 − 1))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | georeclim.1 | . . . 4 ⊢ (𝜑 → 𝐴 ∈ ℂ) | |
2 | georeclim.2 | . . . . 5 ⊢ (𝜑 → 1 < (abs‘𝐴)) | |
3 | 0le1 11761 | . . . . . . . 8 ⊢ 0 ≤ 1 | |
4 | 0re 11240 | . . . . . . . . 9 ⊢ 0 ∈ ℝ | |
5 | 1re 11238 | . . . . . . . . 9 ⊢ 1 ∈ ℝ | |
6 | 4, 5 | lenlti 11358 | . . . . . . . 8 ⊢ (0 ≤ 1 ↔ ¬ 1 < 0) |
7 | 3, 6 | mpbi 229 | . . . . . . 7 ⊢ ¬ 1 < 0 |
8 | fveq2 6891 | . . . . . . . . 9 ⊢ (𝐴 = 0 → (abs‘𝐴) = (abs‘0)) | |
9 | abs0 15258 | . . . . . . . . 9 ⊢ (abs‘0) = 0 | |
10 | 8, 9 | eqtrdi 2783 | . . . . . . . 8 ⊢ (𝐴 = 0 → (abs‘𝐴) = 0) |
11 | 10 | breq2d 5154 | . . . . . . 7 ⊢ (𝐴 = 0 → (1 < (abs‘𝐴) ↔ 1 < 0)) |
12 | 7, 11 | mtbiri 327 | . . . . . 6 ⊢ (𝐴 = 0 → ¬ 1 < (abs‘𝐴)) |
13 | 12 | necon2ai 2965 | . . . . 5 ⊢ (1 < (abs‘𝐴) → 𝐴 ≠ 0) |
14 | 2, 13 | syl 17 | . . . 4 ⊢ (𝜑 → 𝐴 ≠ 0) |
15 | 1, 14 | reccld 12007 | . . 3 ⊢ (𝜑 → (1 / 𝐴) ∈ ℂ) |
16 | 1cnd 11233 | . . . . . 6 ⊢ (𝜑 → 1 ∈ ℂ) | |
17 | 16, 1, 14 | absdivd 15428 | . . . . 5 ⊢ (𝜑 → (abs‘(1 / 𝐴)) = ((abs‘1) / (abs‘𝐴))) |
18 | abs1 15270 | . . . . . 6 ⊢ (abs‘1) = 1 | |
19 | 18 | oveq1i 7424 | . . . . 5 ⊢ ((abs‘1) / (abs‘𝐴)) = (1 / (abs‘𝐴)) |
20 | 17, 19 | eqtrdi 2783 | . . . 4 ⊢ (𝜑 → (abs‘(1 / 𝐴)) = (1 / (abs‘𝐴))) |
21 | 1, 14 | absrpcld 15421 | . . . . . 6 ⊢ (𝜑 → (abs‘𝐴) ∈ ℝ+) |
22 | 21 | recgt1d 13056 | . . . . 5 ⊢ (𝜑 → (1 < (abs‘𝐴) ↔ (1 / (abs‘𝐴)) < 1)) |
23 | 2, 22 | mpbid 231 | . . . 4 ⊢ (𝜑 → (1 / (abs‘𝐴)) < 1) |
24 | 20, 23 | eqbrtrd 5164 | . . 3 ⊢ (𝜑 → (abs‘(1 / 𝐴)) < 1) |
25 | georeclim.3 | . . 3 ⊢ ((𝜑 ∧ 𝑘 ∈ ℕ0) → (𝐹‘𝑘) = ((1 / 𝐴)↑𝑘)) | |
26 | 15, 24, 25 | geolim 15842 | . 2 ⊢ (𝜑 → seq0( + , 𝐹) ⇝ (1 / (1 − (1 / 𝐴)))) |
27 | 1, 16, 1, 14 | divsubdird 12053 | . . . . 5 ⊢ (𝜑 → ((𝐴 − 1) / 𝐴) = ((𝐴 / 𝐴) − (1 / 𝐴))) |
28 | 1, 14 | dividd 12012 | . . . . . 6 ⊢ (𝜑 → (𝐴 / 𝐴) = 1) |
29 | 28 | oveq1d 7429 | . . . . 5 ⊢ (𝜑 → ((𝐴 / 𝐴) − (1 / 𝐴)) = (1 − (1 / 𝐴))) |
30 | 27, 29 | eqtrd 2767 | . . . 4 ⊢ (𝜑 → ((𝐴 − 1) / 𝐴) = (1 − (1 / 𝐴))) |
31 | 30 | oveq2d 7430 | . . 3 ⊢ (𝜑 → (1 / ((𝐴 − 1) / 𝐴)) = (1 / (1 − (1 / 𝐴)))) |
32 | ax-1cn 11190 | . . . . 5 ⊢ 1 ∈ ℂ | |
33 | subcl 11483 | . . . . 5 ⊢ ((𝐴 ∈ ℂ ∧ 1 ∈ ℂ) → (𝐴 − 1) ∈ ℂ) | |
34 | 1, 32, 33 | sylancl 585 | . . . 4 ⊢ (𝜑 → (𝐴 − 1) ∈ ℂ) |
35 | 5 | ltnri 11347 | . . . . . . . 8 ⊢ ¬ 1 < 1 |
36 | fveq2 6891 | . . . . . . . . . 10 ⊢ (𝐴 = 1 → (abs‘𝐴) = (abs‘1)) | |
37 | 36, 18 | eqtrdi 2783 | . . . . . . . . 9 ⊢ (𝐴 = 1 → (abs‘𝐴) = 1) |
38 | 37 | breq2d 5154 | . . . . . . . 8 ⊢ (𝐴 = 1 → (1 < (abs‘𝐴) ↔ 1 < 1)) |
39 | 35, 38 | mtbiri 327 | . . . . . . 7 ⊢ (𝐴 = 1 → ¬ 1 < (abs‘𝐴)) |
40 | 39 | necon2ai 2965 | . . . . . 6 ⊢ (1 < (abs‘𝐴) → 𝐴 ≠ 1) |
41 | 2, 40 | syl 17 | . . . . 5 ⊢ (𝜑 → 𝐴 ≠ 1) |
42 | subeq0 11510 | . . . . . . 7 ⊢ ((𝐴 ∈ ℂ ∧ 1 ∈ ℂ) → ((𝐴 − 1) = 0 ↔ 𝐴 = 1)) | |
43 | 1, 32, 42 | sylancl 585 | . . . . . 6 ⊢ (𝜑 → ((𝐴 − 1) = 0 ↔ 𝐴 = 1)) |
44 | 43 | necon3bid 2980 | . . . . 5 ⊢ (𝜑 → ((𝐴 − 1) ≠ 0 ↔ 𝐴 ≠ 1)) |
45 | 41, 44 | mpbird 257 | . . . 4 ⊢ (𝜑 → (𝐴 − 1) ≠ 0) |
46 | 34, 1, 45, 14 | recdivd 12031 | . . 3 ⊢ (𝜑 → (1 / ((𝐴 − 1) / 𝐴)) = (𝐴 / (𝐴 − 1))) |
47 | 31, 46 | eqtr3d 2769 | . 2 ⊢ (𝜑 → (1 / (1 − (1 / 𝐴))) = (𝐴 / (𝐴 − 1))) |
48 | 26, 47 | breqtrd 5168 | 1 ⊢ (𝜑 → seq0( + , 𝐹) ⇝ (𝐴 / (𝐴 − 1))) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 205 ∧ wa 395 = wceq 1534 ∈ wcel 2099 ≠ wne 2935 class class class wbr 5142 ‘cfv 6542 (class class class)co 7414 ℂcc 11130 0cc0 11132 1c1 11133 + caddc 11135 < clt 11272 ≤ cle 11273 − cmin 11468 / cdiv 11895 ℕ0cn0 12496 seqcseq 13992 ↑cexp 14052 abscabs 15207 ⇝ cli 15454 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2164 ax-ext 2698 ax-rep 5279 ax-sep 5293 ax-nul 5300 ax-pow 5359 ax-pr 5423 ax-un 7734 ax-inf2 9658 ax-cnex 11188 ax-resscn 11189 ax-1cn 11190 ax-icn 11191 ax-addcl 11192 ax-addrcl 11193 ax-mulcl 11194 ax-mulrcl 11195 ax-mulcom 11196 ax-addass 11197 ax-mulass 11198 ax-distr 11199 ax-i2m1 11200 ax-1ne0 11201 ax-1rid 11202 ax-rnegex 11203 ax-rrecex 11204 ax-cnre 11205 ax-pre-lttri 11206 ax-pre-lttrn 11207 ax-pre-ltadd 11208 ax-pre-mulgt0 11209 ax-pre-sup 11210 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3or 1086 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2529 df-eu 2558 df-clab 2705 df-cleq 2719 df-clel 2805 df-nfc 2880 df-ne 2936 df-nel 3042 df-ral 3057 df-rex 3066 df-rmo 3371 df-reu 3372 df-rab 3428 df-v 3471 df-sbc 3775 df-csb 3890 df-dif 3947 df-un 3949 df-in 3951 df-ss 3961 df-pss 3963 df-nul 4319 df-if 4525 df-pw 4600 df-sn 4625 df-pr 4627 df-op 4631 df-uni 4904 df-int 4945 df-iun 4993 df-br 5143 df-opab 5205 df-mpt 5226 df-tr 5260 df-id 5570 df-eprel 5576 df-po 5584 df-so 5585 df-fr 5627 df-se 5628 df-we 5629 df-xp 5678 df-rel 5679 df-cnv 5680 df-co 5681 df-dm 5682 df-rn 5683 df-res 5684 df-ima 5685 df-pred 6299 df-ord 6366 df-on 6367 df-lim 6368 df-suc 6369 df-iota 6494 df-fun 6544 df-fn 6545 df-f 6546 df-f1 6547 df-fo 6548 df-f1o 6549 df-fv 6550 df-isom 6551 df-riota 7370 df-ov 7417 df-oprab 7418 df-mpo 7419 df-om 7865 df-1st 7987 df-2nd 7988 df-frecs 8280 df-wrecs 8311 df-recs 8385 df-rdg 8424 df-1o 8480 df-er 8718 df-pm 8841 df-en 8958 df-dom 8959 df-sdom 8960 df-fin 8961 df-sup 9459 df-inf 9460 df-oi 9527 df-card 9956 df-pnf 11274 df-mnf 11275 df-xr 11276 df-ltxr 11277 df-le 11278 df-sub 11470 df-neg 11471 df-div 11896 df-nn 12237 df-2 12299 df-3 12300 df-n0 12497 df-z 12583 df-uz 12847 df-rp 13001 df-fz 13511 df-fzo 13654 df-fl 13783 df-seq 13993 df-exp 14053 df-hash 14316 df-cj 15072 df-re 15073 df-im 15074 df-sqrt 15208 df-abs 15209 df-clim 15458 df-rlim 15459 df-sum 15659 |
This theorem is referenced by: geoisumr 15850 ege2le3 16060 eftlub 16079 |
Copyright terms: Public domain | W3C validator |