![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > georeclim | Structured version Visualization version GIF version |
Description: The limit of a geometric series of reciprocals. (Contributed by Paul Chapman, 28-Dec-2007.) (Revised by Mario Carneiro, 26-Apr-2014.) |
Ref | Expression |
---|---|
georeclim.1 | ⊢ (𝜑 → 𝐴 ∈ ℂ) |
georeclim.2 | ⊢ (𝜑 → 1 < (abs‘𝐴)) |
georeclim.3 | ⊢ ((𝜑 ∧ 𝑘 ∈ ℕ0) → (𝐹‘𝑘) = ((1 / 𝐴)↑𝑘)) |
Ref | Expression |
---|---|
georeclim | ⊢ (𝜑 → seq0( + , 𝐹) ⇝ (𝐴 / (𝐴 − 1))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | georeclim.1 | . . . 4 ⊢ (𝜑 → 𝐴 ∈ ℂ) | |
2 | georeclim.2 | . . . . 5 ⊢ (𝜑 → 1 < (abs‘𝐴)) | |
3 | 0le1 11767 | . . . . . . . 8 ⊢ 0 ≤ 1 | |
4 | 0re 11246 | . . . . . . . . 9 ⊢ 0 ∈ ℝ | |
5 | 1re 11244 | . . . . . . . . 9 ⊢ 1 ∈ ℝ | |
6 | 4, 5 | lenlti 11364 | . . . . . . . 8 ⊢ (0 ≤ 1 ↔ ¬ 1 < 0) |
7 | 3, 6 | mpbi 229 | . . . . . . 7 ⊢ ¬ 1 < 0 |
8 | fveq2 6892 | . . . . . . . . 9 ⊢ (𝐴 = 0 → (abs‘𝐴) = (abs‘0)) | |
9 | abs0 15264 | . . . . . . . . 9 ⊢ (abs‘0) = 0 | |
10 | 8, 9 | eqtrdi 2781 | . . . . . . . 8 ⊢ (𝐴 = 0 → (abs‘𝐴) = 0) |
11 | 10 | breq2d 5155 | . . . . . . 7 ⊢ (𝐴 = 0 → (1 < (abs‘𝐴) ↔ 1 < 0)) |
12 | 7, 11 | mtbiri 326 | . . . . . 6 ⊢ (𝐴 = 0 → ¬ 1 < (abs‘𝐴)) |
13 | 12 | necon2ai 2960 | . . . . 5 ⊢ (1 < (abs‘𝐴) → 𝐴 ≠ 0) |
14 | 2, 13 | syl 17 | . . . 4 ⊢ (𝜑 → 𝐴 ≠ 0) |
15 | 1, 14 | reccld 12013 | . . 3 ⊢ (𝜑 → (1 / 𝐴) ∈ ℂ) |
16 | 1cnd 11239 | . . . . . 6 ⊢ (𝜑 → 1 ∈ ℂ) | |
17 | 16, 1, 14 | absdivd 15434 | . . . . 5 ⊢ (𝜑 → (abs‘(1 / 𝐴)) = ((abs‘1) / (abs‘𝐴))) |
18 | abs1 15276 | . . . . . 6 ⊢ (abs‘1) = 1 | |
19 | 18 | oveq1i 7426 | . . . . 5 ⊢ ((abs‘1) / (abs‘𝐴)) = (1 / (abs‘𝐴)) |
20 | 17, 19 | eqtrdi 2781 | . . . 4 ⊢ (𝜑 → (abs‘(1 / 𝐴)) = (1 / (abs‘𝐴))) |
21 | 1, 14 | absrpcld 15427 | . . . . . 6 ⊢ (𝜑 → (abs‘𝐴) ∈ ℝ+) |
22 | 21 | recgt1d 13062 | . . . . 5 ⊢ (𝜑 → (1 < (abs‘𝐴) ↔ (1 / (abs‘𝐴)) < 1)) |
23 | 2, 22 | mpbid 231 | . . . 4 ⊢ (𝜑 → (1 / (abs‘𝐴)) < 1) |
24 | 20, 23 | eqbrtrd 5165 | . . 3 ⊢ (𝜑 → (abs‘(1 / 𝐴)) < 1) |
25 | georeclim.3 | . . 3 ⊢ ((𝜑 ∧ 𝑘 ∈ ℕ0) → (𝐹‘𝑘) = ((1 / 𝐴)↑𝑘)) | |
26 | 15, 24, 25 | geolim 15848 | . 2 ⊢ (𝜑 → seq0( + , 𝐹) ⇝ (1 / (1 − (1 / 𝐴)))) |
27 | 1, 16, 1, 14 | divsubdird 12059 | . . . . 5 ⊢ (𝜑 → ((𝐴 − 1) / 𝐴) = ((𝐴 / 𝐴) − (1 / 𝐴))) |
28 | 1, 14 | dividd 12018 | . . . . . 6 ⊢ (𝜑 → (𝐴 / 𝐴) = 1) |
29 | 28 | oveq1d 7431 | . . . . 5 ⊢ (𝜑 → ((𝐴 / 𝐴) − (1 / 𝐴)) = (1 − (1 / 𝐴))) |
30 | 27, 29 | eqtrd 2765 | . . . 4 ⊢ (𝜑 → ((𝐴 − 1) / 𝐴) = (1 − (1 / 𝐴))) |
31 | 30 | oveq2d 7432 | . . 3 ⊢ (𝜑 → (1 / ((𝐴 − 1) / 𝐴)) = (1 / (1 − (1 / 𝐴)))) |
32 | ax-1cn 11196 | . . . . 5 ⊢ 1 ∈ ℂ | |
33 | subcl 11489 | . . . . 5 ⊢ ((𝐴 ∈ ℂ ∧ 1 ∈ ℂ) → (𝐴 − 1) ∈ ℂ) | |
34 | 1, 32, 33 | sylancl 584 | . . . 4 ⊢ (𝜑 → (𝐴 − 1) ∈ ℂ) |
35 | 5 | ltnri 11353 | . . . . . . . 8 ⊢ ¬ 1 < 1 |
36 | fveq2 6892 | . . . . . . . . . 10 ⊢ (𝐴 = 1 → (abs‘𝐴) = (abs‘1)) | |
37 | 36, 18 | eqtrdi 2781 | . . . . . . . . 9 ⊢ (𝐴 = 1 → (abs‘𝐴) = 1) |
38 | 37 | breq2d 5155 | . . . . . . . 8 ⊢ (𝐴 = 1 → (1 < (abs‘𝐴) ↔ 1 < 1)) |
39 | 35, 38 | mtbiri 326 | . . . . . . 7 ⊢ (𝐴 = 1 → ¬ 1 < (abs‘𝐴)) |
40 | 39 | necon2ai 2960 | . . . . . 6 ⊢ (1 < (abs‘𝐴) → 𝐴 ≠ 1) |
41 | 2, 40 | syl 17 | . . . . 5 ⊢ (𝜑 → 𝐴 ≠ 1) |
42 | subeq0 11516 | . . . . . . 7 ⊢ ((𝐴 ∈ ℂ ∧ 1 ∈ ℂ) → ((𝐴 − 1) = 0 ↔ 𝐴 = 1)) | |
43 | 1, 32, 42 | sylancl 584 | . . . . . 6 ⊢ (𝜑 → ((𝐴 − 1) = 0 ↔ 𝐴 = 1)) |
44 | 43 | necon3bid 2975 | . . . . 5 ⊢ (𝜑 → ((𝐴 − 1) ≠ 0 ↔ 𝐴 ≠ 1)) |
45 | 41, 44 | mpbird 256 | . . . 4 ⊢ (𝜑 → (𝐴 − 1) ≠ 0) |
46 | 34, 1, 45, 14 | recdivd 12037 | . . 3 ⊢ (𝜑 → (1 / ((𝐴 − 1) / 𝐴)) = (𝐴 / (𝐴 − 1))) |
47 | 31, 46 | eqtr3d 2767 | . 2 ⊢ (𝜑 → (1 / (1 − (1 / 𝐴))) = (𝐴 / (𝐴 − 1))) |
48 | 26, 47 | breqtrd 5169 | 1 ⊢ (𝜑 → seq0( + , 𝐹) ⇝ (𝐴 / (𝐴 − 1))) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 205 ∧ wa 394 = wceq 1533 ∈ wcel 2098 ≠ wne 2930 class class class wbr 5143 ‘cfv 6543 (class class class)co 7416 ℂcc 11136 0cc0 11138 1c1 11139 + caddc 11141 < clt 11278 ≤ cle 11279 − cmin 11474 / cdiv 11901 ℕ0cn0 12502 seqcseq 13998 ↑cexp 14058 abscabs 15213 ⇝ cli 15460 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2696 ax-rep 5280 ax-sep 5294 ax-nul 5301 ax-pow 5359 ax-pr 5423 ax-un 7738 ax-inf2 9664 ax-cnex 11194 ax-resscn 11195 ax-1cn 11196 ax-icn 11197 ax-addcl 11198 ax-addrcl 11199 ax-mulcl 11200 ax-mulrcl 11201 ax-mulcom 11202 ax-addass 11203 ax-mulass 11204 ax-distr 11205 ax-i2m1 11206 ax-1ne0 11207 ax-1rid 11208 ax-rnegex 11209 ax-rrecex 11210 ax-cnre 11211 ax-pre-lttri 11212 ax-pre-lttrn 11213 ax-pre-ltadd 11214 ax-pre-mulgt0 11215 ax-pre-sup 11216 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2703 df-cleq 2717 df-clel 2802 df-nfc 2877 df-ne 2931 df-nel 3037 df-ral 3052 df-rex 3061 df-rmo 3364 df-reu 3365 df-rab 3420 df-v 3465 df-sbc 3769 df-csb 3885 df-dif 3942 df-un 3944 df-in 3946 df-ss 3956 df-pss 3959 df-nul 4319 df-if 4525 df-pw 4600 df-sn 4625 df-pr 4627 df-op 4631 df-uni 4904 df-int 4945 df-iun 4993 df-br 5144 df-opab 5206 df-mpt 5227 df-tr 5261 df-id 5570 df-eprel 5576 df-po 5584 df-so 5585 df-fr 5627 df-se 5628 df-we 5629 df-xp 5678 df-rel 5679 df-cnv 5680 df-co 5681 df-dm 5682 df-rn 5683 df-res 5684 df-ima 5685 df-pred 6300 df-ord 6367 df-on 6368 df-lim 6369 df-suc 6370 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-isom 6552 df-riota 7372 df-ov 7419 df-oprab 7420 df-mpo 7421 df-om 7869 df-1st 7991 df-2nd 7992 df-frecs 8285 df-wrecs 8316 df-recs 8390 df-rdg 8429 df-1o 8485 df-er 8723 df-pm 8846 df-en 8963 df-dom 8964 df-sdom 8965 df-fin 8966 df-sup 9465 df-inf 9466 df-oi 9533 df-card 9962 df-pnf 11280 df-mnf 11281 df-xr 11282 df-ltxr 11283 df-le 11284 df-sub 11476 df-neg 11477 df-div 11902 df-nn 12243 df-2 12305 df-3 12306 df-n0 12503 df-z 12589 df-uz 12853 df-rp 13007 df-fz 13517 df-fzo 13660 df-fl 13789 df-seq 13999 df-exp 14059 df-hash 14322 df-cj 15078 df-re 15079 df-im 15080 df-sqrt 15214 df-abs 15215 df-clim 15464 df-rlim 15465 df-sum 15665 |
This theorem is referenced by: geoisumr 15856 ege2le3 16066 eftlub 16085 |
Copyright terms: Public domain | W3C validator |