MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  georeclim Structured version   Visualization version   GIF version

Theorem georeclim 15764
Description: The limit of a geometric series of reciprocals. (Contributed by Paul Chapman, 28-Dec-2007.) (Revised by Mario Carneiro, 26-Apr-2014.)
Hypotheses
Ref Expression
georeclim.1 (𝜑𝐴 ∈ ℂ)
georeclim.2 (𝜑 → 1 < (abs‘𝐴))
georeclim.3 ((𝜑𝑘 ∈ ℕ0) → (𝐹𝑘) = ((1 / 𝐴)↑𝑘))
Assertion
Ref Expression
georeclim (𝜑 → seq0( + , 𝐹) ⇝ (𝐴 / (𝐴 − 1)))
Distinct variable groups:   𝐴,𝑘   𝑘,𝐹   𝜑,𝑘

Proof of Theorem georeclim
StepHypRef Expression
1 georeclim.1 . . . 4 (𝜑𝐴 ∈ ℂ)
2 georeclim.2 . . . . 5 (𝜑 → 1 < (abs‘𝐴))
3 0le1 11685 . . . . . . . 8 0 ≤ 1
4 0re 11164 . . . . . . . . 9 0 ∈ ℝ
5 1re 11162 . . . . . . . . 9 1 ∈ ℝ
64, 5lenlti 11282 . . . . . . . 8 (0 ≤ 1 ↔ ¬ 1 < 0)
73, 6mpbi 229 . . . . . . 7 ¬ 1 < 0
8 fveq2 6847 . . . . . . . . 9 (𝐴 = 0 → (abs‘𝐴) = (abs‘0))
9 abs0 15177 . . . . . . . . 9 (abs‘0) = 0
108, 9eqtrdi 2793 . . . . . . . 8 (𝐴 = 0 → (abs‘𝐴) = 0)
1110breq2d 5122 . . . . . . 7 (𝐴 = 0 → (1 < (abs‘𝐴) ↔ 1 < 0))
127, 11mtbiri 327 . . . . . 6 (𝐴 = 0 → ¬ 1 < (abs‘𝐴))
1312necon2ai 2974 . . . . 5 (1 < (abs‘𝐴) → 𝐴 ≠ 0)
142, 13syl 17 . . . 4 (𝜑𝐴 ≠ 0)
151, 14reccld 11931 . . 3 (𝜑 → (1 / 𝐴) ∈ ℂ)
16 1cnd 11157 . . . . . 6 (𝜑 → 1 ∈ ℂ)
1716, 1, 14absdivd 15347 . . . . 5 (𝜑 → (abs‘(1 / 𝐴)) = ((abs‘1) / (abs‘𝐴)))
18 abs1 15189 . . . . . 6 (abs‘1) = 1
1918oveq1i 7372 . . . . 5 ((abs‘1) / (abs‘𝐴)) = (1 / (abs‘𝐴))
2017, 19eqtrdi 2793 . . . 4 (𝜑 → (abs‘(1 / 𝐴)) = (1 / (abs‘𝐴)))
211, 14absrpcld 15340 . . . . . 6 (𝜑 → (abs‘𝐴) ∈ ℝ+)
2221recgt1d 12978 . . . . 5 (𝜑 → (1 < (abs‘𝐴) ↔ (1 / (abs‘𝐴)) < 1))
232, 22mpbid 231 . . . 4 (𝜑 → (1 / (abs‘𝐴)) < 1)
2420, 23eqbrtrd 5132 . . 3 (𝜑 → (abs‘(1 / 𝐴)) < 1)
25 georeclim.3 . . 3 ((𝜑𝑘 ∈ ℕ0) → (𝐹𝑘) = ((1 / 𝐴)↑𝑘))
2615, 24, 25geolim 15762 . 2 (𝜑 → seq0( + , 𝐹) ⇝ (1 / (1 − (1 / 𝐴))))
271, 16, 1, 14divsubdird 11977 . . . . 5 (𝜑 → ((𝐴 − 1) / 𝐴) = ((𝐴 / 𝐴) − (1 / 𝐴)))
281, 14dividd 11936 . . . . . 6 (𝜑 → (𝐴 / 𝐴) = 1)
2928oveq1d 7377 . . . . 5 (𝜑 → ((𝐴 / 𝐴) − (1 / 𝐴)) = (1 − (1 / 𝐴)))
3027, 29eqtrd 2777 . . . 4 (𝜑 → ((𝐴 − 1) / 𝐴) = (1 − (1 / 𝐴)))
3130oveq2d 7378 . . 3 (𝜑 → (1 / ((𝐴 − 1) / 𝐴)) = (1 / (1 − (1 / 𝐴))))
32 ax-1cn 11116 . . . . 5 1 ∈ ℂ
33 subcl 11407 . . . . 5 ((𝐴 ∈ ℂ ∧ 1 ∈ ℂ) → (𝐴 − 1) ∈ ℂ)
341, 32, 33sylancl 587 . . . 4 (𝜑 → (𝐴 − 1) ∈ ℂ)
355ltnri 11271 . . . . . . . 8 ¬ 1 < 1
36 fveq2 6847 . . . . . . . . . 10 (𝐴 = 1 → (abs‘𝐴) = (abs‘1))
3736, 18eqtrdi 2793 . . . . . . . . 9 (𝐴 = 1 → (abs‘𝐴) = 1)
3837breq2d 5122 . . . . . . . 8 (𝐴 = 1 → (1 < (abs‘𝐴) ↔ 1 < 1))
3935, 38mtbiri 327 . . . . . . 7 (𝐴 = 1 → ¬ 1 < (abs‘𝐴))
4039necon2ai 2974 . . . . . 6 (1 < (abs‘𝐴) → 𝐴 ≠ 1)
412, 40syl 17 . . . . 5 (𝜑𝐴 ≠ 1)
42 subeq0 11434 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 1 ∈ ℂ) → ((𝐴 − 1) = 0 ↔ 𝐴 = 1))
431, 32, 42sylancl 587 . . . . . 6 (𝜑 → ((𝐴 − 1) = 0 ↔ 𝐴 = 1))
4443necon3bid 2989 . . . . 5 (𝜑 → ((𝐴 − 1) ≠ 0 ↔ 𝐴 ≠ 1))
4541, 44mpbird 257 . . . 4 (𝜑 → (𝐴 − 1) ≠ 0)
4634, 1, 45, 14recdivd 11955 . . 3 (𝜑 → (1 / ((𝐴 − 1) / 𝐴)) = (𝐴 / (𝐴 − 1)))
4731, 46eqtr3d 2779 . 2 (𝜑 → (1 / (1 − (1 / 𝐴))) = (𝐴 / (𝐴 − 1)))
4826, 47breqtrd 5136 1 (𝜑 → seq0( + , 𝐹) ⇝ (𝐴 / (𝐴 − 1)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 397   = wceq 1542  wcel 2107  wne 2944   class class class wbr 5110  cfv 6501  (class class class)co 7362  cc 11056  0cc0 11058  1c1 11059   + caddc 11061   < clt 11196  cle 11197  cmin 11392   / cdiv 11819  0cn0 12420  seqcseq 13913  cexp 13974  abscabs 15126  cli 15373
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2708  ax-rep 5247  ax-sep 5261  ax-nul 5268  ax-pow 5325  ax-pr 5389  ax-un 7677  ax-inf2 9584  ax-cnex 11114  ax-resscn 11115  ax-1cn 11116  ax-icn 11117  ax-addcl 11118  ax-addrcl 11119  ax-mulcl 11120  ax-mulrcl 11121  ax-mulcom 11122  ax-addass 11123  ax-mulass 11124  ax-distr 11125  ax-i2m1 11126  ax-1ne0 11127  ax-1rid 11128  ax-rnegex 11129  ax-rrecex 11130  ax-cnre 11131  ax-pre-lttri 11132  ax-pre-lttrn 11133  ax-pre-ltadd 11134  ax-pre-mulgt0 11135  ax-pre-sup 11136
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2815  df-nfc 2890  df-ne 2945  df-nel 3051  df-ral 3066  df-rex 3075  df-rmo 3356  df-reu 3357  df-rab 3411  df-v 3450  df-sbc 3745  df-csb 3861  df-dif 3918  df-un 3920  df-in 3922  df-ss 3932  df-pss 3934  df-nul 4288  df-if 4492  df-pw 4567  df-sn 4592  df-pr 4594  df-op 4598  df-uni 4871  df-int 4913  df-iun 4961  df-br 5111  df-opab 5173  df-mpt 5194  df-tr 5228  df-id 5536  df-eprel 5542  df-po 5550  df-so 5551  df-fr 5593  df-se 5594  df-we 5595  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6258  df-ord 6325  df-on 6326  df-lim 6327  df-suc 6328  df-iota 6453  df-fun 6503  df-fn 6504  df-f 6505  df-f1 6506  df-fo 6507  df-f1o 6508  df-fv 6509  df-isom 6510  df-riota 7318  df-ov 7365  df-oprab 7366  df-mpo 7367  df-om 7808  df-1st 7926  df-2nd 7927  df-frecs 8217  df-wrecs 8248  df-recs 8322  df-rdg 8361  df-1o 8417  df-er 8655  df-pm 8775  df-en 8891  df-dom 8892  df-sdom 8893  df-fin 8894  df-sup 9385  df-inf 9386  df-oi 9453  df-card 9882  df-pnf 11198  df-mnf 11199  df-xr 11200  df-ltxr 11201  df-le 11202  df-sub 11394  df-neg 11395  df-div 11820  df-nn 12161  df-2 12223  df-3 12224  df-n0 12421  df-z 12507  df-uz 12771  df-rp 12923  df-fz 13432  df-fzo 13575  df-fl 13704  df-seq 13914  df-exp 13975  df-hash 14238  df-cj 14991  df-re 14992  df-im 14993  df-sqrt 15127  df-abs 15128  df-clim 15377  df-rlim 15378  df-sum 15578
This theorem is referenced by:  geoisumr  15770  ege2le3  15979  eftlub  15998
  Copyright terms: Public domain W3C validator