MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  georeclim Structured version   Visualization version   GIF version

Theorem georeclim 15844
Description: The limit of a geometric series of reciprocals. (Contributed by Paul Chapman, 28-Dec-2007.) (Revised by Mario Carneiro, 26-Apr-2014.)
Hypotheses
Ref Expression
georeclim.1 (𝜑𝐴 ∈ ℂ)
georeclim.2 (𝜑 → 1 < (abs‘𝐴))
georeclim.3 ((𝜑𝑘 ∈ ℕ0) → (𝐹𝑘) = ((1 / 𝐴)↑𝑘))
Assertion
Ref Expression
georeclim (𝜑 → seq0( + , 𝐹) ⇝ (𝐴 / (𝐴 − 1)))
Distinct variable groups:   𝐴,𝑘   𝑘,𝐹   𝜑,𝑘

Proof of Theorem georeclim
StepHypRef Expression
1 georeclim.1 . . . 4 (𝜑𝐴 ∈ ℂ)
2 georeclim.2 . . . . 5 (𝜑 → 1 < (abs‘𝐴))
3 0le1 11761 . . . . . . . 8 0 ≤ 1
4 0re 11240 . . . . . . . . 9 0 ∈ ℝ
5 1re 11238 . . . . . . . . 9 1 ∈ ℝ
64, 5lenlti 11358 . . . . . . . 8 (0 ≤ 1 ↔ ¬ 1 < 0)
73, 6mpbi 229 . . . . . . 7 ¬ 1 < 0
8 fveq2 6891 . . . . . . . . 9 (𝐴 = 0 → (abs‘𝐴) = (abs‘0))
9 abs0 15258 . . . . . . . . 9 (abs‘0) = 0
108, 9eqtrdi 2783 . . . . . . . 8 (𝐴 = 0 → (abs‘𝐴) = 0)
1110breq2d 5154 . . . . . . 7 (𝐴 = 0 → (1 < (abs‘𝐴) ↔ 1 < 0))
127, 11mtbiri 327 . . . . . 6 (𝐴 = 0 → ¬ 1 < (abs‘𝐴))
1312necon2ai 2965 . . . . 5 (1 < (abs‘𝐴) → 𝐴 ≠ 0)
142, 13syl 17 . . . 4 (𝜑𝐴 ≠ 0)
151, 14reccld 12007 . . 3 (𝜑 → (1 / 𝐴) ∈ ℂ)
16 1cnd 11233 . . . . . 6 (𝜑 → 1 ∈ ℂ)
1716, 1, 14absdivd 15428 . . . . 5 (𝜑 → (abs‘(1 / 𝐴)) = ((abs‘1) / (abs‘𝐴)))
18 abs1 15270 . . . . . 6 (abs‘1) = 1
1918oveq1i 7424 . . . . 5 ((abs‘1) / (abs‘𝐴)) = (1 / (abs‘𝐴))
2017, 19eqtrdi 2783 . . . 4 (𝜑 → (abs‘(1 / 𝐴)) = (1 / (abs‘𝐴)))
211, 14absrpcld 15421 . . . . . 6 (𝜑 → (abs‘𝐴) ∈ ℝ+)
2221recgt1d 13056 . . . . 5 (𝜑 → (1 < (abs‘𝐴) ↔ (1 / (abs‘𝐴)) < 1))
232, 22mpbid 231 . . . 4 (𝜑 → (1 / (abs‘𝐴)) < 1)
2420, 23eqbrtrd 5164 . . 3 (𝜑 → (abs‘(1 / 𝐴)) < 1)
25 georeclim.3 . . 3 ((𝜑𝑘 ∈ ℕ0) → (𝐹𝑘) = ((1 / 𝐴)↑𝑘))
2615, 24, 25geolim 15842 . 2 (𝜑 → seq0( + , 𝐹) ⇝ (1 / (1 − (1 / 𝐴))))
271, 16, 1, 14divsubdird 12053 . . . . 5 (𝜑 → ((𝐴 − 1) / 𝐴) = ((𝐴 / 𝐴) − (1 / 𝐴)))
281, 14dividd 12012 . . . . . 6 (𝜑 → (𝐴 / 𝐴) = 1)
2928oveq1d 7429 . . . . 5 (𝜑 → ((𝐴 / 𝐴) − (1 / 𝐴)) = (1 − (1 / 𝐴)))
3027, 29eqtrd 2767 . . . 4 (𝜑 → ((𝐴 − 1) / 𝐴) = (1 − (1 / 𝐴)))
3130oveq2d 7430 . . 3 (𝜑 → (1 / ((𝐴 − 1) / 𝐴)) = (1 / (1 − (1 / 𝐴))))
32 ax-1cn 11190 . . . . 5 1 ∈ ℂ
33 subcl 11483 . . . . 5 ((𝐴 ∈ ℂ ∧ 1 ∈ ℂ) → (𝐴 − 1) ∈ ℂ)
341, 32, 33sylancl 585 . . . 4 (𝜑 → (𝐴 − 1) ∈ ℂ)
355ltnri 11347 . . . . . . . 8 ¬ 1 < 1
36 fveq2 6891 . . . . . . . . . 10 (𝐴 = 1 → (abs‘𝐴) = (abs‘1))
3736, 18eqtrdi 2783 . . . . . . . . 9 (𝐴 = 1 → (abs‘𝐴) = 1)
3837breq2d 5154 . . . . . . . 8 (𝐴 = 1 → (1 < (abs‘𝐴) ↔ 1 < 1))
3935, 38mtbiri 327 . . . . . . 7 (𝐴 = 1 → ¬ 1 < (abs‘𝐴))
4039necon2ai 2965 . . . . . 6 (1 < (abs‘𝐴) → 𝐴 ≠ 1)
412, 40syl 17 . . . . 5 (𝜑𝐴 ≠ 1)
42 subeq0 11510 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 1 ∈ ℂ) → ((𝐴 − 1) = 0 ↔ 𝐴 = 1))
431, 32, 42sylancl 585 . . . . . 6 (𝜑 → ((𝐴 − 1) = 0 ↔ 𝐴 = 1))
4443necon3bid 2980 . . . . 5 (𝜑 → ((𝐴 − 1) ≠ 0 ↔ 𝐴 ≠ 1))
4541, 44mpbird 257 . . . 4 (𝜑 → (𝐴 − 1) ≠ 0)
4634, 1, 45, 14recdivd 12031 . . 3 (𝜑 → (1 / ((𝐴 − 1) / 𝐴)) = (𝐴 / (𝐴 − 1)))
4731, 46eqtr3d 2769 . 2 (𝜑 → (1 / (1 − (1 / 𝐴))) = (𝐴 / (𝐴 − 1)))
4826, 47breqtrd 5168 1 (𝜑 → seq0( + , 𝐹) ⇝ (𝐴 / (𝐴 − 1)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 395   = wceq 1534  wcel 2099  wne 2935   class class class wbr 5142  cfv 6542  (class class class)co 7414  cc 11130  0cc0 11132  1c1 11133   + caddc 11135   < clt 11272  cle 11273  cmin 11468   / cdiv 11895  0cn0 12496  seqcseq 13992  cexp 14052  abscabs 15207  cli 15454
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2164  ax-ext 2698  ax-rep 5279  ax-sep 5293  ax-nul 5300  ax-pow 5359  ax-pr 5423  ax-un 7734  ax-inf2 9658  ax-cnex 11188  ax-resscn 11189  ax-1cn 11190  ax-icn 11191  ax-addcl 11192  ax-addrcl 11193  ax-mulcl 11194  ax-mulrcl 11195  ax-mulcom 11196  ax-addass 11197  ax-mulass 11198  ax-distr 11199  ax-i2m1 11200  ax-1ne0 11201  ax-1rid 11202  ax-rnegex 11203  ax-rrecex 11204  ax-cnre 11205  ax-pre-lttri 11206  ax-pre-lttrn 11207  ax-pre-ltadd 11208  ax-pre-mulgt0 11209  ax-pre-sup 11210
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 847  df-3or 1086  df-3an 1087  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2529  df-eu 2558  df-clab 2705  df-cleq 2719  df-clel 2805  df-nfc 2880  df-ne 2936  df-nel 3042  df-ral 3057  df-rex 3066  df-rmo 3371  df-reu 3372  df-rab 3428  df-v 3471  df-sbc 3775  df-csb 3890  df-dif 3947  df-un 3949  df-in 3951  df-ss 3961  df-pss 3963  df-nul 4319  df-if 4525  df-pw 4600  df-sn 4625  df-pr 4627  df-op 4631  df-uni 4904  df-int 4945  df-iun 4993  df-br 5143  df-opab 5205  df-mpt 5226  df-tr 5260  df-id 5570  df-eprel 5576  df-po 5584  df-so 5585  df-fr 5627  df-se 5628  df-we 5629  df-xp 5678  df-rel 5679  df-cnv 5680  df-co 5681  df-dm 5682  df-rn 5683  df-res 5684  df-ima 5685  df-pred 6299  df-ord 6366  df-on 6367  df-lim 6368  df-suc 6369  df-iota 6494  df-fun 6544  df-fn 6545  df-f 6546  df-f1 6547  df-fo 6548  df-f1o 6549  df-fv 6550  df-isom 6551  df-riota 7370  df-ov 7417  df-oprab 7418  df-mpo 7419  df-om 7865  df-1st 7987  df-2nd 7988  df-frecs 8280  df-wrecs 8311  df-recs 8385  df-rdg 8424  df-1o 8480  df-er 8718  df-pm 8841  df-en 8958  df-dom 8959  df-sdom 8960  df-fin 8961  df-sup 9459  df-inf 9460  df-oi 9527  df-card 9956  df-pnf 11274  df-mnf 11275  df-xr 11276  df-ltxr 11277  df-le 11278  df-sub 11470  df-neg 11471  df-div 11896  df-nn 12237  df-2 12299  df-3 12300  df-n0 12497  df-z 12583  df-uz 12847  df-rp 13001  df-fz 13511  df-fzo 13654  df-fl 13783  df-seq 13993  df-exp 14053  df-hash 14316  df-cj 15072  df-re 15073  df-im 15074  df-sqrt 15208  df-abs 15209  df-clim 15458  df-rlim 15459  df-sum 15659
This theorem is referenced by:  geoisumr  15850  ege2le3  16060  eftlub  16079
  Copyright terms: Public domain W3C validator