| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > georeclim | Structured version Visualization version GIF version | ||
| Description: The limit of a geometric series of reciprocals. (Contributed by Paul Chapman, 28-Dec-2007.) (Revised by Mario Carneiro, 26-Apr-2014.) |
| Ref | Expression |
|---|---|
| georeclim.1 | ⊢ (𝜑 → 𝐴 ∈ ℂ) |
| georeclim.2 | ⊢ (𝜑 → 1 < (abs‘𝐴)) |
| georeclim.3 | ⊢ ((𝜑 ∧ 𝑘 ∈ ℕ0) → (𝐹‘𝑘) = ((1 / 𝐴)↑𝑘)) |
| Ref | Expression |
|---|---|
| georeclim | ⊢ (𝜑 → seq0( + , 𝐹) ⇝ (𝐴 / (𝐴 − 1))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | georeclim.1 | . . . 4 ⊢ (𝜑 → 𝐴 ∈ ℂ) | |
| 2 | georeclim.2 | . . . . 5 ⊢ (𝜑 → 1 < (abs‘𝐴)) | |
| 3 | 0le1 11640 | . . . . . . . 8 ⊢ 0 ≤ 1 | |
| 4 | 0re 11114 | . . . . . . . . 9 ⊢ 0 ∈ ℝ | |
| 5 | 1re 11112 | . . . . . . . . 9 ⊢ 1 ∈ ℝ | |
| 6 | 4, 5 | lenlti 11233 | . . . . . . . 8 ⊢ (0 ≤ 1 ↔ ¬ 1 < 0) |
| 7 | 3, 6 | mpbi 230 | . . . . . . 7 ⊢ ¬ 1 < 0 |
| 8 | fveq2 6822 | . . . . . . . . 9 ⊢ (𝐴 = 0 → (abs‘𝐴) = (abs‘0)) | |
| 9 | abs0 15192 | . . . . . . . . 9 ⊢ (abs‘0) = 0 | |
| 10 | 8, 9 | eqtrdi 2782 | . . . . . . . 8 ⊢ (𝐴 = 0 → (abs‘𝐴) = 0) |
| 11 | 10 | breq2d 5103 | . . . . . . 7 ⊢ (𝐴 = 0 → (1 < (abs‘𝐴) ↔ 1 < 0)) |
| 12 | 7, 11 | mtbiri 327 | . . . . . 6 ⊢ (𝐴 = 0 → ¬ 1 < (abs‘𝐴)) |
| 13 | 12 | necon2ai 2957 | . . . . 5 ⊢ (1 < (abs‘𝐴) → 𝐴 ≠ 0) |
| 14 | 2, 13 | syl 17 | . . . 4 ⊢ (𝜑 → 𝐴 ≠ 0) |
| 15 | 1, 14 | reccld 11890 | . . 3 ⊢ (𝜑 → (1 / 𝐴) ∈ ℂ) |
| 16 | 1cnd 11107 | . . . . . 6 ⊢ (𝜑 → 1 ∈ ℂ) | |
| 17 | 16, 1, 14 | absdivd 15365 | . . . . 5 ⊢ (𝜑 → (abs‘(1 / 𝐴)) = ((abs‘1) / (abs‘𝐴))) |
| 18 | abs1 15204 | . . . . . 6 ⊢ (abs‘1) = 1 | |
| 19 | 18 | oveq1i 7356 | . . . . 5 ⊢ ((abs‘1) / (abs‘𝐴)) = (1 / (abs‘𝐴)) |
| 20 | 17, 19 | eqtrdi 2782 | . . . 4 ⊢ (𝜑 → (abs‘(1 / 𝐴)) = (1 / (abs‘𝐴))) |
| 21 | 1, 14 | absrpcld 15358 | . . . . . 6 ⊢ (𝜑 → (abs‘𝐴) ∈ ℝ+) |
| 22 | 21 | recgt1d 12948 | . . . . 5 ⊢ (𝜑 → (1 < (abs‘𝐴) ↔ (1 / (abs‘𝐴)) < 1)) |
| 23 | 2, 22 | mpbid 232 | . . . 4 ⊢ (𝜑 → (1 / (abs‘𝐴)) < 1) |
| 24 | 20, 23 | eqbrtrd 5113 | . . 3 ⊢ (𝜑 → (abs‘(1 / 𝐴)) < 1) |
| 25 | georeclim.3 | . . 3 ⊢ ((𝜑 ∧ 𝑘 ∈ ℕ0) → (𝐹‘𝑘) = ((1 / 𝐴)↑𝑘)) | |
| 26 | 15, 24, 25 | geolim 15777 | . 2 ⊢ (𝜑 → seq0( + , 𝐹) ⇝ (1 / (1 − (1 / 𝐴)))) |
| 27 | 1, 16, 1, 14 | divsubdird 11936 | . . . . 5 ⊢ (𝜑 → ((𝐴 − 1) / 𝐴) = ((𝐴 / 𝐴) − (1 / 𝐴))) |
| 28 | 1, 14 | dividd 11895 | . . . . . 6 ⊢ (𝜑 → (𝐴 / 𝐴) = 1) |
| 29 | 28 | oveq1d 7361 | . . . . 5 ⊢ (𝜑 → ((𝐴 / 𝐴) − (1 / 𝐴)) = (1 − (1 / 𝐴))) |
| 30 | 27, 29 | eqtrd 2766 | . . . 4 ⊢ (𝜑 → ((𝐴 − 1) / 𝐴) = (1 − (1 / 𝐴))) |
| 31 | 30 | oveq2d 7362 | . . 3 ⊢ (𝜑 → (1 / ((𝐴 − 1) / 𝐴)) = (1 / (1 − (1 / 𝐴)))) |
| 32 | ax-1cn 11064 | . . . . 5 ⊢ 1 ∈ ℂ | |
| 33 | subcl 11359 | . . . . 5 ⊢ ((𝐴 ∈ ℂ ∧ 1 ∈ ℂ) → (𝐴 − 1) ∈ ℂ) | |
| 34 | 1, 32, 33 | sylancl 586 | . . . 4 ⊢ (𝜑 → (𝐴 − 1) ∈ ℂ) |
| 35 | 5 | ltnri 11222 | . . . . . . . 8 ⊢ ¬ 1 < 1 |
| 36 | fveq2 6822 | . . . . . . . . . 10 ⊢ (𝐴 = 1 → (abs‘𝐴) = (abs‘1)) | |
| 37 | 36, 18 | eqtrdi 2782 | . . . . . . . . 9 ⊢ (𝐴 = 1 → (abs‘𝐴) = 1) |
| 38 | 37 | breq2d 5103 | . . . . . . . 8 ⊢ (𝐴 = 1 → (1 < (abs‘𝐴) ↔ 1 < 1)) |
| 39 | 35, 38 | mtbiri 327 | . . . . . . 7 ⊢ (𝐴 = 1 → ¬ 1 < (abs‘𝐴)) |
| 40 | 39 | necon2ai 2957 | . . . . . 6 ⊢ (1 < (abs‘𝐴) → 𝐴 ≠ 1) |
| 41 | 2, 40 | syl 17 | . . . . 5 ⊢ (𝜑 → 𝐴 ≠ 1) |
| 42 | subeq0 11387 | . . . . . . 7 ⊢ ((𝐴 ∈ ℂ ∧ 1 ∈ ℂ) → ((𝐴 − 1) = 0 ↔ 𝐴 = 1)) | |
| 43 | 1, 32, 42 | sylancl 586 | . . . . . 6 ⊢ (𝜑 → ((𝐴 − 1) = 0 ↔ 𝐴 = 1)) |
| 44 | 43 | necon3bid 2972 | . . . . 5 ⊢ (𝜑 → ((𝐴 − 1) ≠ 0 ↔ 𝐴 ≠ 1)) |
| 45 | 41, 44 | mpbird 257 | . . . 4 ⊢ (𝜑 → (𝐴 − 1) ≠ 0) |
| 46 | 34, 1, 45, 14 | recdivd 11914 | . . 3 ⊢ (𝜑 → (1 / ((𝐴 − 1) / 𝐴)) = (𝐴 / (𝐴 − 1))) |
| 47 | 31, 46 | eqtr3d 2768 | . 2 ⊢ (𝜑 → (1 / (1 − (1 / 𝐴))) = (𝐴 / (𝐴 − 1))) |
| 48 | 26, 47 | breqtrd 5117 | 1 ⊢ (𝜑 → seq0( + , 𝐹) ⇝ (𝐴 / (𝐴 − 1))) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1541 ∈ wcel 2111 ≠ wne 2928 class class class wbr 5091 ‘cfv 6481 (class class class)co 7346 ℂcc 11004 0cc0 11006 1c1 11007 + caddc 11009 < clt 11146 ≤ cle 11147 − cmin 11344 / cdiv 11774 ℕ0cn0 12381 seqcseq 13908 ↑cexp 13968 abscabs 15141 ⇝ cli 15391 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5217 ax-sep 5234 ax-nul 5244 ax-pow 5303 ax-pr 5370 ax-un 7668 ax-inf2 9531 ax-cnex 11062 ax-resscn 11063 ax-1cn 11064 ax-icn 11065 ax-addcl 11066 ax-addrcl 11067 ax-mulcl 11068 ax-mulrcl 11069 ax-mulcom 11070 ax-addass 11071 ax-mulass 11072 ax-distr 11073 ax-i2m1 11074 ax-1ne0 11075 ax-1rid 11076 ax-rnegex 11077 ax-rrecex 11078 ax-cnre 11079 ax-pre-lttri 11080 ax-pre-lttrn 11081 ax-pre-ltadd 11082 ax-pre-mulgt0 11083 ax-pre-sup 11084 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3742 df-csb 3851 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-pss 3922 df-nul 4284 df-if 4476 df-pw 4552 df-sn 4577 df-pr 4579 df-op 4583 df-uni 4860 df-int 4898 df-iun 4943 df-br 5092 df-opab 5154 df-mpt 5173 df-tr 5199 df-id 5511 df-eprel 5516 df-po 5524 df-so 5525 df-fr 5569 df-se 5570 df-we 5571 df-xp 5622 df-rel 5623 df-cnv 5624 df-co 5625 df-dm 5626 df-rn 5627 df-res 5628 df-ima 5629 df-pred 6248 df-ord 6309 df-on 6310 df-lim 6311 df-suc 6312 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-isom 6490 df-riota 7303 df-ov 7349 df-oprab 7350 df-mpo 7351 df-om 7797 df-1st 7921 df-2nd 7922 df-frecs 8211 df-wrecs 8242 df-recs 8291 df-rdg 8329 df-1o 8385 df-er 8622 df-pm 8753 df-en 8870 df-dom 8871 df-sdom 8872 df-fin 8873 df-sup 9326 df-inf 9327 df-oi 9396 df-card 9832 df-pnf 11148 df-mnf 11149 df-xr 11150 df-ltxr 11151 df-le 11152 df-sub 11346 df-neg 11347 df-div 11775 df-nn 12126 df-2 12188 df-3 12189 df-n0 12382 df-z 12469 df-uz 12733 df-rp 12891 df-fz 13408 df-fzo 13555 df-fl 13696 df-seq 13909 df-exp 13969 df-hash 14238 df-cj 15006 df-re 15007 df-im 15008 df-sqrt 15142 df-abs 15143 df-clim 15395 df-rlim 15396 df-sum 15594 |
| This theorem is referenced by: geoisumr 15785 ege2le3 15997 eftlub 16018 |
| Copyright terms: Public domain | W3C validator |