MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  georeclim Structured version   Visualization version   GIF version

Theorem georeclim 15814
Description: The limit of a geometric series of reciprocals. (Contributed by Paul Chapman, 28-Dec-2007.) (Revised by Mario Carneiro, 26-Apr-2014.)
Hypotheses
Ref Expression
georeclim.1 (𝜑𝐴 ∈ ℂ)
georeclim.2 (𝜑 → 1 < (abs‘𝐴))
georeclim.3 ((𝜑𝑘 ∈ ℕ0) → (𝐹𝑘) = ((1 / 𝐴)↑𝑘))
Assertion
Ref Expression
georeclim (𝜑 → seq0( + , 𝐹) ⇝ (𝐴 / (𝐴 − 1)))
Distinct variable groups:   𝐴,𝑘   𝑘,𝐹   𝜑,𝑘

Proof of Theorem georeclim
StepHypRef Expression
1 georeclim.1 . . . 4 (𝜑𝐴 ∈ ℂ)
2 georeclim.2 . . . . 5 (𝜑 → 1 < (abs‘𝐴))
3 0le1 11733 . . . . . . . 8 0 ≤ 1
4 0re 11212 . . . . . . . . 9 0 ∈ ℝ
5 1re 11210 . . . . . . . . 9 1 ∈ ℝ
64, 5lenlti 11330 . . . . . . . 8 (0 ≤ 1 ↔ ¬ 1 < 0)
73, 6mpbi 229 . . . . . . 7 ¬ 1 < 0
8 fveq2 6888 . . . . . . . . 9 (𝐴 = 0 → (abs‘𝐴) = (abs‘0))
9 abs0 15228 . . . . . . . . 9 (abs‘0) = 0
108, 9eqtrdi 2788 . . . . . . . 8 (𝐴 = 0 → (abs‘𝐴) = 0)
1110breq2d 5159 . . . . . . 7 (𝐴 = 0 → (1 < (abs‘𝐴) ↔ 1 < 0))
127, 11mtbiri 326 . . . . . 6 (𝐴 = 0 → ¬ 1 < (abs‘𝐴))
1312necon2ai 2970 . . . . 5 (1 < (abs‘𝐴) → 𝐴 ≠ 0)
142, 13syl 17 . . . 4 (𝜑𝐴 ≠ 0)
151, 14reccld 11979 . . 3 (𝜑 → (1 / 𝐴) ∈ ℂ)
16 1cnd 11205 . . . . . 6 (𝜑 → 1 ∈ ℂ)
1716, 1, 14absdivd 15398 . . . . 5 (𝜑 → (abs‘(1 / 𝐴)) = ((abs‘1) / (abs‘𝐴)))
18 abs1 15240 . . . . . 6 (abs‘1) = 1
1918oveq1i 7415 . . . . 5 ((abs‘1) / (abs‘𝐴)) = (1 / (abs‘𝐴))
2017, 19eqtrdi 2788 . . . 4 (𝜑 → (abs‘(1 / 𝐴)) = (1 / (abs‘𝐴)))
211, 14absrpcld 15391 . . . . . 6 (𝜑 → (abs‘𝐴) ∈ ℝ+)
2221recgt1d 13026 . . . . 5 (𝜑 → (1 < (abs‘𝐴) ↔ (1 / (abs‘𝐴)) < 1))
232, 22mpbid 231 . . . 4 (𝜑 → (1 / (abs‘𝐴)) < 1)
2420, 23eqbrtrd 5169 . . 3 (𝜑 → (abs‘(1 / 𝐴)) < 1)
25 georeclim.3 . . 3 ((𝜑𝑘 ∈ ℕ0) → (𝐹𝑘) = ((1 / 𝐴)↑𝑘))
2615, 24, 25geolim 15812 . 2 (𝜑 → seq0( + , 𝐹) ⇝ (1 / (1 − (1 / 𝐴))))
271, 16, 1, 14divsubdird 12025 . . . . 5 (𝜑 → ((𝐴 − 1) / 𝐴) = ((𝐴 / 𝐴) − (1 / 𝐴)))
281, 14dividd 11984 . . . . . 6 (𝜑 → (𝐴 / 𝐴) = 1)
2928oveq1d 7420 . . . . 5 (𝜑 → ((𝐴 / 𝐴) − (1 / 𝐴)) = (1 − (1 / 𝐴)))
3027, 29eqtrd 2772 . . . 4 (𝜑 → ((𝐴 − 1) / 𝐴) = (1 − (1 / 𝐴)))
3130oveq2d 7421 . . 3 (𝜑 → (1 / ((𝐴 − 1) / 𝐴)) = (1 / (1 − (1 / 𝐴))))
32 ax-1cn 11164 . . . . 5 1 ∈ ℂ
33 subcl 11455 . . . . 5 ((𝐴 ∈ ℂ ∧ 1 ∈ ℂ) → (𝐴 − 1) ∈ ℂ)
341, 32, 33sylancl 586 . . . 4 (𝜑 → (𝐴 − 1) ∈ ℂ)
355ltnri 11319 . . . . . . . 8 ¬ 1 < 1
36 fveq2 6888 . . . . . . . . . 10 (𝐴 = 1 → (abs‘𝐴) = (abs‘1))
3736, 18eqtrdi 2788 . . . . . . . . 9 (𝐴 = 1 → (abs‘𝐴) = 1)
3837breq2d 5159 . . . . . . . 8 (𝐴 = 1 → (1 < (abs‘𝐴) ↔ 1 < 1))
3935, 38mtbiri 326 . . . . . . 7 (𝐴 = 1 → ¬ 1 < (abs‘𝐴))
4039necon2ai 2970 . . . . . 6 (1 < (abs‘𝐴) → 𝐴 ≠ 1)
412, 40syl 17 . . . . 5 (𝜑𝐴 ≠ 1)
42 subeq0 11482 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 1 ∈ ℂ) → ((𝐴 − 1) = 0 ↔ 𝐴 = 1))
431, 32, 42sylancl 586 . . . . . 6 (𝜑 → ((𝐴 − 1) = 0 ↔ 𝐴 = 1))
4443necon3bid 2985 . . . . 5 (𝜑 → ((𝐴 − 1) ≠ 0 ↔ 𝐴 ≠ 1))
4541, 44mpbird 256 . . . 4 (𝜑 → (𝐴 − 1) ≠ 0)
4634, 1, 45, 14recdivd 12003 . . 3 (𝜑 → (1 / ((𝐴 − 1) / 𝐴)) = (𝐴 / (𝐴 − 1)))
4731, 46eqtr3d 2774 . 2 (𝜑 → (1 / (1 − (1 / 𝐴))) = (𝐴 / (𝐴 − 1)))
4826, 47breqtrd 5173 1 (𝜑 → seq0( + , 𝐹) ⇝ (𝐴 / (𝐴 − 1)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 396   = wceq 1541  wcel 2106  wne 2940   class class class wbr 5147  cfv 6540  (class class class)co 7405  cc 11104  0cc0 11106  1c1 11107   + caddc 11109   < clt 11244  cle 11245  cmin 11440   / cdiv 11867  0cn0 12468  seqcseq 13962  cexp 14023  abscabs 15177  cli 15424
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-rep 5284  ax-sep 5298  ax-nul 5305  ax-pow 5362  ax-pr 5426  ax-un 7721  ax-inf2 9632  ax-cnex 11162  ax-resscn 11163  ax-1cn 11164  ax-icn 11165  ax-addcl 11166  ax-addrcl 11167  ax-mulcl 11168  ax-mulrcl 11169  ax-mulcom 11170  ax-addass 11171  ax-mulass 11172  ax-distr 11173  ax-i2m1 11174  ax-1ne0 11175  ax-1rid 11176  ax-rnegex 11177  ax-rrecex 11178  ax-cnre 11179  ax-pre-lttri 11180  ax-pre-lttrn 11181  ax-pre-ltadd 11182  ax-pre-mulgt0 11183  ax-pre-sup 11184
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3376  df-reu 3377  df-rab 3433  df-v 3476  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3966  df-nul 4322  df-if 4528  df-pw 4603  df-sn 4628  df-pr 4630  df-op 4634  df-uni 4908  df-int 4950  df-iun 4998  df-br 5148  df-opab 5210  df-mpt 5231  df-tr 5265  df-id 5573  df-eprel 5579  df-po 5587  df-so 5588  df-fr 5630  df-se 5631  df-we 5632  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-res 5687  df-ima 5688  df-pred 6297  df-ord 6364  df-on 6365  df-lim 6366  df-suc 6367  df-iota 6492  df-fun 6542  df-fn 6543  df-f 6544  df-f1 6545  df-fo 6546  df-f1o 6547  df-fv 6548  df-isom 6549  df-riota 7361  df-ov 7408  df-oprab 7409  df-mpo 7410  df-om 7852  df-1st 7971  df-2nd 7972  df-frecs 8262  df-wrecs 8293  df-recs 8367  df-rdg 8406  df-1o 8462  df-er 8699  df-pm 8819  df-en 8936  df-dom 8937  df-sdom 8938  df-fin 8939  df-sup 9433  df-inf 9434  df-oi 9501  df-card 9930  df-pnf 11246  df-mnf 11247  df-xr 11248  df-ltxr 11249  df-le 11250  df-sub 11442  df-neg 11443  df-div 11868  df-nn 12209  df-2 12271  df-3 12272  df-n0 12469  df-z 12555  df-uz 12819  df-rp 12971  df-fz 13481  df-fzo 13624  df-fl 13753  df-seq 13963  df-exp 14024  df-hash 14287  df-cj 15042  df-re 15043  df-im 15044  df-sqrt 15178  df-abs 15179  df-clim 15428  df-rlim 15429  df-sum 15629
This theorem is referenced by:  geoisumr  15820  ege2le3  16029  eftlub  16048
  Copyright terms: Public domain W3C validator