MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  georeclim Structured version   Visualization version   GIF version

Theorem georeclim 15838
Description: The limit of a geometric series of reciprocals. (Contributed by Paul Chapman, 28-Dec-2007.) (Revised by Mario Carneiro, 26-Apr-2014.)
Hypotheses
Ref Expression
georeclim.1 (𝜑𝐴 ∈ ℂ)
georeclim.2 (𝜑 → 1 < (abs‘𝐴))
georeclim.3 ((𝜑𝑘 ∈ ℕ0) → (𝐹𝑘) = ((1 / 𝐴)↑𝑘))
Assertion
Ref Expression
georeclim (𝜑 → seq0( + , 𝐹) ⇝ (𝐴 / (𝐴 − 1)))
Distinct variable groups:   𝐴,𝑘   𝑘,𝐹   𝜑,𝑘

Proof of Theorem georeclim
StepHypRef Expression
1 georeclim.1 . . . 4 (𝜑𝐴 ∈ ℂ)
2 georeclim.2 . . . . 5 (𝜑 → 1 < (abs‘𝐴))
3 0le1 11701 . . . . . . . 8 0 ≤ 1
4 0re 11176 . . . . . . . . 9 0 ∈ ℝ
5 1re 11174 . . . . . . . . 9 1 ∈ ℝ
64, 5lenlti 11294 . . . . . . . 8 (0 ≤ 1 ↔ ¬ 1 < 0)
73, 6mpbi 230 . . . . . . 7 ¬ 1 < 0
8 fveq2 6858 . . . . . . . . 9 (𝐴 = 0 → (abs‘𝐴) = (abs‘0))
9 abs0 15251 . . . . . . . . 9 (abs‘0) = 0
108, 9eqtrdi 2780 . . . . . . . 8 (𝐴 = 0 → (abs‘𝐴) = 0)
1110breq2d 5119 . . . . . . 7 (𝐴 = 0 → (1 < (abs‘𝐴) ↔ 1 < 0))
127, 11mtbiri 327 . . . . . 6 (𝐴 = 0 → ¬ 1 < (abs‘𝐴))
1312necon2ai 2954 . . . . 5 (1 < (abs‘𝐴) → 𝐴 ≠ 0)
142, 13syl 17 . . . 4 (𝜑𝐴 ≠ 0)
151, 14reccld 11951 . . 3 (𝜑 → (1 / 𝐴) ∈ ℂ)
16 1cnd 11169 . . . . . 6 (𝜑 → 1 ∈ ℂ)
1716, 1, 14absdivd 15424 . . . . 5 (𝜑 → (abs‘(1 / 𝐴)) = ((abs‘1) / (abs‘𝐴)))
18 abs1 15263 . . . . . 6 (abs‘1) = 1
1918oveq1i 7397 . . . . 5 ((abs‘1) / (abs‘𝐴)) = (1 / (abs‘𝐴))
2017, 19eqtrdi 2780 . . . 4 (𝜑 → (abs‘(1 / 𝐴)) = (1 / (abs‘𝐴)))
211, 14absrpcld 15417 . . . . . 6 (𝜑 → (abs‘𝐴) ∈ ℝ+)
2221recgt1d 13009 . . . . 5 (𝜑 → (1 < (abs‘𝐴) ↔ (1 / (abs‘𝐴)) < 1))
232, 22mpbid 232 . . . 4 (𝜑 → (1 / (abs‘𝐴)) < 1)
2420, 23eqbrtrd 5129 . . 3 (𝜑 → (abs‘(1 / 𝐴)) < 1)
25 georeclim.3 . . 3 ((𝜑𝑘 ∈ ℕ0) → (𝐹𝑘) = ((1 / 𝐴)↑𝑘))
2615, 24, 25geolim 15836 . 2 (𝜑 → seq0( + , 𝐹) ⇝ (1 / (1 − (1 / 𝐴))))
271, 16, 1, 14divsubdird 11997 . . . . 5 (𝜑 → ((𝐴 − 1) / 𝐴) = ((𝐴 / 𝐴) − (1 / 𝐴)))
281, 14dividd 11956 . . . . . 6 (𝜑 → (𝐴 / 𝐴) = 1)
2928oveq1d 7402 . . . . 5 (𝜑 → ((𝐴 / 𝐴) − (1 / 𝐴)) = (1 − (1 / 𝐴)))
3027, 29eqtrd 2764 . . . 4 (𝜑 → ((𝐴 − 1) / 𝐴) = (1 − (1 / 𝐴)))
3130oveq2d 7403 . . 3 (𝜑 → (1 / ((𝐴 − 1) / 𝐴)) = (1 / (1 − (1 / 𝐴))))
32 ax-1cn 11126 . . . . 5 1 ∈ ℂ
33 subcl 11420 . . . . 5 ((𝐴 ∈ ℂ ∧ 1 ∈ ℂ) → (𝐴 − 1) ∈ ℂ)
341, 32, 33sylancl 586 . . . 4 (𝜑 → (𝐴 − 1) ∈ ℂ)
355ltnri 11283 . . . . . . . 8 ¬ 1 < 1
36 fveq2 6858 . . . . . . . . . 10 (𝐴 = 1 → (abs‘𝐴) = (abs‘1))
3736, 18eqtrdi 2780 . . . . . . . . 9 (𝐴 = 1 → (abs‘𝐴) = 1)
3837breq2d 5119 . . . . . . . 8 (𝐴 = 1 → (1 < (abs‘𝐴) ↔ 1 < 1))
3935, 38mtbiri 327 . . . . . . 7 (𝐴 = 1 → ¬ 1 < (abs‘𝐴))
4039necon2ai 2954 . . . . . 6 (1 < (abs‘𝐴) → 𝐴 ≠ 1)
412, 40syl 17 . . . . 5 (𝜑𝐴 ≠ 1)
42 subeq0 11448 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 1 ∈ ℂ) → ((𝐴 − 1) = 0 ↔ 𝐴 = 1))
431, 32, 42sylancl 586 . . . . . 6 (𝜑 → ((𝐴 − 1) = 0 ↔ 𝐴 = 1))
4443necon3bid 2969 . . . . 5 (𝜑 → ((𝐴 − 1) ≠ 0 ↔ 𝐴 ≠ 1))
4541, 44mpbird 257 . . . 4 (𝜑 → (𝐴 − 1) ≠ 0)
4634, 1, 45, 14recdivd 11975 . . 3 (𝜑 → (1 / ((𝐴 − 1) / 𝐴)) = (𝐴 / (𝐴 − 1)))
4731, 46eqtr3d 2766 . 2 (𝜑 → (1 / (1 − (1 / 𝐴))) = (𝐴 / (𝐴 − 1)))
4826, 47breqtrd 5133 1 (𝜑 → seq0( + , 𝐹) ⇝ (𝐴 / (𝐴 − 1)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  wne 2925   class class class wbr 5107  cfv 6511  (class class class)co 7387  cc 11066  0cc0 11068  1c1 11069   + caddc 11071   < clt 11208  cle 11209  cmin 11405   / cdiv 11835  0cn0 12442  seqcseq 13966  cexp 14026  abscabs 15200  cli 15450
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-inf2 9594  ax-cnex 11124  ax-resscn 11125  ax-1cn 11126  ax-icn 11127  ax-addcl 11128  ax-addrcl 11129  ax-mulcl 11130  ax-mulrcl 11131  ax-mulcom 11132  ax-addass 11133  ax-mulass 11134  ax-distr 11135  ax-i2m1 11136  ax-1ne0 11137  ax-1rid 11138  ax-rnegex 11139  ax-rrecex 11140  ax-cnre 11141  ax-pre-lttri 11142  ax-pre-lttrn 11143  ax-pre-ltadd 11144  ax-pre-mulgt0 11145  ax-pre-sup 11146
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3354  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-int 4911  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-se 5592  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-isom 6520  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-om 7843  df-1st 7968  df-2nd 7969  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-1o 8434  df-er 8671  df-pm 8802  df-en 8919  df-dom 8920  df-sdom 8921  df-fin 8922  df-sup 9393  df-inf 9394  df-oi 9463  df-card 9892  df-pnf 11210  df-mnf 11211  df-xr 11212  df-ltxr 11213  df-le 11214  df-sub 11407  df-neg 11408  df-div 11836  df-nn 12187  df-2 12249  df-3 12250  df-n0 12443  df-z 12530  df-uz 12794  df-rp 12952  df-fz 13469  df-fzo 13616  df-fl 13754  df-seq 13967  df-exp 14027  df-hash 14296  df-cj 15065  df-re 15066  df-im 15067  df-sqrt 15201  df-abs 15202  df-clim 15454  df-rlim 15455  df-sum 15653
This theorem is referenced by:  geoisumr  15844  ege2le3  16056  eftlub  16077
  Copyright terms: Public domain W3C validator