![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > georeclim | Structured version Visualization version GIF version |
Description: The limit of a geometric series of reciprocals. (Contributed by Paul Chapman, 28-Dec-2007.) (Revised by Mario Carneiro, 26-Apr-2014.) |
Ref | Expression |
---|---|
georeclim.1 | ⊢ (𝜑 → 𝐴 ∈ ℂ) |
georeclim.2 | ⊢ (𝜑 → 1 < (abs‘𝐴)) |
georeclim.3 | ⊢ ((𝜑 ∧ 𝑘 ∈ ℕ0) → (𝐹‘𝑘) = ((1 / 𝐴)↑𝑘)) |
Ref | Expression |
---|---|
georeclim | ⊢ (𝜑 → seq0( + , 𝐹) ⇝ (𝐴 / (𝐴 − 1))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | georeclim.1 | . . . 4 ⊢ (𝜑 → 𝐴 ∈ ℂ) | |
2 | georeclim.2 | . . . . 5 ⊢ (𝜑 → 1 < (abs‘𝐴)) | |
3 | 0le1 10757 | . . . . . . . 8 ⊢ 0 ≤ 1 | |
4 | 0re 10246 | . . . . . . . . 9 ⊢ 0 ∈ ℝ | |
5 | 1re 10245 | . . . . . . . . 9 ⊢ 1 ∈ ℝ | |
6 | 4, 5 | lenlti 10363 | . . . . . . . 8 ⊢ (0 ≤ 1 ↔ ¬ 1 < 0) |
7 | 3, 6 | mpbi 220 | . . . . . . 7 ⊢ ¬ 1 < 0 |
8 | fveq2 6333 | . . . . . . . . 9 ⊢ (𝐴 = 0 → (abs‘𝐴) = (abs‘0)) | |
9 | abs0 14233 | . . . . . . . . 9 ⊢ (abs‘0) = 0 | |
10 | 8, 9 | syl6eq 2821 | . . . . . . . 8 ⊢ (𝐴 = 0 → (abs‘𝐴) = 0) |
11 | 10 | breq2d 4799 | . . . . . . 7 ⊢ (𝐴 = 0 → (1 < (abs‘𝐴) ↔ 1 < 0)) |
12 | 7, 11 | mtbiri 316 | . . . . . 6 ⊢ (𝐴 = 0 → ¬ 1 < (abs‘𝐴)) |
13 | 12 | necon2ai 2972 | . . . . 5 ⊢ (1 < (abs‘𝐴) → 𝐴 ≠ 0) |
14 | 2, 13 | syl 17 | . . . 4 ⊢ (𝜑 → 𝐴 ≠ 0) |
15 | 1, 14 | reccld 11000 | . . 3 ⊢ (𝜑 → (1 / 𝐴) ∈ ℂ) |
16 | 1cnd 10262 | . . . . . 6 ⊢ (𝜑 → 1 ∈ ℂ) | |
17 | 16, 1, 14 | absdivd 14402 | . . . . 5 ⊢ (𝜑 → (abs‘(1 / 𝐴)) = ((abs‘1) / (abs‘𝐴))) |
18 | abs1 14245 | . . . . . 6 ⊢ (abs‘1) = 1 | |
19 | 18 | oveq1i 6806 | . . . . 5 ⊢ ((abs‘1) / (abs‘𝐴)) = (1 / (abs‘𝐴)) |
20 | 17, 19 | syl6eq 2821 | . . . 4 ⊢ (𝜑 → (abs‘(1 / 𝐴)) = (1 / (abs‘𝐴))) |
21 | 1, 14 | absrpcld 14395 | . . . . . 6 ⊢ (𝜑 → (abs‘𝐴) ∈ ℝ+) |
22 | 21 | recgt1d 12089 | . . . . 5 ⊢ (𝜑 → (1 < (abs‘𝐴) ↔ (1 / (abs‘𝐴)) < 1)) |
23 | 2, 22 | mpbid 222 | . . . 4 ⊢ (𝜑 → (1 / (abs‘𝐴)) < 1) |
24 | 20, 23 | eqbrtrd 4809 | . . 3 ⊢ (𝜑 → (abs‘(1 / 𝐴)) < 1) |
25 | georeclim.3 | . . 3 ⊢ ((𝜑 ∧ 𝑘 ∈ ℕ0) → (𝐹‘𝑘) = ((1 / 𝐴)↑𝑘)) | |
26 | 15, 24, 25 | geolim 14808 | . 2 ⊢ (𝜑 → seq0( + , 𝐹) ⇝ (1 / (1 − (1 / 𝐴)))) |
27 | 1, 16, 1, 14 | divsubdird 11046 | . . . . 5 ⊢ (𝜑 → ((𝐴 − 1) / 𝐴) = ((𝐴 / 𝐴) − (1 / 𝐴))) |
28 | 1, 14 | dividd 11005 | . . . . . 6 ⊢ (𝜑 → (𝐴 / 𝐴) = 1) |
29 | 28 | oveq1d 6811 | . . . . 5 ⊢ (𝜑 → ((𝐴 / 𝐴) − (1 / 𝐴)) = (1 − (1 / 𝐴))) |
30 | 27, 29 | eqtrd 2805 | . . . 4 ⊢ (𝜑 → ((𝐴 − 1) / 𝐴) = (1 − (1 / 𝐴))) |
31 | 30 | oveq2d 6812 | . . 3 ⊢ (𝜑 → (1 / ((𝐴 − 1) / 𝐴)) = (1 / (1 − (1 / 𝐴)))) |
32 | ax-1cn 10200 | . . . . 5 ⊢ 1 ∈ ℂ | |
33 | subcl 10486 | . . . . 5 ⊢ ((𝐴 ∈ ℂ ∧ 1 ∈ ℂ) → (𝐴 − 1) ∈ ℂ) | |
34 | 1, 32, 33 | sylancl 574 | . . . 4 ⊢ (𝜑 → (𝐴 − 1) ∈ ℂ) |
35 | 5 | ltnri 10352 | . . . . . . . 8 ⊢ ¬ 1 < 1 |
36 | fveq2 6333 | . . . . . . . . . 10 ⊢ (𝐴 = 1 → (abs‘𝐴) = (abs‘1)) | |
37 | 36, 18 | syl6eq 2821 | . . . . . . . . 9 ⊢ (𝐴 = 1 → (abs‘𝐴) = 1) |
38 | 37 | breq2d 4799 | . . . . . . . 8 ⊢ (𝐴 = 1 → (1 < (abs‘𝐴) ↔ 1 < 1)) |
39 | 35, 38 | mtbiri 316 | . . . . . . 7 ⊢ (𝐴 = 1 → ¬ 1 < (abs‘𝐴)) |
40 | 39 | necon2ai 2972 | . . . . . 6 ⊢ (1 < (abs‘𝐴) → 𝐴 ≠ 1) |
41 | 2, 40 | syl 17 | . . . . 5 ⊢ (𝜑 → 𝐴 ≠ 1) |
42 | subeq0 10513 | . . . . . . 7 ⊢ ((𝐴 ∈ ℂ ∧ 1 ∈ ℂ) → ((𝐴 − 1) = 0 ↔ 𝐴 = 1)) | |
43 | 1, 32, 42 | sylancl 574 | . . . . . 6 ⊢ (𝜑 → ((𝐴 − 1) = 0 ↔ 𝐴 = 1)) |
44 | 43 | necon3bid 2987 | . . . . 5 ⊢ (𝜑 → ((𝐴 − 1) ≠ 0 ↔ 𝐴 ≠ 1)) |
45 | 41, 44 | mpbird 247 | . . . 4 ⊢ (𝜑 → (𝐴 − 1) ≠ 0) |
46 | 34, 1, 45, 14 | recdivd 11024 | . . 3 ⊢ (𝜑 → (1 / ((𝐴 − 1) / 𝐴)) = (𝐴 / (𝐴 − 1))) |
47 | 31, 46 | eqtr3d 2807 | . 2 ⊢ (𝜑 → (1 / (1 − (1 / 𝐴))) = (𝐴 / (𝐴 − 1))) |
48 | 26, 47 | breqtrd 4813 | 1 ⊢ (𝜑 → seq0( + , 𝐹) ⇝ (𝐴 / (𝐴 − 1))) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 196 ∧ wa 382 = wceq 1631 ∈ wcel 2145 ≠ wne 2943 class class class wbr 4787 ‘cfv 6030 (class class class)co 6796 ℂcc 10140 0cc0 10142 1c1 10143 + caddc 10145 < clt 10280 ≤ cle 10281 − cmin 10472 / cdiv 10890 ℕ0cn0 11499 seqcseq 13008 ↑cexp 13067 abscabs 14182 ⇝ cli 14423 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1870 ax-4 1885 ax-5 1991 ax-6 2057 ax-7 2093 ax-8 2147 ax-9 2154 ax-10 2174 ax-11 2190 ax-12 2203 ax-13 2408 ax-ext 2751 ax-rep 4905 ax-sep 4916 ax-nul 4924 ax-pow 4975 ax-pr 5035 ax-un 7100 ax-inf2 8706 ax-cnex 10198 ax-resscn 10199 ax-1cn 10200 ax-icn 10201 ax-addcl 10202 ax-addrcl 10203 ax-mulcl 10204 ax-mulrcl 10205 ax-mulcom 10206 ax-addass 10207 ax-mulass 10208 ax-distr 10209 ax-i2m1 10210 ax-1ne0 10211 ax-1rid 10212 ax-rnegex 10213 ax-rrecex 10214 ax-cnre 10215 ax-pre-lttri 10216 ax-pre-lttrn 10217 ax-pre-ltadd 10218 ax-pre-mulgt0 10219 ax-pre-sup 10220 |
This theorem depends on definitions: df-bi 197 df-an 383 df-or 837 df-3or 1072 df-3an 1073 df-tru 1634 df-fal 1637 df-ex 1853 df-nf 1858 df-sb 2050 df-eu 2622 df-mo 2623 df-clab 2758 df-cleq 2764 df-clel 2767 df-nfc 2902 df-ne 2944 df-nel 3047 df-ral 3066 df-rex 3067 df-reu 3068 df-rmo 3069 df-rab 3070 df-v 3353 df-sbc 3588 df-csb 3683 df-dif 3726 df-un 3728 df-in 3730 df-ss 3737 df-pss 3739 df-nul 4064 df-if 4227 df-pw 4300 df-sn 4318 df-pr 4320 df-tp 4322 df-op 4324 df-uni 4576 df-int 4613 df-iun 4657 df-br 4788 df-opab 4848 df-mpt 4865 df-tr 4888 df-id 5158 df-eprel 5163 df-po 5171 df-so 5172 df-fr 5209 df-se 5210 df-we 5211 df-xp 5256 df-rel 5257 df-cnv 5258 df-co 5259 df-dm 5260 df-rn 5261 df-res 5262 df-ima 5263 df-pred 5822 df-ord 5868 df-on 5869 df-lim 5870 df-suc 5871 df-iota 5993 df-fun 6032 df-fn 6033 df-f 6034 df-f1 6035 df-fo 6036 df-f1o 6037 df-fv 6038 df-isom 6039 df-riota 6757 df-ov 6799 df-oprab 6800 df-mpt2 6801 df-om 7217 df-1st 7319 df-2nd 7320 df-wrecs 7563 df-recs 7625 df-rdg 7663 df-1o 7717 df-oadd 7721 df-er 7900 df-pm 8016 df-en 8114 df-dom 8115 df-sdom 8116 df-fin 8117 df-sup 8508 df-inf 8509 df-oi 8575 df-card 8969 df-pnf 10282 df-mnf 10283 df-xr 10284 df-ltxr 10285 df-le 10286 df-sub 10474 df-neg 10475 df-div 10891 df-nn 11227 df-2 11285 df-3 11286 df-n0 11500 df-z 11585 df-uz 11894 df-rp 12036 df-fz 12534 df-fzo 12674 df-fl 12801 df-seq 13009 df-exp 13068 df-hash 13322 df-cj 14047 df-re 14048 df-im 14049 df-sqrt 14183 df-abs 14184 df-clim 14427 df-rlim 14428 df-sum 14625 |
This theorem is referenced by: geoisumr 14816 ege2le3 15026 eftlub 15045 |
Copyright terms: Public domain | W3C validator |