Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fmuldfeq Structured version   Visualization version   GIF version

Theorem fmuldfeq 45631
Description: X and Z are two equivalent definitions of the finite product of real functions. Y is a set of real functions from a common domain T, Y is closed under function multiplication and U is a finite sequence of functions in Y. M is the number of functions multiplied together. (Contributed by Glauco Siliprandi, 20-Apr-2017.)
Hypotheses
Ref Expression
fmuldfeq.1 𝑖𝜑
fmuldfeq.2 𝑡𝑌
fmuldfeq.3 𝑃 = (𝑓𝑌, 𝑔𝑌 ↦ (𝑡𝑇 ↦ ((𝑓𝑡) · (𝑔𝑡))))
fmuldfeq.4 𝑋 = (seq1(𝑃, 𝑈)‘𝑀)
fmuldfeq.5 𝐹 = (𝑡𝑇 ↦ (𝑖 ∈ (1...𝑀) ↦ ((𝑈𝑖)‘𝑡)))
fmuldfeq.6 𝑍 = (𝑡𝑇 ↦ (seq1( · , (𝐹𝑡))‘𝑀))
fmuldfeq.7 (𝜑𝑇 ∈ V)
fmuldfeq.8 (𝜑𝑀 ∈ ℕ)
fmuldfeq.9 (𝜑𝑈:(1...𝑀)⟶𝑌)
fmuldfeq.10 ((𝜑𝑓𝑌) → 𝑓:𝑇⟶ℝ)
fmuldfeq.11 ((𝜑𝑓𝑌𝑔𝑌) → (𝑡𝑇 ↦ ((𝑓𝑡) · (𝑔𝑡))) ∈ 𝑌)
Assertion
Ref Expression
fmuldfeq ((𝜑𝑡𝑇) → (𝑋𝑡) = (𝑍𝑡))
Distinct variable groups:   𝑡,𝑇   𝑓,𝑔,𝑡,𝑇   𝑓,𝑖,𝑡,𝑇   𝑓,𝐹,𝑔   𝑓,𝑀,𝑔   𝑈,𝑓,𝑔,𝑡   𝑓,𝑌,𝑔   𝜑,𝑓,𝑔   𝑖,𝑀   𝑈,𝑖
Allowed substitution hints:   𝜑(𝑡,𝑖)   𝑃(𝑡,𝑓,𝑔,𝑖)   𝐹(𝑡,𝑖)   𝑀(𝑡)   𝑋(𝑡,𝑓,𝑔,𝑖)   𝑌(𝑡,𝑖)   𝑍(𝑡,𝑓,𝑔,𝑖)

Proof of Theorem fmuldfeq
Dummy variables 𝑘 𝑏 𝑛 𝑚 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 1zzd 12503 . . . 4 ((𝜑𝑡𝑇) → 1 ∈ ℤ)
2 fmuldfeq.8 . . . . . 6 (𝜑𝑀 ∈ ℕ)
32nnzd 12495 . . . . 5 (𝜑𝑀 ∈ ℤ)
43adantr 480 . . . 4 ((𝜑𝑡𝑇) → 𝑀 ∈ ℤ)
52nnge1d 12173 . . . . 5 (𝜑 → 1 ≤ 𝑀)
65adantr 480 . . . 4 ((𝜑𝑡𝑇) → 1 ≤ 𝑀)
7 nnre 12132 . . . . . 6 (𝑀 ∈ ℕ → 𝑀 ∈ ℝ)
8 leid 11209 . . . . . 6 (𝑀 ∈ ℝ → 𝑀𝑀)
92, 7, 83syl 18 . . . . 5 (𝜑𝑀𝑀)
109adantr 480 . . . 4 ((𝜑𝑡𝑇) → 𝑀𝑀)
111, 4, 4, 6, 10elfzd 13415 . . 3 ((𝜑𝑡𝑇) → 𝑀 ∈ (1...𝑀))
1223ad2ant1 1133 . . . 4 ((𝜑𝑡𝑇𝑀 ∈ (1...𝑀)) → 𝑀 ∈ ℕ)
13 eleq1 2819 . . . . . . 7 (𝑚 = 1 → (𝑚 ∈ (1...𝑀) ↔ 1 ∈ (1...𝑀)))
14133anbi3d 1444 . . . . . 6 (𝑚 = 1 → ((𝜑𝑡𝑇𝑚 ∈ (1...𝑀)) ↔ (𝜑𝑡𝑇 ∧ 1 ∈ (1...𝑀))))
15 fveq2 6822 . . . . . . . 8 (𝑚 = 1 → (seq1(𝑃, 𝑈)‘𝑚) = (seq1(𝑃, 𝑈)‘1))
1615fveq1d 6824 . . . . . . 7 (𝑚 = 1 → ((seq1(𝑃, 𝑈)‘𝑚)‘𝑡) = ((seq1(𝑃, 𝑈)‘1)‘𝑡))
17 fveq2 6822 . . . . . . 7 (𝑚 = 1 → (seq1( · , (𝐹𝑡))‘𝑚) = (seq1( · , (𝐹𝑡))‘1))
1816, 17eqeq12d 2747 . . . . . 6 (𝑚 = 1 → (((seq1(𝑃, 𝑈)‘𝑚)‘𝑡) = (seq1( · , (𝐹𝑡))‘𝑚) ↔ ((seq1(𝑃, 𝑈)‘1)‘𝑡) = (seq1( · , (𝐹𝑡))‘1)))
1914, 18imbi12d 344 . . . . 5 (𝑚 = 1 → (((𝜑𝑡𝑇𝑚 ∈ (1...𝑀)) → ((seq1(𝑃, 𝑈)‘𝑚)‘𝑡) = (seq1( · , (𝐹𝑡))‘𝑚)) ↔ ((𝜑𝑡𝑇 ∧ 1 ∈ (1...𝑀)) → ((seq1(𝑃, 𝑈)‘1)‘𝑡) = (seq1( · , (𝐹𝑡))‘1))))
20 eleq1 2819 . . . . . . 7 (𝑚 = 𝑛 → (𝑚 ∈ (1...𝑀) ↔ 𝑛 ∈ (1...𝑀)))
21203anbi3d 1444 . . . . . 6 (𝑚 = 𝑛 → ((𝜑𝑡𝑇𝑚 ∈ (1...𝑀)) ↔ (𝜑𝑡𝑇𝑛 ∈ (1...𝑀))))
22 fveq2 6822 . . . . . . . 8 (𝑚 = 𝑛 → (seq1(𝑃, 𝑈)‘𝑚) = (seq1(𝑃, 𝑈)‘𝑛))
2322fveq1d 6824 . . . . . . 7 (𝑚 = 𝑛 → ((seq1(𝑃, 𝑈)‘𝑚)‘𝑡) = ((seq1(𝑃, 𝑈)‘𝑛)‘𝑡))
24 fveq2 6822 . . . . . . 7 (𝑚 = 𝑛 → (seq1( · , (𝐹𝑡))‘𝑚) = (seq1( · , (𝐹𝑡))‘𝑛))
2523, 24eqeq12d 2747 . . . . . 6 (𝑚 = 𝑛 → (((seq1(𝑃, 𝑈)‘𝑚)‘𝑡) = (seq1( · , (𝐹𝑡))‘𝑚) ↔ ((seq1(𝑃, 𝑈)‘𝑛)‘𝑡) = (seq1( · , (𝐹𝑡))‘𝑛)))
2621, 25imbi12d 344 . . . . 5 (𝑚 = 𝑛 → (((𝜑𝑡𝑇𝑚 ∈ (1...𝑀)) → ((seq1(𝑃, 𝑈)‘𝑚)‘𝑡) = (seq1( · , (𝐹𝑡))‘𝑚)) ↔ ((𝜑𝑡𝑇𝑛 ∈ (1...𝑀)) → ((seq1(𝑃, 𝑈)‘𝑛)‘𝑡) = (seq1( · , (𝐹𝑡))‘𝑛))))
27 eleq1 2819 . . . . . . 7 (𝑚 = (𝑛 + 1) → (𝑚 ∈ (1...𝑀) ↔ (𝑛 + 1) ∈ (1...𝑀)))
28273anbi3d 1444 . . . . . 6 (𝑚 = (𝑛 + 1) → ((𝜑𝑡𝑇𝑚 ∈ (1...𝑀)) ↔ (𝜑𝑡𝑇 ∧ (𝑛 + 1) ∈ (1...𝑀))))
29 fveq2 6822 . . . . . . . 8 (𝑚 = (𝑛 + 1) → (seq1(𝑃, 𝑈)‘𝑚) = (seq1(𝑃, 𝑈)‘(𝑛 + 1)))
3029fveq1d 6824 . . . . . . 7 (𝑚 = (𝑛 + 1) → ((seq1(𝑃, 𝑈)‘𝑚)‘𝑡) = ((seq1(𝑃, 𝑈)‘(𝑛 + 1))‘𝑡))
31 fveq2 6822 . . . . . . 7 (𝑚 = (𝑛 + 1) → (seq1( · , (𝐹𝑡))‘𝑚) = (seq1( · , (𝐹𝑡))‘(𝑛 + 1)))
3230, 31eqeq12d 2747 . . . . . 6 (𝑚 = (𝑛 + 1) → (((seq1(𝑃, 𝑈)‘𝑚)‘𝑡) = (seq1( · , (𝐹𝑡))‘𝑚) ↔ ((seq1(𝑃, 𝑈)‘(𝑛 + 1))‘𝑡) = (seq1( · , (𝐹𝑡))‘(𝑛 + 1))))
3328, 32imbi12d 344 . . . . 5 (𝑚 = (𝑛 + 1) → (((𝜑𝑡𝑇𝑚 ∈ (1...𝑀)) → ((seq1(𝑃, 𝑈)‘𝑚)‘𝑡) = (seq1( · , (𝐹𝑡))‘𝑚)) ↔ ((𝜑𝑡𝑇 ∧ (𝑛 + 1) ∈ (1...𝑀)) → ((seq1(𝑃, 𝑈)‘(𝑛 + 1))‘𝑡) = (seq1( · , (𝐹𝑡))‘(𝑛 + 1)))))
34 eleq1 2819 . . . . . . 7 (𝑚 = 𝑀 → (𝑚 ∈ (1...𝑀) ↔ 𝑀 ∈ (1...𝑀)))
35343anbi3d 1444 . . . . . 6 (𝑚 = 𝑀 → ((𝜑𝑡𝑇𝑚 ∈ (1...𝑀)) ↔ (𝜑𝑡𝑇𝑀 ∈ (1...𝑀))))
36 fveq2 6822 . . . . . . . 8 (𝑚 = 𝑀 → (seq1(𝑃, 𝑈)‘𝑚) = (seq1(𝑃, 𝑈)‘𝑀))
3736fveq1d 6824 . . . . . . 7 (𝑚 = 𝑀 → ((seq1(𝑃, 𝑈)‘𝑚)‘𝑡) = ((seq1(𝑃, 𝑈)‘𝑀)‘𝑡))
38 fveq2 6822 . . . . . . 7 (𝑚 = 𝑀 → (seq1( · , (𝐹𝑡))‘𝑚) = (seq1( · , (𝐹𝑡))‘𝑀))
3937, 38eqeq12d 2747 . . . . . 6 (𝑚 = 𝑀 → (((seq1(𝑃, 𝑈)‘𝑚)‘𝑡) = (seq1( · , (𝐹𝑡))‘𝑚) ↔ ((seq1(𝑃, 𝑈)‘𝑀)‘𝑡) = (seq1( · , (𝐹𝑡))‘𝑀)))
4035, 39imbi12d 344 . . . . 5 (𝑚 = 𝑀 → (((𝜑𝑡𝑇𝑚 ∈ (1...𝑀)) → ((seq1(𝑃, 𝑈)‘𝑚)‘𝑡) = (seq1( · , (𝐹𝑡))‘𝑚)) ↔ ((𝜑𝑡𝑇𝑀 ∈ (1...𝑀)) → ((seq1(𝑃, 𝑈)‘𝑀)‘𝑡) = (seq1( · , (𝐹𝑡))‘𝑀))))
41 1z 12502 . . . . . . . 8 1 ∈ ℤ
42 seq1 13921 . . . . . . . 8 (1 ∈ ℤ → (seq1( · , (𝐹𝑡))‘1) = ((𝐹𝑡)‘1))
4341, 42ax-mp 5 . . . . . . 7 (seq1( · , (𝐹𝑡))‘1) = ((𝐹𝑡)‘1)
44 1zzd 12503 . . . . . . . . . . . 12 (𝜑 → 1 ∈ ℤ)
45 1le1 11745 . . . . . . . . . . . . 13 1 ≤ 1
4645a1i 11 . . . . . . . . . . . 12 (𝜑 → 1 ≤ 1)
4744, 3, 44, 46, 5elfzd 13415 . . . . . . . . . . 11 (𝜑 → 1 ∈ (1...𝑀))
48 nfv 1915 . . . . . . . . . . . . 13 𝑖 𝑡𝑇
49 fmuldfeq.5 . . . . . . . . . . . . . . . . 17 𝐹 = (𝑡𝑇 ↦ (𝑖 ∈ (1...𝑀) ↦ ((𝑈𝑖)‘𝑡)))
50 nfcv 2894 . . . . . . . . . . . . . . . . . 18 𝑖𝑇
51 nfmpt1 5188 . . . . . . . . . . . . . . . . . 18 𝑖(𝑖 ∈ (1...𝑀) ↦ ((𝑈𝑖)‘𝑡))
5250, 51nfmpt 5187 . . . . . . . . . . . . . . . . 17 𝑖(𝑡𝑇 ↦ (𝑖 ∈ (1...𝑀) ↦ ((𝑈𝑖)‘𝑡)))
5349, 52nfcxfr 2892 . . . . . . . . . . . . . . . 16 𝑖𝐹
54 nfcv 2894 . . . . . . . . . . . . . . . 16 𝑖𝑡
5553, 54nffv 6832 . . . . . . . . . . . . . . 15 𝑖(𝐹𝑡)
56 nfcv 2894 . . . . . . . . . . . . . . 15 𝑖1
5755, 56nffv 6832 . . . . . . . . . . . . . 14 𝑖((𝐹𝑡)‘1)
58 nffvmpt1 6833 . . . . . . . . . . . . . 14 𝑖((𝑖 ∈ (1...𝑀) ↦ ((𝑈𝑖)‘𝑡))‘1)
5957, 58nfeq 2908 . . . . . . . . . . . . 13 𝑖((𝐹𝑡)‘1) = ((𝑖 ∈ (1...𝑀) ↦ ((𝑈𝑖)‘𝑡))‘1)
6048, 59nfim 1897 . . . . . . . . . . . 12 𝑖(𝑡𝑇 → ((𝐹𝑡)‘1) = ((𝑖 ∈ (1...𝑀) ↦ ((𝑈𝑖)‘𝑡))‘1))
61 fveq2 6822 . . . . . . . . . . . . . 14 (𝑖 = 1 → ((𝐹𝑡)‘𝑖) = ((𝐹𝑡)‘1))
62 fveq2 6822 . . . . . . . . . . . . . 14 (𝑖 = 1 → ((𝑖 ∈ (1...𝑀) ↦ ((𝑈𝑖)‘𝑡))‘𝑖) = ((𝑖 ∈ (1...𝑀) ↦ ((𝑈𝑖)‘𝑡))‘1))
6361, 62eqeq12d 2747 . . . . . . . . . . . . 13 (𝑖 = 1 → (((𝐹𝑡)‘𝑖) = ((𝑖 ∈ (1...𝑀) ↦ ((𝑈𝑖)‘𝑡))‘𝑖) ↔ ((𝐹𝑡)‘1) = ((𝑖 ∈ (1...𝑀) ↦ ((𝑈𝑖)‘𝑡))‘1)))
6463imbi2d 340 . . . . . . . . . . . 12 (𝑖 = 1 → ((𝑡𝑇 → ((𝐹𝑡)‘𝑖) = ((𝑖 ∈ (1...𝑀) ↦ ((𝑈𝑖)‘𝑡))‘𝑖)) ↔ (𝑡𝑇 → ((𝐹𝑡)‘1) = ((𝑖 ∈ (1...𝑀) ↦ ((𝑈𝑖)‘𝑡))‘1))))
65 ovex 7379 . . . . . . . . . . . . . . 15 (1...𝑀) ∈ V
6665mptex 7157 . . . . . . . . . . . . . 14 (𝑖 ∈ (1...𝑀) ↦ ((𝑈𝑖)‘𝑡)) ∈ V
6749fvmpt2 6940 . . . . . . . . . . . . . 14 ((𝑡𝑇 ∧ (𝑖 ∈ (1...𝑀) ↦ ((𝑈𝑖)‘𝑡)) ∈ V) → (𝐹𝑡) = (𝑖 ∈ (1...𝑀) ↦ ((𝑈𝑖)‘𝑡)))
6866, 67mpan2 691 . . . . . . . . . . . . 13 (𝑡𝑇 → (𝐹𝑡) = (𝑖 ∈ (1...𝑀) ↦ ((𝑈𝑖)‘𝑡)))
6968fveq1d 6824 . . . . . . . . . . . 12 (𝑡𝑇 → ((𝐹𝑡)‘𝑖) = ((𝑖 ∈ (1...𝑀) ↦ ((𝑈𝑖)‘𝑡))‘𝑖))
7060, 64, 69vtoclg1f 3522 . . . . . . . . . . 11 (1 ∈ (1...𝑀) → (𝑡𝑇 → ((𝐹𝑡)‘1) = ((𝑖 ∈ (1...𝑀) ↦ ((𝑈𝑖)‘𝑡))‘1)))
7147, 70syl 17 . . . . . . . . . 10 (𝜑 → (𝑡𝑇 → ((𝐹𝑡)‘1) = ((𝑖 ∈ (1...𝑀) ↦ ((𝑈𝑖)‘𝑡))‘1)))
7271imp 406 . . . . . . . . 9 ((𝜑𝑡𝑇) → ((𝐹𝑡)‘1) = ((𝑖 ∈ (1...𝑀) ↦ ((𝑈𝑖)‘𝑡))‘1))
73 eqid 2731 . . . . . . . . . 10 (𝑖 ∈ (1...𝑀) ↦ ((𝑈𝑖)‘𝑡)) = (𝑖 ∈ (1...𝑀) ↦ ((𝑈𝑖)‘𝑡))
74 fveq2 6822 . . . . . . . . . . 11 (𝑖 = 1 → (𝑈𝑖) = (𝑈‘1))
7574fveq1d 6824 . . . . . . . . . 10 (𝑖 = 1 → ((𝑈𝑖)‘𝑡) = ((𝑈‘1)‘𝑡))
7647adantr 480 . . . . . . . . . 10 ((𝜑𝑡𝑇) → 1 ∈ (1...𝑀))
77 fmuldfeq.9 . . . . . . . . . . . . 13 (𝜑𝑈:(1...𝑀)⟶𝑌)
7877, 47ffvelcdmd 7018 . . . . . . . . . . . 12 (𝜑 → (𝑈‘1) ∈ 𝑌)
7978ancli 548 . . . . . . . . . . . 12 (𝜑 → (𝜑 ∧ (𝑈‘1) ∈ 𝑌))
80 eleq1 2819 . . . . . . . . . . . . . . 15 (𝑓 = (𝑈‘1) → (𝑓𝑌 ↔ (𝑈‘1) ∈ 𝑌))
8180anbi2d 630 . . . . . . . . . . . . . 14 (𝑓 = (𝑈‘1) → ((𝜑𝑓𝑌) ↔ (𝜑 ∧ (𝑈‘1) ∈ 𝑌)))
82 feq1 6629 . . . . . . . . . . . . . 14 (𝑓 = (𝑈‘1) → (𝑓:𝑇⟶ℝ ↔ (𝑈‘1):𝑇⟶ℝ))
8381, 82imbi12d 344 . . . . . . . . . . . . 13 (𝑓 = (𝑈‘1) → (((𝜑𝑓𝑌) → 𝑓:𝑇⟶ℝ) ↔ ((𝜑 ∧ (𝑈‘1) ∈ 𝑌) → (𝑈‘1):𝑇⟶ℝ)))
84 fmuldfeq.10 . . . . . . . . . . . . . 14 ((𝜑𝑓𝑌) → 𝑓:𝑇⟶ℝ)
8584a1i 11 . . . . . . . . . . . . 13 (𝑓𝑌 → ((𝜑𝑓𝑌) → 𝑓:𝑇⟶ℝ))
8683, 85vtoclga 3528 . . . . . . . . . . . 12 ((𝑈‘1) ∈ 𝑌 → ((𝜑 ∧ (𝑈‘1) ∈ 𝑌) → (𝑈‘1):𝑇⟶ℝ))
8778, 79, 86sylc 65 . . . . . . . . . . 11 (𝜑 → (𝑈‘1):𝑇⟶ℝ)
8887ffvelcdmda 7017 . . . . . . . . . 10 ((𝜑𝑡𝑇) → ((𝑈‘1)‘𝑡) ∈ ℝ)
8973, 75, 76, 88fvmptd3 6952 . . . . . . . . 9 ((𝜑𝑡𝑇) → ((𝑖 ∈ (1...𝑀) ↦ ((𝑈𝑖)‘𝑡))‘1) = ((𝑈‘1)‘𝑡))
9072, 89eqtrd 2766 . . . . . . . 8 ((𝜑𝑡𝑇) → ((𝐹𝑡)‘1) = ((𝑈‘1)‘𝑡))
91 seq1 13921 . . . . . . . . . 10 (1 ∈ ℤ → (seq1(𝑃, 𝑈)‘1) = (𝑈‘1))
9241, 91ax-mp 5 . . . . . . . . 9 (seq1(𝑃, 𝑈)‘1) = (𝑈‘1)
9392fveq1i 6823 . . . . . . . 8 ((seq1(𝑃, 𝑈)‘1)‘𝑡) = ((𝑈‘1)‘𝑡)
9490, 93eqtr4di 2784 . . . . . . 7 ((𝜑𝑡𝑇) → ((𝐹𝑡)‘1) = ((seq1(𝑃, 𝑈)‘1)‘𝑡))
9543, 94eqtr2id 2779 . . . . . 6 ((𝜑𝑡𝑇) → ((seq1(𝑃, 𝑈)‘1)‘𝑡) = (seq1( · , (𝐹𝑡))‘1))
96953adant3 1132 . . . . 5 ((𝜑𝑡𝑇 ∧ 1 ∈ (1...𝑀)) → ((seq1(𝑃, 𝑈)‘1)‘𝑡) = (seq1( · , (𝐹𝑡))‘1))
97 simp31 1210 . . . . . . 7 ((𝑛 ∈ ℕ ∧ ((𝜑𝑡𝑇𝑛 ∈ (1...𝑀)) → ((seq1(𝑃, 𝑈)‘𝑛)‘𝑡) = (seq1( · , (𝐹𝑡))‘𝑛)) ∧ (𝜑𝑡𝑇 ∧ (𝑛 + 1) ∈ (1...𝑀))) → 𝜑)
98 simp1 1136 . . . . . . . . . 10 ((𝑛 ∈ ℕ ∧ ((𝜑𝑡𝑇𝑛 ∈ (1...𝑀)) → ((seq1(𝑃, 𝑈)‘𝑛)‘𝑡) = (seq1( · , (𝐹𝑡))‘𝑛)) ∧ (𝜑𝑡𝑇 ∧ (𝑛 + 1) ∈ (1...𝑀))) → 𝑛 ∈ ℕ)
99 simp33 1212 . . . . . . . . . 10 ((𝑛 ∈ ℕ ∧ ((𝜑𝑡𝑇𝑛 ∈ (1...𝑀)) → ((seq1(𝑃, 𝑈)‘𝑛)‘𝑡) = (seq1( · , (𝐹𝑡))‘𝑛)) ∧ (𝜑𝑡𝑇 ∧ (𝑛 + 1) ∈ (1...𝑀))) → (𝑛 + 1) ∈ (1...𝑀))
10098, 99jca 511 . . . . . . . . 9 ((𝑛 ∈ ℕ ∧ ((𝜑𝑡𝑇𝑛 ∈ (1...𝑀)) → ((seq1(𝑃, 𝑈)‘𝑛)‘𝑡) = (seq1( · , (𝐹𝑡))‘𝑛)) ∧ (𝜑𝑡𝑇 ∧ (𝑛 + 1) ∈ (1...𝑀))) → (𝑛 ∈ ℕ ∧ (𝑛 + 1) ∈ (1...𝑀)))
101 elnnuz 12776 . . . . . . . . . . 11 (𝑛 ∈ ℕ ↔ 𝑛 ∈ (ℤ‘1))
102101biimpi 216 . . . . . . . . . 10 (𝑛 ∈ ℕ → 𝑛 ∈ (ℤ‘1))
103102anim1i 615 . . . . . . . . 9 ((𝑛 ∈ ℕ ∧ (𝑛 + 1) ∈ (1...𝑀)) → (𝑛 ∈ (ℤ‘1) ∧ (𝑛 + 1) ∈ (1...𝑀)))
104 peano2fzr 13437 . . . . . . . . 9 ((𝑛 ∈ (ℤ‘1) ∧ (𝑛 + 1) ∈ (1...𝑀)) → 𝑛 ∈ (1...𝑀))
105100, 103, 1043syl 18 . . . . . . . 8 ((𝑛 ∈ ℕ ∧ ((𝜑𝑡𝑇𝑛 ∈ (1...𝑀)) → ((seq1(𝑃, 𝑈)‘𝑛)‘𝑡) = (seq1( · , (𝐹𝑡))‘𝑛)) ∧ (𝜑𝑡𝑇 ∧ (𝑛 + 1) ∈ (1...𝑀))) → 𝑛 ∈ (1...𝑀))
106 simp32 1211 . . . . . . . . 9 ((𝑛 ∈ ℕ ∧ ((𝜑𝑡𝑇𝑛 ∈ (1...𝑀)) → ((seq1(𝑃, 𝑈)‘𝑛)‘𝑡) = (seq1( · , (𝐹𝑡))‘𝑛)) ∧ (𝜑𝑡𝑇 ∧ (𝑛 + 1) ∈ (1...𝑀))) → 𝑡𝑇)
107 simp2 1137 . . . . . . . . 9 ((𝑛 ∈ ℕ ∧ ((𝜑𝑡𝑇𝑛 ∈ (1...𝑀)) → ((seq1(𝑃, 𝑈)‘𝑛)‘𝑡) = (seq1( · , (𝐹𝑡))‘𝑛)) ∧ (𝜑𝑡𝑇 ∧ (𝑛 + 1) ∈ (1...𝑀))) → ((𝜑𝑡𝑇𝑛 ∈ (1...𝑀)) → ((seq1(𝑃, 𝑈)‘𝑛)‘𝑡) = (seq1( · , (𝐹𝑡))‘𝑛)))
10897, 106, 105, 107mp3and 1466 . . . . . . . 8 ((𝑛 ∈ ℕ ∧ ((𝜑𝑡𝑇𝑛 ∈ (1...𝑀)) → ((seq1(𝑃, 𝑈)‘𝑛)‘𝑡) = (seq1( · , (𝐹𝑡))‘𝑛)) ∧ (𝜑𝑡𝑇 ∧ (𝑛 + 1) ∈ (1...𝑀))) → ((seq1(𝑃, 𝑈)‘𝑛)‘𝑡) = (seq1( · , (𝐹𝑡))‘𝑛))
109105, 99, 1083jca 1128 . . . . . . 7 ((𝑛 ∈ ℕ ∧ ((𝜑𝑡𝑇𝑛 ∈ (1...𝑀)) → ((seq1(𝑃, 𝑈)‘𝑛)‘𝑡) = (seq1( · , (𝐹𝑡))‘𝑛)) ∧ (𝜑𝑡𝑇 ∧ (𝑛 + 1) ∈ (1...𝑀))) → (𝑛 ∈ (1...𝑀) ∧ (𝑛 + 1) ∈ (1...𝑀) ∧ ((seq1(𝑃, 𝑈)‘𝑛)‘𝑡) = (seq1( · , (𝐹𝑡))‘𝑛)))
110 nfv 1915 . . . . . . . . 9 𝑓𝜑
111 nfv 1915 . . . . . . . . . 10 𝑓 𝑛 ∈ (1...𝑀)
112 nfv 1915 . . . . . . . . . 10 𝑓(𝑛 + 1) ∈ (1...𝑀)
113 nfcv 2894 . . . . . . . . . . . . . 14 𝑓1
114 fmuldfeq.3 . . . . . . . . . . . . . . 15 𝑃 = (𝑓𝑌, 𝑔𝑌 ↦ (𝑡𝑇 ↦ ((𝑓𝑡) · (𝑔𝑡))))
115 nfmpo1 7426 . . . . . . . . . . . . . . 15 𝑓(𝑓𝑌, 𝑔𝑌 ↦ (𝑡𝑇 ↦ ((𝑓𝑡) · (𝑔𝑡))))
116114, 115nfcxfr 2892 . . . . . . . . . . . . . 14 𝑓𝑃
117 nfcv 2894 . . . . . . . . . . . . . 14 𝑓𝑈
118113, 116, 117nfseq 13918 . . . . . . . . . . . . 13 𝑓seq1(𝑃, 𝑈)
119 nfcv 2894 . . . . . . . . . . . . 13 𝑓𝑛
120118, 119nffv 6832 . . . . . . . . . . . 12 𝑓(seq1(𝑃, 𝑈)‘𝑛)
121 nfcv 2894 . . . . . . . . . . . 12 𝑓𝑡
122120, 121nffv 6832 . . . . . . . . . . 11 𝑓((seq1(𝑃, 𝑈)‘𝑛)‘𝑡)
123 nfcv 2894 . . . . . . . . . . 11 𝑓(seq1( · , (𝐹𝑡))‘𝑛)
124122, 123nfeq 2908 . . . . . . . . . 10 𝑓((seq1(𝑃, 𝑈)‘𝑛)‘𝑡) = (seq1( · , (𝐹𝑡))‘𝑛)
125111, 112, 124nf3an 1902 . . . . . . . . 9 𝑓(𝑛 ∈ (1...𝑀) ∧ (𝑛 + 1) ∈ (1...𝑀) ∧ ((seq1(𝑃, 𝑈)‘𝑛)‘𝑡) = (seq1( · , (𝐹𝑡))‘𝑛))
126110, 125nfan 1900 . . . . . . . 8 𝑓(𝜑 ∧ (𝑛 ∈ (1...𝑀) ∧ (𝑛 + 1) ∈ (1...𝑀) ∧ ((seq1(𝑃, 𝑈)‘𝑛)‘𝑡) = (seq1( · , (𝐹𝑡))‘𝑛)))
127 nfv 1915 . . . . . . . . 9 𝑔𝜑
128 nfv 1915 . . . . . . . . . 10 𝑔 𝑛 ∈ (1...𝑀)
129 nfv 1915 . . . . . . . . . 10 𝑔(𝑛 + 1) ∈ (1...𝑀)
130 nfcv 2894 . . . . . . . . . . . . . 14 𝑔1
131 nfmpo2 7427 . . . . . . . . . . . . . . 15 𝑔(𝑓𝑌, 𝑔𝑌 ↦ (𝑡𝑇 ↦ ((𝑓𝑡) · (𝑔𝑡))))
132114, 131nfcxfr 2892 . . . . . . . . . . . . . 14 𝑔𝑃
133 nfcv 2894 . . . . . . . . . . . . . 14 𝑔𝑈
134130, 132, 133nfseq 13918 . . . . . . . . . . . . 13 𝑔seq1(𝑃, 𝑈)
135 nfcv 2894 . . . . . . . . . . . . 13 𝑔𝑛
136134, 135nffv 6832 . . . . . . . . . . . 12 𝑔(seq1(𝑃, 𝑈)‘𝑛)
137 nfcv 2894 . . . . . . . . . . . 12 𝑔𝑡
138136, 137nffv 6832 . . . . . . . . . . 11 𝑔((seq1(𝑃, 𝑈)‘𝑛)‘𝑡)
139 nfcv 2894 . . . . . . . . . . 11 𝑔(seq1( · , (𝐹𝑡))‘𝑛)
140138, 139nfeq 2908 . . . . . . . . . 10 𝑔((seq1(𝑃, 𝑈)‘𝑛)‘𝑡) = (seq1( · , (𝐹𝑡))‘𝑛)
141128, 129, 140nf3an 1902 . . . . . . . . 9 𝑔(𝑛 ∈ (1...𝑀) ∧ (𝑛 + 1) ∈ (1...𝑀) ∧ ((seq1(𝑃, 𝑈)‘𝑛)‘𝑡) = (seq1( · , (𝐹𝑡))‘𝑛))
142127, 141nfan 1900 . . . . . . . 8 𝑔(𝜑 ∧ (𝑛 ∈ (1...𝑀) ∧ (𝑛 + 1) ∈ (1...𝑀) ∧ ((seq1(𝑃, 𝑈)‘𝑛)‘𝑡) = (seq1( · , (𝐹𝑡))‘𝑛)))
143 fmuldfeq.2 . . . . . . . 8 𝑡𝑌
144 fmuldfeq.7 . . . . . . . . 9 (𝜑𝑇 ∈ V)
145144adantr 480 . . . . . . . 8 ((𝜑 ∧ (𝑛 ∈ (1...𝑀) ∧ (𝑛 + 1) ∈ (1...𝑀) ∧ ((seq1(𝑃, 𝑈)‘𝑛)‘𝑡) = (seq1( · , (𝐹𝑡))‘𝑛))) → 𝑇 ∈ V)
14677adantr 480 . . . . . . . 8 ((𝜑 ∧ (𝑛 ∈ (1...𝑀) ∧ (𝑛 + 1) ∈ (1...𝑀) ∧ ((seq1(𝑃, 𝑈)‘𝑛)‘𝑡) = (seq1( · , (𝐹𝑡))‘𝑛))) → 𝑈:(1...𝑀)⟶𝑌)
147 fmuldfeq.11 . . . . . . . . 9 ((𝜑𝑓𝑌𝑔𝑌) → (𝑡𝑇 ↦ ((𝑓𝑡) · (𝑔𝑡))) ∈ 𝑌)
1481473adant1r 1178 . . . . . . . 8 (((𝜑 ∧ (𝑛 ∈ (1...𝑀) ∧ (𝑛 + 1) ∈ (1...𝑀) ∧ ((seq1(𝑃, 𝑈)‘𝑛)‘𝑡) = (seq1( · , (𝐹𝑡))‘𝑛))) ∧ 𝑓𝑌𝑔𝑌) → (𝑡𝑇 ↦ ((𝑓𝑡) · (𝑔𝑡))) ∈ 𝑌)
149 simpr1 1195 . . . . . . . 8 ((𝜑 ∧ (𝑛 ∈ (1...𝑀) ∧ (𝑛 + 1) ∈ (1...𝑀) ∧ ((seq1(𝑃, 𝑈)‘𝑛)‘𝑡) = (seq1( · , (𝐹𝑡))‘𝑛))) → 𝑛 ∈ (1...𝑀))
150 simpr2 1196 . . . . . . . 8 ((𝜑 ∧ (𝑛 ∈ (1...𝑀) ∧ (𝑛 + 1) ∈ (1...𝑀) ∧ ((seq1(𝑃, 𝑈)‘𝑛)‘𝑡) = (seq1( · , (𝐹𝑡))‘𝑛))) → (𝑛 + 1) ∈ (1...𝑀))
151 simpr3 1197 . . . . . . . 8 ((𝜑 ∧ (𝑛 ∈ (1...𝑀) ∧ (𝑛 + 1) ∈ (1...𝑀) ∧ ((seq1(𝑃, 𝑈)‘𝑛)‘𝑡) = (seq1( · , (𝐹𝑡))‘𝑛))) → ((seq1(𝑃, 𝑈)‘𝑛)‘𝑡) = (seq1( · , (𝐹𝑡))‘𝑛))
15284adantlr 715 . . . . . . . 8 (((𝜑 ∧ (𝑛 ∈ (1...𝑀) ∧ (𝑛 + 1) ∈ (1...𝑀) ∧ ((seq1(𝑃, 𝑈)‘𝑛)‘𝑡) = (seq1( · , (𝐹𝑡))‘𝑛))) ∧ 𝑓𝑌) → 𝑓:𝑇⟶ℝ)
153126, 142, 143, 114, 49, 145, 146, 148, 149, 150, 151, 152fmuldfeqlem1 45630 . . . . . . 7 (((𝜑 ∧ (𝑛 ∈ (1...𝑀) ∧ (𝑛 + 1) ∈ (1...𝑀) ∧ ((seq1(𝑃, 𝑈)‘𝑛)‘𝑡) = (seq1( · , (𝐹𝑡))‘𝑛))) ∧ 𝑡𝑇) → ((seq1(𝑃, 𝑈)‘(𝑛 + 1))‘𝑡) = (seq1( · , (𝐹𝑡))‘(𝑛 + 1)))
15497, 109, 106, 153syl21anc 837 . . . . . 6 ((𝑛 ∈ ℕ ∧ ((𝜑𝑡𝑇𝑛 ∈ (1...𝑀)) → ((seq1(𝑃, 𝑈)‘𝑛)‘𝑡) = (seq1( · , (𝐹𝑡))‘𝑛)) ∧ (𝜑𝑡𝑇 ∧ (𝑛 + 1) ∈ (1...𝑀))) → ((seq1(𝑃, 𝑈)‘(𝑛 + 1))‘𝑡) = (seq1( · , (𝐹𝑡))‘(𝑛 + 1)))
1551543exp 1119 . . . . 5 (𝑛 ∈ ℕ → (((𝜑𝑡𝑇𝑛 ∈ (1...𝑀)) → ((seq1(𝑃, 𝑈)‘𝑛)‘𝑡) = (seq1( · , (𝐹𝑡))‘𝑛)) → ((𝜑𝑡𝑇 ∧ (𝑛 + 1) ∈ (1...𝑀)) → ((seq1(𝑃, 𝑈)‘(𝑛 + 1))‘𝑡) = (seq1( · , (𝐹𝑡))‘(𝑛 + 1)))))
15619, 26, 33, 40, 96, 155nnind 12143 . . . 4 (𝑀 ∈ ℕ → ((𝜑𝑡𝑇𝑀 ∈ (1...𝑀)) → ((seq1(𝑃, 𝑈)‘𝑀)‘𝑡) = (seq1( · , (𝐹𝑡))‘𝑀)))
15712, 156mpcom 38 . . 3 ((𝜑𝑡𝑇𝑀 ∈ (1...𝑀)) → ((seq1(𝑃, 𝑈)‘𝑀)‘𝑡) = (seq1( · , (𝐹𝑡))‘𝑀))
15811, 157mpd3an3 1464 . 2 ((𝜑𝑡𝑇) → ((seq1(𝑃, 𝑈)‘𝑀)‘𝑡) = (seq1( · , (𝐹𝑡))‘𝑀))
159 fmuldfeq.4 . . . 4 𝑋 = (seq1(𝑃, 𝑈)‘𝑀)
160159fveq1i 6823 . . 3 (𝑋𝑡) = ((seq1(𝑃, 𝑈)‘𝑀)‘𝑡)
161160a1i 11 . 2 ((𝜑𝑡𝑇) → (𝑋𝑡) = ((seq1(𝑃, 𝑈)‘𝑀)‘𝑡))
162 simpr 484 . . 3 ((𝜑𝑡𝑇) → 𝑡𝑇)
163 elnnuz 12776 . . . . . 6 (𝑀 ∈ ℕ ↔ 𝑀 ∈ (ℤ‘1))
1642, 163sylib 218 . . . . 5 (𝜑𝑀 ∈ (ℤ‘1))
165164adantr 480 . . . 4 ((𝜑𝑡𝑇) → 𝑀 ∈ (ℤ‘1))
166 fmuldfeq.1 . . . . . . . 8 𝑖𝜑
167166, 48nfan 1900 . . . . . . 7 𝑖(𝜑𝑡𝑇)
168 nfv 1915 . . . . . . 7 𝑖 𝑘 ∈ (1...𝑀)
169167, 168nfan 1900 . . . . . 6 𝑖((𝜑𝑡𝑇) ∧ 𝑘 ∈ (1...𝑀))
170 nfcv 2894 . . . . . . . 8 𝑖𝑘
17155, 170nffv 6832 . . . . . . 7 𝑖((𝐹𝑡)‘𝑘)
172171nfel1 2911 . . . . . 6 𝑖((𝐹𝑡)‘𝑘) ∈ ℝ
173169, 172nfim 1897 . . . . 5 𝑖(((𝜑𝑡𝑇) ∧ 𝑘 ∈ (1...𝑀)) → ((𝐹𝑡)‘𝑘) ∈ ℝ)
174 eleq1 2819 . . . . . . 7 (𝑖 = 𝑘 → (𝑖 ∈ (1...𝑀) ↔ 𝑘 ∈ (1...𝑀)))
175174anbi2d 630 . . . . . 6 (𝑖 = 𝑘 → (((𝜑𝑡𝑇) ∧ 𝑖 ∈ (1...𝑀)) ↔ ((𝜑𝑡𝑇) ∧ 𝑘 ∈ (1...𝑀))))
176 fveq2 6822 . . . . . . 7 (𝑖 = 𝑘 → ((𝐹𝑡)‘𝑖) = ((𝐹𝑡)‘𝑘))
177176eleq1d 2816 . . . . . 6 (𝑖 = 𝑘 → (((𝐹𝑡)‘𝑖) ∈ ℝ ↔ ((𝐹𝑡)‘𝑘) ∈ ℝ))
178175, 177imbi12d 344 . . . . 5 (𝑖 = 𝑘 → ((((𝜑𝑡𝑇) ∧ 𝑖 ∈ (1...𝑀)) → ((𝐹𝑡)‘𝑖) ∈ ℝ) ↔ (((𝜑𝑡𝑇) ∧ 𝑘 ∈ (1...𝑀)) → ((𝐹𝑡)‘𝑘) ∈ ℝ)))
17969ad2antlr 727 . . . . . 6 (((𝜑𝑡𝑇) ∧ 𝑖 ∈ (1...𝑀)) → ((𝐹𝑡)‘𝑖) = ((𝑖 ∈ (1...𝑀) ↦ ((𝑈𝑖)‘𝑡))‘𝑖))
180 simpr 484 . . . . . . . 8 (((𝜑𝑡𝑇) ∧ 𝑖 ∈ (1...𝑀)) → 𝑖 ∈ (1...𝑀))
18177ffvelcdmda 7017 . . . . . . . . . . 11 ((𝜑𝑖 ∈ (1...𝑀)) → (𝑈𝑖) ∈ 𝑌)
182 simpl 482 . . . . . . . . . . . 12 ((𝜑𝑖 ∈ (1...𝑀)) → 𝜑)
183182, 181jca 511 . . . . . . . . . . 11 ((𝜑𝑖 ∈ (1...𝑀)) → (𝜑 ∧ (𝑈𝑖) ∈ 𝑌))
184 eleq1 2819 . . . . . . . . . . . . . 14 (𝑓 = (𝑈𝑖) → (𝑓𝑌 ↔ (𝑈𝑖) ∈ 𝑌))
185184anbi2d 630 . . . . . . . . . . . . 13 (𝑓 = (𝑈𝑖) → ((𝜑𝑓𝑌) ↔ (𝜑 ∧ (𝑈𝑖) ∈ 𝑌)))
186 feq1 6629 . . . . . . . . . . . . 13 (𝑓 = (𝑈𝑖) → (𝑓:𝑇⟶ℝ ↔ (𝑈𝑖):𝑇⟶ℝ))
187185, 186imbi12d 344 . . . . . . . . . . . 12 (𝑓 = (𝑈𝑖) → (((𝜑𝑓𝑌) → 𝑓:𝑇⟶ℝ) ↔ ((𝜑 ∧ (𝑈𝑖) ∈ 𝑌) → (𝑈𝑖):𝑇⟶ℝ)))
188187, 85vtoclga 3528 . . . . . . . . . . 11 ((𝑈𝑖) ∈ 𝑌 → ((𝜑 ∧ (𝑈𝑖) ∈ 𝑌) → (𝑈𝑖):𝑇⟶ℝ))
189181, 183, 188sylc 65 . . . . . . . . . 10 ((𝜑𝑖 ∈ (1...𝑀)) → (𝑈𝑖):𝑇⟶ℝ)
190189adantlr 715 . . . . . . . . 9 (((𝜑𝑡𝑇) ∧ 𝑖 ∈ (1...𝑀)) → (𝑈𝑖):𝑇⟶ℝ)
191 simplr 768 . . . . . . . . 9 (((𝜑𝑡𝑇) ∧ 𝑖 ∈ (1...𝑀)) → 𝑡𝑇)
192190, 191ffvelcdmd 7018 . . . . . . . 8 (((𝜑𝑡𝑇) ∧ 𝑖 ∈ (1...𝑀)) → ((𝑈𝑖)‘𝑡) ∈ ℝ)
19373fvmpt2 6940 . . . . . . . 8 ((𝑖 ∈ (1...𝑀) ∧ ((𝑈𝑖)‘𝑡) ∈ ℝ) → ((𝑖 ∈ (1...𝑀) ↦ ((𝑈𝑖)‘𝑡))‘𝑖) = ((𝑈𝑖)‘𝑡))
194180, 192, 193syl2anc 584 . . . . . . 7 (((𝜑𝑡𝑇) ∧ 𝑖 ∈ (1...𝑀)) → ((𝑖 ∈ (1...𝑀) ↦ ((𝑈𝑖)‘𝑡))‘𝑖) = ((𝑈𝑖)‘𝑡))
195194, 192eqeltrd 2831 . . . . . 6 (((𝜑𝑡𝑇) ∧ 𝑖 ∈ (1...𝑀)) → ((𝑖 ∈ (1...𝑀) ↦ ((𝑈𝑖)‘𝑡))‘𝑖) ∈ ℝ)
196179, 195eqeltrd 2831 . . . . 5 (((𝜑𝑡𝑇) ∧ 𝑖 ∈ (1...𝑀)) → ((𝐹𝑡)‘𝑖) ∈ ℝ)
197173, 178, 196chvarfv 2243 . . . 4 (((𝜑𝑡𝑇) ∧ 𝑘 ∈ (1...𝑀)) → ((𝐹𝑡)‘𝑘) ∈ ℝ)
198 remulcl 11091 . . . . 5 ((𝑘 ∈ ℝ ∧ 𝑏 ∈ ℝ) → (𝑘 · 𝑏) ∈ ℝ)
199198adantl 481 . . . 4 (((𝜑𝑡𝑇) ∧ (𝑘 ∈ ℝ ∧ 𝑏 ∈ ℝ)) → (𝑘 · 𝑏) ∈ ℝ)
200165, 197, 199seqcl 13929 . . 3 ((𝜑𝑡𝑇) → (seq1( · , (𝐹𝑡))‘𝑀) ∈ ℝ)
201 fmuldfeq.6 . . . 4 𝑍 = (𝑡𝑇 ↦ (seq1( · , (𝐹𝑡))‘𝑀))
202201fvmpt2 6940 . . 3 ((𝑡𝑇 ∧ (seq1( · , (𝐹𝑡))‘𝑀) ∈ ℝ) → (𝑍𝑡) = (seq1( · , (𝐹𝑡))‘𝑀))
203162, 200, 202syl2anc 584 . 2 ((𝜑𝑡𝑇) → (𝑍𝑡) = (seq1( · , (𝐹𝑡))‘𝑀))
204158, 161, 2033eqtr4d 2776 1 ((𝜑𝑡𝑇) → (𝑋𝑡) = (𝑍𝑡))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1541  wnf 1784  wcel 2111  wnfc 2879  Vcvv 3436   class class class wbr 5089  cmpt 5170  wf 6477  cfv 6481  (class class class)co 7346  cmpo 7348  cr 11005  1c1 11007   + caddc 11009   · cmul 11011  cle 11147  cn 12125  cz 12468  cuz 12732  ...cfz 13407  seqcseq 13908
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5215  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7668  ax-cnex 11062  ax-resscn 11063  ax-1cn 11064  ax-icn 11065  ax-addcl 11066  ax-addrcl 11067  ax-mulcl 11068  ax-mulrcl 11069  ax-mulcom 11070  ax-addass 11071  ax-mulass 11072  ax-distr 11073  ax-i2m1 11074  ax-1ne0 11075  ax-1rid 11076  ax-rnegex 11077  ax-rrecex 11078  ax-cnre 11079  ax-pre-lttri 11080  ax-pre-lttrn 11081  ax-pre-ltadd 11082  ax-pre-mulgt0 11083
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-iun 4941  df-br 5090  df-opab 5152  df-mpt 5171  df-tr 5197  df-id 5509  df-eprel 5514  df-po 5522  df-so 5523  df-fr 5567  df-we 5569  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-om 7797  df-1st 7921  df-2nd 7922  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-er 8622  df-en 8870  df-dom 8871  df-sdom 8872  df-pnf 11148  df-mnf 11149  df-xr 11150  df-ltxr 11151  df-le 11152  df-sub 11346  df-neg 11347  df-nn 12126  df-n0 12382  df-z 12469  df-uz 12733  df-fz 13408  df-seq 13909
This theorem is referenced by:  stoweidlem42  46088  stoweidlem48  46094
  Copyright terms: Public domain W3C validator