Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fmuldfeq Structured version   Visualization version   GIF version

Theorem fmuldfeq 43014
Description: X and Z are two equivalent definitions of the finite product of real functions. Y is a set of real functions from a common domain T, Y is closed under function multiplication and U is a finite sequence of functions in Y. M is the number of functions multiplied together. (Contributed by Glauco Siliprandi, 20-Apr-2017.)
Hypotheses
Ref Expression
fmuldfeq.1 𝑖𝜑
fmuldfeq.2 𝑡𝑌
fmuldfeq.3 𝑃 = (𝑓𝑌, 𝑔𝑌 ↦ (𝑡𝑇 ↦ ((𝑓𝑡) · (𝑔𝑡))))
fmuldfeq.4 𝑋 = (seq1(𝑃, 𝑈)‘𝑀)
fmuldfeq.5 𝐹 = (𝑡𝑇 ↦ (𝑖 ∈ (1...𝑀) ↦ ((𝑈𝑖)‘𝑡)))
fmuldfeq.6 𝑍 = (𝑡𝑇 ↦ (seq1( · , (𝐹𝑡))‘𝑀))
fmuldfeq.7 (𝜑𝑇 ∈ V)
fmuldfeq.8 (𝜑𝑀 ∈ ℕ)
fmuldfeq.9 (𝜑𝑈:(1...𝑀)⟶𝑌)
fmuldfeq.10 ((𝜑𝑓𝑌) → 𝑓:𝑇⟶ℝ)
fmuldfeq.11 ((𝜑𝑓𝑌𝑔𝑌) → (𝑡𝑇 ↦ ((𝑓𝑡) · (𝑔𝑡))) ∈ 𝑌)
Assertion
Ref Expression
fmuldfeq ((𝜑𝑡𝑇) → (𝑋𝑡) = (𝑍𝑡))
Distinct variable groups:   𝑡,𝑇   𝑓,𝑔,𝑡,𝑇   𝑓,𝑖,𝑡,𝑇   𝑓,𝐹,𝑔   𝑓,𝑀,𝑔   𝑈,𝑓,𝑔,𝑡   𝑓,𝑌,𝑔   𝜑,𝑓,𝑔   𝑖,𝑀   𝑈,𝑖
Allowed substitution hints:   𝜑(𝑡,𝑖)   𝑃(𝑡,𝑓,𝑔,𝑖)   𝐹(𝑡,𝑖)   𝑀(𝑡)   𝑋(𝑡,𝑓,𝑔,𝑖)   𝑌(𝑡,𝑖)   𝑍(𝑡,𝑓,𝑔,𝑖)

Proof of Theorem fmuldfeq
Dummy variables 𝑘 𝑏 𝑛 𝑚 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 1zzd 12281 . . . 4 ((𝜑𝑡𝑇) → 1 ∈ ℤ)
2 fmuldfeq.8 . . . . . 6 (𝜑𝑀 ∈ ℕ)
32nnzd 12354 . . . . 5 (𝜑𝑀 ∈ ℤ)
43adantr 480 . . . 4 ((𝜑𝑡𝑇) → 𝑀 ∈ ℤ)
52nnge1d 11951 . . . . 5 (𝜑 → 1 ≤ 𝑀)
65adantr 480 . . . 4 ((𝜑𝑡𝑇) → 1 ≤ 𝑀)
7 nnre 11910 . . . . . 6 (𝑀 ∈ ℕ → 𝑀 ∈ ℝ)
8 leid 11001 . . . . . 6 (𝑀 ∈ ℝ → 𝑀𝑀)
92, 7, 83syl 18 . . . . 5 (𝜑𝑀𝑀)
109adantr 480 . . . 4 ((𝜑𝑡𝑇) → 𝑀𝑀)
111, 4, 4, 6, 10elfzd 13176 . . 3 ((𝜑𝑡𝑇) → 𝑀 ∈ (1...𝑀))
1223ad2ant1 1131 . . . 4 ((𝜑𝑡𝑇𝑀 ∈ (1...𝑀)) → 𝑀 ∈ ℕ)
13 eleq1 2826 . . . . . . 7 (𝑚 = 1 → (𝑚 ∈ (1...𝑀) ↔ 1 ∈ (1...𝑀)))
14133anbi3d 1440 . . . . . 6 (𝑚 = 1 → ((𝜑𝑡𝑇𝑚 ∈ (1...𝑀)) ↔ (𝜑𝑡𝑇 ∧ 1 ∈ (1...𝑀))))
15 fveq2 6756 . . . . . . . 8 (𝑚 = 1 → (seq1(𝑃, 𝑈)‘𝑚) = (seq1(𝑃, 𝑈)‘1))
1615fveq1d 6758 . . . . . . 7 (𝑚 = 1 → ((seq1(𝑃, 𝑈)‘𝑚)‘𝑡) = ((seq1(𝑃, 𝑈)‘1)‘𝑡))
17 fveq2 6756 . . . . . . 7 (𝑚 = 1 → (seq1( · , (𝐹𝑡))‘𝑚) = (seq1( · , (𝐹𝑡))‘1))
1816, 17eqeq12d 2754 . . . . . 6 (𝑚 = 1 → (((seq1(𝑃, 𝑈)‘𝑚)‘𝑡) = (seq1( · , (𝐹𝑡))‘𝑚) ↔ ((seq1(𝑃, 𝑈)‘1)‘𝑡) = (seq1( · , (𝐹𝑡))‘1)))
1914, 18imbi12d 344 . . . . 5 (𝑚 = 1 → (((𝜑𝑡𝑇𝑚 ∈ (1...𝑀)) → ((seq1(𝑃, 𝑈)‘𝑚)‘𝑡) = (seq1( · , (𝐹𝑡))‘𝑚)) ↔ ((𝜑𝑡𝑇 ∧ 1 ∈ (1...𝑀)) → ((seq1(𝑃, 𝑈)‘1)‘𝑡) = (seq1( · , (𝐹𝑡))‘1))))
20 eleq1 2826 . . . . . . 7 (𝑚 = 𝑛 → (𝑚 ∈ (1...𝑀) ↔ 𝑛 ∈ (1...𝑀)))
21203anbi3d 1440 . . . . . 6 (𝑚 = 𝑛 → ((𝜑𝑡𝑇𝑚 ∈ (1...𝑀)) ↔ (𝜑𝑡𝑇𝑛 ∈ (1...𝑀))))
22 fveq2 6756 . . . . . . . 8 (𝑚 = 𝑛 → (seq1(𝑃, 𝑈)‘𝑚) = (seq1(𝑃, 𝑈)‘𝑛))
2322fveq1d 6758 . . . . . . 7 (𝑚 = 𝑛 → ((seq1(𝑃, 𝑈)‘𝑚)‘𝑡) = ((seq1(𝑃, 𝑈)‘𝑛)‘𝑡))
24 fveq2 6756 . . . . . . 7 (𝑚 = 𝑛 → (seq1( · , (𝐹𝑡))‘𝑚) = (seq1( · , (𝐹𝑡))‘𝑛))
2523, 24eqeq12d 2754 . . . . . 6 (𝑚 = 𝑛 → (((seq1(𝑃, 𝑈)‘𝑚)‘𝑡) = (seq1( · , (𝐹𝑡))‘𝑚) ↔ ((seq1(𝑃, 𝑈)‘𝑛)‘𝑡) = (seq1( · , (𝐹𝑡))‘𝑛)))
2621, 25imbi12d 344 . . . . 5 (𝑚 = 𝑛 → (((𝜑𝑡𝑇𝑚 ∈ (1...𝑀)) → ((seq1(𝑃, 𝑈)‘𝑚)‘𝑡) = (seq1( · , (𝐹𝑡))‘𝑚)) ↔ ((𝜑𝑡𝑇𝑛 ∈ (1...𝑀)) → ((seq1(𝑃, 𝑈)‘𝑛)‘𝑡) = (seq1( · , (𝐹𝑡))‘𝑛))))
27 eleq1 2826 . . . . . . 7 (𝑚 = (𝑛 + 1) → (𝑚 ∈ (1...𝑀) ↔ (𝑛 + 1) ∈ (1...𝑀)))
28273anbi3d 1440 . . . . . 6 (𝑚 = (𝑛 + 1) → ((𝜑𝑡𝑇𝑚 ∈ (1...𝑀)) ↔ (𝜑𝑡𝑇 ∧ (𝑛 + 1) ∈ (1...𝑀))))
29 fveq2 6756 . . . . . . . 8 (𝑚 = (𝑛 + 1) → (seq1(𝑃, 𝑈)‘𝑚) = (seq1(𝑃, 𝑈)‘(𝑛 + 1)))
3029fveq1d 6758 . . . . . . 7 (𝑚 = (𝑛 + 1) → ((seq1(𝑃, 𝑈)‘𝑚)‘𝑡) = ((seq1(𝑃, 𝑈)‘(𝑛 + 1))‘𝑡))
31 fveq2 6756 . . . . . . 7 (𝑚 = (𝑛 + 1) → (seq1( · , (𝐹𝑡))‘𝑚) = (seq1( · , (𝐹𝑡))‘(𝑛 + 1)))
3230, 31eqeq12d 2754 . . . . . 6 (𝑚 = (𝑛 + 1) → (((seq1(𝑃, 𝑈)‘𝑚)‘𝑡) = (seq1( · , (𝐹𝑡))‘𝑚) ↔ ((seq1(𝑃, 𝑈)‘(𝑛 + 1))‘𝑡) = (seq1( · , (𝐹𝑡))‘(𝑛 + 1))))
3328, 32imbi12d 344 . . . . 5 (𝑚 = (𝑛 + 1) → (((𝜑𝑡𝑇𝑚 ∈ (1...𝑀)) → ((seq1(𝑃, 𝑈)‘𝑚)‘𝑡) = (seq1( · , (𝐹𝑡))‘𝑚)) ↔ ((𝜑𝑡𝑇 ∧ (𝑛 + 1) ∈ (1...𝑀)) → ((seq1(𝑃, 𝑈)‘(𝑛 + 1))‘𝑡) = (seq1( · , (𝐹𝑡))‘(𝑛 + 1)))))
34 eleq1 2826 . . . . . . 7 (𝑚 = 𝑀 → (𝑚 ∈ (1...𝑀) ↔ 𝑀 ∈ (1...𝑀)))
35343anbi3d 1440 . . . . . 6 (𝑚 = 𝑀 → ((𝜑𝑡𝑇𝑚 ∈ (1...𝑀)) ↔ (𝜑𝑡𝑇𝑀 ∈ (1...𝑀))))
36 fveq2 6756 . . . . . . . 8 (𝑚 = 𝑀 → (seq1(𝑃, 𝑈)‘𝑚) = (seq1(𝑃, 𝑈)‘𝑀))
3736fveq1d 6758 . . . . . . 7 (𝑚 = 𝑀 → ((seq1(𝑃, 𝑈)‘𝑚)‘𝑡) = ((seq1(𝑃, 𝑈)‘𝑀)‘𝑡))
38 fveq2 6756 . . . . . . 7 (𝑚 = 𝑀 → (seq1( · , (𝐹𝑡))‘𝑚) = (seq1( · , (𝐹𝑡))‘𝑀))
3937, 38eqeq12d 2754 . . . . . 6 (𝑚 = 𝑀 → (((seq1(𝑃, 𝑈)‘𝑚)‘𝑡) = (seq1( · , (𝐹𝑡))‘𝑚) ↔ ((seq1(𝑃, 𝑈)‘𝑀)‘𝑡) = (seq1( · , (𝐹𝑡))‘𝑀)))
4035, 39imbi12d 344 . . . . 5 (𝑚 = 𝑀 → (((𝜑𝑡𝑇𝑚 ∈ (1...𝑀)) → ((seq1(𝑃, 𝑈)‘𝑚)‘𝑡) = (seq1( · , (𝐹𝑡))‘𝑚)) ↔ ((𝜑𝑡𝑇𝑀 ∈ (1...𝑀)) → ((seq1(𝑃, 𝑈)‘𝑀)‘𝑡) = (seq1( · , (𝐹𝑡))‘𝑀))))
41 1z 12280 . . . . . . . 8 1 ∈ ℤ
42 seq1 13662 . . . . . . . 8 (1 ∈ ℤ → (seq1( · , (𝐹𝑡))‘1) = ((𝐹𝑡)‘1))
4341, 42ax-mp 5 . . . . . . 7 (seq1( · , (𝐹𝑡))‘1) = ((𝐹𝑡)‘1)
44 1zzd 12281 . . . . . . . . . . . 12 (𝜑 → 1 ∈ ℤ)
45 1le1 11533 . . . . . . . . . . . . 13 1 ≤ 1
4645a1i 11 . . . . . . . . . . . 12 (𝜑 → 1 ≤ 1)
4744, 3, 44, 46, 5elfzd 13176 . . . . . . . . . . 11 (𝜑 → 1 ∈ (1...𝑀))
48 nfv 1918 . . . . . . . . . . . . 13 𝑖 𝑡𝑇
49 fmuldfeq.5 . . . . . . . . . . . . . . . . 17 𝐹 = (𝑡𝑇 ↦ (𝑖 ∈ (1...𝑀) ↦ ((𝑈𝑖)‘𝑡)))
50 nfcv 2906 . . . . . . . . . . . . . . . . . 18 𝑖𝑇
51 nfmpt1 5178 . . . . . . . . . . . . . . . . . 18 𝑖(𝑖 ∈ (1...𝑀) ↦ ((𝑈𝑖)‘𝑡))
5250, 51nfmpt 5177 . . . . . . . . . . . . . . . . 17 𝑖(𝑡𝑇 ↦ (𝑖 ∈ (1...𝑀) ↦ ((𝑈𝑖)‘𝑡)))
5349, 52nfcxfr 2904 . . . . . . . . . . . . . . . 16 𝑖𝐹
54 nfcv 2906 . . . . . . . . . . . . . . . 16 𝑖𝑡
5553, 54nffv 6766 . . . . . . . . . . . . . . 15 𝑖(𝐹𝑡)
56 nfcv 2906 . . . . . . . . . . . . . . 15 𝑖1
5755, 56nffv 6766 . . . . . . . . . . . . . 14 𝑖((𝐹𝑡)‘1)
58 nffvmpt1 6767 . . . . . . . . . . . . . 14 𝑖((𝑖 ∈ (1...𝑀) ↦ ((𝑈𝑖)‘𝑡))‘1)
5957, 58nfeq 2919 . . . . . . . . . . . . 13 𝑖((𝐹𝑡)‘1) = ((𝑖 ∈ (1...𝑀) ↦ ((𝑈𝑖)‘𝑡))‘1)
6048, 59nfim 1900 . . . . . . . . . . . 12 𝑖(𝑡𝑇 → ((𝐹𝑡)‘1) = ((𝑖 ∈ (1...𝑀) ↦ ((𝑈𝑖)‘𝑡))‘1))
61 fveq2 6756 . . . . . . . . . . . . . 14 (𝑖 = 1 → ((𝐹𝑡)‘𝑖) = ((𝐹𝑡)‘1))
62 fveq2 6756 . . . . . . . . . . . . . 14 (𝑖 = 1 → ((𝑖 ∈ (1...𝑀) ↦ ((𝑈𝑖)‘𝑡))‘𝑖) = ((𝑖 ∈ (1...𝑀) ↦ ((𝑈𝑖)‘𝑡))‘1))
6361, 62eqeq12d 2754 . . . . . . . . . . . . 13 (𝑖 = 1 → (((𝐹𝑡)‘𝑖) = ((𝑖 ∈ (1...𝑀) ↦ ((𝑈𝑖)‘𝑡))‘𝑖) ↔ ((𝐹𝑡)‘1) = ((𝑖 ∈ (1...𝑀) ↦ ((𝑈𝑖)‘𝑡))‘1)))
6463imbi2d 340 . . . . . . . . . . . 12 (𝑖 = 1 → ((𝑡𝑇 → ((𝐹𝑡)‘𝑖) = ((𝑖 ∈ (1...𝑀) ↦ ((𝑈𝑖)‘𝑡))‘𝑖)) ↔ (𝑡𝑇 → ((𝐹𝑡)‘1) = ((𝑖 ∈ (1...𝑀) ↦ ((𝑈𝑖)‘𝑡))‘1))))
65 ovex 7288 . . . . . . . . . . . . . . 15 (1...𝑀) ∈ V
6665mptex 7081 . . . . . . . . . . . . . 14 (𝑖 ∈ (1...𝑀) ↦ ((𝑈𝑖)‘𝑡)) ∈ V
6749fvmpt2 6868 . . . . . . . . . . . . . 14 ((𝑡𝑇 ∧ (𝑖 ∈ (1...𝑀) ↦ ((𝑈𝑖)‘𝑡)) ∈ V) → (𝐹𝑡) = (𝑖 ∈ (1...𝑀) ↦ ((𝑈𝑖)‘𝑡)))
6866, 67mpan2 687 . . . . . . . . . . . . 13 (𝑡𝑇 → (𝐹𝑡) = (𝑖 ∈ (1...𝑀) ↦ ((𝑈𝑖)‘𝑡)))
6968fveq1d 6758 . . . . . . . . . . . 12 (𝑡𝑇 → ((𝐹𝑡)‘𝑖) = ((𝑖 ∈ (1...𝑀) ↦ ((𝑈𝑖)‘𝑡))‘𝑖))
7060, 64, 69vtoclg1f 3494 . . . . . . . . . . 11 (1 ∈ (1...𝑀) → (𝑡𝑇 → ((𝐹𝑡)‘1) = ((𝑖 ∈ (1...𝑀) ↦ ((𝑈𝑖)‘𝑡))‘1)))
7147, 70syl 17 . . . . . . . . . 10 (𝜑 → (𝑡𝑇 → ((𝐹𝑡)‘1) = ((𝑖 ∈ (1...𝑀) ↦ ((𝑈𝑖)‘𝑡))‘1)))
7271imp 406 . . . . . . . . 9 ((𝜑𝑡𝑇) → ((𝐹𝑡)‘1) = ((𝑖 ∈ (1...𝑀) ↦ ((𝑈𝑖)‘𝑡))‘1))
73 eqid 2738 . . . . . . . . . 10 (𝑖 ∈ (1...𝑀) ↦ ((𝑈𝑖)‘𝑡)) = (𝑖 ∈ (1...𝑀) ↦ ((𝑈𝑖)‘𝑡))
74 fveq2 6756 . . . . . . . . . . 11 (𝑖 = 1 → (𝑈𝑖) = (𝑈‘1))
7574fveq1d 6758 . . . . . . . . . 10 (𝑖 = 1 → ((𝑈𝑖)‘𝑡) = ((𝑈‘1)‘𝑡))
7647adantr 480 . . . . . . . . . 10 ((𝜑𝑡𝑇) → 1 ∈ (1...𝑀))
77 fmuldfeq.9 . . . . . . . . . . . . 13 (𝜑𝑈:(1...𝑀)⟶𝑌)
7877, 47ffvelrnd 6944 . . . . . . . . . . . 12 (𝜑 → (𝑈‘1) ∈ 𝑌)
7978ancli 548 . . . . . . . . . . . 12 (𝜑 → (𝜑 ∧ (𝑈‘1) ∈ 𝑌))
80 eleq1 2826 . . . . . . . . . . . . . . 15 (𝑓 = (𝑈‘1) → (𝑓𝑌 ↔ (𝑈‘1) ∈ 𝑌))
8180anbi2d 628 . . . . . . . . . . . . . 14 (𝑓 = (𝑈‘1) → ((𝜑𝑓𝑌) ↔ (𝜑 ∧ (𝑈‘1) ∈ 𝑌)))
82 feq1 6565 . . . . . . . . . . . . . 14 (𝑓 = (𝑈‘1) → (𝑓:𝑇⟶ℝ ↔ (𝑈‘1):𝑇⟶ℝ))
8381, 82imbi12d 344 . . . . . . . . . . . . 13 (𝑓 = (𝑈‘1) → (((𝜑𝑓𝑌) → 𝑓:𝑇⟶ℝ) ↔ ((𝜑 ∧ (𝑈‘1) ∈ 𝑌) → (𝑈‘1):𝑇⟶ℝ)))
84 fmuldfeq.10 . . . . . . . . . . . . . 14 ((𝜑𝑓𝑌) → 𝑓:𝑇⟶ℝ)
8584a1i 11 . . . . . . . . . . . . 13 (𝑓𝑌 → ((𝜑𝑓𝑌) → 𝑓:𝑇⟶ℝ))
8683, 85vtoclga 3503 . . . . . . . . . . . 12 ((𝑈‘1) ∈ 𝑌 → ((𝜑 ∧ (𝑈‘1) ∈ 𝑌) → (𝑈‘1):𝑇⟶ℝ))
8778, 79, 86sylc 65 . . . . . . . . . . 11 (𝜑 → (𝑈‘1):𝑇⟶ℝ)
8887ffvelrnda 6943 . . . . . . . . . 10 ((𝜑𝑡𝑇) → ((𝑈‘1)‘𝑡) ∈ ℝ)
8973, 75, 76, 88fvmptd3 6880 . . . . . . . . 9 ((𝜑𝑡𝑇) → ((𝑖 ∈ (1...𝑀) ↦ ((𝑈𝑖)‘𝑡))‘1) = ((𝑈‘1)‘𝑡))
9072, 89eqtrd 2778 . . . . . . . 8 ((𝜑𝑡𝑇) → ((𝐹𝑡)‘1) = ((𝑈‘1)‘𝑡))
91 seq1 13662 . . . . . . . . . 10 (1 ∈ ℤ → (seq1(𝑃, 𝑈)‘1) = (𝑈‘1))
9241, 91ax-mp 5 . . . . . . . . 9 (seq1(𝑃, 𝑈)‘1) = (𝑈‘1)
9392fveq1i 6757 . . . . . . . 8 ((seq1(𝑃, 𝑈)‘1)‘𝑡) = ((𝑈‘1)‘𝑡)
9490, 93eqtr4di 2797 . . . . . . 7 ((𝜑𝑡𝑇) → ((𝐹𝑡)‘1) = ((seq1(𝑃, 𝑈)‘1)‘𝑡))
9543, 94eqtr2id 2792 . . . . . 6 ((𝜑𝑡𝑇) → ((seq1(𝑃, 𝑈)‘1)‘𝑡) = (seq1( · , (𝐹𝑡))‘1))
96953adant3 1130 . . . . 5 ((𝜑𝑡𝑇 ∧ 1 ∈ (1...𝑀)) → ((seq1(𝑃, 𝑈)‘1)‘𝑡) = (seq1( · , (𝐹𝑡))‘1))
97 simp31 1207 . . . . . . 7 ((𝑛 ∈ ℕ ∧ ((𝜑𝑡𝑇𝑛 ∈ (1...𝑀)) → ((seq1(𝑃, 𝑈)‘𝑛)‘𝑡) = (seq1( · , (𝐹𝑡))‘𝑛)) ∧ (𝜑𝑡𝑇 ∧ (𝑛 + 1) ∈ (1...𝑀))) → 𝜑)
98 simp1 1134 . . . . . . . . . 10 ((𝑛 ∈ ℕ ∧ ((𝜑𝑡𝑇𝑛 ∈ (1...𝑀)) → ((seq1(𝑃, 𝑈)‘𝑛)‘𝑡) = (seq1( · , (𝐹𝑡))‘𝑛)) ∧ (𝜑𝑡𝑇 ∧ (𝑛 + 1) ∈ (1...𝑀))) → 𝑛 ∈ ℕ)
99 simp33 1209 . . . . . . . . . 10 ((𝑛 ∈ ℕ ∧ ((𝜑𝑡𝑇𝑛 ∈ (1...𝑀)) → ((seq1(𝑃, 𝑈)‘𝑛)‘𝑡) = (seq1( · , (𝐹𝑡))‘𝑛)) ∧ (𝜑𝑡𝑇 ∧ (𝑛 + 1) ∈ (1...𝑀))) → (𝑛 + 1) ∈ (1...𝑀))
10098, 99jca 511 . . . . . . . . 9 ((𝑛 ∈ ℕ ∧ ((𝜑𝑡𝑇𝑛 ∈ (1...𝑀)) → ((seq1(𝑃, 𝑈)‘𝑛)‘𝑡) = (seq1( · , (𝐹𝑡))‘𝑛)) ∧ (𝜑𝑡𝑇 ∧ (𝑛 + 1) ∈ (1...𝑀))) → (𝑛 ∈ ℕ ∧ (𝑛 + 1) ∈ (1...𝑀)))
101 elnnuz 12551 . . . . . . . . . . 11 (𝑛 ∈ ℕ ↔ 𝑛 ∈ (ℤ‘1))
102101biimpi 215 . . . . . . . . . 10 (𝑛 ∈ ℕ → 𝑛 ∈ (ℤ‘1))
103102anim1i 614 . . . . . . . . 9 ((𝑛 ∈ ℕ ∧ (𝑛 + 1) ∈ (1...𝑀)) → (𝑛 ∈ (ℤ‘1) ∧ (𝑛 + 1) ∈ (1...𝑀)))
104 peano2fzr 13198 . . . . . . . . 9 ((𝑛 ∈ (ℤ‘1) ∧ (𝑛 + 1) ∈ (1...𝑀)) → 𝑛 ∈ (1...𝑀))
105100, 103, 1043syl 18 . . . . . . . 8 ((𝑛 ∈ ℕ ∧ ((𝜑𝑡𝑇𝑛 ∈ (1...𝑀)) → ((seq1(𝑃, 𝑈)‘𝑛)‘𝑡) = (seq1( · , (𝐹𝑡))‘𝑛)) ∧ (𝜑𝑡𝑇 ∧ (𝑛 + 1) ∈ (1...𝑀))) → 𝑛 ∈ (1...𝑀))
106 simp32 1208 . . . . . . . . 9 ((𝑛 ∈ ℕ ∧ ((𝜑𝑡𝑇𝑛 ∈ (1...𝑀)) → ((seq1(𝑃, 𝑈)‘𝑛)‘𝑡) = (seq1( · , (𝐹𝑡))‘𝑛)) ∧ (𝜑𝑡𝑇 ∧ (𝑛 + 1) ∈ (1...𝑀))) → 𝑡𝑇)
107 simp2 1135 . . . . . . . . 9 ((𝑛 ∈ ℕ ∧ ((𝜑𝑡𝑇𝑛 ∈ (1...𝑀)) → ((seq1(𝑃, 𝑈)‘𝑛)‘𝑡) = (seq1( · , (𝐹𝑡))‘𝑛)) ∧ (𝜑𝑡𝑇 ∧ (𝑛 + 1) ∈ (1...𝑀))) → ((𝜑𝑡𝑇𝑛 ∈ (1...𝑀)) → ((seq1(𝑃, 𝑈)‘𝑛)‘𝑡) = (seq1( · , (𝐹𝑡))‘𝑛)))
10897, 106, 105, 107mp3and 1462 . . . . . . . 8 ((𝑛 ∈ ℕ ∧ ((𝜑𝑡𝑇𝑛 ∈ (1...𝑀)) → ((seq1(𝑃, 𝑈)‘𝑛)‘𝑡) = (seq1( · , (𝐹𝑡))‘𝑛)) ∧ (𝜑𝑡𝑇 ∧ (𝑛 + 1) ∈ (1...𝑀))) → ((seq1(𝑃, 𝑈)‘𝑛)‘𝑡) = (seq1( · , (𝐹𝑡))‘𝑛))
109105, 99, 1083jca 1126 . . . . . . 7 ((𝑛 ∈ ℕ ∧ ((𝜑𝑡𝑇𝑛 ∈ (1...𝑀)) → ((seq1(𝑃, 𝑈)‘𝑛)‘𝑡) = (seq1( · , (𝐹𝑡))‘𝑛)) ∧ (𝜑𝑡𝑇 ∧ (𝑛 + 1) ∈ (1...𝑀))) → (𝑛 ∈ (1...𝑀) ∧ (𝑛 + 1) ∈ (1...𝑀) ∧ ((seq1(𝑃, 𝑈)‘𝑛)‘𝑡) = (seq1( · , (𝐹𝑡))‘𝑛)))
110 nfv 1918 . . . . . . . . 9 𝑓𝜑
111 nfv 1918 . . . . . . . . . 10 𝑓 𝑛 ∈ (1...𝑀)
112 nfv 1918 . . . . . . . . . 10 𝑓(𝑛 + 1) ∈ (1...𝑀)
113 nfcv 2906 . . . . . . . . . . . . . 14 𝑓1
114 fmuldfeq.3 . . . . . . . . . . . . . . 15 𝑃 = (𝑓𝑌, 𝑔𝑌 ↦ (𝑡𝑇 ↦ ((𝑓𝑡) · (𝑔𝑡))))
115 nfmpo1 7333 . . . . . . . . . . . . . . 15 𝑓(𝑓𝑌, 𝑔𝑌 ↦ (𝑡𝑇 ↦ ((𝑓𝑡) · (𝑔𝑡))))
116114, 115nfcxfr 2904 . . . . . . . . . . . . . 14 𝑓𝑃
117 nfcv 2906 . . . . . . . . . . . . . 14 𝑓𝑈
118113, 116, 117nfseq 13659 . . . . . . . . . . . . 13 𝑓seq1(𝑃, 𝑈)
119 nfcv 2906 . . . . . . . . . . . . 13 𝑓𝑛
120118, 119nffv 6766 . . . . . . . . . . . 12 𝑓(seq1(𝑃, 𝑈)‘𝑛)
121 nfcv 2906 . . . . . . . . . . . 12 𝑓𝑡
122120, 121nffv 6766 . . . . . . . . . . 11 𝑓((seq1(𝑃, 𝑈)‘𝑛)‘𝑡)
123 nfcv 2906 . . . . . . . . . . 11 𝑓(seq1( · , (𝐹𝑡))‘𝑛)
124122, 123nfeq 2919 . . . . . . . . . 10 𝑓((seq1(𝑃, 𝑈)‘𝑛)‘𝑡) = (seq1( · , (𝐹𝑡))‘𝑛)
125111, 112, 124nf3an 1905 . . . . . . . . 9 𝑓(𝑛 ∈ (1...𝑀) ∧ (𝑛 + 1) ∈ (1...𝑀) ∧ ((seq1(𝑃, 𝑈)‘𝑛)‘𝑡) = (seq1( · , (𝐹𝑡))‘𝑛))
126110, 125nfan 1903 . . . . . . . 8 𝑓(𝜑 ∧ (𝑛 ∈ (1...𝑀) ∧ (𝑛 + 1) ∈ (1...𝑀) ∧ ((seq1(𝑃, 𝑈)‘𝑛)‘𝑡) = (seq1( · , (𝐹𝑡))‘𝑛)))
127 nfv 1918 . . . . . . . . 9 𝑔𝜑
128 nfv 1918 . . . . . . . . . 10 𝑔 𝑛 ∈ (1...𝑀)
129 nfv 1918 . . . . . . . . . 10 𝑔(𝑛 + 1) ∈ (1...𝑀)
130 nfcv 2906 . . . . . . . . . . . . . 14 𝑔1
131 nfmpo2 7334 . . . . . . . . . . . . . . 15 𝑔(𝑓𝑌, 𝑔𝑌 ↦ (𝑡𝑇 ↦ ((𝑓𝑡) · (𝑔𝑡))))
132114, 131nfcxfr 2904 . . . . . . . . . . . . . 14 𝑔𝑃
133 nfcv 2906 . . . . . . . . . . . . . 14 𝑔𝑈
134130, 132, 133nfseq 13659 . . . . . . . . . . . . 13 𝑔seq1(𝑃, 𝑈)
135 nfcv 2906 . . . . . . . . . . . . 13 𝑔𝑛
136134, 135nffv 6766 . . . . . . . . . . . 12 𝑔(seq1(𝑃, 𝑈)‘𝑛)
137 nfcv 2906 . . . . . . . . . . . 12 𝑔𝑡
138136, 137nffv 6766 . . . . . . . . . . 11 𝑔((seq1(𝑃, 𝑈)‘𝑛)‘𝑡)
139 nfcv 2906 . . . . . . . . . . 11 𝑔(seq1( · , (𝐹𝑡))‘𝑛)
140138, 139nfeq 2919 . . . . . . . . . 10 𝑔((seq1(𝑃, 𝑈)‘𝑛)‘𝑡) = (seq1( · , (𝐹𝑡))‘𝑛)
141128, 129, 140nf3an 1905 . . . . . . . . 9 𝑔(𝑛 ∈ (1...𝑀) ∧ (𝑛 + 1) ∈ (1...𝑀) ∧ ((seq1(𝑃, 𝑈)‘𝑛)‘𝑡) = (seq1( · , (𝐹𝑡))‘𝑛))
142127, 141nfan 1903 . . . . . . . 8 𝑔(𝜑 ∧ (𝑛 ∈ (1...𝑀) ∧ (𝑛 + 1) ∈ (1...𝑀) ∧ ((seq1(𝑃, 𝑈)‘𝑛)‘𝑡) = (seq1( · , (𝐹𝑡))‘𝑛)))
143 fmuldfeq.2 . . . . . . . 8 𝑡𝑌
144 fmuldfeq.7 . . . . . . . . 9 (𝜑𝑇 ∈ V)
145144adantr 480 . . . . . . . 8 ((𝜑 ∧ (𝑛 ∈ (1...𝑀) ∧ (𝑛 + 1) ∈ (1...𝑀) ∧ ((seq1(𝑃, 𝑈)‘𝑛)‘𝑡) = (seq1( · , (𝐹𝑡))‘𝑛))) → 𝑇 ∈ V)
14677adantr 480 . . . . . . . 8 ((𝜑 ∧ (𝑛 ∈ (1...𝑀) ∧ (𝑛 + 1) ∈ (1...𝑀) ∧ ((seq1(𝑃, 𝑈)‘𝑛)‘𝑡) = (seq1( · , (𝐹𝑡))‘𝑛))) → 𝑈:(1...𝑀)⟶𝑌)
147 fmuldfeq.11 . . . . . . . . 9 ((𝜑𝑓𝑌𝑔𝑌) → (𝑡𝑇 ↦ ((𝑓𝑡) · (𝑔𝑡))) ∈ 𝑌)
1481473adant1r 1175 . . . . . . . 8 (((𝜑 ∧ (𝑛 ∈ (1...𝑀) ∧ (𝑛 + 1) ∈ (1...𝑀) ∧ ((seq1(𝑃, 𝑈)‘𝑛)‘𝑡) = (seq1( · , (𝐹𝑡))‘𝑛))) ∧ 𝑓𝑌𝑔𝑌) → (𝑡𝑇 ↦ ((𝑓𝑡) · (𝑔𝑡))) ∈ 𝑌)
149 simpr1 1192 . . . . . . . 8 ((𝜑 ∧ (𝑛 ∈ (1...𝑀) ∧ (𝑛 + 1) ∈ (1...𝑀) ∧ ((seq1(𝑃, 𝑈)‘𝑛)‘𝑡) = (seq1( · , (𝐹𝑡))‘𝑛))) → 𝑛 ∈ (1...𝑀))
150 simpr2 1193 . . . . . . . 8 ((𝜑 ∧ (𝑛 ∈ (1...𝑀) ∧ (𝑛 + 1) ∈ (1...𝑀) ∧ ((seq1(𝑃, 𝑈)‘𝑛)‘𝑡) = (seq1( · , (𝐹𝑡))‘𝑛))) → (𝑛 + 1) ∈ (1...𝑀))
151 simpr3 1194 . . . . . . . 8 ((𝜑 ∧ (𝑛 ∈ (1...𝑀) ∧ (𝑛 + 1) ∈ (1...𝑀) ∧ ((seq1(𝑃, 𝑈)‘𝑛)‘𝑡) = (seq1( · , (𝐹𝑡))‘𝑛))) → ((seq1(𝑃, 𝑈)‘𝑛)‘𝑡) = (seq1( · , (𝐹𝑡))‘𝑛))
15284adantlr 711 . . . . . . . 8 (((𝜑 ∧ (𝑛 ∈ (1...𝑀) ∧ (𝑛 + 1) ∈ (1...𝑀) ∧ ((seq1(𝑃, 𝑈)‘𝑛)‘𝑡) = (seq1( · , (𝐹𝑡))‘𝑛))) ∧ 𝑓𝑌) → 𝑓:𝑇⟶ℝ)
153126, 142, 143, 114, 49, 145, 146, 148, 149, 150, 151, 152fmuldfeqlem1 43013 . . . . . . 7 (((𝜑 ∧ (𝑛 ∈ (1...𝑀) ∧ (𝑛 + 1) ∈ (1...𝑀) ∧ ((seq1(𝑃, 𝑈)‘𝑛)‘𝑡) = (seq1( · , (𝐹𝑡))‘𝑛))) ∧ 𝑡𝑇) → ((seq1(𝑃, 𝑈)‘(𝑛 + 1))‘𝑡) = (seq1( · , (𝐹𝑡))‘(𝑛 + 1)))
15497, 109, 106, 153syl21anc 834 . . . . . 6 ((𝑛 ∈ ℕ ∧ ((𝜑𝑡𝑇𝑛 ∈ (1...𝑀)) → ((seq1(𝑃, 𝑈)‘𝑛)‘𝑡) = (seq1( · , (𝐹𝑡))‘𝑛)) ∧ (𝜑𝑡𝑇 ∧ (𝑛 + 1) ∈ (1...𝑀))) → ((seq1(𝑃, 𝑈)‘(𝑛 + 1))‘𝑡) = (seq1( · , (𝐹𝑡))‘(𝑛 + 1)))
1551543exp 1117 . . . . 5 (𝑛 ∈ ℕ → (((𝜑𝑡𝑇𝑛 ∈ (1...𝑀)) → ((seq1(𝑃, 𝑈)‘𝑛)‘𝑡) = (seq1( · , (𝐹𝑡))‘𝑛)) → ((𝜑𝑡𝑇 ∧ (𝑛 + 1) ∈ (1...𝑀)) → ((seq1(𝑃, 𝑈)‘(𝑛 + 1))‘𝑡) = (seq1( · , (𝐹𝑡))‘(𝑛 + 1)))))
15619, 26, 33, 40, 96, 155nnind 11921 . . . 4 (𝑀 ∈ ℕ → ((𝜑𝑡𝑇𝑀 ∈ (1...𝑀)) → ((seq1(𝑃, 𝑈)‘𝑀)‘𝑡) = (seq1( · , (𝐹𝑡))‘𝑀)))
15712, 156mpcom 38 . . 3 ((𝜑𝑡𝑇𝑀 ∈ (1...𝑀)) → ((seq1(𝑃, 𝑈)‘𝑀)‘𝑡) = (seq1( · , (𝐹𝑡))‘𝑀))
15811, 157mpd3an3 1460 . 2 ((𝜑𝑡𝑇) → ((seq1(𝑃, 𝑈)‘𝑀)‘𝑡) = (seq1( · , (𝐹𝑡))‘𝑀))
159 fmuldfeq.4 . . . 4 𝑋 = (seq1(𝑃, 𝑈)‘𝑀)
160159fveq1i 6757 . . 3 (𝑋𝑡) = ((seq1(𝑃, 𝑈)‘𝑀)‘𝑡)
161160a1i 11 . 2 ((𝜑𝑡𝑇) → (𝑋𝑡) = ((seq1(𝑃, 𝑈)‘𝑀)‘𝑡))
162 simpr 484 . . 3 ((𝜑𝑡𝑇) → 𝑡𝑇)
163 elnnuz 12551 . . . . . 6 (𝑀 ∈ ℕ ↔ 𝑀 ∈ (ℤ‘1))
1642, 163sylib 217 . . . . 5 (𝜑𝑀 ∈ (ℤ‘1))
165164adantr 480 . . . 4 ((𝜑𝑡𝑇) → 𝑀 ∈ (ℤ‘1))
166 fmuldfeq.1 . . . . . . . 8 𝑖𝜑
167166, 48nfan 1903 . . . . . . 7 𝑖(𝜑𝑡𝑇)
168 nfv 1918 . . . . . . 7 𝑖 𝑘 ∈ (1...𝑀)
169167, 168nfan 1903 . . . . . 6 𝑖((𝜑𝑡𝑇) ∧ 𝑘 ∈ (1...𝑀))
170 nfcv 2906 . . . . . . . 8 𝑖𝑘
17155, 170nffv 6766 . . . . . . 7 𝑖((𝐹𝑡)‘𝑘)
172171nfel1 2922 . . . . . 6 𝑖((𝐹𝑡)‘𝑘) ∈ ℝ
173169, 172nfim 1900 . . . . 5 𝑖(((𝜑𝑡𝑇) ∧ 𝑘 ∈ (1...𝑀)) → ((𝐹𝑡)‘𝑘) ∈ ℝ)
174 eleq1 2826 . . . . . . 7 (𝑖 = 𝑘 → (𝑖 ∈ (1...𝑀) ↔ 𝑘 ∈ (1...𝑀)))
175174anbi2d 628 . . . . . 6 (𝑖 = 𝑘 → (((𝜑𝑡𝑇) ∧ 𝑖 ∈ (1...𝑀)) ↔ ((𝜑𝑡𝑇) ∧ 𝑘 ∈ (1...𝑀))))
176 fveq2 6756 . . . . . . 7 (𝑖 = 𝑘 → ((𝐹𝑡)‘𝑖) = ((𝐹𝑡)‘𝑘))
177176eleq1d 2823 . . . . . 6 (𝑖 = 𝑘 → (((𝐹𝑡)‘𝑖) ∈ ℝ ↔ ((𝐹𝑡)‘𝑘) ∈ ℝ))
178175, 177imbi12d 344 . . . . 5 (𝑖 = 𝑘 → ((((𝜑𝑡𝑇) ∧ 𝑖 ∈ (1...𝑀)) → ((𝐹𝑡)‘𝑖) ∈ ℝ) ↔ (((𝜑𝑡𝑇) ∧ 𝑘 ∈ (1...𝑀)) → ((𝐹𝑡)‘𝑘) ∈ ℝ)))
17969ad2antlr 723 . . . . . 6 (((𝜑𝑡𝑇) ∧ 𝑖 ∈ (1...𝑀)) → ((𝐹𝑡)‘𝑖) = ((𝑖 ∈ (1...𝑀) ↦ ((𝑈𝑖)‘𝑡))‘𝑖))
180 simpr 484 . . . . . . . 8 (((𝜑𝑡𝑇) ∧ 𝑖 ∈ (1...𝑀)) → 𝑖 ∈ (1...𝑀))
18177ffvelrnda 6943 . . . . . . . . . . 11 ((𝜑𝑖 ∈ (1...𝑀)) → (𝑈𝑖) ∈ 𝑌)
182 simpl 482 . . . . . . . . . . . 12 ((𝜑𝑖 ∈ (1...𝑀)) → 𝜑)
183182, 181jca 511 . . . . . . . . . . 11 ((𝜑𝑖 ∈ (1...𝑀)) → (𝜑 ∧ (𝑈𝑖) ∈ 𝑌))
184 eleq1 2826 . . . . . . . . . . . . . 14 (𝑓 = (𝑈𝑖) → (𝑓𝑌 ↔ (𝑈𝑖) ∈ 𝑌))
185184anbi2d 628 . . . . . . . . . . . . 13 (𝑓 = (𝑈𝑖) → ((𝜑𝑓𝑌) ↔ (𝜑 ∧ (𝑈𝑖) ∈ 𝑌)))
186 feq1 6565 . . . . . . . . . . . . 13 (𝑓 = (𝑈𝑖) → (𝑓:𝑇⟶ℝ ↔ (𝑈𝑖):𝑇⟶ℝ))
187185, 186imbi12d 344 . . . . . . . . . . . 12 (𝑓 = (𝑈𝑖) → (((𝜑𝑓𝑌) → 𝑓:𝑇⟶ℝ) ↔ ((𝜑 ∧ (𝑈𝑖) ∈ 𝑌) → (𝑈𝑖):𝑇⟶ℝ)))
188187, 85vtoclga 3503 . . . . . . . . . . 11 ((𝑈𝑖) ∈ 𝑌 → ((𝜑 ∧ (𝑈𝑖) ∈ 𝑌) → (𝑈𝑖):𝑇⟶ℝ))
189181, 183, 188sylc 65 . . . . . . . . . 10 ((𝜑𝑖 ∈ (1...𝑀)) → (𝑈𝑖):𝑇⟶ℝ)
190189adantlr 711 . . . . . . . . 9 (((𝜑𝑡𝑇) ∧ 𝑖 ∈ (1...𝑀)) → (𝑈𝑖):𝑇⟶ℝ)
191 simplr 765 . . . . . . . . 9 (((𝜑𝑡𝑇) ∧ 𝑖 ∈ (1...𝑀)) → 𝑡𝑇)
192190, 191ffvelrnd 6944 . . . . . . . 8 (((𝜑𝑡𝑇) ∧ 𝑖 ∈ (1...𝑀)) → ((𝑈𝑖)‘𝑡) ∈ ℝ)
19373fvmpt2 6868 . . . . . . . 8 ((𝑖 ∈ (1...𝑀) ∧ ((𝑈𝑖)‘𝑡) ∈ ℝ) → ((𝑖 ∈ (1...𝑀) ↦ ((𝑈𝑖)‘𝑡))‘𝑖) = ((𝑈𝑖)‘𝑡))
194180, 192, 193syl2anc 583 . . . . . . 7 (((𝜑𝑡𝑇) ∧ 𝑖 ∈ (1...𝑀)) → ((𝑖 ∈ (1...𝑀) ↦ ((𝑈𝑖)‘𝑡))‘𝑖) = ((𝑈𝑖)‘𝑡))
195194, 192eqeltrd 2839 . . . . . 6 (((𝜑𝑡𝑇) ∧ 𝑖 ∈ (1...𝑀)) → ((𝑖 ∈ (1...𝑀) ↦ ((𝑈𝑖)‘𝑡))‘𝑖) ∈ ℝ)
196179, 195eqeltrd 2839 . . . . 5 (((𝜑𝑡𝑇) ∧ 𝑖 ∈ (1...𝑀)) → ((𝐹𝑡)‘𝑖) ∈ ℝ)
197173, 178, 196chvarfv 2236 . . . 4 (((𝜑𝑡𝑇) ∧ 𝑘 ∈ (1...𝑀)) → ((𝐹𝑡)‘𝑘) ∈ ℝ)
198 remulcl 10887 . . . . 5 ((𝑘 ∈ ℝ ∧ 𝑏 ∈ ℝ) → (𝑘 · 𝑏) ∈ ℝ)
199198adantl 481 . . . 4 (((𝜑𝑡𝑇) ∧ (𝑘 ∈ ℝ ∧ 𝑏 ∈ ℝ)) → (𝑘 · 𝑏) ∈ ℝ)
200165, 197, 199seqcl 13671 . . 3 ((𝜑𝑡𝑇) → (seq1( · , (𝐹𝑡))‘𝑀) ∈ ℝ)
201 fmuldfeq.6 . . . 4 𝑍 = (𝑡𝑇 ↦ (seq1( · , (𝐹𝑡))‘𝑀))
202201fvmpt2 6868 . . 3 ((𝑡𝑇 ∧ (seq1( · , (𝐹𝑡))‘𝑀) ∈ ℝ) → (𝑍𝑡) = (seq1( · , (𝐹𝑡))‘𝑀))
203162, 200, 202syl2anc 583 . 2 ((𝜑𝑡𝑇) → (𝑍𝑡) = (seq1( · , (𝐹𝑡))‘𝑀))
204158, 161, 2033eqtr4d 2788 1 ((𝜑𝑡𝑇) → (𝑋𝑡) = (𝑍𝑡))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1085   = wceq 1539  wnf 1787  wcel 2108  wnfc 2886  Vcvv 3422   class class class wbr 5070  cmpt 5153  wf 6414  cfv 6418  (class class class)co 7255  cmpo 7257  cr 10801  1c1 10803   + caddc 10805   · cmul 10807  cle 10941  cn 11903  cz 12249  cuz 12511  ...cfz 13168  seqcseq 13649
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-om 7688  df-1st 7804  df-2nd 7805  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-er 8456  df-en 8692  df-dom 8693  df-sdom 8694  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-nn 11904  df-n0 12164  df-z 12250  df-uz 12512  df-fz 13169  df-seq 13650
This theorem is referenced by:  stoweidlem42  43473  stoweidlem48  43479
  Copyright terms: Public domain W3C validator