Step | Hyp | Ref
| Expression |
1 | | 1zzd 12281 |
. . . 4
⊢ ((𝜑 ∧ 𝑡 ∈ 𝑇) → 1 ∈ ℤ) |
2 | | fmuldfeq.8 |
. . . . . 6
⊢ (𝜑 → 𝑀 ∈ ℕ) |
3 | 2 | nnzd 12354 |
. . . . 5
⊢ (𝜑 → 𝑀 ∈ ℤ) |
4 | 3 | adantr 480 |
. . . 4
⊢ ((𝜑 ∧ 𝑡 ∈ 𝑇) → 𝑀 ∈ ℤ) |
5 | 2 | nnge1d 11951 |
. . . . 5
⊢ (𝜑 → 1 ≤ 𝑀) |
6 | 5 | adantr 480 |
. . . 4
⊢ ((𝜑 ∧ 𝑡 ∈ 𝑇) → 1 ≤ 𝑀) |
7 | | nnre 11910 |
. . . . . 6
⊢ (𝑀 ∈ ℕ → 𝑀 ∈
ℝ) |
8 | | leid 11001 |
. . . . . 6
⊢ (𝑀 ∈ ℝ → 𝑀 ≤ 𝑀) |
9 | 2, 7, 8 | 3syl 18 |
. . . . 5
⊢ (𝜑 → 𝑀 ≤ 𝑀) |
10 | 9 | adantr 480 |
. . . 4
⊢ ((𝜑 ∧ 𝑡 ∈ 𝑇) → 𝑀 ≤ 𝑀) |
11 | 1, 4, 4, 6, 10 | elfzd 13176 |
. . 3
⊢ ((𝜑 ∧ 𝑡 ∈ 𝑇) → 𝑀 ∈ (1...𝑀)) |
12 | 2 | 3ad2ant1 1131 |
. . . 4
⊢ ((𝜑 ∧ 𝑡 ∈ 𝑇 ∧ 𝑀 ∈ (1...𝑀)) → 𝑀 ∈ ℕ) |
13 | | eleq1 2826 |
. . . . . . 7
⊢ (𝑚 = 1 → (𝑚 ∈ (1...𝑀) ↔ 1 ∈ (1...𝑀))) |
14 | 13 | 3anbi3d 1440 |
. . . . . 6
⊢ (𝑚 = 1 → ((𝜑 ∧ 𝑡 ∈ 𝑇 ∧ 𝑚 ∈ (1...𝑀)) ↔ (𝜑 ∧ 𝑡 ∈ 𝑇 ∧ 1 ∈ (1...𝑀)))) |
15 | | fveq2 6756 |
. . . . . . . 8
⊢ (𝑚 = 1 → (seq1(𝑃, 𝑈)‘𝑚) = (seq1(𝑃, 𝑈)‘1)) |
16 | 15 | fveq1d 6758 |
. . . . . . 7
⊢ (𝑚 = 1 → ((seq1(𝑃, 𝑈)‘𝑚)‘𝑡) = ((seq1(𝑃, 𝑈)‘1)‘𝑡)) |
17 | | fveq2 6756 |
. . . . . . 7
⊢ (𝑚 = 1 → (seq1( · ,
(𝐹‘𝑡))‘𝑚) = (seq1( · , (𝐹‘𝑡))‘1)) |
18 | 16, 17 | eqeq12d 2754 |
. . . . . 6
⊢ (𝑚 = 1 → (((seq1(𝑃, 𝑈)‘𝑚)‘𝑡) = (seq1( · , (𝐹‘𝑡))‘𝑚) ↔ ((seq1(𝑃, 𝑈)‘1)‘𝑡) = (seq1( · , (𝐹‘𝑡))‘1))) |
19 | 14, 18 | imbi12d 344 |
. . . . 5
⊢ (𝑚 = 1 → (((𝜑 ∧ 𝑡 ∈ 𝑇 ∧ 𝑚 ∈ (1...𝑀)) → ((seq1(𝑃, 𝑈)‘𝑚)‘𝑡) = (seq1( · , (𝐹‘𝑡))‘𝑚)) ↔ ((𝜑 ∧ 𝑡 ∈ 𝑇 ∧ 1 ∈ (1...𝑀)) → ((seq1(𝑃, 𝑈)‘1)‘𝑡) = (seq1( · , (𝐹‘𝑡))‘1)))) |
20 | | eleq1 2826 |
. . . . . . 7
⊢ (𝑚 = 𝑛 → (𝑚 ∈ (1...𝑀) ↔ 𝑛 ∈ (1...𝑀))) |
21 | 20 | 3anbi3d 1440 |
. . . . . 6
⊢ (𝑚 = 𝑛 → ((𝜑 ∧ 𝑡 ∈ 𝑇 ∧ 𝑚 ∈ (1...𝑀)) ↔ (𝜑 ∧ 𝑡 ∈ 𝑇 ∧ 𝑛 ∈ (1...𝑀)))) |
22 | | fveq2 6756 |
. . . . . . . 8
⊢ (𝑚 = 𝑛 → (seq1(𝑃, 𝑈)‘𝑚) = (seq1(𝑃, 𝑈)‘𝑛)) |
23 | 22 | fveq1d 6758 |
. . . . . . 7
⊢ (𝑚 = 𝑛 → ((seq1(𝑃, 𝑈)‘𝑚)‘𝑡) = ((seq1(𝑃, 𝑈)‘𝑛)‘𝑡)) |
24 | | fveq2 6756 |
. . . . . . 7
⊢ (𝑚 = 𝑛 → (seq1( · , (𝐹‘𝑡))‘𝑚) = (seq1( · , (𝐹‘𝑡))‘𝑛)) |
25 | 23, 24 | eqeq12d 2754 |
. . . . . 6
⊢ (𝑚 = 𝑛 → (((seq1(𝑃, 𝑈)‘𝑚)‘𝑡) = (seq1( · , (𝐹‘𝑡))‘𝑚) ↔ ((seq1(𝑃, 𝑈)‘𝑛)‘𝑡) = (seq1( · , (𝐹‘𝑡))‘𝑛))) |
26 | 21, 25 | imbi12d 344 |
. . . . 5
⊢ (𝑚 = 𝑛 → (((𝜑 ∧ 𝑡 ∈ 𝑇 ∧ 𝑚 ∈ (1...𝑀)) → ((seq1(𝑃, 𝑈)‘𝑚)‘𝑡) = (seq1( · , (𝐹‘𝑡))‘𝑚)) ↔ ((𝜑 ∧ 𝑡 ∈ 𝑇 ∧ 𝑛 ∈ (1...𝑀)) → ((seq1(𝑃, 𝑈)‘𝑛)‘𝑡) = (seq1( · , (𝐹‘𝑡))‘𝑛)))) |
27 | | eleq1 2826 |
. . . . . . 7
⊢ (𝑚 = (𝑛 + 1) → (𝑚 ∈ (1...𝑀) ↔ (𝑛 + 1) ∈ (1...𝑀))) |
28 | 27 | 3anbi3d 1440 |
. . . . . 6
⊢ (𝑚 = (𝑛 + 1) → ((𝜑 ∧ 𝑡 ∈ 𝑇 ∧ 𝑚 ∈ (1...𝑀)) ↔ (𝜑 ∧ 𝑡 ∈ 𝑇 ∧ (𝑛 + 1) ∈ (1...𝑀)))) |
29 | | fveq2 6756 |
. . . . . . . 8
⊢ (𝑚 = (𝑛 + 1) → (seq1(𝑃, 𝑈)‘𝑚) = (seq1(𝑃, 𝑈)‘(𝑛 + 1))) |
30 | 29 | fveq1d 6758 |
. . . . . . 7
⊢ (𝑚 = (𝑛 + 1) → ((seq1(𝑃, 𝑈)‘𝑚)‘𝑡) = ((seq1(𝑃, 𝑈)‘(𝑛 + 1))‘𝑡)) |
31 | | fveq2 6756 |
. . . . . . 7
⊢ (𝑚 = (𝑛 + 1) → (seq1( · , (𝐹‘𝑡))‘𝑚) = (seq1( · , (𝐹‘𝑡))‘(𝑛 + 1))) |
32 | 30, 31 | eqeq12d 2754 |
. . . . . 6
⊢ (𝑚 = (𝑛 + 1) → (((seq1(𝑃, 𝑈)‘𝑚)‘𝑡) = (seq1( · , (𝐹‘𝑡))‘𝑚) ↔ ((seq1(𝑃, 𝑈)‘(𝑛 + 1))‘𝑡) = (seq1( · , (𝐹‘𝑡))‘(𝑛 + 1)))) |
33 | 28, 32 | imbi12d 344 |
. . . . 5
⊢ (𝑚 = (𝑛 + 1) → (((𝜑 ∧ 𝑡 ∈ 𝑇 ∧ 𝑚 ∈ (1...𝑀)) → ((seq1(𝑃, 𝑈)‘𝑚)‘𝑡) = (seq1( · , (𝐹‘𝑡))‘𝑚)) ↔ ((𝜑 ∧ 𝑡 ∈ 𝑇 ∧ (𝑛 + 1) ∈ (1...𝑀)) → ((seq1(𝑃, 𝑈)‘(𝑛 + 1))‘𝑡) = (seq1( · , (𝐹‘𝑡))‘(𝑛 + 1))))) |
34 | | eleq1 2826 |
. . . . . . 7
⊢ (𝑚 = 𝑀 → (𝑚 ∈ (1...𝑀) ↔ 𝑀 ∈ (1...𝑀))) |
35 | 34 | 3anbi3d 1440 |
. . . . . 6
⊢ (𝑚 = 𝑀 → ((𝜑 ∧ 𝑡 ∈ 𝑇 ∧ 𝑚 ∈ (1...𝑀)) ↔ (𝜑 ∧ 𝑡 ∈ 𝑇 ∧ 𝑀 ∈ (1...𝑀)))) |
36 | | fveq2 6756 |
. . . . . . . 8
⊢ (𝑚 = 𝑀 → (seq1(𝑃, 𝑈)‘𝑚) = (seq1(𝑃, 𝑈)‘𝑀)) |
37 | 36 | fveq1d 6758 |
. . . . . . 7
⊢ (𝑚 = 𝑀 → ((seq1(𝑃, 𝑈)‘𝑚)‘𝑡) = ((seq1(𝑃, 𝑈)‘𝑀)‘𝑡)) |
38 | | fveq2 6756 |
. . . . . . 7
⊢ (𝑚 = 𝑀 → (seq1( · , (𝐹‘𝑡))‘𝑚) = (seq1( · , (𝐹‘𝑡))‘𝑀)) |
39 | 37, 38 | eqeq12d 2754 |
. . . . . 6
⊢ (𝑚 = 𝑀 → (((seq1(𝑃, 𝑈)‘𝑚)‘𝑡) = (seq1( · , (𝐹‘𝑡))‘𝑚) ↔ ((seq1(𝑃, 𝑈)‘𝑀)‘𝑡) = (seq1( · , (𝐹‘𝑡))‘𝑀))) |
40 | 35, 39 | imbi12d 344 |
. . . . 5
⊢ (𝑚 = 𝑀 → (((𝜑 ∧ 𝑡 ∈ 𝑇 ∧ 𝑚 ∈ (1...𝑀)) → ((seq1(𝑃, 𝑈)‘𝑚)‘𝑡) = (seq1( · , (𝐹‘𝑡))‘𝑚)) ↔ ((𝜑 ∧ 𝑡 ∈ 𝑇 ∧ 𝑀 ∈ (1...𝑀)) → ((seq1(𝑃, 𝑈)‘𝑀)‘𝑡) = (seq1( · , (𝐹‘𝑡))‘𝑀)))) |
41 | | 1z 12280 |
. . . . . . . 8
⊢ 1 ∈
ℤ |
42 | | seq1 13662 |
. . . . . . . 8
⊢ (1 ∈
ℤ → (seq1( · , (𝐹‘𝑡))‘1) = ((𝐹‘𝑡)‘1)) |
43 | 41, 42 | ax-mp 5 |
. . . . . . 7
⊢ (seq1(
· , (𝐹‘𝑡))‘1) = ((𝐹‘𝑡)‘1) |
44 | | 1zzd 12281 |
. . . . . . . . . . . 12
⊢ (𝜑 → 1 ∈
ℤ) |
45 | | 1le1 11533 |
. . . . . . . . . . . . 13
⊢ 1 ≤
1 |
46 | 45 | a1i 11 |
. . . . . . . . . . . 12
⊢ (𝜑 → 1 ≤ 1) |
47 | 44, 3, 44, 46, 5 | elfzd 13176 |
. . . . . . . . . . 11
⊢ (𝜑 → 1 ∈ (1...𝑀)) |
48 | | nfv 1918 |
. . . . . . . . . . . . 13
⊢
Ⅎ𝑖 𝑡 ∈ 𝑇 |
49 | | fmuldfeq.5 |
. . . . . . . . . . . . . . . . 17
⊢ 𝐹 = (𝑡 ∈ 𝑇 ↦ (𝑖 ∈ (1...𝑀) ↦ ((𝑈‘𝑖)‘𝑡))) |
50 | | nfcv 2906 |
. . . . . . . . . . . . . . . . . 18
⊢
Ⅎ𝑖𝑇 |
51 | | nfmpt1 5178 |
. . . . . . . . . . . . . . . . . 18
⊢
Ⅎ𝑖(𝑖 ∈ (1...𝑀) ↦ ((𝑈‘𝑖)‘𝑡)) |
52 | 50, 51 | nfmpt 5177 |
. . . . . . . . . . . . . . . . 17
⊢
Ⅎ𝑖(𝑡 ∈ 𝑇 ↦ (𝑖 ∈ (1...𝑀) ↦ ((𝑈‘𝑖)‘𝑡))) |
53 | 49, 52 | nfcxfr 2904 |
. . . . . . . . . . . . . . . 16
⊢
Ⅎ𝑖𝐹 |
54 | | nfcv 2906 |
. . . . . . . . . . . . . . . 16
⊢
Ⅎ𝑖𝑡 |
55 | 53, 54 | nffv 6766 |
. . . . . . . . . . . . . . 15
⊢
Ⅎ𝑖(𝐹‘𝑡) |
56 | | nfcv 2906 |
. . . . . . . . . . . . . . 15
⊢
Ⅎ𝑖1 |
57 | 55, 56 | nffv 6766 |
. . . . . . . . . . . . . 14
⊢
Ⅎ𝑖((𝐹‘𝑡)‘1) |
58 | | nffvmpt1 6767 |
. . . . . . . . . . . . . 14
⊢
Ⅎ𝑖((𝑖 ∈ (1...𝑀) ↦ ((𝑈‘𝑖)‘𝑡))‘1) |
59 | 57, 58 | nfeq 2919 |
. . . . . . . . . . . . 13
⊢
Ⅎ𝑖((𝐹‘𝑡)‘1) = ((𝑖 ∈ (1...𝑀) ↦ ((𝑈‘𝑖)‘𝑡))‘1) |
60 | 48, 59 | nfim 1900 |
. . . . . . . . . . . 12
⊢
Ⅎ𝑖(𝑡 ∈ 𝑇 → ((𝐹‘𝑡)‘1) = ((𝑖 ∈ (1...𝑀) ↦ ((𝑈‘𝑖)‘𝑡))‘1)) |
61 | | fveq2 6756 |
. . . . . . . . . . . . . 14
⊢ (𝑖 = 1 → ((𝐹‘𝑡)‘𝑖) = ((𝐹‘𝑡)‘1)) |
62 | | fveq2 6756 |
. . . . . . . . . . . . . 14
⊢ (𝑖 = 1 → ((𝑖 ∈ (1...𝑀) ↦ ((𝑈‘𝑖)‘𝑡))‘𝑖) = ((𝑖 ∈ (1...𝑀) ↦ ((𝑈‘𝑖)‘𝑡))‘1)) |
63 | 61, 62 | eqeq12d 2754 |
. . . . . . . . . . . . 13
⊢ (𝑖 = 1 → (((𝐹‘𝑡)‘𝑖) = ((𝑖 ∈ (1...𝑀) ↦ ((𝑈‘𝑖)‘𝑡))‘𝑖) ↔ ((𝐹‘𝑡)‘1) = ((𝑖 ∈ (1...𝑀) ↦ ((𝑈‘𝑖)‘𝑡))‘1))) |
64 | 63 | imbi2d 340 |
. . . . . . . . . . . 12
⊢ (𝑖 = 1 → ((𝑡 ∈ 𝑇 → ((𝐹‘𝑡)‘𝑖) = ((𝑖 ∈ (1...𝑀) ↦ ((𝑈‘𝑖)‘𝑡))‘𝑖)) ↔ (𝑡 ∈ 𝑇 → ((𝐹‘𝑡)‘1) = ((𝑖 ∈ (1...𝑀) ↦ ((𝑈‘𝑖)‘𝑡))‘1)))) |
65 | | ovex 7288 |
. . . . . . . . . . . . . . 15
⊢
(1...𝑀) ∈
V |
66 | 65 | mptex 7081 |
. . . . . . . . . . . . . 14
⊢ (𝑖 ∈ (1...𝑀) ↦ ((𝑈‘𝑖)‘𝑡)) ∈ V |
67 | 49 | fvmpt2 6868 |
. . . . . . . . . . . . . 14
⊢ ((𝑡 ∈ 𝑇 ∧ (𝑖 ∈ (1...𝑀) ↦ ((𝑈‘𝑖)‘𝑡)) ∈ V) → (𝐹‘𝑡) = (𝑖 ∈ (1...𝑀) ↦ ((𝑈‘𝑖)‘𝑡))) |
68 | 66, 67 | mpan2 687 |
. . . . . . . . . . . . 13
⊢ (𝑡 ∈ 𝑇 → (𝐹‘𝑡) = (𝑖 ∈ (1...𝑀) ↦ ((𝑈‘𝑖)‘𝑡))) |
69 | 68 | fveq1d 6758 |
. . . . . . . . . . . 12
⊢ (𝑡 ∈ 𝑇 → ((𝐹‘𝑡)‘𝑖) = ((𝑖 ∈ (1...𝑀) ↦ ((𝑈‘𝑖)‘𝑡))‘𝑖)) |
70 | 60, 64, 69 | vtoclg1f 3494 |
. . . . . . . . . . 11
⊢ (1 ∈
(1...𝑀) → (𝑡 ∈ 𝑇 → ((𝐹‘𝑡)‘1) = ((𝑖 ∈ (1...𝑀) ↦ ((𝑈‘𝑖)‘𝑡))‘1))) |
71 | 47, 70 | syl 17 |
. . . . . . . . . 10
⊢ (𝜑 → (𝑡 ∈ 𝑇 → ((𝐹‘𝑡)‘1) = ((𝑖 ∈ (1...𝑀) ↦ ((𝑈‘𝑖)‘𝑡))‘1))) |
72 | 71 | imp 406 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑡 ∈ 𝑇) → ((𝐹‘𝑡)‘1) = ((𝑖 ∈ (1...𝑀) ↦ ((𝑈‘𝑖)‘𝑡))‘1)) |
73 | | eqid 2738 |
. . . . . . . . . 10
⊢ (𝑖 ∈ (1...𝑀) ↦ ((𝑈‘𝑖)‘𝑡)) = (𝑖 ∈ (1...𝑀) ↦ ((𝑈‘𝑖)‘𝑡)) |
74 | | fveq2 6756 |
. . . . . . . . . . 11
⊢ (𝑖 = 1 → (𝑈‘𝑖) = (𝑈‘1)) |
75 | 74 | fveq1d 6758 |
. . . . . . . . . 10
⊢ (𝑖 = 1 → ((𝑈‘𝑖)‘𝑡) = ((𝑈‘1)‘𝑡)) |
76 | 47 | adantr 480 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑡 ∈ 𝑇) → 1 ∈ (1...𝑀)) |
77 | | fmuldfeq.9 |
. . . . . . . . . . . . 13
⊢ (𝜑 → 𝑈:(1...𝑀)⟶𝑌) |
78 | 77, 47 | ffvelrnd 6944 |
. . . . . . . . . . . 12
⊢ (𝜑 → (𝑈‘1) ∈ 𝑌) |
79 | 78 | ancli 548 |
. . . . . . . . . . . 12
⊢ (𝜑 → (𝜑 ∧ (𝑈‘1) ∈ 𝑌)) |
80 | | eleq1 2826 |
. . . . . . . . . . . . . . 15
⊢ (𝑓 = (𝑈‘1) → (𝑓 ∈ 𝑌 ↔ (𝑈‘1) ∈ 𝑌)) |
81 | 80 | anbi2d 628 |
. . . . . . . . . . . . . 14
⊢ (𝑓 = (𝑈‘1) → ((𝜑 ∧ 𝑓 ∈ 𝑌) ↔ (𝜑 ∧ (𝑈‘1) ∈ 𝑌))) |
82 | | feq1 6565 |
. . . . . . . . . . . . . 14
⊢ (𝑓 = (𝑈‘1) → (𝑓:𝑇⟶ℝ ↔ (𝑈‘1):𝑇⟶ℝ)) |
83 | 81, 82 | imbi12d 344 |
. . . . . . . . . . . . 13
⊢ (𝑓 = (𝑈‘1) → (((𝜑 ∧ 𝑓 ∈ 𝑌) → 𝑓:𝑇⟶ℝ) ↔ ((𝜑 ∧ (𝑈‘1) ∈ 𝑌) → (𝑈‘1):𝑇⟶ℝ))) |
84 | | fmuldfeq.10 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑓 ∈ 𝑌) → 𝑓:𝑇⟶ℝ) |
85 | 84 | a1i 11 |
. . . . . . . . . . . . 13
⊢ (𝑓 ∈ 𝑌 → ((𝜑 ∧ 𝑓 ∈ 𝑌) → 𝑓:𝑇⟶ℝ)) |
86 | 83, 85 | vtoclga 3503 |
. . . . . . . . . . . 12
⊢ ((𝑈‘1) ∈ 𝑌 → ((𝜑 ∧ (𝑈‘1) ∈ 𝑌) → (𝑈‘1):𝑇⟶ℝ)) |
87 | 78, 79, 86 | sylc 65 |
. . . . . . . . . . 11
⊢ (𝜑 → (𝑈‘1):𝑇⟶ℝ) |
88 | 87 | ffvelrnda 6943 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑡 ∈ 𝑇) → ((𝑈‘1)‘𝑡) ∈ ℝ) |
89 | 73, 75, 76, 88 | fvmptd3 6880 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑡 ∈ 𝑇) → ((𝑖 ∈ (1...𝑀) ↦ ((𝑈‘𝑖)‘𝑡))‘1) = ((𝑈‘1)‘𝑡)) |
90 | 72, 89 | eqtrd 2778 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑡 ∈ 𝑇) → ((𝐹‘𝑡)‘1) = ((𝑈‘1)‘𝑡)) |
91 | | seq1 13662 |
. . . . . . . . . 10
⊢ (1 ∈
ℤ → (seq1(𝑃,
𝑈)‘1) = (𝑈‘1)) |
92 | 41, 91 | ax-mp 5 |
. . . . . . . . 9
⊢
(seq1(𝑃, 𝑈)‘1) = (𝑈‘1) |
93 | 92 | fveq1i 6757 |
. . . . . . . 8
⊢
((seq1(𝑃, 𝑈)‘1)‘𝑡) = ((𝑈‘1)‘𝑡) |
94 | 90, 93 | eqtr4di 2797 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑡 ∈ 𝑇) → ((𝐹‘𝑡)‘1) = ((seq1(𝑃, 𝑈)‘1)‘𝑡)) |
95 | 43, 94 | eqtr2id 2792 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑡 ∈ 𝑇) → ((seq1(𝑃, 𝑈)‘1)‘𝑡) = (seq1( · , (𝐹‘𝑡))‘1)) |
96 | 95 | 3adant3 1130 |
. . . . 5
⊢ ((𝜑 ∧ 𝑡 ∈ 𝑇 ∧ 1 ∈ (1...𝑀)) → ((seq1(𝑃, 𝑈)‘1)‘𝑡) = (seq1( · , (𝐹‘𝑡))‘1)) |
97 | | simp31 1207 |
. . . . . . 7
⊢ ((𝑛 ∈ ℕ ∧ ((𝜑 ∧ 𝑡 ∈ 𝑇 ∧ 𝑛 ∈ (1...𝑀)) → ((seq1(𝑃, 𝑈)‘𝑛)‘𝑡) = (seq1( · , (𝐹‘𝑡))‘𝑛)) ∧ (𝜑 ∧ 𝑡 ∈ 𝑇 ∧ (𝑛 + 1) ∈ (1...𝑀))) → 𝜑) |
98 | | simp1 1134 |
. . . . . . . . . 10
⊢ ((𝑛 ∈ ℕ ∧ ((𝜑 ∧ 𝑡 ∈ 𝑇 ∧ 𝑛 ∈ (1...𝑀)) → ((seq1(𝑃, 𝑈)‘𝑛)‘𝑡) = (seq1( · , (𝐹‘𝑡))‘𝑛)) ∧ (𝜑 ∧ 𝑡 ∈ 𝑇 ∧ (𝑛 + 1) ∈ (1...𝑀))) → 𝑛 ∈ ℕ) |
99 | | simp33 1209 |
. . . . . . . . . 10
⊢ ((𝑛 ∈ ℕ ∧ ((𝜑 ∧ 𝑡 ∈ 𝑇 ∧ 𝑛 ∈ (1...𝑀)) → ((seq1(𝑃, 𝑈)‘𝑛)‘𝑡) = (seq1( · , (𝐹‘𝑡))‘𝑛)) ∧ (𝜑 ∧ 𝑡 ∈ 𝑇 ∧ (𝑛 + 1) ∈ (1...𝑀))) → (𝑛 + 1) ∈ (1...𝑀)) |
100 | 98, 99 | jca 511 |
. . . . . . . . 9
⊢ ((𝑛 ∈ ℕ ∧ ((𝜑 ∧ 𝑡 ∈ 𝑇 ∧ 𝑛 ∈ (1...𝑀)) → ((seq1(𝑃, 𝑈)‘𝑛)‘𝑡) = (seq1( · , (𝐹‘𝑡))‘𝑛)) ∧ (𝜑 ∧ 𝑡 ∈ 𝑇 ∧ (𝑛 + 1) ∈ (1...𝑀))) → (𝑛 ∈ ℕ ∧ (𝑛 + 1) ∈ (1...𝑀))) |
101 | | elnnuz 12551 |
. . . . . . . . . . 11
⊢ (𝑛 ∈ ℕ ↔ 𝑛 ∈
(ℤ≥‘1)) |
102 | 101 | biimpi 215 |
. . . . . . . . . 10
⊢ (𝑛 ∈ ℕ → 𝑛 ∈
(ℤ≥‘1)) |
103 | 102 | anim1i 614 |
. . . . . . . . 9
⊢ ((𝑛 ∈ ℕ ∧ (𝑛 + 1) ∈ (1...𝑀)) → (𝑛 ∈ (ℤ≥‘1)
∧ (𝑛 + 1) ∈
(1...𝑀))) |
104 | | peano2fzr 13198 |
. . . . . . . . 9
⊢ ((𝑛 ∈
(ℤ≥‘1) ∧ (𝑛 + 1) ∈ (1...𝑀)) → 𝑛 ∈ (1...𝑀)) |
105 | 100, 103,
104 | 3syl 18 |
. . . . . . . 8
⊢ ((𝑛 ∈ ℕ ∧ ((𝜑 ∧ 𝑡 ∈ 𝑇 ∧ 𝑛 ∈ (1...𝑀)) → ((seq1(𝑃, 𝑈)‘𝑛)‘𝑡) = (seq1( · , (𝐹‘𝑡))‘𝑛)) ∧ (𝜑 ∧ 𝑡 ∈ 𝑇 ∧ (𝑛 + 1) ∈ (1...𝑀))) → 𝑛 ∈ (1...𝑀)) |
106 | | simp32 1208 |
. . . . . . . . 9
⊢ ((𝑛 ∈ ℕ ∧ ((𝜑 ∧ 𝑡 ∈ 𝑇 ∧ 𝑛 ∈ (1...𝑀)) → ((seq1(𝑃, 𝑈)‘𝑛)‘𝑡) = (seq1( · , (𝐹‘𝑡))‘𝑛)) ∧ (𝜑 ∧ 𝑡 ∈ 𝑇 ∧ (𝑛 + 1) ∈ (1...𝑀))) → 𝑡 ∈ 𝑇) |
107 | | simp2 1135 |
. . . . . . . . 9
⊢ ((𝑛 ∈ ℕ ∧ ((𝜑 ∧ 𝑡 ∈ 𝑇 ∧ 𝑛 ∈ (1...𝑀)) → ((seq1(𝑃, 𝑈)‘𝑛)‘𝑡) = (seq1( · , (𝐹‘𝑡))‘𝑛)) ∧ (𝜑 ∧ 𝑡 ∈ 𝑇 ∧ (𝑛 + 1) ∈ (1...𝑀))) → ((𝜑 ∧ 𝑡 ∈ 𝑇 ∧ 𝑛 ∈ (1...𝑀)) → ((seq1(𝑃, 𝑈)‘𝑛)‘𝑡) = (seq1( · , (𝐹‘𝑡))‘𝑛))) |
108 | 97, 106, 105, 107 | mp3and 1462 |
. . . . . . . 8
⊢ ((𝑛 ∈ ℕ ∧ ((𝜑 ∧ 𝑡 ∈ 𝑇 ∧ 𝑛 ∈ (1...𝑀)) → ((seq1(𝑃, 𝑈)‘𝑛)‘𝑡) = (seq1( · , (𝐹‘𝑡))‘𝑛)) ∧ (𝜑 ∧ 𝑡 ∈ 𝑇 ∧ (𝑛 + 1) ∈ (1...𝑀))) → ((seq1(𝑃, 𝑈)‘𝑛)‘𝑡) = (seq1( · , (𝐹‘𝑡))‘𝑛)) |
109 | 105, 99, 108 | 3jca 1126 |
. . . . . . 7
⊢ ((𝑛 ∈ ℕ ∧ ((𝜑 ∧ 𝑡 ∈ 𝑇 ∧ 𝑛 ∈ (1...𝑀)) → ((seq1(𝑃, 𝑈)‘𝑛)‘𝑡) = (seq1( · , (𝐹‘𝑡))‘𝑛)) ∧ (𝜑 ∧ 𝑡 ∈ 𝑇 ∧ (𝑛 + 1) ∈ (1...𝑀))) → (𝑛 ∈ (1...𝑀) ∧ (𝑛 + 1) ∈ (1...𝑀) ∧ ((seq1(𝑃, 𝑈)‘𝑛)‘𝑡) = (seq1( · , (𝐹‘𝑡))‘𝑛))) |
110 | | nfv 1918 |
. . . . . . . . 9
⊢
Ⅎ𝑓𝜑 |
111 | | nfv 1918 |
. . . . . . . . . 10
⊢
Ⅎ𝑓 𝑛 ∈ (1...𝑀) |
112 | | nfv 1918 |
. . . . . . . . . 10
⊢
Ⅎ𝑓(𝑛 + 1) ∈ (1...𝑀) |
113 | | nfcv 2906 |
. . . . . . . . . . . . . 14
⊢
Ⅎ𝑓1 |
114 | | fmuldfeq.3 |
. . . . . . . . . . . . . . 15
⊢ 𝑃 = (𝑓 ∈ 𝑌, 𝑔 ∈ 𝑌 ↦ (𝑡 ∈ 𝑇 ↦ ((𝑓‘𝑡) · (𝑔‘𝑡)))) |
115 | | nfmpo1 7333 |
. . . . . . . . . . . . . . 15
⊢
Ⅎ𝑓(𝑓 ∈ 𝑌, 𝑔 ∈ 𝑌 ↦ (𝑡 ∈ 𝑇 ↦ ((𝑓‘𝑡) · (𝑔‘𝑡)))) |
116 | 114, 115 | nfcxfr 2904 |
. . . . . . . . . . . . . 14
⊢
Ⅎ𝑓𝑃 |
117 | | nfcv 2906 |
. . . . . . . . . . . . . 14
⊢
Ⅎ𝑓𝑈 |
118 | 113, 116,
117 | nfseq 13659 |
. . . . . . . . . . . . 13
⊢
Ⅎ𝑓seq1(𝑃, 𝑈) |
119 | | nfcv 2906 |
. . . . . . . . . . . . 13
⊢
Ⅎ𝑓𝑛 |
120 | 118, 119 | nffv 6766 |
. . . . . . . . . . . 12
⊢
Ⅎ𝑓(seq1(𝑃, 𝑈)‘𝑛) |
121 | | nfcv 2906 |
. . . . . . . . . . . 12
⊢
Ⅎ𝑓𝑡 |
122 | 120, 121 | nffv 6766 |
. . . . . . . . . . 11
⊢
Ⅎ𝑓((seq1(𝑃, 𝑈)‘𝑛)‘𝑡) |
123 | | nfcv 2906 |
. . . . . . . . . . 11
⊢
Ⅎ𝑓(seq1( · , (𝐹‘𝑡))‘𝑛) |
124 | 122, 123 | nfeq 2919 |
. . . . . . . . . 10
⊢
Ⅎ𝑓((seq1(𝑃, 𝑈)‘𝑛)‘𝑡) = (seq1( · , (𝐹‘𝑡))‘𝑛) |
125 | 111, 112,
124 | nf3an 1905 |
. . . . . . . . 9
⊢
Ⅎ𝑓(𝑛 ∈ (1...𝑀) ∧ (𝑛 + 1) ∈ (1...𝑀) ∧ ((seq1(𝑃, 𝑈)‘𝑛)‘𝑡) = (seq1( · , (𝐹‘𝑡))‘𝑛)) |
126 | 110, 125 | nfan 1903 |
. . . . . . . 8
⊢
Ⅎ𝑓(𝜑 ∧ (𝑛 ∈ (1...𝑀) ∧ (𝑛 + 1) ∈ (1...𝑀) ∧ ((seq1(𝑃, 𝑈)‘𝑛)‘𝑡) = (seq1( · , (𝐹‘𝑡))‘𝑛))) |
127 | | nfv 1918 |
. . . . . . . . 9
⊢
Ⅎ𝑔𝜑 |
128 | | nfv 1918 |
. . . . . . . . . 10
⊢
Ⅎ𝑔 𝑛 ∈ (1...𝑀) |
129 | | nfv 1918 |
. . . . . . . . . 10
⊢
Ⅎ𝑔(𝑛 + 1) ∈ (1...𝑀) |
130 | | nfcv 2906 |
. . . . . . . . . . . . . 14
⊢
Ⅎ𝑔1 |
131 | | nfmpo2 7334 |
. . . . . . . . . . . . . . 15
⊢
Ⅎ𝑔(𝑓 ∈ 𝑌, 𝑔 ∈ 𝑌 ↦ (𝑡 ∈ 𝑇 ↦ ((𝑓‘𝑡) · (𝑔‘𝑡)))) |
132 | 114, 131 | nfcxfr 2904 |
. . . . . . . . . . . . . 14
⊢
Ⅎ𝑔𝑃 |
133 | | nfcv 2906 |
. . . . . . . . . . . . . 14
⊢
Ⅎ𝑔𝑈 |
134 | 130, 132,
133 | nfseq 13659 |
. . . . . . . . . . . . 13
⊢
Ⅎ𝑔seq1(𝑃, 𝑈) |
135 | | nfcv 2906 |
. . . . . . . . . . . . 13
⊢
Ⅎ𝑔𝑛 |
136 | 134, 135 | nffv 6766 |
. . . . . . . . . . . 12
⊢
Ⅎ𝑔(seq1(𝑃, 𝑈)‘𝑛) |
137 | | nfcv 2906 |
. . . . . . . . . . . 12
⊢
Ⅎ𝑔𝑡 |
138 | 136, 137 | nffv 6766 |
. . . . . . . . . . 11
⊢
Ⅎ𝑔((seq1(𝑃, 𝑈)‘𝑛)‘𝑡) |
139 | | nfcv 2906 |
. . . . . . . . . . 11
⊢
Ⅎ𝑔(seq1( · , (𝐹‘𝑡))‘𝑛) |
140 | 138, 139 | nfeq 2919 |
. . . . . . . . . 10
⊢
Ⅎ𝑔((seq1(𝑃, 𝑈)‘𝑛)‘𝑡) = (seq1( · , (𝐹‘𝑡))‘𝑛) |
141 | 128, 129,
140 | nf3an 1905 |
. . . . . . . . 9
⊢
Ⅎ𝑔(𝑛 ∈ (1...𝑀) ∧ (𝑛 + 1) ∈ (1...𝑀) ∧ ((seq1(𝑃, 𝑈)‘𝑛)‘𝑡) = (seq1( · , (𝐹‘𝑡))‘𝑛)) |
142 | 127, 141 | nfan 1903 |
. . . . . . . 8
⊢
Ⅎ𝑔(𝜑 ∧ (𝑛 ∈ (1...𝑀) ∧ (𝑛 + 1) ∈ (1...𝑀) ∧ ((seq1(𝑃, 𝑈)‘𝑛)‘𝑡) = (seq1( · , (𝐹‘𝑡))‘𝑛))) |
143 | | fmuldfeq.2 |
. . . . . . . 8
⊢
Ⅎ𝑡𝑌 |
144 | | fmuldfeq.7 |
. . . . . . . . 9
⊢ (𝜑 → 𝑇 ∈ V) |
145 | 144 | adantr 480 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑛 ∈ (1...𝑀) ∧ (𝑛 + 1) ∈ (1...𝑀) ∧ ((seq1(𝑃, 𝑈)‘𝑛)‘𝑡) = (seq1( · , (𝐹‘𝑡))‘𝑛))) → 𝑇 ∈ V) |
146 | 77 | adantr 480 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑛 ∈ (1...𝑀) ∧ (𝑛 + 1) ∈ (1...𝑀) ∧ ((seq1(𝑃, 𝑈)‘𝑛)‘𝑡) = (seq1( · , (𝐹‘𝑡))‘𝑛))) → 𝑈:(1...𝑀)⟶𝑌) |
147 | | fmuldfeq.11 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑓 ∈ 𝑌 ∧ 𝑔 ∈ 𝑌) → (𝑡 ∈ 𝑇 ↦ ((𝑓‘𝑡) · (𝑔‘𝑡))) ∈ 𝑌) |
148 | 147 | 3adant1r 1175 |
. . . . . . . 8
⊢ (((𝜑 ∧ (𝑛 ∈ (1...𝑀) ∧ (𝑛 + 1) ∈ (1...𝑀) ∧ ((seq1(𝑃, 𝑈)‘𝑛)‘𝑡) = (seq1( · , (𝐹‘𝑡))‘𝑛))) ∧ 𝑓 ∈ 𝑌 ∧ 𝑔 ∈ 𝑌) → (𝑡 ∈ 𝑇 ↦ ((𝑓‘𝑡) · (𝑔‘𝑡))) ∈ 𝑌) |
149 | | simpr1 1192 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑛 ∈ (1...𝑀) ∧ (𝑛 + 1) ∈ (1...𝑀) ∧ ((seq1(𝑃, 𝑈)‘𝑛)‘𝑡) = (seq1( · , (𝐹‘𝑡))‘𝑛))) → 𝑛 ∈ (1...𝑀)) |
150 | | simpr2 1193 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑛 ∈ (1...𝑀) ∧ (𝑛 + 1) ∈ (1...𝑀) ∧ ((seq1(𝑃, 𝑈)‘𝑛)‘𝑡) = (seq1( · , (𝐹‘𝑡))‘𝑛))) → (𝑛 + 1) ∈ (1...𝑀)) |
151 | | simpr3 1194 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑛 ∈ (1...𝑀) ∧ (𝑛 + 1) ∈ (1...𝑀) ∧ ((seq1(𝑃, 𝑈)‘𝑛)‘𝑡) = (seq1( · , (𝐹‘𝑡))‘𝑛))) → ((seq1(𝑃, 𝑈)‘𝑛)‘𝑡) = (seq1( · , (𝐹‘𝑡))‘𝑛)) |
152 | 84 | adantlr 711 |
. . . . . . . 8
⊢ (((𝜑 ∧ (𝑛 ∈ (1...𝑀) ∧ (𝑛 + 1) ∈ (1...𝑀) ∧ ((seq1(𝑃, 𝑈)‘𝑛)‘𝑡) = (seq1( · , (𝐹‘𝑡))‘𝑛))) ∧ 𝑓 ∈ 𝑌) → 𝑓:𝑇⟶ℝ) |
153 | 126, 142,
143, 114, 49, 145, 146, 148, 149, 150, 151, 152 | fmuldfeqlem1 43013 |
. . . . . . 7
⊢ (((𝜑 ∧ (𝑛 ∈ (1...𝑀) ∧ (𝑛 + 1) ∈ (1...𝑀) ∧ ((seq1(𝑃, 𝑈)‘𝑛)‘𝑡) = (seq1( · , (𝐹‘𝑡))‘𝑛))) ∧ 𝑡 ∈ 𝑇) → ((seq1(𝑃, 𝑈)‘(𝑛 + 1))‘𝑡) = (seq1( · , (𝐹‘𝑡))‘(𝑛 + 1))) |
154 | 97, 109, 106, 153 | syl21anc 834 |
. . . . . 6
⊢ ((𝑛 ∈ ℕ ∧ ((𝜑 ∧ 𝑡 ∈ 𝑇 ∧ 𝑛 ∈ (1...𝑀)) → ((seq1(𝑃, 𝑈)‘𝑛)‘𝑡) = (seq1( · , (𝐹‘𝑡))‘𝑛)) ∧ (𝜑 ∧ 𝑡 ∈ 𝑇 ∧ (𝑛 + 1) ∈ (1...𝑀))) → ((seq1(𝑃, 𝑈)‘(𝑛 + 1))‘𝑡) = (seq1( · , (𝐹‘𝑡))‘(𝑛 + 1))) |
155 | 154 | 3exp 1117 |
. . . . 5
⊢ (𝑛 ∈ ℕ → (((𝜑 ∧ 𝑡 ∈ 𝑇 ∧ 𝑛 ∈ (1...𝑀)) → ((seq1(𝑃, 𝑈)‘𝑛)‘𝑡) = (seq1( · , (𝐹‘𝑡))‘𝑛)) → ((𝜑 ∧ 𝑡 ∈ 𝑇 ∧ (𝑛 + 1) ∈ (1...𝑀)) → ((seq1(𝑃, 𝑈)‘(𝑛 + 1))‘𝑡) = (seq1( · , (𝐹‘𝑡))‘(𝑛 + 1))))) |
156 | 19, 26, 33, 40, 96, 155 | nnind 11921 |
. . . 4
⊢ (𝑀 ∈ ℕ → ((𝜑 ∧ 𝑡 ∈ 𝑇 ∧ 𝑀 ∈ (1...𝑀)) → ((seq1(𝑃, 𝑈)‘𝑀)‘𝑡) = (seq1( · , (𝐹‘𝑡))‘𝑀))) |
157 | 12, 156 | mpcom 38 |
. . 3
⊢ ((𝜑 ∧ 𝑡 ∈ 𝑇 ∧ 𝑀 ∈ (1...𝑀)) → ((seq1(𝑃, 𝑈)‘𝑀)‘𝑡) = (seq1( · , (𝐹‘𝑡))‘𝑀)) |
158 | 11, 157 | mpd3an3 1460 |
. 2
⊢ ((𝜑 ∧ 𝑡 ∈ 𝑇) → ((seq1(𝑃, 𝑈)‘𝑀)‘𝑡) = (seq1( · , (𝐹‘𝑡))‘𝑀)) |
159 | | fmuldfeq.4 |
. . . 4
⊢ 𝑋 = (seq1(𝑃, 𝑈)‘𝑀) |
160 | 159 | fveq1i 6757 |
. . 3
⊢ (𝑋‘𝑡) = ((seq1(𝑃, 𝑈)‘𝑀)‘𝑡) |
161 | 160 | a1i 11 |
. 2
⊢ ((𝜑 ∧ 𝑡 ∈ 𝑇) → (𝑋‘𝑡) = ((seq1(𝑃, 𝑈)‘𝑀)‘𝑡)) |
162 | | simpr 484 |
. . 3
⊢ ((𝜑 ∧ 𝑡 ∈ 𝑇) → 𝑡 ∈ 𝑇) |
163 | | elnnuz 12551 |
. . . . . 6
⊢ (𝑀 ∈ ℕ ↔ 𝑀 ∈
(ℤ≥‘1)) |
164 | 2, 163 | sylib 217 |
. . . . 5
⊢ (𝜑 → 𝑀 ∈
(ℤ≥‘1)) |
165 | 164 | adantr 480 |
. . . 4
⊢ ((𝜑 ∧ 𝑡 ∈ 𝑇) → 𝑀 ∈
(ℤ≥‘1)) |
166 | | fmuldfeq.1 |
. . . . . . . 8
⊢
Ⅎ𝑖𝜑 |
167 | 166, 48 | nfan 1903 |
. . . . . . 7
⊢
Ⅎ𝑖(𝜑 ∧ 𝑡 ∈ 𝑇) |
168 | | nfv 1918 |
. . . . . . 7
⊢
Ⅎ𝑖 𝑘 ∈ (1...𝑀) |
169 | 167, 168 | nfan 1903 |
. . . . . 6
⊢
Ⅎ𝑖((𝜑 ∧ 𝑡 ∈ 𝑇) ∧ 𝑘 ∈ (1...𝑀)) |
170 | | nfcv 2906 |
. . . . . . . 8
⊢
Ⅎ𝑖𝑘 |
171 | 55, 170 | nffv 6766 |
. . . . . . 7
⊢
Ⅎ𝑖((𝐹‘𝑡)‘𝑘) |
172 | 171 | nfel1 2922 |
. . . . . 6
⊢
Ⅎ𝑖((𝐹‘𝑡)‘𝑘) ∈ ℝ |
173 | 169, 172 | nfim 1900 |
. . . . 5
⊢
Ⅎ𝑖(((𝜑 ∧ 𝑡 ∈ 𝑇) ∧ 𝑘 ∈ (1...𝑀)) → ((𝐹‘𝑡)‘𝑘) ∈ ℝ) |
174 | | eleq1 2826 |
. . . . . . 7
⊢ (𝑖 = 𝑘 → (𝑖 ∈ (1...𝑀) ↔ 𝑘 ∈ (1...𝑀))) |
175 | 174 | anbi2d 628 |
. . . . . 6
⊢ (𝑖 = 𝑘 → (((𝜑 ∧ 𝑡 ∈ 𝑇) ∧ 𝑖 ∈ (1...𝑀)) ↔ ((𝜑 ∧ 𝑡 ∈ 𝑇) ∧ 𝑘 ∈ (1...𝑀)))) |
176 | | fveq2 6756 |
. . . . . . 7
⊢ (𝑖 = 𝑘 → ((𝐹‘𝑡)‘𝑖) = ((𝐹‘𝑡)‘𝑘)) |
177 | 176 | eleq1d 2823 |
. . . . . 6
⊢ (𝑖 = 𝑘 → (((𝐹‘𝑡)‘𝑖) ∈ ℝ ↔ ((𝐹‘𝑡)‘𝑘) ∈ ℝ)) |
178 | 175, 177 | imbi12d 344 |
. . . . 5
⊢ (𝑖 = 𝑘 → ((((𝜑 ∧ 𝑡 ∈ 𝑇) ∧ 𝑖 ∈ (1...𝑀)) → ((𝐹‘𝑡)‘𝑖) ∈ ℝ) ↔ (((𝜑 ∧ 𝑡 ∈ 𝑇) ∧ 𝑘 ∈ (1...𝑀)) → ((𝐹‘𝑡)‘𝑘) ∈ ℝ))) |
179 | 69 | ad2antlr 723 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑡 ∈ 𝑇) ∧ 𝑖 ∈ (1...𝑀)) → ((𝐹‘𝑡)‘𝑖) = ((𝑖 ∈ (1...𝑀) ↦ ((𝑈‘𝑖)‘𝑡))‘𝑖)) |
180 | | simpr 484 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑡 ∈ 𝑇) ∧ 𝑖 ∈ (1...𝑀)) → 𝑖 ∈ (1...𝑀)) |
181 | 77 | ffvelrnda 6943 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑖 ∈ (1...𝑀)) → (𝑈‘𝑖) ∈ 𝑌) |
182 | | simpl 482 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑖 ∈ (1...𝑀)) → 𝜑) |
183 | 182, 181 | jca 511 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑖 ∈ (1...𝑀)) → (𝜑 ∧ (𝑈‘𝑖) ∈ 𝑌)) |
184 | | eleq1 2826 |
. . . . . . . . . . . . . 14
⊢ (𝑓 = (𝑈‘𝑖) → (𝑓 ∈ 𝑌 ↔ (𝑈‘𝑖) ∈ 𝑌)) |
185 | 184 | anbi2d 628 |
. . . . . . . . . . . . 13
⊢ (𝑓 = (𝑈‘𝑖) → ((𝜑 ∧ 𝑓 ∈ 𝑌) ↔ (𝜑 ∧ (𝑈‘𝑖) ∈ 𝑌))) |
186 | | feq1 6565 |
. . . . . . . . . . . . 13
⊢ (𝑓 = (𝑈‘𝑖) → (𝑓:𝑇⟶ℝ ↔ (𝑈‘𝑖):𝑇⟶ℝ)) |
187 | 185, 186 | imbi12d 344 |
. . . . . . . . . . . 12
⊢ (𝑓 = (𝑈‘𝑖) → (((𝜑 ∧ 𝑓 ∈ 𝑌) → 𝑓:𝑇⟶ℝ) ↔ ((𝜑 ∧ (𝑈‘𝑖) ∈ 𝑌) → (𝑈‘𝑖):𝑇⟶ℝ))) |
188 | 187, 85 | vtoclga 3503 |
. . . . . . . . . . 11
⊢ ((𝑈‘𝑖) ∈ 𝑌 → ((𝜑 ∧ (𝑈‘𝑖) ∈ 𝑌) → (𝑈‘𝑖):𝑇⟶ℝ)) |
189 | 181, 183,
188 | sylc 65 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑖 ∈ (1...𝑀)) → (𝑈‘𝑖):𝑇⟶ℝ) |
190 | 189 | adantlr 711 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑡 ∈ 𝑇) ∧ 𝑖 ∈ (1...𝑀)) → (𝑈‘𝑖):𝑇⟶ℝ) |
191 | | simplr 765 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑡 ∈ 𝑇) ∧ 𝑖 ∈ (1...𝑀)) → 𝑡 ∈ 𝑇) |
192 | 190, 191 | ffvelrnd 6944 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑡 ∈ 𝑇) ∧ 𝑖 ∈ (1...𝑀)) → ((𝑈‘𝑖)‘𝑡) ∈ ℝ) |
193 | 73 | fvmpt2 6868 |
. . . . . . . 8
⊢ ((𝑖 ∈ (1...𝑀) ∧ ((𝑈‘𝑖)‘𝑡) ∈ ℝ) → ((𝑖 ∈ (1...𝑀) ↦ ((𝑈‘𝑖)‘𝑡))‘𝑖) = ((𝑈‘𝑖)‘𝑡)) |
194 | 180, 192,
193 | syl2anc 583 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑡 ∈ 𝑇) ∧ 𝑖 ∈ (1...𝑀)) → ((𝑖 ∈ (1...𝑀) ↦ ((𝑈‘𝑖)‘𝑡))‘𝑖) = ((𝑈‘𝑖)‘𝑡)) |
195 | 194, 192 | eqeltrd 2839 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑡 ∈ 𝑇) ∧ 𝑖 ∈ (1...𝑀)) → ((𝑖 ∈ (1...𝑀) ↦ ((𝑈‘𝑖)‘𝑡))‘𝑖) ∈ ℝ) |
196 | 179, 195 | eqeltrd 2839 |
. . . . 5
⊢ (((𝜑 ∧ 𝑡 ∈ 𝑇) ∧ 𝑖 ∈ (1...𝑀)) → ((𝐹‘𝑡)‘𝑖) ∈ ℝ) |
197 | 173, 178,
196 | chvarfv 2236 |
. . . 4
⊢ (((𝜑 ∧ 𝑡 ∈ 𝑇) ∧ 𝑘 ∈ (1...𝑀)) → ((𝐹‘𝑡)‘𝑘) ∈ ℝ) |
198 | | remulcl 10887 |
. . . . 5
⊢ ((𝑘 ∈ ℝ ∧ 𝑏 ∈ ℝ) → (𝑘 · 𝑏) ∈ ℝ) |
199 | 198 | adantl 481 |
. . . 4
⊢ (((𝜑 ∧ 𝑡 ∈ 𝑇) ∧ (𝑘 ∈ ℝ ∧ 𝑏 ∈ ℝ)) → (𝑘 · 𝑏) ∈ ℝ) |
200 | 165, 197,
199 | seqcl 13671 |
. . 3
⊢ ((𝜑 ∧ 𝑡 ∈ 𝑇) → (seq1( · , (𝐹‘𝑡))‘𝑀) ∈ ℝ) |
201 | | fmuldfeq.6 |
. . . 4
⊢ 𝑍 = (𝑡 ∈ 𝑇 ↦ (seq1( · , (𝐹‘𝑡))‘𝑀)) |
202 | 201 | fvmpt2 6868 |
. . 3
⊢ ((𝑡 ∈ 𝑇 ∧ (seq1( · , (𝐹‘𝑡))‘𝑀) ∈ ℝ) → (𝑍‘𝑡) = (seq1( · , (𝐹‘𝑡))‘𝑀)) |
203 | 162, 200,
202 | syl2anc 583 |
. 2
⊢ ((𝜑 ∧ 𝑡 ∈ 𝑇) → (𝑍‘𝑡) = (seq1( · , (𝐹‘𝑡))‘𝑀)) |
204 | 158, 161,
203 | 3eqtr4d 2788 |
1
⊢ ((𝜑 ∧ 𝑡 ∈ 𝑇) → (𝑋‘𝑡) = (𝑍‘𝑡)) |