Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fmuldfeq Structured version   Visualization version   GIF version

Theorem fmuldfeq 43124
Description: X and Z are two equivalent definitions of the finite product of real functions. Y is a set of real functions from a common domain T, Y is closed under function multiplication and U is a finite sequence of functions in Y. M is the number of functions multiplied together. (Contributed by Glauco Siliprandi, 20-Apr-2017.)
Hypotheses
Ref Expression
fmuldfeq.1 𝑖𝜑
fmuldfeq.2 𝑡𝑌
fmuldfeq.3 𝑃 = (𝑓𝑌, 𝑔𝑌 ↦ (𝑡𝑇 ↦ ((𝑓𝑡) · (𝑔𝑡))))
fmuldfeq.4 𝑋 = (seq1(𝑃, 𝑈)‘𝑀)
fmuldfeq.5 𝐹 = (𝑡𝑇 ↦ (𝑖 ∈ (1...𝑀) ↦ ((𝑈𝑖)‘𝑡)))
fmuldfeq.6 𝑍 = (𝑡𝑇 ↦ (seq1( · , (𝐹𝑡))‘𝑀))
fmuldfeq.7 (𝜑𝑇 ∈ V)
fmuldfeq.8 (𝜑𝑀 ∈ ℕ)
fmuldfeq.9 (𝜑𝑈:(1...𝑀)⟶𝑌)
fmuldfeq.10 ((𝜑𝑓𝑌) → 𝑓:𝑇⟶ℝ)
fmuldfeq.11 ((𝜑𝑓𝑌𝑔𝑌) → (𝑡𝑇 ↦ ((𝑓𝑡) · (𝑔𝑡))) ∈ 𝑌)
Assertion
Ref Expression
fmuldfeq ((𝜑𝑡𝑇) → (𝑋𝑡) = (𝑍𝑡))
Distinct variable groups:   𝑡,𝑇   𝑓,𝑔,𝑡,𝑇   𝑓,𝑖,𝑡,𝑇   𝑓,𝐹,𝑔   𝑓,𝑀,𝑔   𝑈,𝑓,𝑔,𝑡   𝑓,𝑌,𝑔   𝜑,𝑓,𝑔   𝑖,𝑀   𝑈,𝑖
Allowed substitution hints:   𝜑(𝑡,𝑖)   𝑃(𝑡,𝑓,𝑔,𝑖)   𝐹(𝑡,𝑖)   𝑀(𝑡)   𝑋(𝑡,𝑓,𝑔,𝑖)   𝑌(𝑡,𝑖)   𝑍(𝑡,𝑓,𝑔,𝑖)

Proof of Theorem fmuldfeq
Dummy variables 𝑘 𝑏 𝑛 𝑚 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 1zzd 12351 . . . 4 ((𝜑𝑡𝑇) → 1 ∈ ℤ)
2 fmuldfeq.8 . . . . . 6 (𝜑𝑀 ∈ ℕ)
32nnzd 12425 . . . . 5 (𝜑𝑀 ∈ ℤ)
43adantr 481 . . . 4 ((𝜑𝑡𝑇) → 𝑀 ∈ ℤ)
52nnge1d 12021 . . . . 5 (𝜑 → 1 ≤ 𝑀)
65adantr 481 . . . 4 ((𝜑𝑡𝑇) → 1 ≤ 𝑀)
7 nnre 11980 . . . . . 6 (𝑀 ∈ ℕ → 𝑀 ∈ ℝ)
8 leid 11071 . . . . . 6 (𝑀 ∈ ℝ → 𝑀𝑀)
92, 7, 83syl 18 . . . . 5 (𝜑𝑀𝑀)
109adantr 481 . . . 4 ((𝜑𝑡𝑇) → 𝑀𝑀)
111, 4, 4, 6, 10elfzd 13247 . . 3 ((𝜑𝑡𝑇) → 𝑀 ∈ (1...𝑀))
1223ad2ant1 1132 . . . 4 ((𝜑𝑡𝑇𝑀 ∈ (1...𝑀)) → 𝑀 ∈ ℕ)
13 eleq1 2826 . . . . . . 7 (𝑚 = 1 → (𝑚 ∈ (1...𝑀) ↔ 1 ∈ (1...𝑀)))
14133anbi3d 1441 . . . . . 6 (𝑚 = 1 → ((𝜑𝑡𝑇𝑚 ∈ (1...𝑀)) ↔ (𝜑𝑡𝑇 ∧ 1 ∈ (1...𝑀))))
15 fveq2 6774 . . . . . . . 8 (𝑚 = 1 → (seq1(𝑃, 𝑈)‘𝑚) = (seq1(𝑃, 𝑈)‘1))
1615fveq1d 6776 . . . . . . 7 (𝑚 = 1 → ((seq1(𝑃, 𝑈)‘𝑚)‘𝑡) = ((seq1(𝑃, 𝑈)‘1)‘𝑡))
17 fveq2 6774 . . . . . . 7 (𝑚 = 1 → (seq1( · , (𝐹𝑡))‘𝑚) = (seq1( · , (𝐹𝑡))‘1))
1816, 17eqeq12d 2754 . . . . . 6 (𝑚 = 1 → (((seq1(𝑃, 𝑈)‘𝑚)‘𝑡) = (seq1( · , (𝐹𝑡))‘𝑚) ↔ ((seq1(𝑃, 𝑈)‘1)‘𝑡) = (seq1( · , (𝐹𝑡))‘1)))
1914, 18imbi12d 345 . . . . 5 (𝑚 = 1 → (((𝜑𝑡𝑇𝑚 ∈ (1...𝑀)) → ((seq1(𝑃, 𝑈)‘𝑚)‘𝑡) = (seq1( · , (𝐹𝑡))‘𝑚)) ↔ ((𝜑𝑡𝑇 ∧ 1 ∈ (1...𝑀)) → ((seq1(𝑃, 𝑈)‘1)‘𝑡) = (seq1( · , (𝐹𝑡))‘1))))
20 eleq1 2826 . . . . . . 7 (𝑚 = 𝑛 → (𝑚 ∈ (1...𝑀) ↔ 𝑛 ∈ (1...𝑀)))
21203anbi3d 1441 . . . . . 6 (𝑚 = 𝑛 → ((𝜑𝑡𝑇𝑚 ∈ (1...𝑀)) ↔ (𝜑𝑡𝑇𝑛 ∈ (1...𝑀))))
22 fveq2 6774 . . . . . . . 8 (𝑚 = 𝑛 → (seq1(𝑃, 𝑈)‘𝑚) = (seq1(𝑃, 𝑈)‘𝑛))
2322fveq1d 6776 . . . . . . 7 (𝑚 = 𝑛 → ((seq1(𝑃, 𝑈)‘𝑚)‘𝑡) = ((seq1(𝑃, 𝑈)‘𝑛)‘𝑡))
24 fveq2 6774 . . . . . . 7 (𝑚 = 𝑛 → (seq1( · , (𝐹𝑡))‘𝑚) = (seq1( · , (𝐹𝑡))‘𝑛))
2523, 24eqeq12d 2754 . . . . . 6 (𝑚 = 𝑛 → (((seq1(𝑃, 𝑈)‘𝑚)‘𝑡) = (seq1( · , (𝐹𝑡))‘𝑚) ↔ ((seq1(𝑃, 𝑈)‘𝑛)‘𝑡) = (seq1( · , (𝐹𝑡))‘𝑛)))
2621, 25imbi12d 345 . . . . 5 (𝑚 = 𝑛 → (((𝜑𝑡𝑇𝑚 ∈ (1...𝑀)) → ((seq1(𝑃, 𝑈)‘𝑚)‘𝑡) = (seq1( · , (𝐹𝑡))‘𝑚)) ↔ ((𝜑𝑡𝑇𝑛 ∈ (1...𝑀)) → ((seq1(𝑃, 𝑈)‘𝑛)‘𝑡) = (seq1( · , (𝐹𝑡))‘𝑛))))
27 eleq1 2826 . . . . . . 7 (𝑚 = (𝑛 + 1) → (𝑚 ∈ (1...𝑀) ↔ (𝑛 + 1) ∈ (1...𝑀)))
28273anbi3d 1441 . . . . . 6 (𝑚 = (𝑛 + 1) → ((𝜑𝑡𝑇𝑚 ∈ (1...𝑀)) ↔ (𝜑𝑡𝑇 ∧ (𝑛 + 1) ∈ (1...𝑀))))
29 fveq2 6774 . . . . . . . 8 (𝑚 = (𝑛 + 1) → (seq1(𝑃, 𝑈)‘𝑚) = (seq1(𝑃, 𝑈)‘(𝑛 + 1)))
3029fveq1d 6776 . . . . . . 7 (𝑚 = (𝑛 + 1) → ((seq1(𝑃, 𝑈)‘𝑚)‘𝑡) = ((seq1(𝑃, 𝑈)‘(𝑛 + 1))‘𝑡))
31 fveq2 6774 . . . . . . 7 (𝑚 = (𝑛 + 1) → (seq1( · , (𝐹𝑡))‘𝑚) = (seq1( · , (𝐹𝑡))‘(𝑛 + 1)))
3230, 31eqeq12d 2754 . . . . . 6 (𝑚 = (𝑛 + 1) → (((seq1(𝑃, 𝑈)‘𝑚)‘𝑡) = (seq1( · , (𝐹𝑡))‘𝑚) ↔ ((seq1(𝑃, 𝑈)‘(𝑛 + 1))‘𝑡) = (seq1( · , (𝐹𝑡))‘(𝑛 + 1))))
3328, 32imbi12d 345 . . . . 5 (𝑚 = (𝑛 + 1) → (((𝜑𝑡𝑇𝑚 ∈ (1...𝑀)) → ((seq1(𝑃, 𝑈)‘𝑚)‘𝑡) = (seq1( · , (𝐹𝑡))‘𝑚)) ↔ ((𝜑𝑡𝑇 ∧ (𝑛 + 1) ∈ (1...𝑀)) → ((seq1(𝑃, 𝑈)‘(𝑛 + 1))‘𝑡) = (seq1( · , (𝐹𝑡))‘(𝑛 + 1)))))
34 eleq1 2826 . . . . . . 7 (𝑚 = 𝑀 → (𝑚 ∈ (1...𝑀) ↔ 𝑀 ∈ (1...𝑀)))
35343anbi3d 1441 . . . . . 6 (𝑚 = 𝑀 → ((𝜑𝑡𝑇𝑚 ∈ (1...𝑀)) ↔ (𝜑𝑡𝑇𝑀 ∈ (1...𝑀))))
36 fveq2 6774 . . . . . . . 8 (𝑚 = 𝑀 → (seq1(𝑃, 𝑈)‘𝑚) = (seq1(𝑃, 𝑈)‘𝑀))
3736fveq1d 6776 . . . . . . 7 (𝑚 = 𝑀 → ((seq1(𝑃, 𝑈)‘𝑚)‘𝑡) = ((seq1(𝑃, 𝑈)‘𝑀)‘𝑡))
38 fveq2 6774 . . . . . . 7 (𝑚 = 𝑀 → (seq1( · , (𝐹𝑡))‘𝑚) = (seq1( · , (𝐹𝑡))‘𝑀))
3937, 38eqeq12d 2754 . . . . . 6 (𝑚 = 𝑀 → (((seq1(𝑃, 𝑈)‘𝑚)‘𝑡) = (seq1( · , (𝐹𝑡))‘𝑚) ↔ ((seq1(𝑃, 𝑈)‘𝑀)‘𝑡) = (seq1( · , (𝐹𝑡))‘𝑀)))
4035, 39imbi12d 345 . . . . 5 (𝑚 = 𝑀 → (((𝜑𝑡𝑇𝑚 ∈ (1...𝑀)) → ((seq1(𝑃, 𝑈)‘𝑚)‘𝑡) = (seq1( · , (𝐹𝑡))‘𝑚)) ↔ ((𝜑𝑡𝑇𝑀 ∈ (1...𝑀)) → ((seq1(𝑃, 𝑈)‘𝑀)‘𝑡) = (seq1( · , (𝐹𝑡))‘𝑀))))
41 1z 12350 . . . . . . . 8 1 ∈ ℤ
42 seq1 13734 . . . . . . . 8 (1 ∈ ℤ → (seq1( · , (𝐹𝑡))‘1) = ((𝐹𝑡)‘1))
4341, 42ax-mp 5 . . . . . . 7 (seq1( · , (𝐹𝑡))‘1) = ((𝐹𝑡)‘1)
44 1zzd 12351 . . . . . . . . . . . 12 (𝜑 → 1 ∈ ℤ)
45 1le1 11603 . . . . . . . . . . . . 13 1 ≤ 1
4645a1i 11 . . . . . . . . . . . 12 (𝜑 → 1 ≤ 1)
4744, 3, 44, 46, 5elfzd 13247 . . . . . . . . . . 11 (𝜑 → 1 ∈ (1...𝑀))
48 nfv 1917 . . . . . . . . . . . . 13 𝑖 𝑡𝑇
49 fmuldfeq.5 . . . . . . . . . . . . . . . . 17 𝐹 = (𝑡𝑇 ↦ (𝑖 ∈ (1...𝑀) ↦ ((𝑈𝑖)‘𝑡)))
50 nfcv 2907 . . . . . . . . . . . . . . . . . 18 𝑖𝑇
51 nfmpt1 5182 . . . . . . . . . . . . . . . . . 18 𝑖(𝑖 ∈ (1...𝑀) ↦ ((𝑈𝑖)‘𝑡))
5250, 51nfmpt 5181 . . . . . . . . . . . . . . . . 17 𝑖(𝑡𝑇 ↦ (𝑖 ∈ (1...𝑀) ↦ ((𝑈𝑖)‘𝑡)))
5349, 52nfcxfr 2905 . . . . . . . . . . . . . . . 16 𝑖𝐹
54 nfcv 2907 . . . . . . . . . . . . . . . 16 𝑖𝑡
5553, 54nffv 6784 . . . . . . . . . . . . . . 15 𝑖(𝐹𝑡)
56 nfcv 2907 . . . . . . . . . . . . . . 15 𝑖1
5755, 56nffv 6784 . . . . . . . . . . . . . 14 𝑖((𝐹𝑡)‘1)
58 nffvmpt1 6785 . . . . . . . . . . . . . 14 𝑖((𝑖 ∈ (1...𝑀) ↦ ((𝑈𝑖)‘𝑡))‘1)
5957, 58nfeq 2920 . . . . . . . . . . . . 13 𝑖((𝐹𝑡)‘1) = ((𝑖 ∈ (1...𝑀) ↦ ((𝑈𝑖)‘𝑡))‘1)
6048, 59nfim 1899 . . . . . . . . . . . 12 𝑖(𝑡𝑇 → ((𝐹𝑡)‘1) = ((𝑖 ∈ (1...𝑀) ↦ ((𝑈𝑖)‘𝑡))‘1))
61 fveq2 6774 . . . . . . . . . . . . . 14 (𝑖 = 1 → ((𝐹𝑡)‘𝑖) = ((𝐹𝑡)‘1))
62 fveq2 6774 . . . . . . . . . . . . . 14 (𝑖 = 1 → ((𝑖 ∈ (1...𝑀) ↦ ((𝑈𝑖)‘𝑡))‘𝑖) = ((𝑖 ∈ (1...𝑀) ↦ ((𝑈𝑖)‘𝑡))‘1))
6361, 62eqeq12d 2754 . . . . . . . . . . . . 13 (𝑖 = 1 → (((𝐹𝑡)‘𝑖) = ((𝑖 ∈ (1...𝑀) ↦ ((𝑈𝑖)‘𝑡))‘𝑖) ↔ ((𝐹𝑡)‘1) = ((𝑖 ∈ (1...𝑀) ↦ ((𝑈𝑖)‘𝑡))‘1)))
6463imbi2d 341 . . . . . . . . . . . 12 (𝑖 = 1 → ((𝑡𝑇 → ((𝐹𝑡)‘𝑖) = ((𝑖 ∈ (1...𝑀) ↦ ((𝑈𝑖)‘𝑡))‘𝑖)) ↔ (𝑡𝑇 → ((𝐹𝑡)‘1) = ((𝑖 ∈ (1...𝑀) ↦ ((𝑈𝑖)‘𝑡))‘1))))
65 ovex 7308 . . . . . . . . . . . . . . 15 (1...𝑀) ∈ V
6665mptex 7099 . . . . . . . . . . . . . 14 (𝑖 ∈ (1...𝑀) ↦ ((𝑈𝑖)‘𝑡)) ∈ V
6749fvmpt2 6886 . . . . . . . . . . . . . 14 ((𝑡𝑇 ∧ (𝑖 ∈ (1...𝑀) ↦ ((𝑈𝑖)‘𝑡)) ∈ V) → (𝐹𝑡) = (𝑖 ∈ (1...𝑀) ↦ ((𝑈𝑖)‘𝑡)))
6866, 67mpan2 688 . . . . . . . . . . . . 13 (𝑡𝑇 → (𝐹𝑡) = (𝑖 ∈ (1...𝑀) ↦ ((𝑈𝑖)‘𝑡)))
6968fveq1d 6776 . . . . . . . . . . . 12 (𝑡𝑇 → ((𝐹𝑡)‘𝑖) = ((𝑖 ∈ (1...𝑀) ↦ ((𝑈𝑖)‘𝑡))‘𝑖))
7060, 64, 69vtoclg1f 3504 . . . . . . . . . . 11 (1 ∈ (1...𝑀) → (𝑡𝑇 → ((𝐹𝑡)‘1) = ((𝑖 ∈ (1...𝑀) ↦ ((𝑈𝑖)‘𝑡))‘1)))
7147, 70syl 17 . . . . . . . . . 10 (𝜑 → (𝑡𝑇 → ((𝐹𝑡)‘1) = ((𝑖 ∈ (1...𝑀) ↦ ((𝑈𝑖)‘𝑡))‘1)))
7271imp 407 . . . . . . . . 9 ((𝜑𝑡𝑇) → ((𝐹𝑡)‘1) = ((𝑖 ∈ (1...𝑀) ↦ ((𝑈𝑖)‘𝑡))‘1))
73 eqid 2738 . . . . . . . . . 10 (𝑖 ∈ (1...𝑀) ↦ ((𝑈𝑖)‘𝑡)) = (𝑖 ∈ (1...𝑀) ↦ ((𝑈𝑖)‘𝑡))
74 fveq2 6774 . . . . . . . . . . 11 (𝑖 = 1 → (𝑈𝑖) = (𝑈‘1))
7574fveq1d 6776 . . . . . . . . . 10 (𝑖 = 1 → ((𝑈𝑖)‘𝑡) = ((𝑈‘1)‘𝑡))
7647adantr 481 . . . . . . . . . 10 ((𝜑𝑡𝑇) → 1 ∈ (1...𝑀))
77 fmuldfeq.9 . . . . . . . . . . . . 13 (𝜑𝑈:(1...𝑀)⟶𝑌)
7877, 47ffvelrnd 6962 . . . . . . . . . . . 12 (𝜑 → (𝑈‘1) ∈ 𝑌)
7978ancli 549 . . . . . . . . . . . 12 (𝜑 → (𝜑 ∧ (𝑈‘1) ∈ 𝑌))
80 eleq1 2826 . . . . . . . . . . . . . . 15 (𝑓 = (𝑈‘1) → (𝑓𝑌 ↔ (𝑈‘1) ∈ 𝑌))
8180anbi2d 629 . . . . . . . . . . . . . 14 (𝑓 = (𝑈‘1) → ((𝜑𝑓𝑌) ↔ (𝜑 ∧ (𝑈‘1) ∈ 𝑌)))
82 feq1 6581 . . . . . . . . . . . . . 14 (𝑓 = (𝑈‘1) → (𝑓:𝑇⟶ℝ ↔ (𝑈‘1):𝑇⟶ℝ))
8381, 82imbi12d 345 . . . . . . . . . . . . 13 (𝑓 = (𝑈‘1) → (((𝜑𝑓𝑌) → 𝑓:𝑇⟶ℝ) ↔ ((𝜑 ∧ (𝑈‘1) ∈ 𝑌) → (𝑈‘1):𝑇⟶ℝ)))
84 fmuldfeq.10 . . . . . . . . . . . . . 14 ((𝜑𝑓𝑌) → 𝑓:𝑇⟶ℝ)
8584a1i 11 . . . . . . . . . . . . 13 (𝑓𝑌 → ((𝜑𝑓𝑌) → 𝑓:𝑇⟶ℝ))
8683, 85vtoclga 3513 . . . . . . . . . . . 12 ((𝑈‘1) ∈ 𝑌 → ((𝜑 ∧ (𝑈‘1) ∈ 𝑌) → (𝑈‘1):𝑇⟶ℝ))
8778, 79, 86sylc 65 . . . . . . . . . . 11 (𝜑 → (𝑈‘1):𝑇⟶ℝ)
8887ffvelrnda 6961 . . . . . . . . . 10 ((𝜑𝑡𝑇) → ((𝑈‘1)‘𝑡) ∈ ℝ)
8973, 75, 76, 88fvmptd3 6898 . . . . . . . . 9 ((𝜑𝑡𝑇) → ((𝑖 ∈ (1...𝑀) ↦ ((𝑈𝑖)‘𝑡))‘1) = ((𝑈‘1)‘𝑡))
9072, 89eqtrd 2778 . . . . . . . 8 ((𝜑𝑡𝑇) → ((𝐹𝑡)‘1) = ((𝑈‘1)‘𝑡))
91 seq1 13734 . . . . . . . . . 10 (1 ∈ ℤ → (seq1(𝑃, 𝑈)‘1) = (𝑈‘1))
9241, 91ax-mp 5 . . . . . . . . 9 (seq1(𝑃, 𝑈)‘1) = (𝑈‘1)
9392fveq1i 6775 . . . . . . . 8 ((seq1(𝑃, 𝑈)‘1)‘𝑡) = ((𝑈‘1)‘𝑡)
9490, 93eqtr4di 2796 . . . . . . 7 ((𝜑𝑡𝑇) → ((𝐹𝑡)‘1) = ((seq1(𝑃, 𝑈)‘1)‘𝑡))
9543, 94eqtr2id 2791 . . . . . 6 ((𝜑𝑡𝑇) → ((seq1(𝑃, 𝑈)‘1)‘𝑡) = (seq1( · , (𝐹𝑡))‘1))
96953adant3 1131 . . . . 5 ((𝜑𝑡𝑇 ∧ 1 ∈ (1...𝑀)) → ((seq1(𝑃, 𝑈)‘1)‘𝑡) = (seq1( · , (𝐹𝑡))‘1))
97 simp31 1208 . . . . . . 7 ((𝑛 ∈ ℕ ∧ ((𝜑𝑡𝑇𝑛 ∈ (1...𝑀)) → ((seq1(𝑃, 𝑈)‘𝑛)‘𝑡) = (seq1( · , (𝐹𝑡))‘𝑛)) ∧ (𝜑𝑡𝑇 ∧ (𝑛 + 1) ∈ (1...𝑀))) → 𝜑)
98 simp1 1135 . . . . . . . . . 10 ((𝑛 ∈ ℕ ∧ ((𝜑𝑡𝑇𝑛 ∈ (1...𝑀)) → ((seq1(𝑃, 𝑈)‘𝑛)‘𝑡) = (seq1( · , (𝐹𝑡))‘𝑛)) ∧ (𝜑𝑡𝑇 ∧ (𝑛 + 1) ∈ (1...𝑀))) → 𝑛 ∈ ℕ)
99 simp33 1210 . . . . . . . . . 10 ((𝑛 ∈ ℕ ∧ ((𝜑𝑡𝑇𝑛 ∈ (1...𝑀)) → ((seq1(𝑃, 𝑈)‘𝑛)‘𝑡) = (seq1( · , (𝐹𝑡))‘𝑛)) ∧ (𝜑𝑡𝑇 ∧ (𝑛 + 1) ∈ (1...𝑀))) → (𝑛 + 1) ∈ (1...𝑀))
10098, 99jca 512 . . . . . . . . 9 ((𝑛 ∈ ℕ ∧ ((𝜑𝑡𝑇𝑛 ∈ (1...𝑀)) → ((seq1(𝑃, 𝑈)‘𝑛)‘𝑡) = (seq1( · , (𝐹𝑡))‘𝑛)) ∧ (𝜑𝑡𝑇 ∧ (𝑛 + 1) ∈ (1...𝑀))) → (𝑛 ∈ ℕ ∧ (𝑛 + 1) ∈ (1...𝑀)))
101 elnnuz 12622 . . . . . . . . . . 11 (𝑛 ∈ ℕ ↔ 𝑛 ∈ (ℤ‘1))
102101biimpi 215 . . . . . . . . . 10 (𝑛 ∈ ℕ → 𝑛 ∈ (ℤ‘1))
103102anim1i 615 . . . . . . . . 9 ((𝑛 ∈ ℕ ∧ (𝑛 + 1) ∈ (1...𝑀)) → (𝑛 ∈ (ℤ‘1) ∧ (𝑛 + 1) ∈ (1...𝑀)))
104 peano2fzr 13269 . . . . . . . . 9 ((𝑛 ∈ (ℤ‘1) ∧ (𝑛 + 1) ∈ (1...𝑀)) → 𝑛 ∈ (1...𝑀))
105100, 103, 1043syl 18 . . . . . . . 8 ((𝑛 ∈ ℕ ∧ ((𝜑𝑡𝑇𝑛 ∈ (1...𝑀)) → ((seq1(𝑃, 𝑈)‘𝑛)‘𝑡) = (seq1( · , (𝐹𝑡))‘𝑛)) ∧ (𝜑𝑡𝑇 ∧ (𝑛 + 1) ∈ (1...𝑀))) → 𝑛 ∈ (1...𝑀))
106 simp32 1209 . . . . . . . . 9 ((𝑛 ∈ ℕ ∧ ((𝜑𝑡𝑇𝑛 ∈ (1...𝑀)) → ((seq1(𝑃, 𝑈)‘𝑛)‘𝑡) = (seq1( · , (𝐹𝑡))‘𝑛)) ∧ (𝜑𝑡𝑇 ∧ (𝑛 + 1) ∈ (1...𝑀))) → 𝑡𝑇)
107 simp2 1136 . . . . . . . . 9 ((𝑛 ∈ ℕ ∧ ((𝜑𝑡𝑇𝑛 ∈ (1...𝑀)) → ((seq1(𝑃, 𝑈)‘𝑛)‘𝑡) = (seq1( · , (𝐹𝑡))‘𝑛)) ∧ (𝜑𝑡𝑇 ∧ (𝑛 + 1) ∈ (1...𝑀))) → ((𝜑𝑡𝑇𝑛 ∈ (1...𝑀)) → ((seq1(𝑃, 𝑈)‘𝑛)‘𝑡) = (seq1( · , (𝐹𝑡))‘𝑛)))
10897, 106, 105, 107mp3and 1463 . . . . . . . 8 ((𝑛 ∈ ℕ ∧ ((𝜑𝑡𝑇𝑛 ∈ (1...𝑀)) → ((seq1(𝑃, 𝑈)‘𝑛)‘𝑡) = (seq1( · , (𝐹𝑡))‘𝑛)) ∧ (𝜑𝑡𝑇 ∧ (𝑛 + 1) ∈ (1...𝑀))) → ((seq1(𝑃, 𝑈)‘𝑛)‘𝑡) = (seq1( · , (𝐹𝑡))‘𝑛))
109105, 99, 1083jca 1127 . . . . . . 7 ((𝑛 ∈ ℕ ∧ ((𝜑𝑡𝑇𝑛 ∈ (1...𝑀)) → ((seq1(𝑃, 𝑈)‘𝑛)‘𝑡) = (seq1( · , (𝐹𝑡))‘𝑛)) ∧ (𝜑𝑡𝑇 ∧ (𝑛 + 1) ∈ (1...𝑀))) → (𝑛 ∈ (1...𝑀) ∧ (𝑛 + 1) ∈ (1...𝑀) ∧ ((seq1(𝑃, 𝑈)‘𝑛)‘𝑡) = (seq1( · , (𝐹𝑡))‘𝑛)))
110 nfv 1917 . . . . . . . . 9 𝑓𝜑
111 nfv 1917 . . . . . . . . . 10 𝑓 𝑛 ∈ (1...𝑀)
112 nfv 1917 . . . . . . . . . 10 𝑓(𝑛 + 1) ∈ (1...𝑀)
113 nfcv 2907 . . . . . . . . . . . . . 14 𝑓1
114 fmuldfeq.3 . . . . . . . . . . . . . . 15 𝑃 = (𝑓𝑌, 𝑔𝑌 ↦ (𝑡𝑇 ↦ ((𝑓𝑡) · (𝑔𝑡))))
115 nfmpo1 7355 . . . . . . . . . . . . . . 15 𝑓(𝑓𝑌, 𝑔𝑌 ↦ (𝑡𝑇 ↦ ((𝑓𝑡) · (𝑔𝑡))))
116114, 115nfcxfr 2905 . . . . . . . . . . . . . 14 𝑓𝑃
117 nfcv 2907 . . . . . . . . . . . . . 14 𝑓𝑈
118113, 116, 117nfseq 13731 . . . . . . . . . . . . 13 𝑓seq1(𝑃, 𝑈)
119 nfcv 2907 . . . . . . . . . . . . 13 𝑓𝑛
120118, 119nffv 6784 . . . . . . . . . . . 12 𝑓(seq1(𝑃, 𝑈)‘𝑛)
121 nfcv 2907 . . . . . . . . . . . 12 𝑓𝑡
122120, 121nffv 6784 . . . . . . . . . . 11 𝑓((seq1(𝑃, 𝑈)‘𝑛)‘𝑡)
123 nfcv 2907 . . . . . . . . . . 11 𝑓(seq1( · , (𝐹𝑡))‘𝑛)
124122, 123nfeq 2920 . . . . . . . . . 10 𝑓((seq1(𝑃, 𝑈)‘𝑛)‘𝑡) = (seq1( · , (𝐹𝑡))‘𝑛)
125111, 112, 124nf3an 1904 . . . . . . . . 9 𝑓(𝑛 ∈ (1...𝑀) ∧ (𝑛 + 1) ∈ (1...𝑀) ∧ ((seq1(𝑃, 𝑈)‘𝑛)‘𝑡) = (seq1( · , (𝐹𝑡))‘𝑛))
126110, 125nfan 1902 . . . . . . . 8 𝑓(𝜑 ∧ (𝑛 ∈ (1...𝑀) ∧ (𝑛 + 1) ∈ (1...𝑀) ∧ ((seq1(𝑃, 𝑈)‘𝑛)‘𝑡) = (seq1( · , (𝐹𝑡))‘𝑛)))
127 nfv 1917 . . . . . . . . 9 𝑔𝜑
128 nfv 1917 . . . . . . . . . 10 𝑔 𝑛 ∈ (1...𝑀)
129 nfv 1917 . . . . . . . . . 10 𝑔(𝑛 + 1) ∈ (1...𝑀)
130 nfcv 2907 . . . . . . . . . . . . . 14 𝑔1
131 nfmpo2 7356 . . . . . . . . . . . . . . 15 𝑔(𝑓𝑌, 𝑔𝑌 ↦ (𝑡𝑇 ↦ ((𝑓𝑡) · (𝑔𝑡))))
132114, 131nfcxfr 2905 . . . . . . . . . . . . . 14 𝑔𝑃
133 nfcv 2907 . . . . . . . . . . . . . 14 𝑔𝑈
134130, 132, 133nfseq 13731 . . . . . . . . . . . . 13 𝑔seq1(𝑃, 𝑈)
135 nfcv 2907 . . . . . . . . . . . . 13 𝑔𝑛
136134, 135nffv 6784 . . . . . . . . . . . 12 𝑔(seq1(𝑃, 𝑈)‘𝑛)
137 nfcv 2907 . . . . . . . . . . . 12 𝑔𝑡
138136, 137nffv 6784 . . . . . . . . . . 11 𝑔((seq1(𝑃, 𝑈)‘𝑛)‘𝑡)
139 nfcv 2907 . . . . . . . . . . 11 𝑔(seq1( · , (𝐹𝑡))‘𝑛)
140138, 139nfeq 2920 . . . . . . . . . 10 𝑔((seq1(𝑃, 𝑈)‘𝑛)‘𝑡) = (seq1( · , (𝐹𝑡))‘𝑛)
141128, 129, 140nf3an 1904 . . . . . . . . 9 𝑔(𝑛 ∈ (1...𝑀) ∧ (𝑛 + 1) ∈ (1...𝑀) ∧ ((seq1(𝑃, 𝑈)‘𝑛)‘𝑡) = (seq1( · , (𝐹𝑡))‘𝑛))
142127, 141nfan 1902 . . . . . . . 8 𝑔(𝜑 ∧ (𝑛 ∈ (1...𝑀) ∧ (𝑛 + 1) ∈ (1...𝑀) ∧ ((seq1(𝑃, 𝑈)‘𝑛)‘𝑡) = (seq1( · , (𝐹𝑡))‘𝑛)))
143 fmuldfeq.2 . . . . . . . 8 𝑡𝑌
144 fmuldfeq.7 . . . . . . . . 9 (𝜑𝑇 ∈ V)
145144adantr 481 . . . . . . . 8 ((𝜑 ∧ (𝑛 ∈ (1...𝑀) ∧ (𝑛 + 1) ∈ (1...𝑀) ∧ ((seq1(𝑃, 𝑈)‘𝑛)‘𝑡) = (seq1( · , (𝐹𝑡))‘𝑛))) → 𝑇 ∈ V)
14677adantr 481 . . . . . . . 8 ((𝜑 ∧ (𝑛 ∈ (1...𝑀) ∧ (𝑛 + 1) ∈ (1...𝑀) ∧ ((seq1(𝑃, 𝑈)‘𝑛)‘𝑡) = (seq1( · , (𝐹𝑡))‘𝑛))) → 𝑈:(1...𝑀)⟶𝑌)
147 fmuldfeq.11 . . . . . . . . 9 ((𝜑𝑓𝑌𝑔𝑌) → (𝑡𝑇 ↦ ((𝑓𝑡) · (𝑔𝑡))) ∈ 𝑌)
1481473adant1r 1176 . . . . . . . 8 (((𝜑 ∧ (𝑛 ∈ (1...𝑀) ∧ (𝑛 + 1) ∈ (1...𝑀) ∧ ((seq1(𝑃, 𝑈)‘𝑛)‘𝑡) = (seq1( · , (𝐹𝑡))‘𝑛))) ∧ 𝑓𝑌𝑔𝑌) → (𝑡𝑇 ↦ ((𝑓𝑡) · (𝑔𝑡))) ∈ 𝑌)
149 simpr1 1193 . . . . . . . 8 ((𝜑 ∧ (𝑛 ∈ (1...𝑀) ∧ (𝑛 + 1) ∈ (1...𝑀) ∧ ((seq1(𝑃, 𝑈)‘𝑛)‘𝑡) = (seq1( · , (𝐹𝑡))‘𝑛))) → 𝑛 ∈ (1...𝑀))
150 simpr2 1194 . . . . . . . 8 ((𝜑 ∧ (𝑛 ∈ (1...𝑀) ∧ (𝑛 + 1) ∈ (1...𝑀) ∧ ((seq1(𝑃, 𝑈)‘𝑛)‘𝑡) = (seq1( · , (𝐹𝑡))‘𝑛))) → (𝑛 + 1) ∈ (1...𝑀))
151 simpr3 1195 . . . . . . . 8 ((𝜑 ∧ (𝑛 ∈ (1...𝑀) ∧ (𝑛 + 1) ∈ (1...𝑀) ∧ ((seq1(𝑃, 𝑈)‘𝑛)‘𝑡) = (seq1( · , (𝐹𝑡))‘𝑛))) → ((seq1(𝑃, 𝑈)‘𝑛)‘𝑡) = (seq1( · , (𝐹𝑡))‘𝑛))
15284adantlr 712 . . . . . . . 8 (((𝜑 ∧ (𝑛 ∈ (1...𝑀) ∧ (𝑛 + 1) ∈ (1...𝑀) ∧ ((seq1(𝑃, 𝑈)‘𝑛)‘𝑡) = (seq1( · , (𝐹𝑡))‘𝑛))) ∧ 𝑓𝑌) → 𝑓:𝑇⟶ℝ)
153126, 142, 143, 114, 49, 145, 146, 148, 149, 150, 151, 152fmuldfeqlem1 43123 . . . . . . 7 (((𝜑 ∧ (𝑛 ∈ (1...𝑀) ∧ (𝑛 + 1) ∈ (1...𝑀) ∧ ((seq1(𝑃, 𝑈)‘𝑛)‘𝑡) = (seq1( · , (𝐹𝑡))‘𝑛))) ∧ 𝑡𝑇) → ((seq1(𝑃, 𝑈)‘(𝑛 + 1))‘𝑡) = (seq1( · , (𝐹𝑡))‘(𝑛 + 1)))
15497, 109, 106, 153syl21anc 835 . . . . . 6 ((𝑛 ∈ ℕ ∧ ((𝜑𝑡𝑇𝑛 ∈ (1...𝑀)) → ((seq1(𝑃, 𝑈)‘𝑛)‘𝑡) = (seq1( · , (𝐹𝑡))‘𝑛)) ∧ (𝜑𝑡𝑇 ∧ (𝑛 + 1) ∈ (1...𝑀))) → ((seq1(𝑃, 𝑈)‘(𝑛 + 1))‘𝑡) = (seq1( · , (𝐹𝑡))‘(𝑛 + 1)))
1551543exp 1118 . . . . 5 (𝑛 ∈ ℕ → (((𝜑𝑡𝑇𝑛 ∈ (1...𝑀)) → ((seq1(𝑃, 𝑈)‘𝑛)‘𝑡) = (seq1( · , (𝐹𝑡))‘𝑛)) → ((𝜑𝑡𝑇 ∧ (𝑛 + 1) ∈ (1...𝑀)) → ((seq1(𝑃, 𝑈)‘(𝑛 + 1))‘𝑡) = (seq1( · , (𝐹𝑡))‘(𝑛 + 1)))))
15619, 26, 33, 40, 96, 155nnind 11991 . . . 4 (𝑀 ∈ ℕ → ((𝜑𝑡𝑇𝑀 ∈ (1...𝑀)) → ((seq1(𝑃, 𝑈)‘𝑀)‘𝑡) = (seq1( · , (𝐹𝑡))‘𝑀)))
15712, 156mpcom 38 . . 3 ((𝜑𝑡𝑇𝑀 ∈ (1...𝑀)) → ((seq1(𝑃, 𝑈)‘𝑀)‘𝑡) = (seq1( · , (𝐹𝑡))‘𝑀))
15811, 157mpd3an3 1461 . 2 ((𝜑𝑡𝑇) → ((seq1(𝑃, 𝑈)‘𝑀)‘𝑡) = (seq1( · , (𝐹𝑡))‘𝑀))
159 fmuldfeq.4 . . . 4 𝑋 = (seq1(𝑃, 𝑈)‘𝑀)
160159fveq1i 6775 . . 3 (𝑋𝑡) = ((seq1(𝑃, 𝑈)‘𝑀)‘𝑡)
161160a1i 11 . 2 ((𝜑𝑡𝑇) → (𝑋𝑡) = ((seq1(𝑃, 𝑈)‘𝑀)‘𝑡))
162 simpr 485 . . 3 ((𝜑𝑡𝑇) → 𝑡𝑇)
163 elnnuz 12622 . . . . . 6 (𝑀 ∈ ℕ ↔ 𝑀 ∈ (ℤ‘1))
1642, 163sylib 217 . . . . 5 (𝜑𝑀 ∈ (ℤ‘1))
165164adantr 481 . . . 4 ((𝜑𝑡𝑇) → 𝑀 ∈ (ℤ‘1))
166 fmuldfeq.1 . . . . . . . 8 𝑖𝜑
167166, 48nfan 1902 . . . . . . 7 𝑖(𝜑𝑡𝑇)
168 nfv 1917 . . . . . . 7 𝑖 𝑘 ∈ (1...𝑀)
169167, 168nfan 1902 . . . . . 6 𝑖((𝜑𝑡𝑇) ∧ 𝑘 ∈ (1...𝑀))
170 nfcv 2907 . . . . . . . 8 𝑖𝑘
17155, 170nffv 6784 . . . . . . 7 𝑖((𝐹𝑡)‘𝑘)
172171nfel1 2923 . . . . . 6 𝑖((𝐹𝑡)‘𝑘) ∈ ℝ
173169, 172nfim 1899 . . . . 5 𝑖(((𝜑𝑡𝑇) ∧ 𝑘 ∈ (1...𝑀)) → ((𝐹𝑡)‘𝑘) ∈ ℝ)
174 eleq1 2826 . . . . . . 7 (𝑖 = 𝑘 → (𝑖 ∈ (1...𝑀) ↔ 𝑘 ∈ (1...𝑀)))
175174anbi2d 629 . . . . . 6 (𝑖 = 𝑘 → (((𝜑𝑡𝑇) ∧ 𝑖 ∈ (1...𝑀)) ↔ ((𝜑𝑡𝑇) ∧ 𝑘 ∈ (1...𝑀))))
176 fveq2 6774 . . . . . . 7 (𝑖 = 𝑘 → ((𝐹𝑡)‘𝑖) = ((𝐹𝑡)‘𝑘))
177176eleq1d 2823 . . . . . 6 (𝑖 = 𝑘 → (((𝐹𝑡)‘𝑖) ∈ ℝ ↔ ((𝐹𝑡)‘𝑘) ∈ ℝ))
178175, 177imbi12d 345 . . . . 5 (𝑖 = 𝑘 → ((((𝜑𝑡𝑇) ∧ 𝑖 ∈ (1...𝑀)) → ((𝐹𝑡)‘𝑖) ∈ ℝ) ↔ (((𝜑𝑡𝑇) ∧ 𝑘 ∈ (1...𝑀)) → ((𝐹𝑡)‘𝑘) ∈ ℝ)))
17969ad2antlr 724 . . . . . 6 (((𝜑𝑡𝑇) ∧ 𝑖 ∈ (1...𝑀)) → ((𝐹𝑡)‘𝑖) = ((𝑖 ∈ (1...𝑀) ↦ ((𝑈𝑖)‘𝑡))‘𝑖))
180 simpr 485 . . . . . . . 8 (((𝜑𝑡𝑇) ∧ 𝑖 ∈ (1...𝑀)) → 𝑖 ∈ (1...𝑀))
18177ffvelrnda 6961 . . . . . . . . . . 11 ((𝜑𝑖 ∈ (1...𝑀)) → (𝑈𝑖) ∈ 𝑌)
182 simpl 483 . . . . . . . . . . . 12 ((𝜑𝑖 ∈ (1...𝑀)) → 𝜑)
183182, 181jca 512 . . . . . . . . . . 11 ((𝜑𝑖 ∈ (1...𝑀)) → (𝜑 ∧ (𝑈𝑖) ∈ 𝑌))
184 eleq1 2826 . . . . . . . . . . . . . 14 (𝑓 = (𝑈𝑖) → (𝑓𝑌 ↔ (𝑈𝑖) ∈ 𝑌))
185184anbi2d 629 . . . . . . . . . . . . 13 (𝑓 = (𝑈𝑖) → ((𝜑𝑓𝑌) ↔ (𝜑 ∧ (𝑈𝑖) ∈ 𝑌)))
186 feq1 6581 . . . . . . . . . . . . 13 (𝑓 = (𝑈𝑖) → (𝑓:𝑇⟶ℝ ↔ (𝑈𝑖):𝑇⟶ℝ))
187185, 186imbi12d 345 . . . . . . . . . . . 12 (𝑓 = (𝑈𝑖) → (((𝜑𝑓𝑌) → 𝑓:𝑇⟶ℝ) ↔ ((𝜑 ∧ (𝑈𝑖) ∈ 𝑌) → (𝑈𝑖):𝑇⟶ℝ)))
188187, 85vtoclga 3513 . . . . . . . . . . 11 ((𝑈𝑖) ∈ 𝑌 → ((𝜑 ∧ (𝑈𝑖) ∈ 𝑌) → (𝑈𝑖):𝑇⟶ℝ))
189181, 183, 188sylc 65 . . . . . . . . . 10 ((𝜑𝑖 ∈ (1...𝑀)) → (𝑈𝑖):𝑇⟶ℝ)
190189adantlr 712 . . . . . . . . 9 (((𝜑𝑡𝑇) ∧ 𝑖 ∈ (1...𝑀)) → (𝑈𝑖):𝑇⟶ℝ)
191 simplr 766 . . . . . . . . 9 (((𝜑𝑡𝑇) ∧ 𝑖 ∈ (1...𝑀)) → 𝑡𝑇)
192190, 191ffvelrnd 6962 . . . . . . . 8 (((𝜑𝑡𝑇) ∧ 𝑖 ∈ (1...𝑀)) → ((𝑈𝑖)‘𝑡) ∈ ℝ)
19373fvmpt2 6886 . . . . . . . 8 ((𝑖 ∈ (1...𝑀) ∧ ((𝑈𝑖)‘𝑡) ∈ ℝ) → ((𝑖 ∈ (1...𝑀) ↦ ((𝑈𝑖)‘𝑡))‘𝑖) = ((𝑈𝑖)‘𝑡))
194180, 192, 193syl2anc 584 . . . . . . 7 (((𝜑𝑡𝑇) ∧ 𝑖 ∈ (1...𝑀)) → ((𝑖 ∈ (1...𝑀) ↦ ((𝑈𝑖)‘𝑡))‘𝑖) = ((𝑈𝑖)‘𝑡))
195194, 192eqeltrd 2839 . . . . . 6 (((𝜑𝑡𝑇) ∧ 𝑖 ∈ (1...𝑀)) → ((𝑖 ∈ (1...𝑀) ↦ ((𝑈𝑖)‘𝑡))‘𝑖) ∈ ℝ)
196179, 195eqeltrd 2839 . . . . 5 (((𝜑𝑡𝑇) ∧ 𝑖 ∈ (1...𝑀)) → ((𝐹𝑡)‘𝑖) ∈ ℝ)
197173, 178, 196chvarfv 2233 . . . 4 (((𝜑𝑡𝑇) ∧ 𝑘 ∈ (1...𝑀)) → ((𝐹𝑡)‘𝑘) ∈ ℝ)
198 remulcl 10956 . . . . 5 ((𝑘 ∈ ℝ ∧ 𝑏 ∈ ℝ) → (𝑘 · 𝑏) ∈ ℝ)
199198adantl 482 . . . 4 (((𝜑𝑡𝑇) ∧ (𝑘 ∈ ℝ ∧ 𝑏 ∈ ℝ)) → (𝑘 · 𝑏) ∈ ℝ)
200165, 197, 199seqcl 13743 . . 3 ((𝜑𝑡𝑇) → (seq1( · , (𝐹𝑡))‘𝑀) ∈ ℝ)
201 fmuldfeq.6 . . . 4 𝑍 = (𝑡𝑇 ↦ (seq1( · , (𝐹𝑡))‘𝑀))
202201fvmpt2 6886 . . 3 ((𝑡𝑇 ∧ (seq1( · , (𝐹𝑡))‘𝑀) ∈ ℝ) → (𝑍𝑡) = (seq1( · , (𝐹𝑡))‘𝑀))
203162, 200, 202syl2anc 584 . 2 ((𝜑𝑡𝑇) → (𝑍𝑡) = (seq1( · , (𝐹𝑡))‘𝑀))
204158, 161, 2033eqtr4d 2788 1 ((𝜑𝑡𝑇) → (𝑋𝑡) = (𝑍𝑡))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396  w3a 1086   = wceq 1539  wnf 1786  wcel 2106  wnfc 2887  Vcvv 3432   class class class wbr 5074  cmpt 5157  wf 6429  cfv 6433  (class class class)co 7275  cmpo 7277  cr 10870  1c1 10872   + caddc 10874   · cmul 10876  cle 11010  cn 11973  cz 12319  cuz 12582  ...cfz 13239  seqcseq 13721
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-cnex 10927  ax-resscn 10928  ax-1cn 10929  ax-icn 10930  ax-addcl 10931  ax-addrcl 10932  ax-mulcl 10933  ax-mulrcl 10934  ax-mulcom 10935  ax-addass 10936  ax-mulass 10937  ax-distr 10938  ax-i2m1 10939  ax-1ne0 10940  ax-1rid 10941  ax-rnegex 10942  ax-rrecex 10943  ax-cnre 10944  ax-pre-lttri 10945  ax-pre-lttrn 10946  ax-pre-ltadd 10947  ax-pre-mulgt0 10948
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-om 7713  df-1st 7831  df-2nd 7832  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-er 8498  df-en 8734  df-dom 8735  df-sdom 8736  df-pnf 11011  df-mnf 11012  df-xr 11013  df-ltxr 11014  df-le 11015  df-sub 11207  df-neg 11208  df-nn 11974  df-n0 12234  df-z 12320  df-uz 12583  df-fz 13240  df-seq 13722
This theorem is referenced by:  stoweidlem42  43583  stoweidlem48  43589
  Copyright terms: Public domain W3C validator