Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fmuldfeq Structured version   Visualization version   GIF version

Theorem fmuldfeq 45554
Description: X and Z are two equivalent definitions of the finite product of real functions. Y is a set of real functions from a common domain T, Y is closed under function multiplication and U is a finite sequence of functions in Y. M is the number of functions multiplied together. (Contributed by Glauco Siliprandi, 20-Apr-2017.)
Hypotheses
Ref Expression
fmuldfeq.1 𝑖𝜑
fmuldfeq.2 𝑡𝑌
fmuldfeq.3 𝑃 = (𝑓𝑌, 𝑔𝑌 ↦ (𝑡𝑇 ↦ ((𝑓𝑡) · (𝑔𝑡))))
fmuldfeq.4 𝑋 = (seq1(𝑃, 𝑈)‘𝑀)
fmuldfeq.5 𝐹 = (𝑡𝑇 ↦ (𝑖 ∈ (1...𝑀) ↦ ((𝑈𝑖)‘𝑡)))
fmuldfeq.6 𝑍 = (𝑡𝑇 ↦ (seq1( · , (𝐹𝑡))‘𝑀))
fmuldfeq.7 (𝜑𝑇 ∈ V)
fmuldfeq.8 (𝜑𝑀 ∈ ℕ)
fmuldfeq.9 (𝜑𝑈:(1...𝑀)⟶𝑌)
fmuldfeq.10 ((𝜑𝑓𝑌) → 𝑓:𝑇⟶ℝ)
fmuldfeq.11 ((𝜑𝑓𝑌𝑔𝑌) → (𝑡𝑇 ↦ ((𝑓𝑡) · (𝑔𝑡))) ∈ 𝑌)
Assertion
Ref Expression
fmuldfeq ((𝜑𝑡𝑇) → (𝑋𝑡) = (𝑍𝑡))
Distinct variable groups:   𝑡,𝑇   𝑓,𝑔,𝑡,𝑇   𝑓,𝑖,𝑡,𝑇   𝑓,𝐹,𝑔   𝑓,𝑀,𝑔   𝑈,𝑓,𝑔,𝑡   𝑓,𝑌,𝑔   𝜑,𝑓,𝑔   𝑖,𝑀   𝑈,𝑖
Allowed substitution hints:   𝜑(𝑡,𝑖)   𝑃(𝑡,𝑓,𝑔,𝑖)   𝐹(𝑡,𝑖)   𝑀(𝑡)   𝑋(𝑡,𝑓,𝑔,𝑖)   𝑌(𝑡,𝑖)   𝑍(𝑡,𝑓,𝑔,𝑖)

Proof of Theorem fmuldfeq
Dummy variables 𝑘 𝑏 𝑛 𝑚 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 1zzd 12540 . . . 4 ((𝜑𝑡𝑇) → 1 ∈ ℤ)
2 fmuldfeq.8 . . . . . 6 (𝜑𝑀 ∈ ℕ)
32nnzd 12532 . . . . 5 (𝜑𝑀 ∈ ℤ)
43adantr 480 . . . 4 ((𝜑𝑡𝑇) → 𝑀 ∈ ℤ)
52nnge1d 12210 . . . . 5 (𝜑 → 1 ≤ 𝑀)
65adantr 480 . . . 4 ((𝜑𝑡𝑇) → 1 ≤ 𝑀)
7 nnre 12169 . . . . . 6 (𝑀 ∈ ℕ → 𝑀 ∈ ℝ)
8 leid 11246 . . . . . 6 (𝑀 ∈ ℝ → 𝑀𝑀)
92, 7, 83syl 18 . . . . 5 (𝜑𝑀𝑀)
109adantr 480 . . . 4 ((𝜑𝑡𝑇) → 𝑀𝑀)
111, 4, 4, 6, 10elfzd 13452 . . 3 ((𝜑𝑡𝑇) → 𝑀 ∈ (1...𝑀))
1223ad2ant1 1133 . . . 4 ((𝜑𝑡𝑇𝑀 ∈ (1...𝑀)) → 𝑀 ∈ ℕ)
13 eleq1 2816 . . . . . . 7 (𝑚 = 1 → (𝑚 ∈ (1...𝑀) ↔ 1 ∈ (1...𝑀)))
14133anbi3d 1444 . . . . . 6 (𝑚 = 1 → ((𝜑𝑡𝑇𝑚 ∈ (1...𝑀)) ↔ (𝜑𝑡𝑇 ∧ 1 ∈ (1...𝑀))))
15 fveq2 6840 . . . . . . . 8 (𝑚 = 1 → (seq1(𝑃, 𝑈)‘𝑚) = (seq1(𝑃, 𝑈)‘1))
1615fveq1d 6842 . . . . . . 7 (𝑚 = 1 → ((seq1(𝑃, 𝑈)‘𝑚)‘𝑡) = ((seq1(𝑃, 𝑈)‘1)‘𝑡))
17 fveq2 6840 . . . . . . 7 (𝑚 = 1 → (seq1( · , (𝐹𝑡))‘𝑚) = (seq1( · , (𝐹𝑡))‘1))
1816, 17eqeq12d 2745 . . . . . 6 (𝑚 = 1 → (((seq1(𝑃, 𝑈)‘𝑚)‘𝑡) = (seq1( · , (𝐹𝑡))‘𝑚) ↔ ((seq1(𝑃, 𝑈)‘1)‘𝑡) = (seq1( · , (𝐹𝑡))‘1)))
1914, 18imbi12d 344 . . . . 5 (𝑚 = 1 → (((𝜑𝑡𝑇𝑚 ∈ (1...𝑀)) → ((seq1(𝑃, 𝑈)‘𝑚)‘𝑡) = (seq1( · , (𝐹𝑡))‘𝑚)) ↔ ((𝜑𝑡𝑇 ∧ 1 ∈ (1...𝑀)) → ((seq1(𝑃, 𝑈)‘1)‘𝑡) = (seq1( · , (𝐹𝑡))‘1))))
20 eleq1 2816 . . . . . . 7 (𝑚 = 𝑛 → (𝑚 ∈ (1...𝑀) ↔ 𝑛 ∈ (1...𝑀)))
21203anbi3d 1444 . . . . . 6 (𝑚 = 𝑛 → ((𝜑𝑡𝑇𝑚 ∈ (1...𝑀)) ↔ (𝜑𝑡𝑇𝑛 ∈ (1...𝑀))))
22 fveq2 6840 . . . . . . . 8 (𝑚 = 𝑛 → (seq1(𝑃, 𝑈)‘𝑚) = (seq1(𝑃, 𝑈)‘𝑛))
2322fveq1d 6842 . . . . . . 7 (𝑚 = 𝑛 → ((seq1(𝑃, 𝑈)‘𝑚)‘𝑡) = ((seq1(𝑃, 𝑈)‘𝑛)‘𝑡))
24 fveq2 6840 . . . . . . 7 (𝑚 = 𝑛 → (seq1( · , (𝐹𝑡))‘𝑚) = (seq1( · , (𝐹𝑡))‘𝑛))
2523, 24eqeq12d 2745 . . . . . 6 (𝑚 = 𝑛 → (((seq1(𝑃, 𝑈)‘𝑚)‘𝑡) = (seq1( · , (𝐹𝑡))‘𝑚) ↔ ((seq1(𝑃, 𝑈)‘𝑛)‘𝑡) = (seq1( · , (𝐹𝑡))‘𝑛)))
2621, 25imbi12d 344 . . . . 5 (𝑚 = 𝑛 → (((𝜑𝑡𝑇𝑚 ∈ (1...𝑀)) → ((seq1(𝑃, 𝑈)‘𝑚)‘𝑡) = (seq1( · , (𝐹𝑡))‘𝑚)) ↔ ((𝜑𝑡𝑇𝑛 ∈ (1...𝑀)) → ((seq1(𝑃, 𝑈)‘𝑛)‘𝑡) = (seq1( · , (𝐹𝑡))‘𝑛))))
27 eleq1 2816 . . . . . . 7 (𝑚 = (𝑛 + 1) → (𝑚 ∈ (1...𝑀) ↔ (𝑛 + 1) ∈ (1...𝑀)))
28273anbi3d 1444 . . . . . 6 (𝑚 = (𝑛 + 1) → ((𝜑𝑡𝑇𝑚 ∈ (1...𝑀)) ↔ (𝜑𝑡𝑇 ∧ (𝑛 + 1) ∈ (1...𝑀))))
29 fveq2 6840 . . . . . . . 8 (𝑚 = (𝑛 + 1) → (seq1(𝑃, 𝑈)‘𝑚) = (seq1(𝑃, 𝑈)‘(𝑛 + 1)))
3029fveq1d 6842 . . . . . . 7 (𝑚 = (𝑛 + 1) → ((seq1(𝑃, 𝑈)‘𝑚)‘𝑡) = ((seq1(𝑃, 𝑈)‘(𝑛 + 1))‘𝑡))
31 fveq2 6840 . . . . . . 7 (𝑚 = (𝑛 + 1) → (seq1( · , (𝐹𝑡))‘𝑚) = (seq1( · , (𝐹𝑡))‘(𝑛 + 1)))
3230, 31eqeq12d 2745 . . . . . 6 (𝑚 = (𝑛 + 1) → (((seq1(𝑃, 𝑈)‘𝑚)‘𝑡) = (seq1( · , (𝐹𝑡))‘𝑚) ↔ ((seq1(𝑃, 𝑈)‘(𝑛 + 1))‘𝑡) = (seq1( · , (𝐹𝑡))‘(𝑛 + 1))))
3328, 32imbi12d 344 . . . . 5 (𝑚 = (𝑛 + 1) → (((𝜑𝑡𝑇𝑚 ∈ (1...𝑀)) → ((seq1(𝑃, 𝑈)‘𝑚)‘𝑡) = (seq1( · , (𝐹𝑡))‘𝑚)) ↔ ((𝜑𝑡𝑇 ∧ (𝑛 + 1) ∈ (1...𝑀)) → ((seq1(𝑃, 𝑈)‘(𝑛 + 1))‘𝑡) = (seq1( · , (𝐹𝑡))‘(𝑛 + 1)))))
34 eleq1 2816 . . . . . . 7 (𝑚 = 𝑀 → (𝑚 ∈ (1...𝑀) ↔ 𝑀 ∈ (1...𝑀)))
35343anbi3d 1444 . . . . . 6 (𝑚 = 𝑀 → ((𝜑𝑡𝑇𝑚 ∈ (1...𝑀)) ↔ (𝜑𝑡𝑇𝑀 ∈ (1...𝑀))))
36 fveq2 6840 . . . . . . . 8 (𝑚 = 𝑀 → (seq1(𝑃, 𝑈)‘𝑚) = (seq1(𝑃, 𝑈)‘𝑀))
3736fveq1d 6842 . . . . . . 7 (𝑚 = 𝑀 → ((seq1(𝑃, 𝑈)‘𝑚)‘𝑡) = ((seq1(𝑃, 𝑈)‘𝑀)‘𝑡))
38 fveq2 6840 . . . . . . 7 (𝑚 = 𝑀 → (seq1( · , (𝐹𝑡))‘𝑚) = (seq1( · , (𝐹𝑡))‘𝑀))
3937, 38eqeq12d 2745 . . . . . 6 (𝑚 = 𝑀 → (((seq1(𝑃, 𝑈)‘𝑚)‘𝑡) = (seq1( · , (𝐹𝑡))‘𝑚) ↔ ((seq1(𝑃, 𝑈)‘𝑀)‘𝑡) = (seq1( · , (𝐹𝑡))‘𝑀)))
4035, 39imbi12d 344 . . . . 5 (𝑚 = 𝑀 → (((𝜑𝑡𝑇𝑚 ∈ (1...𝑀)) → ((seq1(𝑃, 𝑈)‘𝑚)‘𝑡) = (seq1( · , (𝐹𝑡))‘𝑚)) ↔ ((𝜑𝑡𝑇𝑀 ∈ (1...𝑀)) → ((seq1(𝑃, 𝑈)‘𝑀)‘𝑡) = (seq1( · , (𝐹𝑡))‘𝑀))))
41 1z 12539 . . . . . . . 8 1 ∈ ℤ
42 seq1 13955 . . . . . . . 8 (1 ∈ ℤ → (seq1( · , (𝐹𝑡))‘1) = ((𝐹𝑡)‘1))
4341, 42ax-mp 5 . . . . . . 7 (seq1( · , (𝐹𝑡))‘1) = ((𝐹𝑡)‘1)
44 1zzd 12540 . . . . . . . . . . . 12 (𝜑 → 1 ∈ ℤ)
45 1le1 11782 . . . . . . . . . . . . 13 1 ≤ 1
4645a1i 11 . . . . . . . . . . . 12 (𝜑 → 1 ≤ 1)
4744, 3, 44, 46, 5elfzd 13452 . . . . . . . . . . 11 (𝜑 → 1 ∈ (1...𝑀))
48 nfv 1914 . . . . . . . . . . . . 13 𝑖 𝑡𝑇
49 fmuldfeq.5 . . . . . . . . . . . . . . . . 17 𝐹 = (𝑡𝑇 ↦ (𝑖 ∈ (1...𝑀) ↦ ((𝑈𝑖)‘𝑡)))
50 nfcv 2891 . . . . . . . . . . . . . . . . . 18 𝑖𝑇
51 nfmpt1 5201 . . . . . . . . . . . . . . . . . 18 𝑖(𝑖 ∈ (1...𝑀) ↦ ((𝑈𝑖)‘𝑡))
5250, 51nfmpt 5200 . . . . . . . . . . . . . . . . 17 𝑖(𝑡𝑇 ↦ (𝑖 ∈ (1...𝑀) ↦ ((𝑈𝑖)‘𝑡)))
5349, 52nfcxfr 2889 . . . . . . . . . . . . . . . 16 𝑖𝐹
54 nfcv 2891 . . . . . . . . . . . . . . . 16 𝑖𝑡
5553, 54nffv 6850 . . . . . . . . . . . . . . 15 𝑖(𝐹𝑡)
56 nfcv 2891 . . . . . . . . . . . . . . 15 𝑖1
5755, 56nffv 6850 . . . . . . . . . . . . . 14 𝑖((𝐹𝑡)‘1)
58 nffvmpt1 6851 . . . . . . . . . . . . . 14 𝑖((𝑖 ∈ (1...𝑀) ↦ ((𝑈𝑖)‘𝑡))‘1)
5957, 58nfeq 2905 . . . . . . . . . . . . 13 𝑖((𝐹𝑡)‘1) = ((𝑖 ∈ (1...𝑀) ↦ ((𝑈𝑖)‘𝑡))‘1)
6048, 59nfim 1896 . . . . . . . . . . . 12 𝑖(𝑡𝑇 → ((𝐹𝑡)‘1) = ((𝑖 ∈ (1...𝑀) ↦ ((𝑈𝑖)‘𝑡))‘1))
61 fveq2 6840 . . . . . . . . . . . . . 14 (𝑖 = 1 → ((𝐹𝑡)‘𝑖) = ((𝐹𝑡)‘1))
62 fveq2 6840 . . . . . . . . . . . . . 14 (𝑖 = 1 → ((𝑖 ∈ (1...𝑀) ↦ ((𝑈𝑖)‘𝑡))‘𝑖) = ((𝑖 ∈ (1...𝑀) ↦ ((𝑈𝑖)‘𝑡))‘1))
6361, 62eqeq12d 2745 . . . . . . . . . . . . 13 (𝑖 = 1 → (((𝐹𝑡)‘𝑖) = ((𝑖 ∈ (1...𝑀) ↦ ((𝑈𝑖)‘𝑡))‘𝑖) ↔ ((𝐹𝑡)‘1) = ((𝑖 ∈ (1...𝑀) ↦ ((𝑈𝑖)‘𝑡))‘1)))
6463imbi2d 340 . . . . . . . . . . . 12 (𝑖 = 1 → ((𝑡𝑇 → ((𝐹𝑡)‘𝑖) = ((𝑖 ∈ (1...𝑀) ↦ ((𝑈𝑖)‘𝑡))‘𝑖)) ↔ (𝑡𝑇 → ((𝐹𝑡)‘1) = ((𝑖 ∈ (1...𝑀) ↦ ((𝑈𝑖)‘𝑡))‘1))))
65 ovex 7402 . . . . . . . . . . . . . . 15 (1...𝑀) ∈ V
6665mptex 7179 . . . . . . . . . . . . . 14 (𝑖 ∈ (1...𝑀) ↦ ((𝑈𝑖)‘𝑡)) ∈ V
6749fvmpt2 6961 . . . . . . . . . . . . . 14 ((𝑡𝑇 ∧ (𝑖 ∈ (1...𝑀) ↦ ((𝑈𝑖)‘𝑡)) ∈ V) → (𝐹𝑡) = (𝑖 ∈ (1...𝑀) ↦ ((𝑈𝑖)‘𝑡)))
6866, 67mpan2 691 . . . . . . . . . . . . 13 (𝑡𝑇 → (𝐹𝑡) = (𝑖 ∈ (1...𝑀) ↦ ((𝑈𝑖)‘𝑡)))
6968fveq1d 6842 . . . . . . . . . . . 12 (𝑡𝑇 → ((𝐹𝑡)‘𝑖) = ((𝑖 ∈ (1...𝑀) ↦ ((𝑈𝑖)‘𝑡))‘𝑖))
7060, 64, 69vtoclg1f 3533 . . . . . . . . . . 11 (1 ∈ (1...𝑀) → (𝑡𝑇 → ((𝐹𝑡)‘1) = ((𝑖 ∈ (1...𝑀) ↦ ((𝑈𝑖)‘𝑡))‘1)))
7147, 70syl 17 . . . . . . . . . 10 (𝜑 → (𝑡𝑇 → ((𝐹𝑡)‘1) = ((𝑖 ∈ (1...𝑀) ↦ ((𝑈𝑖)‘𝑡))‘1)))
7271imp 406 . . . . . . . . 9 ((𝜑𝑡𝑇) → ((𝐹𝑡)‘1) = ((𝑖 ∈ (1...𝑀) ↦ ((𝑈𝑖)‘𝑡))‘1))
73 eqid 2729 . . . . . . . . . 10 (𝑖 ∈ (1...𝑀) ↦ ((𝑈𝑖)‘𝑡)) = (𝑖 ∈ (1...𝑀) ↦ ((𝑈𝑖)‘𝑡))
74 fveq2 6840 . . . . . . . . . . 11 (𝑖 = 1 → (𝑈𝑖) = (𝑈‘1))
7574fveq1d 6842 . . . . . . . . . 10 (𝑖 = 1 → ((𝑈𝑖)‘𝑡) = ((𝑈‘1)‘𝑡))
7647adantr 480 . . . . . . . . . 10 ((𝜑𝑡𝑇) → 1 ∈ (1...𝑀))
77 fmuldfeq.9 . . . . . . . . . . . . 13 (𝜑𝑈:(1...𝑀)⟶𝑌)
7877, 47ffvelcdmd 7039 . . . . . . . . . . . 12 (𝜑 → (𝑈‘1) ∈ 𝑌)
7978ancli 548 . . . . . . . . . . . 12 (𝜑 → (𝜑 ∧ (𝑈‘1) ∈ 𝑌))
80 eleq1 2816 . . . . . . . . . . . . . . 15 (𝑓 = (𝑈‘1) → (𝑓𝑌 ↔ (𝑈‘1) ∈ 𝑌))
8180anbi2d 630 . . . . . . . . . . . . . 14 (𝑓 = (𝑈‘1) → ((𝜑𝑓𝑌) ↔ (𝜑 ∧ (𝑈‘1) ∈ 𝑌)))
82 feq1 6648 . . . . . . . . . . . . . 14 (𝑓 = (𝑈‘1) → (𝑓:𝑇⟶ℝ ↔ (𝑈‘1):𝑇⟶ℝ))
8381, 82imbi12d 344 . . . . . . . . . . . . 13 (𝑓 = (𝑈‘1) → (((𝜑𝑓𝑌) → 𝑓:𝑇⟶ℝ) ↔ ((𝜑 ∧ (𝑈‘1) ∈ 𝑌) → (𝑈‘1):𝑇⟶ℝ)))
84 fmuldfeq.10 . . . . . . . . . . . . . 14 ((𝜑𝑓𝑌) → 𝑓:𝑇⟶ℝ)
8584a1i 11 . . . . . . . . . . . . 13 (𝑓𝑌 → ((𝜑𝑓𝑌) → 𝑓:𝑇⟶ℝ))
8683, 85vtoclga 3540 . . . . . . . . . . . 12 ((𝑈‘1) ∈ 𝑌 → ((𝜑 ∧ (𝑈‘1) ∈ 𝑌) → (𝑈‘1):𝑇⟶ℝ))
8778, 79, 86sylc 65 . . . . . . . . . . 11 (𝜑 → (𝑈‘1):𝑇⟶ℝ)
8887ffvelcdmda 7038 . . . . . . . . . 10 ((𝜑𝑡𝑇) → ((𝑈‘1)‘𝑡) ∈ ℝ)
8973, 75, 76, 88fvmptd3 6973 . . . . . . . . 9 ((𝜑𝑡𝑇) → ((𝑖 ∈ (1...𝑀) ↦ ((𝑈𝑖)‘𝑡))‘1) = ((𝑈‘1)‘𝑡))
9072, 89eqtrd 2764 . . . . . . . 8 ((𝜑𝑡𝑇) → ((𝐹𝑡)‘1) = ((𝑈‘1)‘𝑡))
91 seq1 13955 . . . . . . . . . 10 (1 ∈ ℤ → (seq1(𝑃, 𝑈)‘1) = (𝑈‘1))
9241, 91ax-mp 5 . . . . . . . . 9 (seq1(𝑃, 𝑈)‘1) = (𝑈‘1)
9392fveq1i 6841 . . . . . . . 8 ((seq1(𝑃, 𝑈)‘1)‘𝑡) = ((𝑈‘1)‘𝑡)
9490, 93eqtr4di 2782 . . . . . . 7 ((𝜑𝑡𝑇) → ((𝐹𝑡)‘1) = ((seq1(𝑃, 𝑈)‘1)‘𝑡))
9543, 94eqtr2id 2777 . . . . . 6 ((𝜑𝑡𝑇) → ((seq1(𝑃, 𝑈)‘1)‘𝑡) = (seq1( · , (𝐹𝑡))‘1))
96953adant3 1132 . . . . 5 ((𝜑𝑡𝑇 ∧ 1 ∈ (1...𝑀)) → ((seq1(𝑃, 𝑈)‘1)‘𝑡) = (seq1( · , (𝐹𝑡))‘1))
97 simp31 1210 . . . . . . 7 ((𝑛 ∈ ℕ ∧ ((𝜑𝑡𝑇𝑛 ∈ (1...𝑀)) → ((seq1(𝑃, 𝑈)‘𝑛)‘𝑡) = (seq1( · , (𝐹𝑡))‘𝑛)) ∧ (𝜑𝑡𝑇 ∧ (𝑛 + 1) ∈ (1...𝑀))) → 𝜑)
98 simp1 1136 . . . . . . . . . 10 ((𝑛 ∈ ℕ ∧ ((𝜑𝑡𝑇𝑛 ∈ (1...𝑀)) → ((seq1(𝑃, 𝑈)‘𝑛)‘𝑡) = (seq1( · , (𝐹𝑡))‘𝑛)) ∧ (𝜑𝑡𝑇 ∧ (𝑛 + 1) ∈ (1...𝑀))) → 𝑛 ∈ ℕ)
99 simp33 1212 . . . . . . . . . 10 ((𝑛 ∈ ℕ ∧ ((𝜑𝑡𝑇𝑛 ∈ (1...𝑀)) → ((seq1(𝑃, 𝑈)‘𝑛)‘𝑡) = (seq1( · , (𝐹𝑡))‘𝑛)) ∧ (𝜑𝑡𝑇 ∧ (𝑛 + 1) ∈ (1...𝑀))) → (𝑛 + 1) ∈ (1...𝑀))
10098, 99jca 511 . . . . . . . . 9 ((𝑛 ∈ ℕ ∧ ((𝜑𝑡𝑇𝑛 ∈ (1...𝑀)) → ((seq1(𝑃, 𝑈)‘𝑛)‘𝑡) = (seq1( · , (𝐹𝑡))‘𝑛)) ∧ (𝜑𝑡𝑇 ∧ (𝑛 + 1) ∈ (1...𝑀))) → (𝑛 ∈ ℕ ∧ (𝑛 + 1) ∈ (1...𝑀)))
101 elnnuz 12813 . . . . . . . . . . 11 (𝑛 ∈ ℕ ↔ 𝑛 ∈ (ℤ‘1))
102101biimpi 216 . . . . . . . . . 10 (𝑛 ∈ ℕ → 𝑛 ∈ (ℤ‘1))
103102anim1i 615 . . . . . . . . 9 ((𝑛 ∈ ℕ ∧ (𝑛 + 1) ∈ (1...𝑀)) → (𝑛 ∈ (ℤ‘1) ∧ (𝑛 + 1) ∈ (1...𝑀)))
104 peano2fzr 13474 . . . . . . . . 9 ((𝑛 ∈ (ℤ‘1) ∧ (𝑛 + 1) ∈ (1...𝑀)) → 𝑛 ∈ (1...𝑀))
105100, 103, 1043syl 18 . . . . . . . 8 ((𝑛 ∈ ℕ ∧ ((𝜑𝑡𝑇𝑛 ∈ (1...𝑀)) → ((seq1(𝑃, 𝑈)‘𝑛)‘𝑡) = (seq1( · , (𝐹𝑡))‘𝑛)) ∧ (𝜑𝑡𝑇 ∧ (𝑛 + 1) ∈ (1...𝑀))) → 𝑛 ∈ (1...𝑀))
106 simp32 1211 . . . . . . . . 9 ((𝑛 ∈ ℕ ∧ ((𝜑𝑡𝑇𝑛 ∈ (1...𝑀)) → ((seq1(𝑃, 𝑈)‘𝑛)‘𝑡) = (seq1( · , (𝐹𝑡))‘𝑛)) ∧ (𝜑𝑡𝑇 ∧ (𝑛 + 1) ∈ (1...𝑀))) → 𝑡𝑇)
107 simp2 1137 . . . . . . . . 9 ((𝑛 ∈ ℕ ∧ ((𝜑𝑡𝑇𝑛 ∈ (1...𝑀)) → ((seq1(𝑃, 𝑈)‘𝑛)‘𝑡) = (seq1( · , (𝐹𝑡))‘𝑛)) ∧ (𝜑𝑡𝑇 ∧ (𝑛 + 1) ∈ (1...𝑀))) → ((𝜑𝑡𝑇𝑛 ∈ (1...𝑀)) → ((seq1(𝑃, 𝑈)‘𝑛)‘𝑡) = (seq1( · , (𝐹𝑡))‘𝑛)))
10897, 106, 105, 107mp3and 1466 . . . . . . . 8 ((𝑛 ∈ ℕ ∧ ((𝜑𝑡𝑇𝑛 ∈ (1...𝑀)) → ((seq1(𝑃, 𝑈)‘𝑛)‘𝑡) = (seq1( · , (𝐹𝑡))‘𝑛)) ∧ (𝜑𝑡𝑇 ∧ (𝑛 + 1) ∈ (1...𝑀))) → ((seq1(𝑃, 𝑈)‘𝑛)‘𝑡) = (seq1( · , (𝐹𝑡))‘𝑛))
109105, 99, 1083jca 1128 . . . . . . 7 ((𝑛 ∈ ℕ ∧ ((𝜑𝑡𝑇𝑛 ∈ (1...𝑀)) → ((seq1(𝑃, 𝑈)‘𝑛)‘𝑡) = (seq1( · , (𝐹𝑡))‘𝑛)) ∧ (𝜑𝑡𝑇 ∧ (𝑛 + 1) ∈ (1...𝑀))) → (𝑛 ∈ (1...𝑀) ∧ (𝑛 + 1) ∈ (1...𝑀) ∧ ((seq1(𝑃, 𝑈)‘𝑛)‘𝑡) = (seq1( · , (𝐹𝑡))‘𝑛)))
110 nfv 1914 . . . . . . . . 9 𝑓𝜑
111 nfv 1914 . . . . . . . . . 10 𝑓 𝑛 ∈ (1...𝑀)
112 nfv 1914 . . . . . . . . . 10 𝑓(𝑛 + 1) ∈ (1...𝑀)
113 nfcv 2891 . . . . . . . . . . . . . 14 𝑓1
114 fmuldfeq.3 . . . . . . . . . . . . . . 15 𝑃 = (𝑓𝑌, 𝑔𝑌 ↦ (𝑡𝑇 ↦ ((𝑓𝑡) · (𝑔𝑡))))
115 nfmpo1 7449 . . . . . . . . . . . . . . 15 𝑓(𝑓𝑌, 𝑔𝑌 ↦ (𝑡𝑇 ↦ ((𝑓𝑡) · (𝑔𝑡))))
116114, 115nfcxfr 2889 . . . . . . . . . . . . . 14 𝑓𝑃
117 nfcv 2891 . . . . . . . . . . . . . 14 𝑓𝑈
118113, 116, 117nfseq 13952 . . . . . . . . . . . . 13 𝑓seq1(𝑃, 𝑈)
119 nfcv 2891 . . . . . . . . . . . . 13 𝑓𝑛
120118, 119nffv 6850 . . . . . . . . . . . 12 𝑓(seq1(𝑃, 𝑈)‘𝑛)
121 nfcv 2891 . . . . . . . . . . . 12 𝑓𝑡
122120, 121nffv 6850 . . . . . . . . . . 11 𝑓((seq1(𝑃, 𝑈)‘𝑛)‘𝑡)
123 nfcv 2891 . . . . . . . . . . 11 𝑓(seq1( · , (𝐹𝑡))‘𝑛)
124122, 123nfeq 2905 . . . . . . . . . 10 𝑓((seq1(𝑃, 𝑈)‘𝑛)‘𝑡) = (seq1( · , (𝐹𝑡))‘𝑛)
125111, 112, 124nf3an 1901 . . . . . . . . 9 𝑓(𝑛 ∈ (1...𝑀) ∧ (𝑛 + 1) ∈ (1...𝑀) ∧ ((seq1(𝑃, 𝑈)‘𝑛)‘𝑡) = (seq1( · , (𝐹𝑡))‘𝑛))
126110, 125nfan 1899 . . . . . . . 8 𝑓(𝜑 ∧ (𝑛 ∈ (1...𝑀) ∧ (𝑛 + 1) ∈ (1...𝑀) ∧ ((seq1(𝑃, 𝑈)‘𝑛)‘𝑡) = (seq1( · , (𝐹𝑡))‘𝑛)))
127 nfv 1914 . . . . . . . . 9 𝑔𝜑
128 nfv 1914 . . . . . . . . . 10 𝑔 𝑛 ∈ (1...𝑀)
129 nfv 1914 . . . . . . . . . 10 𝑔(𝑛 + 1) ∈ (1...𝑀)
130 nfcv 2891 . . . . . . . . . . . . . 14 𝑔1
131 nfmpo2 7450 . . . . . . . . . . . . . . 15 𝑔(𝑓𝑌, 𝑔𝑌 ↦ (𝑡𝑇 ↦ ((𝑓𝑡) · (𝑔𝑡))))
132114, 131nfcxfr 2889 . . . . . . . . . . . . . 14 𝑔𝑃
133 nfcv 2891 . . . . . . . . . . . . . 14 𝑔𝑈
134130, 132, 133nfseq 13952 . . . . . . . . . . . . 13 𝑔seq1(𝑃, 𝑈)
135 nfcv 2891 . . . . . . . . . . . . 13 𝑔𝑛
136134, 135nffv 6850 . . . . . . . . . . . 12 𝑔(seq1(𝑃, 𝑈)‘𝑛)
137 nfcv 2891 . . . . . . . . . . . 12 𝑔𝑡
138136, 137nffv 6850 . . . . . . . . . . 11 𝑔((seq1(𝑃, 𝑈)‘𝑛)‘𝑡)
139 nfcv 2891 . . . . . . . . . . 11 𝑔(seq1( · , (𝐹𝑡))‘𝑛)
140138, 139nfeq 2905 . . . . . . . . . 10 𝑔((seq1(𝑃, 𝑈)‘𝑛)‘𝑡) = (seq1( · , (𝐹𝑡))‘𝑛)
141128, 129, 140nf3an 1901 . . . . . . . . 9 𝑔(𝑛 ∈ (1...𝑀) ∧ (𝑛 + 1) ∈ (1...𝑀) ∧ ((seq1(𝑃, 𝑈)‘𝑛)‘𝑡) = (seq1( · , (𝐹𝑡))‘𝑛))
142127, 141nfan 1899 . . . . . . . 8 𝑔(𝜑 ∧ (𝑛 ∈ (1...𝑀) ∧ (𝑛 + 1) ∈ (1...𝑀) ∧ ((seq1(𝑃, 𝑈)‘𝑛)‘𝑡) = (seq1( · , (𝐹𝑡))‘𝑛)))
143 fmuldfeq.2 . . . . . . . 8 𝑡𝑌
144 fmuldfeq.7 . . . . . . . . 9 (𝜑𝑇 ∈ V)
145144adantr 480 . . . . . . . 8 ((𝜑 ∧ (𝑛 ∈ (1...𝑀) ∧ (𝑛 + 1) ∈ (1...𝑀) ∧ ((seq1(𝑃, 𝑈)‘𝑛)‘𝑡) = (seq1( · , (𝐹𝑡))‘𝑛))) → 𝑇 ∈ V)
14677adantr 480 . . . . . . . 8 ((𝜑 ∧ (𝑛 ∈ (1...𝑀) ∧ (𝑛 + 1) ∈ (1...𝑀) ∧ ((seq1(𝑃, 𝑈)‘𝑛)‘𝑡) = (seq1( · , (𝐹𝑡))‘𝑛))) → 𝑈:(1...𝑀)⟶𝑌)
147 fmuldfeq.11 . . . . . . . . 9 ((𝜑𝑓𝑌𝑔𝑌) → (𝑡𝑇 ↦ ((𝑓𝑡) · (𝑔𝑡))) ∈ 𝑌)
1481473adant1r 1178 . . . . . . . 8 (((𝜑 ∧ (𝑛 ∈ (1...𝑀) ∧ (𝑛 + 1) ∈ (1...𝑀) ∧ ((seq1(𝑃, 𝑈)‘𝑛)‘𝑡) = (seq1( · , (𝐹𝑡))‘𝑛))) ∧ 𝑓𝑌𝑔𝑌) → (𝑡𝑇 ↦ ((𝑓𝑡) · (𝑔𝑡))) ∈ 𝑌)
149 simpr1 1195 . . . . . . . 8 ((𝜑 ∧ (𝑛 ∈ (1...𝑀) ∧ (𝑛 + 1) ∈ (1...𝑀) ∧ ((seq1(𝑃, 𝑈)‘𝑛)‘𝑡) = (seq1( · , (𝐹𝑡))‘𝑛))) → 𝑛 ∈ (1...𝑀))
150 simpr2 1196 . . . . . . . 8 ((𝜑 ∧ (𝑛 ∈ (1...𝑀) ∧ (𝑛 + 1) ∈ (1...𝑀) ∧ ((seq1(𝑃, 𝑈)‘𝑛)‘𝑡) = (seq1( · , (𝐹𝑡))‘𝑛))) → (𝑛 + 1) ∈ (1...𝑀))
151 simpr3 1197 . . . . . . . 8 ((𝜑 ∧ (𝑛 ∈ (1...𝑀) ∧ (𝑛 + 1) ∈ (1...𝑀) ∧ ((seq1(𝑃, 𝑈)‘𝑛)‘𝑡) = (seq1( · , (𝐹𝑡))‘𝑛))) → ((seq1(𝑃, 𝑈)‘𝑛)‘𝑡) = (seq1( · , (𝐹𝑡))‘𝑛))
15284adantlr 715 . . . . . . . 8 (((𝜑 ∧ (𝑛 ∈ (1...𝑀) ∧ (𝑛 + 1) ∈ (1...𝑀) ∧ ((seq1(𝑃, 𝑈)‘𝑛)‘𝑡) = (seq1( · , (𝐹𝑡))‘𝑛))) ∧ 𝑓𝑌) → 𝑓:𝑇⟶ℝ)
153126, 142, 143, 114, 49, 145, 146, 148, 149, 150, 151, 152fmuldfeqlem1 45553 . . . . . . 7 (((𝜑 ∧ (𝑛 ∈ (1...𝑀) ∧ (𝑛 + 1) ∈ (1...𝑀) ∧ ((seq1(𝑃, 𝑈)‘𝑛)‘𝑡) = (seq1( · , (𝐹𝑡))‘𝑛))) ∧ 𝑡𝑇) → ((seq1(𝑃, 𝑈)‘(𝑛 + 1))‘𝑡) = (seq1( · , (𝐹𝑡))‘(𝑛 + 1)))
15497, 109, 106, 153syl21anc 837 . . . . . 6 ((𝑛 ∈ ℕ ∧ ((𝜑𝑡𝑇𝑛 ∈ (1...𝑀)) → ((seq1(𝑃, 𝑈)‘𝑛)‘𝑡) = (seq1( · , (𝐹𝑡))‘𝑛)) ∧ (𝜑𝑡𝑇 ∧ (𝑛 + 1) ∈ (1...𝑀))) → ((seq1(𝑃, 𝑈)‘(𝑛 + 1))‘𝑡) = (seq1( · , (𝐹𝑡))‘(𝑛 + 1)))
1551543exp 1119 . . . . 5 (𝑛 ∈ ℕ → (((𝜑𝑡𝑇𝑛 ∈ (1...𝑀)) → ((seq1(𝑃, 𝑈)‘𝑛)‘𝑡) = (seq1( · , (𝐹𝑡))‘𝑛)) → ((𝜑𝑡𝑇 ∧ (𝑛 + 1) ∈ (1...𝑀)) → ((seq1(𝑃, 𝑈)‘(𝑛 + 1))‘𝑡) = (seq1( · , (𝐹𝑡))‘(𝑛 + 1)))))
15619, 26, 33, 40, 96, 155nnind 12180 . . . 4 (𝑀 ∈ ℕ → ((𝜑𝑡𝑇𝑀 ∈ (1...𝑀)) → ((seq1(𝑃, 𝑈)‘𝑀)‘𝑡) = (seq1( · , (𝐹𝑡))‘𝑀)))
15712, 156mpcom 38 . . 3 ((𝜑𝑡𝑇𝑀 ∈ (1...𝑀)) → ((seq1(𝑃, 𝑈)‘𝑀)‘𝑡) = (seq1( · , (𝐹𝑡))‘𝑀))
15811, 157mpd3an3 1464 . 2 ((𝜑𝑡𝑇) → ((seq1(𝑃, 𝑈)‘𝑀)‘𝑡) = (seq1( · , (𝐹𝑡))‘𝑀))
159 fmuldfeq.4 . . . 4 𝑋 = (seq1(𝑃, 𝑈)‘𝑀)
160159fveq1i 6841 . . 3 (𝑋𝑡) = ((seq1(𝑃, 𝑈)‘𝑀)‘𝑡)
161160a1i 11 . 2 ((𝜑𝑡𝑇) → (𝑋𝑡) = ((seq1(𝑃, 𝑈)‘𝑀)‘𝑡))
162 simpr 484 . . 3 ((𝜑𝑡𝑇) → 𝑡𝑇)
163 elnnuz 12813 . . . . . 6 (𝑀 ∈ ℕ ↔ 𝑀 ∈ (ℤ‘1))
1642, 163sylib 218 . . . . 5 (𝜑𝑀 ∈ (ℤ‘1))
165164adantr 480 . . . 4 ((𝜑𝑡𝑇) → 𝑀 ∈ (ℤ‘1))
166 fmuldfeq.1 . . . . . . . 8 𝑖𝜑
167166, 48nfan 1899 . . . . . . 7 𝑖(𝜑𝑡𝑇)
168 nfv 1914 . . . . . . 7 𝑖 𝑘 ∈ (1...𝑀)
169167, 168nfan 1899 . . . . . 6 𝑖((𝜑𝑡𝑇) ∧ 𝑘 ∈ (1...𝑀))
170 nfcv 2891 . . . . . . . 8 𝑖𝑘
17155, 170nffv 6850 . . . . . . 7 𝑖((𝐹𝑡)‘𝑘)
172171nfel1 2908 . . . . . 6 𝑖((𝐹𝑡)‘𝑘) ∈ ℝ
173169, 172nfim 1896 . . . . 5 𝑖(((𝜑𝑡𝑇) ∧ 𝑘 ∈ (1...𝑀)) → ((𝐹𝑡)‘𝑘) ∈ ℝ)
174 eleq1 2816 . . . . . . 7 (𝑖 = 𝑘 → (𝑖 ∈ (1...𝑀) ↔ 𝑘 ∈ (1...𝑀)))
175174anbi2d 630 . . . . . 6 (𝑖 = 𝑘 → (((𝜑𝑡𝑇) ∧ 𝑖 ∈ (1...𝑀)) ↔ ((𝜑𝑡𝑇) ∧ 𝑘 ∈ (1...𝑀))))
176 fveq2 6840 . . . . . . 7 (𝑖 = 𝑘 → ((𝐹𝑡)‘𝑖) = ((𝐹𝑡)‘𝑘))
177176eleq1d 2813 . . . . . 6 (𝑖 = 𝑘 → (((𝐹𝑡)‘𝑖) ∈ ℝ ↔ ((𝐹𝑡)‘𝑘) ∈ ℝ))
178175, 177imbi12d 344 . . . . 5 (𝑖 = 𝑘 → ((((𝜑𝑡𝑇) ∧ 𝑖 ∈ (1...𝑀)) → ((𝐹𝑡)‘𝑖) ∈ ℝ) ↔ (((𝜑𝑡𝑇) ∧ 𝑘 ∈ (1...𝑀)) → ((𝐹𝑡)‘𝑘) ∈ ℝ)))
17969ad2antlr 727 . . . . . 6 (((𝜑𝑡𝑇) ∧ 𝑖 ∈ (1...𝑀)) → ((𝐹𝑡)‘𝑖) = ((𝑖 ∈ (1...𝑀) ↦ ((𝑈𝑖)‘𝑡))‘𝑖))
180 simpr 484 . . . . . . . 8 (((𝜑𝑡𝑇) ∧ 𝑖 ∈ (1...𝑀)) → 𝑖 ∈ (1...𝑀))
18177ffvelcdmda 7038 . . . . . . . . . . 11 ((𝜑𝑖 ∈ (1...𝑀)) → (𝑈𝑖) ∈ 𝑌)
182 simpl 482 . . . . . . . . . . . 12 ((𝜑𝑖 ∈ (1...𝑀)) → 𝜑)
183182, 181jca 511 . . . . . . . . . . 11 ((𝜑𝑖 ∈ (1...𝑀)) → (𝜑 ∧ (𝑈𝑖) ∈ 𝑌))
184 eleq1 2816 . . . . . . . . . . . . . 14 (𝑓 = (𝑈𝑖) → (𝑓𝑌 ↔ (𝑈𝑖) ∈ 𝑌))
185184anbi2d 630 . . . . . . . . . . . . 13 (𝑓 = (𝑈𝑖) → ((𝜑𝑓𝑌) ↔ (𝜑 ∧ (𝑈𝑖) ∈ 𝑌)))
186 feq1 6648 . . . . . . . . . . . . 13 (𝑓 = (𝑈𝑖) → (𝑓:𝑇⟶ℝ ↔ (𝑈𝑖):𝑇⟶ℝ))
187185, 186imbi12d 344 . . . . . . . . . . . 12 (𝑓 = (𝑈𝑖) → (((𝜑𝑓𝑌) → 𝑓:𝑇⟶ℝ) ↔ ((𝜑 ∧ (𝑈𝑖) ∈ 𝑌) → (𝑈𝑖):𝑇⟶ℝ)))
188187, 85vtoclga 3540 . . . . . . . . . . 11 ((𝑈𝑖) ∈ 𝑌 → ((𝜑 ∧ (𝑈𝑖) ∈ 𝑌) → (𝑈𝑖):𝑇⟶ℝ))
189181, 183, 188sylc 65 . . . . . . . . . 10 ((𝜑𝑖 ∈ (1...𝑀)) → (𝑈𝑖):𝑇⟶ℝ)
190189adantlr 715 . . . . . . . . 9 (((𝜑𝑡𝑇) ∧ 𝑖 ∈ (1...𝑀)) → (𝑈𝑖):𝑇⟶ℝ)
191 simplr 768 . . . . . . . . 9 (((𝜑𝑡𝑇) ∧ 𝑖 ∈ (1...𝑀)) → 𝑡𝑇)
192190, 191ffvelcdmd 7039 . . . . . . . 8 (((𝜑𝑡𝑇) ∧ 𝑖 ∈ (1...𝑀)) → ((𝑈𝑖)‘𝑡) ∈ ℝ)
19373fvmpt2 6961 . . . . . . . 8 ((𝑖 ∈ (1...𝑀) ∧ ((𝑈𝑖)‘𝑡) ∈ ℝ) → ((𝑖 ∈ (1...𝑀) ↦ ((𝑈𝑖)‘𝑡))‘𝑖) = ((𝑈𝑖)‘𝑡))
194180, 192, 193syl2anc 584 . . . . . . 7 (((𝜑𝑡𝑇) ∧ 𝑖 ∈ (1...𝑀)) → ((𝑖 ∈ (1...𝑀) ↦ ((𝑈𝑖)‘𝑡))‘𝑖) = ((𝑈𝑖)‘𝑡))
195194, 192eqeltrd 2828 . . . . . 6 (((𝜑𝑡𝑇) ∧ 𝑖 ∈ (1...𝑀)) → ((𝑖 ∈ (1...𝑀) ↦ ((𝑈𝑖)‘𝑡))‘𝑖) ∈ ℝ)
196179, 195eqeltrd 2828 . . . . 5 (((𝜑𝑡𝑇) ∧ 𝑖 ∈ (1...𝑀)) → ((𝐹𝑡)‘𝑖) ∈ ℝ)
197173, 178, 196chvarfv 2241 . . . 4 (((𝜑𝑡𝑇) ∧ 𝑘 ∈ (1...𝑀)) → ((𝐹𝑡)‘𝑘) ∈ ℝ)
198 remulcl 11129 . . . . 5 ((𝑘 ∈ ℝ ∧ 𝑏 ∈ ℝ) → (𝑘 · 𝑏) ∈ ℝ)
199198adantl 481 . . . 4 (((𝜑𝑡𝑇) ∧ (𝑘 ∈ ℝ ∧ 𝑏 ∈ ℝ)) → (𝑘 · 𝑏) ∈ ℝ)
200165, 197, 199seqcl 13963 . . 3 ((𝜑𝑡𝑇) → (seq1( · , (𝐹𝑡))‘𝑀) ∈ ℝ)
201 fmuldfeq.6 . . . 4 𝑍 = (𝑡𝑇 ↦ (seq1( · , (𝐹𝑡))‘𝑀))
202201fvmpt2 6961 . . 3 ((𝑡𝑇 ∧ (seq1( · , (𝐹𝑡))‘𝑀) ∈ ℝ) → (𝑍𝑡) = (seq1( · , (𝐹𝑡))‘𝑀))
203162, 200, 202syl2anc 584 . 2 ((𝜑𝑡𝑇) → (𝑍𝑡) = (seq1( · , (𝐹𝑡))‘𝑀))
204158, 161, 2033eqtr4d 2774 1 ((𝜑𝑡𝑇) → (𝑋𝑡) = (𝑍𝑡))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1540  wnf 1783  wcel 2109  wnfc 2876  Vcvv 3444   class class class wbr 5102  cmpt 5183  wf 6495  cfv 6499  (class class class)co 7369  cmpo 7371  cr 11043  1c1 11045   + caddc 11047   · cmul 11049  cle 11185  cn 12162  cz 12505  cuz 12769  ...cfz 13444  seqcseq 13942
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5229  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691  ax-cnex 11100  ax-resscn 11101  ax-1cn 11102  ax-icn 11103  ax-addcl 11104  ax-addrcl 11105  ax-mulcl 11106  ax-mulrcl 11107  ax-mulcom 11108  ax-addass 11109  ax-mulass 11110  ax-distr 11111  ax-i2m1 11112  ax-1ne0 11113  ax-1rid 11114  ax-rnegex 11115  ax-rrecex 11116  ax-cnre 11117  ax-pre-lttri 11118  ax-pre-lttrn 11119  ax-pre-ltadd 11120  ax-pre-mulgt0 11121
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3931  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-iun 4953  df-br 5103  df-opab 5165  df-mpt 5184  df-tr 5210  df-id 5526  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5584  df-we 5586  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-pred 6262  df-ord 6323  df-on 6324  df-lim 6325  df-suc 6326  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-riota 7326  df-ov 7372  df-oprab 7373  df-mpo 7374  df-om 7823  df-1st 7947  df-2nd 7948  df-frecs 8237  df-wrecs 8268  df-recs 8317  df-rdg 8355  df-er 8648  df-en 8896  df-dom 8897  df-sdom 8898  df-pnf 11186  df-mnf 11187  df-xr 11188  df-ltxr 11189  df-le 11190  df-sub 11383  df-neg 11384  df-nn 12163  df-n0 12419  df-z 12506  df-uz 12770  df-fz 13445  df-seq 13943
This theorem is referenced by:  stoweidlem42  46013  stoweidlem48  46019
  Copyright terms: Public domain W3C validator