MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  eqinfd Structured version   Visualization version   GIF version

Theorem eqinfd 9483
Description: Sufficient condition for an element to be equal to the infimum. (Contributed by AV, 3-Sep-2020.)
Hypotheses
Ref Expression
infexd.1 (𝜑𝑅 Or 𝐴)
eqinfd.2 (𝜑𝐶𝐴)
eqinfd.3 ((𝜑𝑦𝐵) → ¬ 𝑦𝑅𝐶)
eqinfd.4 ((𝜑 ∧ (𝑦𝐴𝐶𝑅𝑦)) → ∃𝑧𝐵 𝑧𝑅𝑦)
Assertion
Ref Expression
eqinfd (𝜑 → inf(𝐵, 𝐴, 𝑅) = 𝐶)
Distinct variable groups:   𝑦,𝐴,𝑧   𝑦,𝐵,𝑧   𝑦,𝑅,𝑧   𝑦,𝐶,𝑧   𝜑,𝑦
Allowed substitution hint:   𝜑(𝑧)

Proof of Theorem eqinfd
StepHypRef Expression
1 eqinfd.2 . 2 (𝜑𝐶𝐴)
2 eqinfd.3 . . 3 ((𝜑𝑦𝐵) → ¬ 𝑦𝑅𝐶)
32ralrimiva 3145 . 2 (𝜑 → ∀𝑦𝐵 ¬ 𝑦𝑅𝐶)
4 eqinfd.4 . . . 4 ((𝜑 ∧ (𝑦𝐴𝐶𝑅𝑦)) → ∃𝑧𝐵 𝑧𝑅𝑦)
54expr 456 . . 3 ((𝜑𝑦𝐴) → (𝐶𝑅𝑦 → ∃𝑧𝐵 𝑧𝑅𝑦))
65ralrimiva 3145 . 2 (𝜑 → ∀𝑦𝐴 (𝐶𝑅𝑦 → ∃𝑧𝐵 𝑧𝑅𝑦))
7 infexd.1 . . 3 (𝜑𝑅 Or 𝐴)
87eqinf 9482 . 2 (𝜑 → ((𝐶𝐴 ∧ ∀𝑦𝐵 ¬ 𝑦𝑅𝐶 ∧ ∀𝑦𝐴 (𝐶𝑅𝑦 → ∃𝑧𝐵 𝑧𝑅𝑦)) → inf(𝐵, 𝐴, 𝑅) = 𝐶))
91, 3, 6, 8mp3and 1463 1 (𝜑 → inf(𝐵, 𝐴, 𝑅) = 𝐶)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395   = wceq 1540  wcel 2105  wral 3060  wrex 3069   class class class wbr 5148   Or wor 5587  infcinf 9439
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2702  ax-sep 5299  ax-nul 5306  ax-pr 5427
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2533  df-eu 2562  df-clab 2709  df-cleq 2723  df-clel 2809  df-nfc 2884  df-ne 2940  df-ral 3061  df-rex 3070  df-rmo 3375  df-reu 3376  df-rab 3432  df-v 3475  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-nul 4323  df-if 4529  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-br 5149  df-opab 5211  df-po 5588  df-so 5589  df-cnv 5684  df-iota 6495  df-riota 7368  df-sup 9440  df-inf 9441
This theorem is referenced by:  infmin  9492  xrinf0  13322  infmremnf  13327  infmrp1  13328
  Copyright terms: Public domain W3C validator