| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > eqinfd | Structured version Visualization version GIF version | ||
| Description: Sufficient condition for an element to be equal to the infimum. (Contributed by AV, 3-Sep-2020.) |
| Ref | Expression |
|---|---|
| infexd.1 | ⊢ (𝜑 → 𝑅 Or 𝐴) |
| eqinfd.2 | ⊢ (𝜑 → 𝐶 ∈ 𝐴) |
| eqinfd.3 | ⊢ ((𝜑 ∧ 𝑦 ∈ 𝐵) → ¬ 𝑦𝑅𝐶) |
| eqinfd.4 | ⊢ ((𝜑 ∧ (𝑦 ∈ 𝐴 ∧ 𝐶𝑅𝑦)) → ∃𝑧 ∈ 𝐵 𝑧𝑅𝑦) |
| Ref | Expression |
|---|---|
| eqinfd | ⊢ (𝜑 → inf(𝐵, 𝐴, 𝑅) = 𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqinfd.2 | . 2 ⊢ (𝜑 → 𝐶 ∈ 𝐴) | |
| 2 | eqinfd.3 | . . 3 ⊢ ((𝜑 ∧ 𝑦 ∈ 𝐵) → ¬ 𝑦𝑅𝐶) | |
| 3 | 2 | ralrimiva 3133 | . 2 ⊢ (𝜑 → ∀𝑦 ∈ 𝐵 ¬ 𝑦𝑅𝐶) |
| 4 | eqinfd.4 | . . . 4 ⊢ ((𝜑 ∧ (𝑦 ∈ 𝐴 ∧ 𝐶𝑅𝑦)) → ∃𝑧 ∈ 𝐵 𝑧𝑅𝑦) | |
| 5 | 4 | expr 456 | . . 3 ⊢ ((𝜑 ∧ 𝑦 ∈ 𝐴) → (𝐶𝑅𝑦 → ∃𝑧 ∈ 𝐵 𝑧𝑅𝑦)) |
| 6 | 5 | ralrimiva 3133 | . 2 ⊢ (𝜑 → ∀𝑦 ∈ 𝐴 (𝐶𝑅𝑦 → ∃𝑧 ∈ 𝐵 𝑧𝑅𝑦)) |
| 7 | infexd.1 | . . 3 ⊢ (𝜑 → 𝑅 Or 𝐴) | |
| 8 | 7 | eqinf 9502 | . 2 ⊢ (𝜑 → ((𝐶 ∈ 𝐴 ∧ ∀𝑦 ∈ 𝐵 ¬ 𝑦𝑅𝐶 ∧ ∀𝑦 ∈ 𝐴 (𝐶𝑅𝑦 → ∃𝑧 ∈ 𝐵 𝑧𝑅𝑦)) → inf(𝐵, 𝐴, 𝑅) = 𝐶)) |
| 9 | 1, 3, 6, 8 | mp3and 1466 | 1 ⊢ (𝜑 → inf(𝐵, 𝐴, 𝑅) = 𝐶) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ∀wral 3052 ∃wrex 3061 class class class wbr 5124 Or wor 5565 infcinf 9458 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2708 ax-sep 5271 ax-nul 5281 ax-pr 5407 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2728 df-clel 2810 df-nfc 2886 df-ne 2934 df-ral 3053 df-rex 3062 df-rmo 3364 df-reu 3365 df-rab 3421 df-v 3466 df-dif 3934 df-un 3936 df-ss 3948 df-nul 4314 df-if 4506 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4889 df-br 5125 df-opab 5187 df-po 5566 df-so 5567 df-cnv 5667 df-iota 6489 df-riota 7367 df-sup 9459 df-inf 9460 |
| This theorem is referenced by: infmin 9513 xrinf0 13360 infmremnf 13365 infmrp1 13366 |
| Copyright terms: Public domain | W3C validator |