![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > eqinfd | Structured version Visualization version GIF version |
Description: Sufficient condition for an element to be equal to the infimum. (Contributed by AV, 3-Sep-2020.) |
Ref | Expression |
---|---|
infexd.1 | ⊢ (𝜑 → 𝑅 Or 𝐴) |
eqinfd.2 | ⊢ (𝜑 → 𝐶 ∈ 𝐴) |
eqinfd.3 | ⊢ ((𝜑 ∧ 𝑦 ∈ 𝐵) → ¬ 𝑦𝑅𝐶) |
eqinfd.4 | ⊢ ((𝜑 ∧ (𝑦 ∈ 𝐴 ∧ 𝐶𝑅𝑦)) → ∃𝑧 ∈ 𝐵 𝑧𝑅𝑦) |
Ref | Expression |
---|---|
eqinfd | ⊢ (𝜑 → inf(𝐵, 𝐴, 𝑅) = 𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqinfd.2 | . 2 ⊢ (𝜑 → 𝐶 ∈ 𝐴) | |
2 | eqinfd.3 | . . 3 ⊢ ((𝜑 ∧ 𝑦 ∈ 𝐵) → ¬ 𝑦𝑅𝐶) | |
3 | 2 | ralrimiva 3135 | . 2 ⊢ (𝜑 → ∀𝑦 ∈ 𝐵 ¬ 𝑦𝑅𝐶) |
4 | eqinfd.4 | . . . 4 ⊢ ((𝜑 ∧ (𝑦 ∈ 𝐴 ∧ 𝐶𝑅𝑦)) → ∃𝑧 ∈ 𝐵 𝑧𝑅𝑦) | |
5 | 4 | expr 455 | . . 3 ⊢ ((𝜑 ∧ 𝑦 ∈ 𝐴) → (𝐶𝑅𝑦 → ∃𝑧 ∈ 𝐵 𝑧𝑅𝑦)) |
6 | 5 | ralrimiva 3135 | . 2 ⊢ (𝜑 → ∀𝑦 ∈ 𝐴 (𝐶𝑅𝑦 → ∃𝑧 ∈ 𝐵 𝑧𝑅𝑦)) |
7 | infexd.1 | . . 3 ⊢ (𝜑 → 𝑅 Or 𝐴) | |
8 | 7 | eqinf 9509 | . 2 ⊢ (𝜑 → ((𝐶 ∈ 𝐴 ∧ ∀𝑦 ∈ 𝐵 ¬ 𝑦𝑅𝐶 ∧ ∀𝑦 ∈ 𝐴 (𝐶𝑅𝑦 → ∃𝑧 ∈ 𝐵 𝑧𝑅𝑦)) → inf(𝐵, 𝐴, 𝑅) = 𝐶)) |
9 | 1, 3, 6, 8 | mp3and 1460 | 1 ⊢ (𝜑 → inf(𝐵, 𝐴, 𝑅) = 𝐶) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 394 = wceq 1533 ∈ wcel 2098 ∀wral 3050 ∃wrex 3059 class class class wbr 5149 Or wor 5589 infcinf 9466 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2696 ax-sep 5300 ax-nul 5307 ax-pr 5429 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2703 df-cleq 2717 df-clel 2802 df-nfc 2877 df-ne 2930 df-ral 3051 df-rex 3060 df-rmo 3363 df-reu 3364 df-rab 3419 df-v 3463 df-dif 3947 df-un 3949 df-ss 3961 df-nul 4323 df-if 4531 df-sn 4631 df-pr 4633 df-op 4637 df-uni 4910 df-br 5150 df-opab 5212 df-po 5590 df-so 5591 df-cnv 5686 df-iota 6501 df-riota 7375 df-sup 9467 df-inf 9468 |
This theorem is referenced by: infmin 9519 xrinf0 13352 infmremnf 13357 infmrp1 13358 |
Copyright terms: Public domain | W3C validator |