MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  eqinfd Structured version   Visualization version   GIF version

Theorem eqinfd 8949
Description: Sufficient condition for an element to be equal to the infimum. (Contributed by AV, 3-Sep-2020.)
Hypotheses
Ref Expression
infexd.1 (𝜑𝑅 Or 𝐴)
eqinfd.2 (𝜑𝐶𝐴)
eqinfd.3 ((𝜑𝑦𝐵) → ¬ 𝑦𝑅𝐶)
eqinfd.4 ((𝜑 ∧ (𝑦𝐴𝐶𝑅𝑦)) → ∃𝑧𝐵 𝑧𝑅𝑦)
Assertion
Ref Expression
eqinfd (𝜑 → inf(𝐵, 𝐴, 𝑅) = 𝐶)
Distinct variable groups:   𝑦,𝐴,𝑧   𝑦,𝐵,𝑧   𝑦,𝑅,𝑧   𝑦,𝐶,𝑧   𝜑,𝑦
Allowed substitution hint:   𝜑(𝑧)

Proof of Theorem eqinfd
StepHypRef Expression
1 eqinfd.2 . 2 (𝜑𝐶𝐴)
2 eqinfd.3 . . 3 ((𝜑𝑦𝐵) → ¬ 𝑦𝑅𝐶)
32ralrimiva 3182 . 2 (𝜑 → ∀𝑦𝐵 ¬ 𝑦𝑅𝐶)
4 eqinfd.4 . . . 4 ((𝜑 ∧ (𝑦𝐴𝐶𝑅𝑦)) → ∃𝑧𝐵 𝑧𝑅𝑦)
54expr 459 . . 3 ((𝜑𝑦𝐴) → (𝐶𝑅𝑦 → ∃𝑧𝐵 𝑧𝑅𝑦))
65ralrimiva 3182 . 2 (𝜑 → ∀𝑦𝐴 (𝐶𝑅𝑦 → ∃𝑧𝐵 𝑧𝑅𝑦))
7 infexd.1 . . 3 (𝜑𝑅 Or 𝐴)
87eqinf 8948 . 2 (𝜑 → ((𝐶𝐴 ∧ ∀𝑦𝐵 ¬ 𝑦𝑅𝐶 ∧ ∀𝑦𝐴 (𝐶𝑅𝑦 → ∃𝑧𝐵 𝑧𝑅𝑦)) → inf(𝐵, 𝐴, 𝑅) = 𝐶))
91, 3, 6, 8mp3and 1460 1 (𝜑 → inf(𝐵, 𝐴, 𝑅) = 𝐶)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 398   = wceq 1537  wcel 2114  wral 3138  wrex 3139   class class class wbr 5066   Or wor 5473  infcinf 8905
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2793  ax-sep 5203  ax-nul 5210  ax-pr 5330
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3496  df-sbc 3773  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-nul 4292  df-if 4468  df-sn 4568  df-pr 4570  df-op 4574  df-uni 4839  df-br 5067  df-opab 5129  df-po 5474  df-so 5475  df-cnv 5563  df-iota 6314  df-riota 7114  df-sup 8906  df-inf 8907
This theorem is referenced by:  infmin  8958  xrinf0  12732  infmremnf  12737  infmrp1  12738
  Copyright terms: Public domain W3C validator