Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > mpd3an23 | Structured version Visualization version GIF version |
Description: An inference based on modus ponens. (Contributed by NM, 4-Dec-2006.) |
Ref | Expression |
---|---|
mpd3an23.1 | ⊢ (𝜑 → 𝜓) |
mpd3an23.2 | ⊢ (𝜑 → 𝜒) |
mpd3an23.3 | ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) |
Ref | Expression |
---|---|
mpd3an23 | ⊢ (𝜑 → 𝜃) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | id 22 | . 2 ⊢ (𝜑 → 𝜑) | |
2 | mpd3an23.1 | . 2 ⊢ (𝜑 → 𝜓) | |
3 | mpd3an23.2 | . 2 ⊢ (𝜑 → 𝜒) | |
4 | mpd3an23.3 | . 2 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) | |
5 | 1, 2, 3, 4 | syl3anc 1369 | 1 ⊢ (𝜑 → 𝜃) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ w3a 1085 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 396 df-3an 1087 |
This theorem is referenced by: rankcf 10464 bcpasc 13963 sqreulem 14999 qnumdencoprm 16377 qeqnumdivden 16378 xpsaddlem 17201 xpsvsca 17205 xpsle 17207 grpinvid 18551 qus0 18729 ghmid 18755 lsm01 19192 frgpadd 19284 abvneg 20009 lsmcv 20318 discmp 22457 kgenhaus 22603 idnghm 23813 xmetdcn2 23906 pi1addval 24117 ipcau2 24303 gausslemma2dlem1a 26418 2lgs 26460 uhgrsubgrself 27550 wlkl0 28632 carsgclctunlem2 32186 carsgclctun 32188 ballotlem1ri 32401 satefvfmla0 33280 satefvfmla1 33287 etasslt2 33935 ftc1anclem5 35781 opoc1 37143 opoc0 37144 dochsat 39324 lcfrlem9 39491 pellfundex 40624 mnringmulrcld 41735 0ellimcdiv 43080 add2cncf 43333 stoweidlem21 43452 stoweidlem23 43454 stoweidlem32 43463 stoweidlem36 43467 stoweidlem40 43471 stoweidlem41 43472 mod42tp1mod8 44942 lincval0 45644 |
Copyright terms: Public domain | W3C validator |