| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > mpd3an23 | Structured version Visualization version GIF version | ||
| Description: An inference based on modus ponens. (Contributed by NM, 4-Dec-2006.) |
| Ref | Expression |
|---|---|
| mpd3an23.1 | ⊢ (𝜑 → 𝜓) |
| mpd3an23.2 | ⊢ (𝜑 → 𝜒) |
| mpd3an23.3 | ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) |
| Ref | Expression |
|---|---|
| mpd3an23 | ⊢ (𝜑 → 𝜃) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | id 22 | . 2 ⊢ (𝜑 → 𝜑) | |
| 2 | mpd3an23.1 | . 2 ⊢ (𝜑 → 𝜓) | |
| 3 | mpd3an23.2 | . 2 ⊢ (𝜑 → 𝜒) | |
| 4 | mpd3an23.3 | . 2 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) | |
| 5 | 1, 2, 3, 4 | syl3anc 1373 | 1 ⊢ (𝜑 → 𝜃) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ w3a 1086 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 |
| This theorem is referenced by: rankcf 10690 bcpasc 14246 sqreulem 15285 qnumdencoprm 16674 qeqnumdivden 16675 xpsaddlem 17495 xpsvsca 17499 xpsle 17501 grpinvid 18896 qus0 19086 ghmid 19119 lsm01 19568 frgpadd 19660 abvneg 20729 lsmcv 21066 qusmul2idl 21204 discmp 23301 kgenhaus 23447 idnghm 24647 xmetdcn2 24742 pi1addval 24964 ipcau2 25150 gausslemma2dlem1a 27292 2lgs 27334 etasslt2 27743 uhgrsubgrself 29243 wlkl0 30329 mhmimasplusg 33005 lmhmimasvsca 33006 rlocaddval 33218 rlocmulval 33219 qusvsval 33299 carsgclctunlem2 34286 carsgclctun 34288 ballotlem1ri 34502 satefvfmla0 35390 satefvfmla1 35397 ftc1anclem5 37676 opoc1 39180 opoc0 39181 dochsat 41362 lcfrlem9 41529 fisdomnn 42217 pellfundex 42859 mnringmulrcld 44201 0ellimcdiv 45631 add2cncf 45884 stoweidlem21 46003 stoweidlem23 46005 stoweidlem32 46014 stoweidlem36 46018 stoweidlem40 46022 stoweidlem41 46023 natglobalincr 46859 mod42tp1mod8 47587 cycldlenngric 47913 lincval0 48401 |
| Copyright terms: Public domain | W3C validator |