| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > mpd3an23 | Structured version Visualization version GIF version | ||
| Description: An inference based on modus ponens. (Contributed by NM, 4-Dec-2006.) |
| Ref | Expression |
|---|---|
| mpd3an23.1 | ⊢ (𝜑 → 𝜓) |
| mpd3an23.2 | ⊢ (𝜑 → 𝜒) |
| mpd3an23.3 | ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) |
| Ref | Expression |
|---|---|
| mpd3an23 | ⊢ (𝜑 → 𝜃) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | id 22 | . 2 ⊢ (𝜑 → 𝜑) | |
| 2 | mpd3an23.1 | . 2 ⊢ (𝜑 → 𝜓) | |
| 3 | mpd3an23.2 | . 2 ⊢ (𝜑 → 𝜒) | |
| 4 | mpd3an23.3 | . 2 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) | |
| 5 | 1, 2, 3, 4 | syl3anc 1373 | 1 ⊢ (𝜑 → 𝜃) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ w3a 1086 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 |
| This theorem is referenced by: rankcf 10737 bcpasc 14293 sqreulem 15333 qnumdencoprm 16722 qeqnumdivden 16723 xpsaddlem 17543 xpsvsca 17547 xpsle 17549 grpinvid 18938 qus0 19128 ghmid 19161 lsm01 19608 frgpadd 19700 abvneg 20742 lsmcv 21058 qusmul2idl 21196 discmp 23292 kgenhaus 23438 idnghm 24638 xmetdcn2 24733 pi1addval 24955 ipcau2 25141 gausslemma2dlem1a 27283 2lgs 27325 etasslt2 27733 uhgrsubgrself 29214 wlkl0 30303 mhmimasplusg 32986 lmhmimasvsca 32987 rlocaddval 33226 rlocmulval 33227 qusvsval 33330 carsgclctunlem2 34317 carsgclctun 34319 ballotlem1ri 34533 satefvfmla0 35412 satefvfmla1 35419 ftc1anclem5 37698 opoc1 39202 opoc0 39203 dochsat 41384 lcfrlem9 41551 fisdomnn 42239 pellfundex 42881 mnringmulrcld 44224 0ellimcdiv 45654 add2cncf 45907 stoweidlem21 46026 stoweidlem23 46028 stoweidlem32 46037 stoweidlem36 46041 stoweidlem40 46045 stoweidlem41 46046 natglobalincr 46882 mod42tp1mod8 47607 cycldlenngric 47932 lincval0 48408 |
| Copyright terms: Public domain | W3C validator |