Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > mpd3an23 | Structured version Visualization version GIF version |
Description: An inference based on modus ponens. (Contributed by NM, 4-Dec-2006.) |
Ref | Expression |
---|---|
mpd3an23.1 | ⊢ (𝜑 → 𝜓) |
mpd3an23.2 | ⊢ (𝜑 → 𝜒) |
mpd3an23.3 | ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) |
Ref | Expression |
---|---|
mpd3an23 | ⊢ (𝜑 → 𝜃) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | id 22 | . 2 ⊢ (𝜑 → 𝜑) | |
2 | mpd3an23.1 | . 2 ⊢ (𝜑 → 𝜓) | |
3 | mpd3an23.2 | . 2 ⊢ (𝜑 → 𝜒) | |
4 | mpd3an23.3 | . 2 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) | |
5 | 1, 2, 3, 4 | syl3anc 1370 | 1 ⊢ (𝜑 → 𝜃) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ w3a 1086 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 397 df-3an 1088 |
This theorem is referenced by: rankcf 10533 bcpasc 14035 sqreulem 15071 qnumdencoprm 16449 qeqnumdivden 16450 xpsaddlem 17284 xpsvsca 17288 xpsle 17290 grpinvid 18636 qus0 18814 ghmid 18840 lsm01 19277 frgpadd 19369 abvneg 20094 lsmcv 20403 discmp 22549 kgenhaus 22695 idnghm 23907 xmetdcn2 24000 pi1addval 24211 ipcau2 24398 gausslemma2dlem1a 26513 2lgs 26555 uhgrsubgrself 27647 wlkl0 28731 carsgclctunlem2 32286 carsgclctun 32288 ballotlem1ri 32501 satefvfmla0 33380 satefvfmla1 33387 etasslt2 34008 ftc1anclem5 35854 opoc1 37216 opoc0 37217 dochsat 39397 lcfrlem9 39564 pellfundex 40708 mnringmulrcld 41846 0ellimcdiv 43190 add2cncf 43443 stoweidlem21 43562 stoweidlem23 43564 stoweidlem32 43573 stoweidlem36 43577 stoweidlem40 43581 stoweidlem41 43582 mod42tp1mod8 45054 lincval0 45756 natglobalincr 46512 |
Copyright terms: Public domain | W3C validator |