| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > mpd3an23 | Structured version Visualization version GIF version | ||
| Description: An inference based on modus ponens. (Contributed by NM, 4-Dec-2006.) |
| Ref | Expression |
|---|---|
| mpd3an23.1 | ⊢ (𝜑 → 𝜓) |
| mpd3an23.2 | ⊢ (𝜑 → 𝜒) |
| mpd3an23.3 | ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) |
| Ref | Expression |
|---|---|
| mpd3an23 | ⊢ (𝜑 → 𝜃) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | id 22 | . 2 ⊢ (𝜑 → 𝜑) | |
| 2 | mpd3an23.1 | . 2 ⊢ (𝜑 → 𝜓) | |
| 3 | mpd3an23.2 | . 2 ⊢ (𝜑 → 𝜒) | |
| 4 | mpd3an23.3 | . 2 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) | |
| 5 | 1, 2, 3, 4 | syl3anc 1373 | 1 ⊢ (𝜑 → 𝜃) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ w3a 1086 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 |
| This theorem is referenced by: rankcf 10730 bcpasc 14286 sqreulem 15326 qnumdencoprm 16715 qeqnumdivden 16716 xpsaddlem 17536 xpsvsca 17540 xpsle 17542 grpinvid 18931 qus0 19121 ghmid 19154 lsm01 19601 frgpadd 19693 abvneg 20735 lsmcv 21051 qusmul2idl 21189 discmp 23285 kgenhaus 23431 idnghm 24631 xmetdcn2 24726 pi1addval 24948 ipcau2 25134 gausslemma2dlem1a 27276 2lgs 27318 etasslt2 27726 uhgrsubgrself 29207 wlkl0 30296 mhmimasplusg 32979 lmhmimasvsca 32980 rlocaddval 33219 rlocmulval 33220 qusvsval 33323 carsgclctunlem2 34310 carsgclctun 34312 ballotlem1ri 34526 satefvfmla0 35405 satefvfmla1 35412 ftc1anclem5 37691 opoc1 39195 opoc0 39196 dochsat 41377 lcfrlem9 41544 fisdomnn 42232 pellfundex 42874 mnringmulrcld 44217 0ellimcdiv 45647 add2cncf 45900 stoweidlem21 46019 stoweidlem23 46021 stoweidlem32 46030 stoweidlem36 46034 stoweidlem40 46038 stoweidlem41 46039 natglobalincr 46875 mod42tp1mod8 47603 cycldlenngric 47928 lincval0 48404 |
| Copyright terms: Public domain | W3C validator |