| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > mpd3an23 | Structured version Visualization version GIF version | ||
| Description: An inference based on modus ponens. (Contributed by NM, 4-Dec-2006.) |
| Ref | Expression |
|---|---|
| mpd3an23.1 | ⊢ (𝜑 → 𝜓) |
| mpd3an23.2 | ⊢ (𝜑 → 𝜒) |
| mpd3an23.3 | ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) |
| Ref | Expression |
|---|---|
| mpd3an23 | ⊢ (𝜑 → 𝜃) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | id 22 | . 2 ⊢ (𝜑 → 𝜑) | |
| 2 | mpd3an23.1 | . 2 ⊢ (𝜑 → 𝜓) | |
| 3 | mpd3an23.2 | . 2 ⊢ (𝜑 → 𝜒) | |
| 4 | mpd3an23.3 | . 2 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) | |
| 5 | 1, 2, 3, 4 | syl3anc 1373 | 1 ⊢ (𝜑 → 𝜃) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ w3a 1086 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 |
| This theorem is referenced by: rankcf 10668 bcpasc 14228 sqreulem 15267 qnumdencoprm 16656 qeqnumdivden 16657 xpsaddlem 17477 xpsvsca 17481 xpsle 17483 grpinvid 18912 qus0 19102 ghmid 19135 lsm01 19584 frgpadd 19676 abvneg 20742 lsmcv 21079 qusmul2idl 21217 discmp 23314 kgenhaus 23460 idnghm 24659 xmetdcn2 24754 pi1addval 24976 ipcau2 25162 gausslemma2dlem1a 27304 2lgs 27346 etasslt2 27756 uhgrsubgrself 29259 wlkl0 30345 mhmimasplusg 33017 lmhmimasvsca 33018 rlocaddval 33233 rlocmulval 33234 qusvsval 33315 carsgclctunlem2 34330 carsgclctun 34332 ballotlem1ri 34546 satefvfmla0 35460 satefvfmla1 35467 ftc1anclem5 37743 opoc1 39247 opoc0 39248 dochsat 41428 lcfrlem9 41595 fisdomnn 42283 pellfundex 42925 mnringmulrcld 44267 0ellimcdiv 45693 add2cncf 45946 stoweidlem21 46065 stoweidlem23 46067 stoweidlem32 46076 stoweidlem36 46080 stoweidlem40 46084 stoweidlem41 46085 natglobalincr 46921 mod42tp1mod8 47639 cycldlenngric 47965 lincval0 48453 |
| Copyright terms: Public domain | W3C validator |