Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > mpd3an23 | Structured version Visualization version GIF version |
Description: An inference based on modus ponens. (Contributed by NM, 4-Dec-2006.) |
Ref | Expression |
---|---|
mpd3an23.1 | ⊢ (𝜑 → 𝜓) |
mpd3an23.2 | ⊢ (𝜑 → 𝜒) |
mpd3an23.3 | ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) |
Ref | Expression |
---|---|
mpd3an23 | ⊢ (𝜑 → 𝜃) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | id 22 | . 2 ⊢ (𝜑 → 𝜑) | |
2 | mpd3an23.1 | . 2 ⊢ (𝜑 → 𝜓) | |
3 | mpd3an23.2 | . 2 ⊢ (𝜑 → 𝜒) | |
4 | mpd3an23.3 | . 2 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) | |
5 | 1, 2, 3, 4 | syl3anc 1368 | 1 ⊢ (𝜑 → 𝜃) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ w3a 1084 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 210 df-an 400 df-3an 1086 |
This theorem is referenced by: rankcf 10237 bcpasc 13731 sqreulem 14767 qnumdencoprm 16140 qeqnumdivden 16141 xpsaddlem 16904 xpsvsca 16908 xpsle 16910 grpinvid 18227 qus0 18405 ghmid 18431 lsm01 18864 frgpadd 18956 abvneg 19673 lsmcv 19981 discmp 22098 kgenhaus 22244 idnghm 23445 xmetdcn2 23538 pi1addval 23749 ipcau2 23934 gausslemma2dlem1a 26048 2lgs 26090 uhgrsubgrself 27169 wlkl0 28251 carsgclctunlem2 31805 carsgclctun 31807 ballotlem1ri 32020 satefvfmla0 32896 satefvfmla1 32903 etasslt2 33569 ftc1anclem5 35414 opoc1 36778 opoc0 36779 dochsat 38959 lcfrlem9 39126 pellfundex 40200 mnringmulrcld 41309 0ellimcdiv 42657 add2cncf 42910 stoweidlem21 43029 stoweidlem23 43031 stoweidlem32 43040 stoweidlem36 43044 stoweidlem40 43048 stoweidlem41 43049 mod42tp1mod8 44487 lincval0 45189 |
Copyright terms: Public domain | W3C validator |