| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > mpd3an23 | Structured version Visualization version GIF version | ||
| Description: An inference based on modus ponens. (Contributed by NM, 4-Dec-2006.) |
| Ref | Expression |
|---|---|
| mpd3an23.1 | ⊢ (𝜑 → 𝜓) |
| mpd3an23.2 | ⊢ (𝜑 → 𝜒) |
| mpd3an23.3 | ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) |
| Ref | Expression |
|---|---|
| mpd3an23 | ⊢ (𝜑 → 𝜃) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | id 22 | . 2 ⊢ (𝜑 → 𝜑) | |
| 2 | mpd3an23.1 | . 2 ⊢ (𝜑 → 𝜓) | |
| 3 | mpd3an23.2 | . 2 ⊢ (𝜑 → 𝜒) | |
| 4 | mpd3an23.3 | . 2 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) | |
| 5 | 1, 2, 3, 4 | syl3anc 1373 | 1 ⊢ (𝜑 → 𝜃) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ w3a 1086 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 |
| This theorem is referenced by: rankcf 10791 bcpasc 14339 sqreulem 15378 qnumdencoprm 16764 qeqnumdivden 16765 xpsaddlem 17587 xpsvsca 17591 xpsle 17593 grpinvid 18982 qus0 19172 ghmid 19205 lsm01 19652 frgpadd 19744 abvneg 20786 lsmcv 21102 qusmul2idl 21240 discmp 23336 kgenhaus 23482 idnghm 24682 xmetdcn2 24777 pi1addval 24999 ipcau2 25186 gausslemma2dlem1a 27328 2lgs 27370 etasslt2 27778 uhgrsubgrself 29259 wlkl0 30348 mhmimasplusg 33033 lmhmimasvsca 33034 rlocaddval 33263 rlocmulval 33264 qusvsval 33367 carsgclctunlem2 34351 carsgclctun 34353 ballotlem1ri 34567 satefvfmla0 35440 satefvfmla1 35447 ftc1anclem5 37721 opoc1 39220 opoc0 39221 dochsat 41402 lcfrlem9 41569 fisdomnn 42295 pellfundex 42909 mnringmulrcld 44252 0ellimcdiv 45678 add2cncf 45931 stoweidlem21 46050 stoweidlem23 46052 stoweidlem32 46061 stoweidlem36 46065 stoweidlem40 46069 stoweidlem41 46070 natglobalincr 46906 mod42tp1mod8 47616 cycldlenngric 47941 lincval0 48391 |
| Copyright terms: Public domain | W3C validator |