| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > mpd3an23 | Structured version Visualization version GIF version | ||
| Description: An inference based on modus ponens. (Contributed by NM, 4-Dec-2006.) |
| Ref | Expression |
|---|---|
| mpd3an23.1 | ⊢ (𝜑 → 𝜓) |
| mpd3an23.2 | ⊢ (𝜑 → 𝜒) |
| mpd3an23.3 | ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) |
| Ref | Expression |
|---|---|
| mpd3an23 | ⊢ (𝜑 → 𝜃) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | id 22 | . 2 ⊢ (𝜑 → 𝜑) | |
| 2 | mpd3an23.1 | . 2 ⊢ (𝜑 → 𝜓) | |
| 3 | mpd3an23.2 | . 2 ⊢ (𝜑 → 𝜒) | |
| 4 | mpd3an23.3 | . 2 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) | |
| 5 | 1, 2, 3, 4 | syl3anc 1373 | 1 ⊢ (𝜑 → 𝜃) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ w3a 1086 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 |
| This theorem is referenced by: rankcf 10675 bcpasc 14230 sqreulem 15269 qnumdencoprm 16658 qeqnumdivden 16659 xpsaddlem 17479 xpsvsca 17483 xpsle 17485 grpinvid 18914 qus0 19103 ghmid 19136 lsm01 19585 frgpadd 19677 abvneg 20743 lsmcv 21080 qusmul2idl 21218 discmp 23314 kgenhaus 23460 idnghm 24659 xmetdcn2 24754 pi1addval 24976 ipcau2 25162 gausslemma2dlem1a 27304 2lgs 27346 etasslt2 27756 uhgrsubgrself 29260 wlkl0 30349 mhmimasplusg 33026 lmhmimasvsca 33027 rlocaddval 33242 rlocmulval 33243 qusvsval 33324 carsgclctunlem2 34353 carsgclctun 34355 ballotlem1ri 34569 satefvfmla0 35483 satefvfmla1 35490 ftc1anclem5 37758 opoc1 39322 opoc0 39323 dochsat 41503 lcfrlem9 41670 fisdomnn 42363 pellfundex 43004 mnringmulrcld 44346 0ellimcdiv 45772 add2cncf 46025 stoweidlem21 46144 stoweidlem23 46146 stoweidlem32 46155 stoweidlem36 46159 stoweidlem40 46163 stoweidlem41 46164 natglobalincr 47000 mod42tp1mod8 47727 cycldlenngric 48053 lincval0 48541 |
| Copyright terms: Public domain | W3C validator |