![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > mpd3an23 | Structured version Visualization version GIF version |
Description: An inference based on modus ponens. (Contributed by NM, 4-Dec-2006.) |
Ref | Expression |
---|---|
mpd3an23.1 | ⊢ (𝜑 → 𝜓) |
mpd3an23.2 | ⊢ (𝜑 → 𝜒) |
mpd3an23.3 | ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) |
Ref | Expression |
---|---|
mpd3an23 | ⊢ (𝜑 → 𝜃) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | id 22 | . 2 ⊢ (𝜑 → 𝜑) | |
2 | mpd3an23.1 | . 2 ⊢ (𝜑 → 𝜓) | |
3 | mpd3an23.2 | . 2 ⊢ (𝜑 → 𝜒) | |
4 | mpd3an23.3 | . 2 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) | |
5 | 1, 2, 3, 4 | syl3anc 1371 | 1 ⊢ (𝜑 → 𝜃) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ w3a 1087 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1089 |
This theorem is referenced by: rankcf 10846 bcpasc 14370 sqreulem 15408 qnumdencoprm 16792 qeqnumdivden 16793 xpsaddlem 17633 xpsvsca 17637 xpsle 17639 grpinvid 19039 qus0 19229 ghmid 19262 lsm01 19713 frgpadd 19805 abvneg 20849 lsmcv 21166 qusmul2idl 21312 discmp 23427 kgenhaus 23573 idnghm 24785 xmetdcn2 24878 pi1addval 25100 ipcau2 25287 gausslemma2dlem1a 27427 2lgs 27469 etasslt2 27877 uhgrsubgrself 29315 wlkl0 30399 mhmimasplusg 33024 lmhmimasvsca 33025 rlocaddval 33240 rlocmulval 33241 qusvsval 33345 carsgclctunlem2 34284 carsgclctun 34286 ballotlem1ri 34499 satefvfmla0 35386 satefvfmla1 35393 ftc1anclem5 37657 opoc1 39158 opoc0 39159 dochsat 41340 lcfrlem9 41507 fisdomnn 42239 pellfundex 42842 mnringmulrcld 44197 0ellimcdiv 45570 add2cncf 45823 stoweidlem21 45942 stoweidlem23 45944 stoweidlem32 45953 stoweidlem36 45957 stoweidlem40 45961 stoweidlem41 45962 natglobalincr 46796 mod42tp1mod8 47476 lincval0 48144 |
Copyright terms: Public domain | W3C validator |