Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  onsupuni Structured version   Visualization version   GIF version

Theorem onsupuni 43241
Description: The supremum of a set of ordinals is the union of that set. Lemma 2.10 of [Schloeder] p. 5. (Contributed by RP, 19-Jan-2025.)
Assertion
Ref Expression
onsupuni ((𝐴 ⊆ On ∧ 𝐴𝑉) → sup(𝐴, On, E ) = 𝐴)

Proof of Theorem onsupuni
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ssonuni 7800 . . 3 (𝐴𝑉 → (𝐴 ⊆ On → 𝐴 ∈ On))
21impcom 407 . 2 ((𝐴 ⊆ On ∧ 𝐴𝑉) → 𝐴 ∈ On)
3 elssuni 4937 . . . 4 (𝑦𝐴𝑦 𝐴)
43rgen 3063 . . 3 𝑦𝐴 𝑦 𝐴
5 simpl 482 . . . . . . 7 ((𝐴 ⊆ On ∧ 𝐴𝑉) → 𝐴 ⊆ On)
65sselda 3983 . . . . . 6 (((𝐴 ⊆ On ∧ 𝐴𝑉) ∧ 𝑦𝐴) → 𝑦 ∈ On)
72adantr 480 . . . . . 6 (((𝐴 ⊆ On ∧ 𝐴𝑉) ∧ 𝑦𝐴) → 𝐴 ∈ On)
8 ontri1 6418 . . . . . 6 ((𝑦 ∈ On ∧ 𝐴 ∈ On) → (𝑦 𝐴 ↔ ¬ 𝐴𝑦))
96, 7, 8syl2anc 584 . . . . 5 (((𝐴 ⊆ On ∧ 𝐴𝑉) ∧ 𝑦𝐴) → (𝑦 𝐴 ↔ ¬ 𝐴𝑦))
10 epel 5587 . . . . . 6 ( 𝐴 E 𝑦 𝐴𝑦)
1110notbii 320 . . . . 5 𝐴 E 𝑦 ↔ ¬ 𝐴𝑦)
129, 11bitr4di 289 . . . 4 (((𝐴 ⊆ On ∧ 𝐴𝑉) ∧ 𝑦𝐴) → (𝑦 𝐴 ↔ ¬ 𝐴 E 𝑦))
1312ralbidva 3176 . . 3 ((𝐴 ⊆ On ∧ 𝐴𝑉) → (∀𝑦𝐴 𝑦 𝐴 ↔ ∀𝑦𝐴 ¬ 𝐴 E 𝑦))
144, 13mpbii 233 . 2 ((𝐴 ⊆ On ∧ 𝐴𝑉) → ∀𝑦𝐴 ¬ 𝐴 E 𝑦)
152adantr 480 . . . . . 6 (((𝐴 ⊆ On ∧ 𝐴𝑉) ∧ 𝑦 ∈ On) → 𝐴 ∈ On)
16 epelg 5585 . . . . . 6 ( 𝐴 ∈ On → (𝑦 E 𝐴𝑦 𝐴))
1715, 16syl 17 . . . . 5 (((𝐴 ⊆ On ∧ 𝐴𝑉) ∧ 𝑦 ∈ On) → (𝑦 E 𝐴𝑦 𝐴))
1817biimpd 229 . . . 4 (((𝐴 ⊆ On ∧ 𝐴𝑉) ∧ 𝑦 ∈ On) → (𝑦 E 𝐴𝑦 𝐴))
19 eluni2 4911 . . . . 5 (𝑦 𝐴 ↔ ∃𝑥𝐴 𝑦𝑥)
20 epel 5587 . . . . . 6 (𝑦 E 𝑥𝑦𝑥)
2120rexbii 3094 . . . . 5 (∃𝑥𝐴 𝑦 E 𝑥 ↔ ∃𝑥𝐴 𝑦𝑥)
2219, 21bitr4i 278 . . . 4 (𝑦 𝐴 ↔ ∃𝑥𝐴 𝑦 E 𝑥)
2318, 22imbitrdi 251 . . 3 (((𝐴 ⊆ On ∧ 𝐴𝑉) ∧ 𝑦 ∈ On) → (𝑦 E 𝐴 → ∃𝑥𝐴 𝑦 E 𝑥))
2423ralrimiva 3146 . 2 ((𝐴 ⊆ On ∧ 𝐴𝑉) → ∀𝑦 ∈ On (𝑦 E 𝐴 → ∃𝑥𝐴 𝑦 E 𝑥))
25 epweon 7795 . . . 4 E We On
26 weso 5676 . . . 4 ( E We On → E Or On)
2725, 26mp1i 13 . . 3 ((𝐴 ⊆ On ∧ 𝐴𝑉) → E Or On)
2827eqsup 9496 . 2 ((𝐴 ⊆ On ∧ 𝐴𝑉) → (( 𝐴 ∈ On ∧ ∀𝑦𝐴 ¬ 𝐴 E 𝑦 ∧ ∀𝑦 ∈ On (𝑦 E 𝐴 → ∃𝑥𝐴 𝑦 E 𝑥)) → sup(𝐴, On, E ) = 𝐴))
292, 14, 24, 28mp3and 1466 1 ((𝐴 ⊆ On ∧ 𝐴𝑉) → sup(𝐴, On, E ) = 𝐴)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395   = wceq 1540  wcel 2108  wral 3061  wrex 3070  wss 3951   cuni 4907   class class class wbr 5143   E cep 5583   Or wor 5591   We wwe 5636  Oncon0 6384  supcsup 9480
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-sep 5296  ax-nul 5306  ax-pr 5432  ax-un 7755
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-ral 3062  df-rex 3071  df-rmo 3380  df-reu 3381  df-rab 3437  df-v 3482  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-pss 3971  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-br 5144  df-opab 5206  df-tr 5260  df-eprel 5584  df-po 5592  df-so 5593  df-fr 5637  df-we 5639  df-ord 6387  df-on 6388  df-iota 6514  df-riota 7388  df-sup 9482
This theorem is referenced by:  onsupuni2  43242  onsupintrab  43243  limexissup  43294  limexissupab  43296
  Copyright terms: Public domain W3C validator