Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  onsupuni Structured version   Visualization version   GIF version

Theorem onsupuni 43204
Description: The supremum of a set of ordinals is the union of that set. Lemma 2.10 of [Schloeder] p. 5. (Contributed by RP, 19-Jan-2025.)
Assertion
Ref Expression
onsupuni ((𝐴 ⊆ On ∧ 𝐴𝑉) → sup(𝐴, On, E ) = 𝐴)

Proof of Theorem onsupuni
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ssonuni 7782 . . 3 (𝐴𝑉 → (𝐴 ⊆ On → 𝐴 ∈ On))
21impcom 407 . 2 ((𝐴 ⊆ On ∧ 𝐴𝑉) → 𝐴 ∈ On)
3 elssuni 4917 . . . 4 (𝑦𝐴𝑦 𝐴)
43rgen 3052 . . 3 𝑦𝐴 𝑦 𝐴
5 simpl 482 . . . . . . 7 ((𝐴 ⊆ On ∧ 𝐴𝑉) → 𝐴 ⊆ On)
65sselda 3963 . . . . . 6 (((𝐴 ⊆ On ∧ 𝐴𝑉) ∧ 𝑦𝐴) → 𝑦 ∈ On)
72adantr 480 . . . . . 6 (((𝐴 ⊆ On ∧ 𝐴𝑉) ∧ 𝑦𝐴) → 𝐴 ∈ On)
8 ontri1 6397 . . . . . 6 ((𝑦 ∈ On ∧ 𝐴 ∈ On) → (𝑦 𝐴 ↔ ¬ 𝐴𝑦))
96, 7, 8syl2anc 584 . . . . 5 (((𝐴 ⊆ On ∧ 𝐴𝑉) ∧ 𝑦𝐴) → (𝑦 𝐴 ↔ ¬ 𝐴𝑦))
10 epel 5567 . . . . . 6 ( 𝐴 E 𝑦 𝐴𝑦)
1110notbii 320 . . . . 5 𝐴 E 𝑦 ↔ ¬ 𝐴𝑦)
129, 11bitr4di 289 . . . 4 (((𝐴 ⊆ On ∧ 𝐴𝑉) ∧ 𝑦𝐴) → (𝑦 𝐴 ↔ ¬ 𝐴 E 𝑦))
1312ralbidva 3163 . . 3 ((𝐴 ⊆ On ∧ 𝐴𝑉) → (∀𝑦𝐴 𝑦 𝐴 ↔ ∀𝑦𝐴 ¬ 𝐴 E 𝑦))
144, 13mpbii 233 . 2 ((𝐴 ⊆ On ∧ 𝐴𝑉) → ∀𝑦𝐴 ¬ 𝐴 E 𝑦)
152adantr 480 . . . . . 6 (((𝐴 ⊆ On ∧ 𝐴𝑉) ∧ 𝑦 ∈ On) → 𝐴 ∈ On)
16 epelg 5565 . . . . . 6 ( 𝐴 ∈ On → (𝑦 E 𝐴𝑦 𝐴))
1715, 16syl 17 . . . . 5 (((𝐴 ⊆ On ∧ 𝐴𝑉) ∧ 𝑦 ∈ On) → (𝑦 E 𝐴𝑦 𝐴))
1817biimpd 229 . . . 4 (((𝐴 ⊆ On ∧ 𝐴𝑉) ∧ 𝑦 ∈ On) → (𝑦 E 𝐴𝑦 𝐴))
19 eluni2 4891 . . . . 5 (𝑦 𝐴 ↔ ∃𝑥𝐴 𝑦𝑥)
20 epel 5567 . . . . . 6 (𝑦 E 𝑥𝑦𝑥)
2120rexbii 3082 . . . . 5 (∃𝑥𝐴 𝑦 E 𝑥 ↔ ∃𝑥𝐴 𝑦𝑥)
2219, 21bitr4i 278 . . . 4 (𝑦 𝐴 ↔ ∃𝑥𝐴 𝑦 E 𝑥)
2318, 22imbitrdi 251 . . 3 (((𝐴 ⊆ On ∧ 𝐴𝑉) ∧ 𝑦 ∈ On) → (𝑦 E 𝐴 → ∃𝑥𝐴 𝑦 E 𝑥))
2423ralrimiva 3133 . 2 ((𝐴 ⊆ On ∧ 𝐴𝑉) → ∀𝑦 ∈ On (𝑦 E 𝐴 → ∃𝑥𝐴 𝑦 E 𝑥))
25 epweon 7777 . . . 4 E We On
26 weso 5656 . . . 4 ( E We On → E Or On)
2725, 26mp1i 13 . . 3 ((𝐴 ⊆ On ∧ 𝐴𝑉) → E Or On)
2827eqsup 9478 . 2 ((𝐴 ⊆ On ∧ 𝐴𝑉) → (( 𝐴 ∈ On ∧ ∀𝑦𝐴 ¬ 𝐴 E 𝑦 ∧ ∀𝑦 ∈ On (𝑦 E 𝐴 → ∃𝑥𝐴 𝑦 E 𝑥)) → sup(𝐴, On, E ) = 𝐴))
292, 14, 24, 28mp3and 1465 1 ((𝐴 ⊆ On ∧ 𝐴𝑉) → sup(𝐴, On, E ) = 𝐴)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395   = wceq 1539  wcel 2107  wral 3050  wrex 3059  wss 3931   cuni 4887   class class class wbr 5123   E cep 5563   Or wor 5571   We wwe 5616  Oncon0 6363  supcsup 9462
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2706  ax-sep 5276  ax-nul 5286  ax-pr 5412  ax-un 7737
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2726  df-clel 2808  df-nfc 2884  df-ne 2932  df-ral 3051  df-rex 3060  df-rmo 3363  df-reu 3364  df-rab 3420  df-v 3465  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-pss 3951  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4888  df-br 5124  df-opab 5186  df-tr 5240  df-eprel 5564  df-po 5572  df-so 5573  df-fr 5617  df-we 5619  df-ord 6366  df-on 6367  df-iota 6494  df-riota 7370  df-sup 9464
This theorem is referenced by:  onsupuni2  43205  onsupintrab  43206  limexissup  43256  limexissupab  43258
  Copyright terms: Public domain W3C validator