Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  onsupuni Structured version   Visualization version   GIF version

Theorem onsupuni 43218
Description: The supremum of a set of ordinals is the union of that set. Lemma 2.10 of [Schloeder] p. 5. (Contributed by RP, 19-Jan-2025.)
Assertion
Ref Expression
onsupuni ((𝐴 ⊆ On ∧ 𝐴𝑉) → sup(𝐴, On, E ) = 𝐴)

Proof of Theorem onsupuni
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ssonuni 7799 . . 3 (𝐴𝑉 → (𝐴 ⊆ On → 𝐴 ∈ On))
21impcom 407 . 2 ((𝐴 ⊆ On ∧ 𝐴𝑉) → 𝐴 ∈ On)
3 elssuni 4942 . . . 4 (𝑦𝐴𝑦 𝐴)
43rgen 3061 . . 3 𝑦𝐴 𝑦 𝐴
5 simpl 482 . . . . . . 7 ((𝐴 ⊆ On ∧ 𝐴𝑉) → 𝐴 ⊆ On)
65sselda 3995 . . . . . 6 (((𝐴 ⊆ On ∧ 𝐴𝑉) ∧ 𝑦𝐴) → 𝑦 ∈ On)
72adantr 480 . . . . . 6 (((𝐴 ⊆ On ∧ 𝐴𝑉) ∧ 𝑦𝐴) → 𝐴 ∈ On)
8 ontri1 6420 . . . . . 6 ((𝑦 ∈ On ∧ 𝐴 ∈ On) → (𝑦 𝐴 ↔ ¬ 𝐴𝑦))
96, 7, 8syl2anc 584 . . . . 5 (((𝐴 ⊆ On ∧ 𝐴𝑉) ∧ 𝑦𝐴) → (𝑦 𝐴 ↔ ¬ 𝐴𝑦))
10 epel 5592 . . . . . 6 ( 𝐴 E 𝑦 𝐴𝑦)
1110notbii 320 . . . . 5 𝐴 E 𝑦 ↔ ¬ 𝐴𝑦)
129, 11bitr4di 289 . . . 4 (((𝐴 ⊆ On ∧ 𝐴𝑉) ∧ 𝑦𝐴) → (𝑦 𝐴 ↔ ¬ 𝐴 E 𝑦))
1312ralbidva 3174 . . 3 ((𝐴 ⊆ On ∧ 𝐴𝑉) → (∀𝑦𝐴 𝑦 𝐴 ↔ ∀𝑦𝐴 ¬ 𝐴 E 𝑦))
144, 13mpbii 233 . 2 ((𝐴 ⊆ On ∧ 𝐴𝑉) → ∀𝑦𝐴 ¬ 𝐴 E 𝑦)
152adantr 480 . . . . . 6 (((𝐴 ⊆ On ∧ 𝐴𝑉) ∧ 𝑦 ∈ On) → 𝐴 ∈ On)
16 epelg 5590 . . . . . 6 ( 𝐴 ∈ On → (𝑦 E 𝐴𝑦 𝐴))
1715, 16syl 17 . . . . 5 (((𝐴 ⊆ On ∧ 𝐴𝑉) ∧ 𝑦 ∈ On) → (𝑦 E 𝐴𝑦 𝐴))
1817biimpd 229 . . . 4 (((𝐴 ⊆ On ∧ 𝐴𝑉) ∧ 𝑦 ∈ On) → (𝑦 E 𝐴𝑦 𝐴))
19 eluni2 4916 . . . . 5 (𝑦 𝐴 ↔ ∃𝑥𝐴 𝑦𝑥)
20 epel 5592 . . . . . 6 (𝑦 E 𝑥𝑦𝑥)
2120rexbii 3092 . . . . 5 (∃𝑥𝐴 𝑦 E 𝑥 ↔ ∃𝑥𝐴 𝑦𝑥)
2219, 21bitr4i 278 . . . 4 (𝑦 𝐴 ↔ ∃𝑥𝐴 𝑦 E 𝑥)
2318, 22imbitrdi 251 . . 3 (((𝐴 ⊆ On ∧ 𝐴𝑉) ∧ 𝑦 ∈ On) → (𝑦 E 𝐴 → ∃𝑥𝐴 𝑦 E 𝑥))
2423ralrimiva 3144 . 2 ((𝐴 ⊆ On ∧ 𝐴𝑉) → ∀𝑦 ∈ On (𝑦 E 𝐴 → ∃𝑥𝐴 𝑦 E 𝑥))
25 epweon 7794 . . . 4 E We On
26 weso 5680 . . . 4 ( E We On → E Or On)
2725, 26mp1i 13 . . 3 ((𝐴 ⊆ On ∧ 𝐴𝑉) → E Or On)
2827eqsup 9494 . 2 ((𝐴 ⊆ On ∧ 𝐴𝑉) → (( 𝐴 ∈ On ∧ ∀𝑦𝐴 ¬ 𝐴 E 𝑦 ∧ ∀𝑦 ∈ On (𝑦 E 𝐴 → ∃𝑥𝐴 𝑦 E 𝑥)) → sup(𝐴, On, E ) = 𝐴))
292, 14, 24, 28mp3and 1463 1 ((𝐴 ⊆ On ∧ 𝐴𝑉) → sup(𝐴, On, E ) = 𝐴)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395   = wceq 1537  wcel 2106  wral 3059  wrex 3068  wss 3963   cuni 4912   class class class wbr 5148   E cep 5588   Or wor 5596   We wwe 5640  Oncon0 6386  supcsup 9478
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-sep 5302  ax-nul 5312  ax-pr 5438  ax-un 7754
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-ral 3060  df-rex 3069  df-rmo 3378  df-reu 3379  df-rab 3434  df-v 3480  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-pss 3983  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-br 5149  df-opab 5211  df-tr 5266  df-eprel 5589  df-po 5597  df-so 5598  df-fr 5641  df-we 5643  df-ord 6389  df-on 6390  df-iota 6516  df-riota 7388  df-sup 9480
This theorem is referenced by:  onsupuni2  43219  onsupintrab  43220  limexissup  43271  limexissupab  43273
  Copyright terms: Public domain W3C validator