Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  onsupuni Structured version   Visualization version   GIF version

Theorem onsupuni 43349
Description: The supremum of a set of ordinals is the union of that set. Lemma 2.10 of [Schloeder] p. 5. (Contributed by RP, 19-Jan-2025.)
Assertion
Ref Expression
onsupuni ((𝐴 ⊆ On ∧ 𝐴𝑉) → sup(𝐴, On, E ) = 𝐴)

Proof of Theorem onsupuni
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ssonuni 7721 . . 3 (𝐴𝑉 → (𝐴 ⊆ On → 𝐴 ∈ On))
21impcom 407 . 2 ((𝐴 ⊆ On ∧ 𝐴𝑉) → 𝐴 ∈ On)
3 elssuni 4891 . . . 4 (𝑦𝐴𝑦 𝐴)
43rgen 3050 . . 3 𝑦𝐴 𝑦 𝐴
5 simpl 482 . . . . . . 7 ((𝐴 ⊆ On ∧ 𝐴𝑉) → 𝐴 ⊆ On)
65sselda 3930 . . . . . 6 (((𝐴 ⊆ On ∧ 𝐴𝑉) ∧ 𝑦𝐴) → 𝑦 ∈ On)
72adantr 480 . . . . . 6 (((𝐴 ⊆ On ∧ 𝐴𝑉) ∧ 𝑦𝐴) → 𝐴 ∈ On)
8 ontri1 6347 . . . . . 6 ((𝑦 ∈ On ∧ 𝐴 ∈ On) → (𝑦 𝐴 ↔ ¬ 𝐴𝑦))
96, 7, 8syl2anc 584 . . . . 5 (((𝐴 ⊆ On ∧ 𝐴𝑉) ∧ 𝑦𝐴) → (𝑦 𝐴 ↔ ¬ 𝐴𝑦))
10 epel 5524 . . . . . 6 ( 𝐴 E 𝑦 𝐴𝑦)
1110notbii 320 . . . . 5 𝐴 E 𝑦 ↔ ¬ 𝐴𝑦)
129, 11bitr4di 289 . . . 4 (((𝐴 ⊆ On ∧ 𝐴𝑉) ∧ 𝑦𝐴) → (𝑦 𝐴 ↔ ¬ 𝐴 E 𝑦))
1312ralbidva 3154 . . 3 ((𝐴 ⊆ On ∧ 𝐴𝑉) → (∀𝑦𝐴 𝑦 𝐴 ↔ ∀𝑦𝐴 ¬ 𝐴 E 𝑦))
144, 13mpbii 233 . 2 ((𝐴 ⊆ On ∧ 𝐴𝑉) → ∀𝑦𝐴 ¬ 𝐴 E 𝑦)
152adantr 480 . . . . . 6 (((𝐴 ⊆ On ∧ 𝐴𝑉) ∧ 𝑦 ∈ On) → 𝐴 ∈ On)
16 epelg 5522 . . . . . 6 ( 𝐴 ∈ On → (𝑦 E 𝐴𝑦 𝐴))
1715, 16syl 17 . . . . 5 (((𝐴 ⊆ On ∧ 𝐴𝑉) ∧ 𝑦 ∈ On) → (𝑦 E 𝐴𝑦 𝐴))
1817biimpd 229 . . . 4 (((𝐴 ⊆ On ∧ 𝐴𝑉) ∧ 𝑦 ∈ On) → (𝑦 E 𝐴𝑦 𝐴))
19 eluni2 4864 . . . . 5 (𝑦 𝐴 ↔ ∃𝑥𝐴 𝑦𝑥)
20 epel 5524 . . . . . 6 (𝑦 E 𝑥𝑦𝑥)
2120rexbii 3080 . . . . 5 (∃𝑥𝐴 𝑦 E 𝑥 ↔ ∃𝑥𝐴 𝑦𝑥)
2219, 21bitr4i 278 . . . 4 (𝑦 𝐴 ↔ ∃𝑥𝐴 𝑦 E 𝑥)
2318, 22imbitrdi 251 . . 3 (((𝐴 ⊆ On ∧ 𝐴𝑉) ∧ 𝑦 ∈ On) → (𝑦 E 𝐴 → ∃𝑥𝐴 𝑦 E 𝑥))
2423ralrimiva 3125 . 2 ((𝐴 ⊆ On ∧ 𝐴𝑉) → ∀𝑦 ∈ On (𝑦 E 𝐴 → ∃𝑥𝐴 𝑦 E 𝑥))
25 epweon 7716 . . . 4 E We On
26 weso 5612 . . . 4 ( E We On → E Or On)
2725, 26mp1i 13 . . 3 ((𝐴 ⊆ On ∧ 𝐴𝑉) → E Or On)
2827eqsup 9349 . 2 ((𝐴 ⊆ On ∧ 𝐴𝑉) → (( 𝐴 ∈ On ∧ ∀𝑦𝐴 ¬ 𝐴 E 𝑦 ∧ ∀𝑦 ∈ On (𝑦 E 𝐴 → ∃𝑥𝐴 𝑦 E 𝑥)) → sup(𝐴, On, E ) = 𝐴))
292, 14, 24, 28mp3and 1466 1 ((𝐴 ⊆ On ∧ 𝐴𝑉) → sup(𝐴, On, E ) = 𝐴)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395   = wceq 1541  wcel 2113  wral 3048  wrex 3057  wss 3898   cuni 4860   class class class wbr 5095   E cep 5520   Or wor 5528   We wwe 5573  Oncon0 6313  supcsup 9333
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-sep 5238  ax-nul 5248  ax-pr 5374  ax-un 7676
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-ral 3049  df-rex 3058  df-rmo 3347  df-reu 3348  df-rab 3397  df-v 3439  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-pss 3918  df-nul 4283  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4861  df-br 5096  df-opab 5158  df-tr 5203  df-eprel 5521  df-po 5529  df-so 5530  df-fr 5574  df-we 5576  df-ord 6316  df-on 6317  df-iota 6444  df-riota 7311  df-sup 9335
This theorem is referenced by:  onsupuni2  43350  onsupintrab  43351  limexissup  43401  limexissupab  43403
  Copyright terms: Public domain W3C validator