Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  outsideoftr Structured version   Visualization version   GIF version

Theorem outsideoftr 36169
Description: Transitivity law for outsideness. Theorem 6.7 of [Schwabhauser] p. 44. (Contributed by Scott Fenton, 18-Oct-2013.) (Revised by Mario Carneiro, 19-Apr-2014.)
Assertion
Ref Expression
outsideoftr ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝑃 ∈ (𝔼‘𝑁))) → ((𝑃OutsideOf⟨𝐴, 𝐵⟩ ∧ 𝑃OutsideOf⟨𝐵, 𝐶⟩) → 𝑃OutsideOf⟨𝐴, 𝐶⟩))

Proof of Theorem outsideoftr
StepHypRef Expression
1 simpll 766 . . . . 5 (((𝐴𝑃𝐵𝑃) ∧ (𝐵𝑃𝐶𝑃)) → 𝐴𝑃)
2 simplr 768 . . . . 5 (((𝐴𝑃𝐵𝑃) ∧ (𝐵𝑃𝐶𝑃)) → 𝐵𝑃)
3 simprr 772 . . . . 5 (((𝐴𝑃𝐵𝑃) ∧ (𝐵𝑃𝐶𝑃)) → 𝐶𝑃)
41, 2, 33jca 1128 . . . 4 (((𝐴𝑃𝐵𝑃) ∧ (𝐵𝑃𝐶𝑃)) → (𝐴𝑃𝐵𝑃𝐶𝑃))
5 simplr1 1216 . . . . . 6 ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝑃 ∈ (𝔼‘𝑁))) ∧ (𝐴𝑃𝐵𝑃𝐶𝑃)) ∧ ((𝐴 Btwn ⟨𝑃, 𝐵⟩ ∨ 𝐵 Btwn ⟨𝑃, 𝐴⟩) ∧ (𝐵 Btwn ⟨𝑃, 𝐶⟩ ∨ 𝐶 Btwn ⟨𝑃, 𝐵⟩))) → 𝐴𝑃)
6 simplr3 1218 . . . . . 6 ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝑃 ∈ (𝔼‘𝑁))) ∧ (𝐴𝑃𝐵𝑃𝐶𝑃)) ∧ ((𝐴 Btwn ⟨𝑃, 𝐵⟩ ∨ 𝐵 Btwn ⟨𝑃, 𝐴⟩) ∧ (𝐵 Btwn ⟨𝑃, 𝐶⟩ ∨ 𝐶 Btwn ⟨𝑃, 𝐵⟩))) → 𝐶𝑃)
7 df-3an 1088 . . . . . . . . . . . 12 (((𝐴𝑃𝐵𝑃𝐶𝑃) ∧ 𝐴 Btwn ⟨𝑃, 𝐵⟩ ∧ 𝐵 Btwn ⟨𝑃, 𝐶⟩) ↔ (((𝐴𝑃𝐵𝑃𝐶𝑃) ∧ 𝐴 Btwn ⟨𝑃, 𝐵⟩) ∧ 𝐵 Btwn ⟨𝑃, 𝐶⟩))
8 simp1 1136 . . . . . . . . . . . . . 14 ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝑃 ∈ (𝔼‘𝑁))) → 𝑁 ∈ ℕ)
9 simp3r 1203 . . . . . . . . . . . . . 14 ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝑃 ∈ (𝔼‘𝑁))) → 𝑃 ∈ (𝔼‘𝑁))
10 simp2l 1200 . . . . . . . . . . . . . 14 ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝑃 ∈ (𝔼‘𝑁))) → 𝐴 ∈ (𝔼‘𝑁))
11 simp2r 1201 . . . . . . . . . . . . . 14 ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝑃 ∈ (𝔼‘𝑁))) → 𝐵 ∈ (𝔼‘𝑁))
12 simp3l 1202 . . . . . . . . . . . . . 14 ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝑃 ∈ (𝔼‘𝑁))) → 𝐶 ∈ (𝔼‘𝑁))
13 simpr2 1196 . . . . . . . . . . . . . 14 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝑃 ∈ (𝔼‘𝑁))) ∧ ((𝐴𝑃𝐵𝑃𝐶𝑃) ∧ 𝐴 Btwn ⟨𝑃, 𝐵⟩ ∧ 𝐵 Btwn ⟨𝑃, 𝐶⟩)) → 𝐴 Btwn ⟨𝑃, 𝐵⟩)
14 simpr3 1197 . . . . . . . . . . . . . 14 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝑃 ∈ (𝔼‘𝑁))) ∧ ((𝐴𝑃𝐵𝑃𝐶𝑃) ∧ 𝐴 Btwn ⟨𝑃, 𝐵⟩ ∧ 𝐵 Btwn ⟨𝑃, 𝐶⟩)) → 𝐵 Btwn ⟨𝑃, 𝐶⟩)
158, 9, 10, 11, 12, 13, 14btwnexchand 36066 . . . . . . . . . . . . 13 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝑃 ∈ (𝔼‘𝑁))) ∧ ((𝐴𝑃𝐵𝑃𝐶𝑃) ∧ 𝐴 Btwn ⟨𝑃, 𝐵⟩ ∧ 𝐵 Btwn ⟨𝑃, 𝐶⟩)) → 𝐴 Btwn ⟨𝑃, 𝐶⟩)
1615orcd 873 . . . . . . . . . . . 12 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝑃 ∈ (𝔼‘𝑁))) ∧ ((𝐴𝑃𝐵𝑃𝐶𝑃) ∧ 𝐴 Btwn ⟨𝑃, 𝐵⟩ ∧ 𝐵 Btwn ⟨𝑃, 𝐶⟩)) → (𝐴 Btwn ⟨𝑃, 𝐶⟩ ∨ 𝐶 Btwn ⟨𝑃, 𝐴⟩))
177, 16sylan2br 595 . . . . . . . . . . 11 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝑃 ∈ (𝔼‘𝑁))) ∧ (((𝐴𝑃𝐵𝑃𝐶𝑃) ∧ 𝐴 Btwn ⟨𝑃, 𝐵⟩) ∧ 𝐵 Btwn ⟨𝑃, 𝐶⟩)) → (𝐴 Btwn ⟨𝑃, 𝐶⟩ ∨ 𝐶 Btwn ⟨𝑃, 𝐴⟩))
1817expr 456 . . . . . . . . . 10 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝑃 ∈ (𝔼‘𝑁))) ∧ ((𝐴𝑃𝐵𝑃𝐶𝑃) ∧ 𝐴 Btwn ⟨𝑃, 𝐵⟩)) → (𝐵 Btwn ⟨𝑃, 𝐶⟩ → (𝐴 Btwn ⟨𝑃, 𝐶⟩ ∨ 𝐶 Btwn ⟨𝑃, 𝐴⟩)))
19 simprlr 779 . . . . . . . . . . . 12 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝑃 ∈ (𝔼‘𝑁))) ∧ (((𝐴𝑃𝐵𝑃𝐶𝑃) ∧ 𝐴 Btwn ⟨𝑃, 𝐵⟩) ∧ 𝐶 Btwn ⟨𝑃, 𝐵⟩)) → 𝐴 Btwn ⟨𝑃, 𝐵⟩)
20 simprr 772 . . . . . . . . . . . 12 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝑃 ∈ (𝔼‘𝑁))) ∧ (((𝐴𝑃𝐵𝑃𝐶𝑃) ∧ 𝐴 Btwn ⟨𝑃, 𝐵⟩) ∧ 𝐶 Btwn ⟨𝑃, 𝐵⟩)) → 𝐶 Btwn ⟨𝑃, 𝐵⟩)
21 btwnconn3 36143 . . . . . . . . . . . . . 14 ((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝐴 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁))) → ((𝐴 Btwn ⟨𝑃, 𝐵⟩ ∧ 𝐶 Btwn ⟨𝑃, 𝐵⟩) → (𝐴 Btwn ⟨𝑃, 𝐶⟩ ∨ 𝐶 Btwn ⟨𝑃, 𝐴⟩)))
228, 9, 10, 12, 11, 21syl122anc 1381 . . . . . . . . . . . . 13 ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝑃 ∈ (𝔼‘𝑁))) → ((𝐴 Btwn ⟨𝑃, 𝐵⟩ ∧ 𝐶 Btwn ⟨𝑃, 𝐵⟩) → (𝐴 Btwn ⟨𝑃, 𝐶⟩ ∨ 𝐶 Btwn ⟨𝑃, 𝐴⟩)))
2322adantr 480 . . . . . . . . . . . 12 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝑃 ∈ (𝔼‘𝑁))) ∧ (((𝐴𝑃𝐵𝑃𝐶𝑃) ∧ 𝐴 Btwn ⟨𝑃, 𝐵⟩) ∧ 𝐶 Btwn ⟨𝑃, 𝐵⟩)) → ((𝐴 Btwn ⟨𝑃, 𝐵⟩ ∧ 𝐶 Btwn ⟨𝑃, 𝐵⟩) → (𝐴 Btwn ⟨𝑃, 𝐶⟩ ∨ 𝐶 Btwn ⟨𝑃, 𝐴⟩)))
2419, 20, 23mp2and 699 . . . . . . . . . . 11 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝑃 ∈ (𝔼‘𝑁))) ∧ (((𝐴𝑃𝐵𝑃𝐶𝑃) ∧ 𝐴 Btwn ⟨𝑃, 𝐵⟩) ∧ 𝐶 Btwn ⟨𝑃, 𝐵⟩)) → (𝐴 Btwn ⟨𝑃, 𝐶⟩ ∨ 𝐶 Btwn ⟨𝑃, 𝐴⟩))
2524expr 456 . . . . . . . . . 10 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝑃 ∈ (𝔼‘𝑁))) ∧ ((𝐴𝑃𝐵𝑃𝐶𝑃) ∧ 𝐴 Btwn ⟨𝑃, 𝐵⟩)) → (𝐶 Btwn ⟨𝑃, 𝐵⟩ → (𝐴 Btwn ⟨𝑃, 𝐶⟩ ∨ 𝐶 Btwn ⟨𝑃, 𝐴⟩)))
2618, 25jaod 859 . . . . . . . . 9 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝑃 ∈ (𝔼‘𝑁))) ∧ ((𝐴𝑃𝐵𝑃𝐶𝑃) ∧ 𝐴 Btwn ⟨𝑃, 𝐵⟩)) → ((𝐵 Btwn ⟨𝑃, 𝐶⟩ ∨ 𝐶 Btwn ⟨𝑃, 𝐵⟩) → (𝐴 Btwn ⟨𝑃, 𝐶⟩ ∨ 𝐶 Btwn ⟨𝑃, 𝐴⟩)))
2726expr 456 . . . . . . . 8 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝑃 ∈ (𝔼‘𝑁))) ∧ (𝐴𝑃𝐵𝑃𝐶𝑃)) → (𝐴 Btwn ⟨𝑃, 𝐵⟩ → ((𝐵 Btwn ⟨𝑃, 𝐶⟩ ∨ 𝐶 Btwn ⟨𝑃, 𝐵⟩) → (𝐴 Btwn ⟨𝑃, 𝐶⟩ ∨ 𝐶 Btwn ⟨𝑃, 𝐴⟩))))
28 simpll2 1214 . . . . . . . . . . . . . 14 ((((𝐴𝑃𝐵𝑃𝐶𝑃) ∧ 𝐵 Btwn ⟨𝑃, 𝐴⟩) ∧ 𝐵 Btwn ⟨𝑃, 𝐶⟩) → 𝐵𝑃)
2928adantl 481 . . . . . . . . . . . . 13 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝑃 ∈ (𝔼‘𝑁))) ∧ (((𝐴𝑃𝐵𝑃𝐶𝑃) ∧ 𝐵 Btwn ⟨𝑃, 𝐴⟩) ∧ 𝐵 Btwn ⟨𝑃, 𝐶⟩)) → 𝐵𝑃)
3029necomd 2983 . . . . . . . . . . . 12 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝑃 ∈ (𝔼‘𝑁))) ∧ (((𝐴𝑃𝐵𝑃𝐶𝑃) ∧ 𝐵 Btwn ⟨𝑃, 𝐴⟩) ∧ 𝐵 Btwn ⟨𝑃, 𝐶⟩)) → 𝑃𝐵)
31 simprlr 779 . . . . . . . . . . . 12 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝑃 ∈ (𝔼‘𝑁))) ∧ (((𝐴𝑃𝐵𝑃𝐶𝑃) ∧ 𝐵 Btwn ⟨𝑃, 𝐴⟩) ∧ 𝐵 Btwn ⟨𝑃, 𝐶⟩)) → 𝐵 Btwn ⟨𝑃, 𝐴⟩)
32 simprr 772 . . . . . . . . . . . 12 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝑃 ∈ (𝔼‘𝑁))) ∧ (((𝐴𝑃𝐵𝑃𝐶𝑃) ∧ 𝐵 Btwn ⟨𝑃, 𝐴⟩) ∧ 𝐵 Btwn ⟨𝑃, 𝐶⟩)) → 𝐵 Btwn ⟨𝑃, 𝐶⟩)
33 btwnconn1 36141 . . . . . . . . . . . . . 14 ((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁))) → ((𝑃𝐵𝐵 Btwn ⟨𝑃, 𝐴⟩ ∧ 𝐵 Btwn ⟨𝑃, 𝐶⟩) → (𝐴 Btwn ⟨𝑃, 𝐶⟩ ∨ 𝐶 Btwn ⟨𝑃, 𝐴⟩)))
348, 9, 11, 10, 12, 33syl122anc 1381 . . . . . . . . . . . . 13 ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝑃 ∈ (𝔼‘𝑁))) → ((𝑃𝐵𝐵 Btwn ⟨𝑃, 𝐴⟩ ∧ 𝐵 Btwn ⟨𝑃, 𝐶⟩) → (𝐴 Btwn ⟨𝑃, 𝐶⟩ ∨ 𝐶 Btwn ⟨𝑃, 𝐴⟩)))
3534adantr 480 . . . . . . . . . . . 12 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝑃 ∈ (𝔼‘𝑁))) ∧ (((𝐴𝑃𝐵𝑃𝐶𝑃) ∧ 𝐵 Btwn ⟨𝑃, 𝐴⟩) ∧ 𝐵 Btwn ⟨𝑃, 𝐶⟩)) → ((𝑃𝐵𝐵 Btwn ⟨𝑃, 𝐴⟩ ∧ 𝐵 Btwn ⟨𝑃, 𝐶⟩) → (𝐴 Btwn ⟨𝑃, 𝐶⟩ ∨ 𝐶 Btwn ⟨𝑃, 𝐴⟩)))
3630, 31, 32, 35mp3and 1466 . . . . . . . . . . 11 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝑃 ∈ (𝔼‘𝑁))) ∧ (((𝐴𝑃𝐵𝑃𝐶𝑃) ∧ 𝐵 Btwn ⟨𝑃, 𝐴⟩) ∧ 𝐵 Btwn ⟨𝑃, 𝐶⟩)) → (𝐴 Btwn ⟨𝑃, 𝐶⟩ ∨ 𝐶 Btwn ⟨𝑃, 𝐴⟩))
3736expr 456 . . . . . . . . . 10 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝑃 ∈ (𝔼‘𝑁))) ∧ ((𝐴𝑃𝐵𝑃𝐶𝑃) ∧ 𝐵 Btwn ⟨𝑃, 𝐴⟩)) → (𝐵 Btwn ⟨𝑃, 𝐶⟩ → (𝐴 Btwn ⟨𝑃, 𝐶⟩ ∨ 𝐶 Btwn ⟨𝑃, 𝐴⟩)))
38 df-3an 1088 . . . . . . . . . . . 12 (((𝐴𝑃𝐵𝑃𝐶𝑃) ∧ 𝐵 Btwn ⟨𝑃, 𝐴⟩ ∧ 𝐶 Btwn ⟨𝑃, 𝐵⟩) ↔ (((𝐴𝑃𝐵𝑃𝐶𝑃) ∧ 𝐵 Btwn ⟨𝑃, 𝐴⟩) ∧ 𝐶 Btwn ⟨𝑃, 𝐵⟩))
39 simpr3 1197 . . . . . . . . . . . . . 14 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝑃 ∈ (𝔼‘𝑁))) ∧ ((𝐴𝑃𝐵𝑃𝐶𝑃) ∧ 𝐵 Btwn ⟨𝑃, 𝐴⟩ ∧ 𝐶 Btwn ⟨𝑃, 𝐵⟩)) → 𝐶 Btwn ⟨𝑃, 𝐵⟩)
40 simpr2 1196 . . . . . . . . . . . . . 14 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝑃 ∈ (𝔼‘𝑁))) ∧ ((𝐴𝑃𝐵𝑃𝐶𝑃) ∧ 𝐵 Btwn ⟨𝑃, 𝐴⟩ ∧ 𝐶 Btwn ⟨𝑃, 𝐵⟩)) → 𝐵 Btwn ⟨𝑃, 𝐴⟩)
418, 9, 12, 11, 10, 39, 40btwnexchand 36066 . . . . . . . . . . . . 13 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝑃 ∈ (𝔼‘𝑁))) ∧ ((𝐴𝑃𝐵𝑃𝐶𝑃) ∧ 𝐵 Btwn ⟨𝑃, 𝐴⟩ ∧ 𝐶 Btwn ⟨𝑃, 𝐵⟩)) → 𝐶 Btwn ⟨𝑃, 𝐴⟩)
4241olcd 874 . . . . . . . . . . . 12 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝑃 ∈ (𝔼‘𝑁))) ∧ ((𝐴𝑃𝐵𝑃𝐶𝑃) ∧ 𝐵 Btwn ⟨𝑃, 𝐴⟩ ∧ 𝐶 Btwn ⟨𝑃, 𝐵⟩)) → (𝐴 Btwn ⟨𝑃, 𝐶⟩ ∨ 𝐶 Btwn ⟨𝑃, 𝐴⟩))
4338, 42sylan2br 595 . . . . . . . . . . 11 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝑃 ∈ (𝔼‘𝑁))) ∧ (((𝐴𝑃𝐵𝑃𝐶𝑃) ∧ 𝐵 Btwn ⟨𝑃, 𝐴⟩) ∧ 𝐶 Btwn ⟨𝑃, 𝐵⟩)) → (𝐴 Btwn ⟨𝑃, 𝐶⟩ ∨ 𝐶 Btwn ⟨𝑃, 𝐴⟩))
4443expr 456 . . . . . . . . . 10 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝑃 ∈ (𝔼‘𝑁))) ∧ ((𝐴𝑃𝐵𝑃𝐶𝑃) ∧ 𝐵 Btwn ⟨𝑃, 𝐴⟩)) → (𝐶 Btwn ⟨𝑃, 𝐵⟩ → (𝐴 Btwn ⟨𝑃, 𝐶⟩ ∨ 𝐶 Btwn ⟨𝑃, 𝐴⟩)))
4537, 44jaod 859 . . . . . . . . 9 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝑃 ∈ (𝔼‘𝑁))) ∧ ((𝐴𝑃𝐵𝑃𝐶𝑃) ∧ 𝐵 Btwn ⟨𝑃, 𝐴⟩)) → ((𝐵 Btwn ⟨𝑃, 𝐶⟩ ∨ 𝐶 Btwn ⟨𝑃, 𝐵⟩) → (𝐴 Btwn ⟨𝑃, 𝐶⟩ ∨ 𝐶 Btwn ⟨𝑃, 𝐴⟩)))
4645expr 456 . . . . . . . 8 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝑃 ∈ (𝔼‘𝑁))) ∧ (𝐴𝑃𝐵𝑃𝐶𝑃)) → (𝐵 Btwn ⟨𝑃, 𝐴⟩ → ((𝐵 Btwn ⟨𝑃, 𝐶⟩ ∨ 𝐶 Btwn ⟨𝑃, 𝐵⟩) → (𝐴 Btwn ⟨𝑃, 𝐶⟩ ∨ 𝐶 Btwn ⟨𝑃, 𝐴⟩))))
4727, 46jaod 859 . . . . . . 7 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝑃 ∈ (𝔼‘𝑁))) ∧ (𝐴𝑃𝐵𝑃𝐶𝑃)) → ((𝐴 Btwn ⟨𝑃, 𝐵⟩ ∨ 𝐵 Btwn ⟨𝑃, 𝐴⟩) → ((𝐵 Btwn ⟨𝑃, 𝐶⟩ ∨ 𝐶 Btwn ⟨𝑃, 𝐵⟩) → (𝐴 Btwn ⟨𝑃, 𝐶⟩ ∨ 𝐶 Btwn ⟨𝑃, 𝐴⟩))))
4847imp32 418 . . . . . 6 ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝑃 ∈ (𝔼‘𝑁))) ∧ (𝐴𝑃𝐵𝑃𝐶𝑃)) ∧ ((𝐴 Btwn ⟨𝑃, 𝐵⟩ ∨ 𝐵 Btwn ⟨𝑃, 𝐴⟩) ∧ (𝐵 Btwn ⟨𝑃, 𝐶⟩ ∨ 𝐶 Btwn ⟨𝑃, 𝐵⟩))) → (𝐴 Btwn ⟨𝑃, 𝐶⟩ ∨ 𝐶 Btwn ⟨𝑃, 𝐴⟩))
495, 6, 483jca 1128 . . . . 5 ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝑃 ∈ (𝔼‘𝑁))) ∧ (𝐴𝑃𝐵𝑃𝐶𝑃)) ∧ ((𝐴 Btwn ⟨𝑃, 𝐵⟩ ∨ 𝐵 Btwn ⟨𝑃, 𝐴⟩) ∧ (𝐵 Btwn ⟨𝑃, 𝐶⟩ ∨ 𝐶 Btwn ⟨𝑃, 𝐵⟩))) → (𝐴𝑃𝐶𝑃 ∧ (𝐴 Btwn ⟨𝑃, 𝐶⟩ ∨ 𝐶 Btwn ⟨𝑃, 𝐴⟩)))
5049exp31 419 . . . 4 ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝑃 ∈ (𝔼‘𝑁))) → ((𝐴𝑃𝐵𝑃𝐶𝑃) → (((𝐴 Btwn ⟨𝑃, 𝐵⟩ ∨ 𝐵 Btwn ⟨𝑃, 𝐴⟩) ∧ (𝐵 Btwn ⟨𝑃, 𝐶⟩ ∨ 𝐶 Btwn ⟨𝑃, 𝐵⟩)) → (𝐴𝑃𝐶𝑃 ∧ (𝐴 Btwn ⟨𝑃, 𝐶⟩ ∨ 𝐶 Btwn ⟨𝑃, 𝐴⟩)))))
514, 50syl5 34 . . 3 ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝑃 ∈ (𝔼‘𝑁))) → (((𝐴𝑃𝐵𝑃) ∧ (𝐵𝑃𝐶𝑃)) → (((𝐴 Btwn ⟨𝑃, 𝐵⟩ ∨ 𝐵 Btwn ⟨𝑃, 𝐴⟩) ∧ (𝐵 Btwn ⟨𝑃, 𝐶⟩ ∨ 𝐶 Btwn ⟨𝑃, 𝐵⟩)) → (𝐴𝑃𝐶𝑃 ∧ (𝐴 Btwn ⟨𝑃, 𝐶⟩ ∨ 𝐶 Btwn ⟨𝑃, 𝐴⟩)))))
5251impd 410 . 2 ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝑃 ∈ (𝔼‘𝑁))) → ((((𝐴𝑃𝐵𝑃) ∧ (𝐵𝑃𝐶𝑃)) ∧ ((𝐴 Btwn ⟨𝑃, 𝐵⟩ ∨ 𝐵 Btwn ⟨𝑃, 𝐴⟩) ∧ (𝐵 Btwn ⟨𝑃, 𝐶⟩ ∨ 𝐶 Btwn ⟨𝑃, 𝐵⟩))) → (𝐴𝑃𝐶𝑃 ∧ (𝐴 Btwn ⟨𝑃, 𝐶⟩ ∨ 𝐶 Btwn ⟨𝑃, 𝐴⟩))))
53 broutsideof2 36162 . . . . 5 ((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁))) → (𝑃OutsideOf⟨𝐴, 𝐵⟩ ↔ (𝐴𝑃𝐵𝑃 ∧ (𝐴 Btwn ⟨𝑃, 𝐵⟩ ∨ 𝐵 Btwn ⟨𝑃, 𝐴⟩))))
548, 9, 10, 11, 53syl13anc 1374 . . . 4 ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝑃 ∈ (𝔼‘𝑁))) → (𝑃OutsideOf⟨𝐴, 𝐵⟩ ↔ (𝐴𝑃𝐵𝑃 ∧ (𝐴 Btwn ⟨𝑃, 𝐵⟩ ∨ 𝐵 Btwn ⟨𝑃, 𝐴⟩))))
55 broutsideof2 36162 . . . . 5 ((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁))) → (𝑃OutsideOf⟨𝐵, 𝐶⟩ ↔ (𝐵𝑃𝐶𝑃 ∧ (𝐵 Btwn ⟨𝑃, 𝐶⟩ ∨ 𝐶 Btwn ⟨𝑃, 𝐵⟩))))
568, 9, 11, 12, 55syl13anc 1374 . . . 4 ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝑃 ∈ (𝔼‘𝑁))) → (𝑃OutsideOf⟨𝐵, 𝐶⟩ ↔ (𝐵𝑃𝐶𝑃 ∧ (𝐵 Btwn ⟨𝑃, 𝐶⟩ ∨ 𝐶 Btwn ⟨𝑃, 𝐵⟩))))
5754, 56anbi12d 632 . . 3 ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝑃 ∈ (𝔼‘𝑁))) → ((𝑃OutsideOf⟨𝐴, 𝐵⟩ ∧ 𝑃OutsideOf⟨𝐵, 𝐶⟩) ↔ ((𝐴𝑃𝐵𝑃 ∧ (𝐴 Btwn ⟨𝑃, 𝐵⟩ ∨ 𝐵 Btwn ⟨𝑃, 𝐴⟩)) ∧ (𝐵𝑃𝐶𝑃 ∧ (𝐵 Btwn ⟨𝑃, 𝐶⟩ ∨ 𝐶 Btwn ⟨𝑃, 𝐵⟩)))))
58 df-3an 1088 . . . . 5 ((𝐴𝑃𝐵𝑃 ∧ (𝐴 Btwn ⟨𝑃, 𝐵⟩ ∨ 𝐵 Btwn ⟨𝑃, 𝐴⟩)) ↔ ((𝐴𝑃𝐵𝑃) ∧ (𝐴 Btwn ⟨𝑃, 𝐵⟩ ∨ 𝐵 Btwn ⟨𝑃, 𝐴⟩)))
59 df-3an 1088 . . . . 5 ((𝐵𝑃𝐶𝑃 ∧ (𝐵 Btwn ⟨𝑃, 𝐶⟩ ∨ 𝐶 Btwn ⟨𝑃, 𝐵⟩)) ↔ ((𝐵𝑃𝐶𝑃) ∧ (𝐵 Btwn ⟨𝑃, 𝐶⟩ ∨ 𝐶 Btwn ⟨𝑃, 𝐵⟩)))
6058, 59anbi12i 628 . . . 4 (((𝐴𝑃𝐵𝑃 ∧ (𝐴 Btwn ⟨𝑃, 𝐵⟩ ∨ 𝐵 Btwn ⟨𝑃, 𝐴⟩)) ∧ (𝐵𝑃𝐶𝑃 ∧ (𝐵 Btwn ⟨𝑃, 𝐶⟩ ∨ 𝐶 Btwn ⟨𝑃, 𝐵⟩))) ↔ (((𝐴𝑃𝐵𝑃) ∧ (𝐴 Btwn ⟨𝑃, 𝐵⟩ ∨ 𝐵 Btwn ⟨𝑃, 𝐴⟩)) ∧ ((𝐵𝑃𝐶𝑃) ∧ (𝐵 Btwn ⟨𝑃, 𝐶⟩ ∨ 𝐶 Btwn ⟨𝑃, 𝐵⟩))))
61 an4 656 . . . 4 ((((𝐴𝑃𝐵𝑃) ∧ (𝐵𝑃𝐶𝑃)) ∧ ((𝐴 Btwn ⟨𝑃, 𝐵⟩ ∨ 𝐵 Btwn ⟨𝑃, 𝐴⟩) ∧ (𝐵 Btwn ⟨𝑃, 𝐶⟩ ∨ 𝐶 Btwn ⟨𝑃, 𝐵⟩))) ↔ (((𝐴𝑃𝐵𝑃) ∧ (𝐴 Btwn ⟨𝑃, 𝐵⟩ ∨ 𝐵 Btwn ⟨𝑃, 𝐴⟩)) ∧ ((𝐵𝑃𝐶𝑃) ∧ (𝐵 Btwn ⟨𝑃, 𝐶⟩ ∨ 𝐶 Btwn ⟨𝑃, 𝐵⟩))))
6260, 61bitr4i 278 . . 3 (((𝐴𝑃𝐵𝑃 ∧ (𝐴 Btwn ⟨𝑃, 𝐵⟩ ∨ 𝐵 Btwn ⟨𝑃, 𝐴⟩)) ∧ (𝐵𝑃𝐶𝑃 ∧ (𝐵 Btwn ⟨𝑃, 𝐶⟩ ∨ 𝐶 Btwn ⟨𝑃, 𝐵⟩))) ↔ (((𝐴𝑃𝐵𝑃) ∧ (𝐵𝑃𝐶𝑃)) ∧ ((𝐴 Btwn ⟨𝑃, 𝐵⟩ ∨ 𝐵 Btwn ⟨𝑃, 𝐴⟩) ∧ (𝐵 Btwn ⟨𝑃, 𝐶⟩ ∨ 𝐶 Btwn ⟨𝑃, 𝐵⟩))))
6357, 62bitrdi 287 . 2 ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝑃 ∈ (𝔼‘𝑁))) → ((𝑃OutsideOf⟨𝐴, 𝐵⟩ ∧ 𝑃OutsideOf⟨𝐵, 𝐶⟩) ↔ (((𝐴𝑃𝐵𝑃) ∧ (𝐵𝑃𝐶𝑃)) ∧ ((𝐴 Btwn ⟨𝑃, 𝐵⟩ ∨ 𝐵 Btwn ⟨𝑃, 𝐴⟩) ∧ (𝐵 Btwn ⟨𝑃, 𝐶⟩ ∨ 𝐶 Btwn ⟨𝑃, 𝐵⟩)))))
64 broutsideof2 36162 . . 3 ((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁))) → (𝑃OutsideOf⟨𝐴, 𝐶⟩ ↔ (𝐴𝑃𝐶𝑃 ∧ (𝐴 Btwn ⟨𝑃, 𝐶⟩ ∨ 𝐶 Btwn ⟨𝑃, 𝐴⟩))))
658, 9, 10, 12, 64syl13anc 1374 . 2 ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝑃 ∈ (𝔼‘𝑁))) → (𝑃OutsideOf⟨𝐴, 𝐶⟩ ↔ (𝐴𝑃𝐶𝑃 ∧ (𝐴 Btwn ⟨𝑃, 𝐶⟩ ∨ 𝐶 Btwn ⟨𝑃, 𝐴⟩))))
6652, 63, 653imtr4d 294 1 ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝑃 ∈ (𝔼‘𝑁))) → ((𝑃OutsideOf⟨𝐴, 𝐵⟩ ∧ 𝑃OutsideOf⟨𝐵, 𝐶⟩) → 𝑃OutsideOf⟨𝐴, 𝐶⟩))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wo 847  w3a 1086  wcel 2111  wne 2928  cop 4582   class class class wbr 5091  cfv 6481  cn 12125  𝔼cee 28867   Btwn cbtwn 28868  OutsideOfcoutsideof 36159
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5217  ax-sep 5234  ax-nul 5244  ax-pow 5303  ax-pr 5370  ax-un 7668  ax-inf2 9531  ax-cnex 11062  ax-resscn 11063  ax-1cn 11064  ax-icn 11065  ax-addcl 11066  ax-addrcl 11067  ax-mulcl 11068  ax-mulrcl 11069  ax-mulcom 11070  ax-addass 11071  ax-mulass 11072  ax-distr 11073  ax-i2m1 11074  ax-1ne0 11075  ax-1rid 11076  ax-rnegex 11077  ax-rrecex 11078  ax-cnre 11079  ax-pre-lttri 11080  ax-pre-lttrn 11081  ax-pre-ltadd 11082  ax-pre-mulgt0 11083  ax-pre-sup 11084
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3742  df-csb 3851  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-pss 3922  df-nul 4284  df-if 4476  df-pw 4552  df-sn 4577  df-pr 4579  df-op 4583  df-uni 4860  df-int 4898  df-iun 4943  df-br 5092  df-opab 5154  df-mpt 5173  df-tr 5199  df-id 5511  df-eprel 5516  df-po 5524  df-so 5525  df-fr 5569  df-se 5570  df-we 5571  df-xp 5622  df-rel 5623  df-cnv 5624  df-co 5625  df-dm 5626  df-rn 5627  df-res 5628  df-ima 5629  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-isom 6490  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-om 7797  df-1st 7921  df-2nd 7922  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-1o 8385  df-er 8622  df-map 8752  df-en 8870  df-dom 8871  df-sdom 8872  df-fin 8873  df-sup 9326  df-oi 9396  df-card 9832  df-pnf 11148  df-mnf 11149  df-xr 11150  df-ltxr 11151  df-le 11152  df-sub 11346  df-neg 11347  df-div 11775  df-nn 12126  df-2 12188  df-3 12189  df-n0 12382  df-z 12469  df-uz 12733  df-rp 12891  df-ico 13251  df-icc 13252  df-fz 13408  df-fzo 13555  df-seq 13909  df-exp 13969  df-hash 14238  df-cj 15006  df-re 15007  df-im 15008  df-sqrt 15142  df-abs 15143  df-clim 15395  df-sum 15594  df-ee 28870  df-btwn 28871  df-cgr 28872  df-ofs 36023  df-colinear 36079  df-ifs 36080  df-cgr3 36081  df-fs 36082  df-outsideof 36160
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator