| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > eqsupd | Structured version Visualization version GIF version | ||
| Description: Sufficient condition for an element to be equal to the supremum. (Contributed by Mario Carneiro, 21-Apr-2015.) |
| Ref | Expression |
|---|---|
| supmo.1 | ⊢ (𝜑 → 𝑅 Or 𝐴) |
| eqsupd.2 | ⊢ (𝜑 → 𝐶 ∈ 𝐴) |
| eqsupd.3 | ⊢ ((𝜑 ∧ 𝑦 ∈ 𝐵) → ¬ 𝐶𝑅𝑦) |
| eqsupd.4 | ⊢ ((𝜑 ∧ (𝑦 ∈ 𝐴 ∧ 𝑦𝑅𝐶)) → ∃𝑧 ∈ 𝐵 𝑦𝑅𝑧) |
| Ref | Expression |
|---|---|
| eqsupd | ⊢ (𝜑 → sup(𝐵, 𝐴, 𝑅) = 𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqsupd.2 | . 2 ⊢ (𝜑 → 𝐶 ∈ 𝐴) | |
| 2 | eqsupd.3 | . . 3 ⊢ ((𝜑 ∧ 𝑦 ∈ 𝐵) → ¬ 𝐶𝑅𝑦) | |
| 3 | 2 | ralrimiva 3126 | . 2 ⊢ (𝜑 → ∀𝑦 ∈ 𝐵 ¬ 𝐶𝑅𝑦) |
| 4 | eqsupd.4 | . . . 4 ⊢ ((𝜑 ∧ (𝑦 ∈ 𝐴 ∧ 𝑦𝑅𝐶)) → ∃𝑧 ∈ 𝐵 𝑦𝑅𝑧) | |
| 5 | 4 | expr 456 | . . 3 ⊢ ((𝜑 ∧ 𝑦 ∈ 𝐴) → (𝑦𝑅𝐶 → ∃𝑧 ∈ 𝐵 𝑦𝑅𝑧)) |
| 6 | 5 | ralrimiva 3126 | . 2 ⊢ (𝜑 → ∀𝑦 ∈ 𝐴 (𝑦𝑅𝐶 → ∃𝑧 ∈ 𝐵 𝑦𝑅𝑧)) |
| 7 | supmo.1 | . . 3 ⊢ (𝜑 → 𝑅 Or 𝐴) | |
| 8 | 7 | eqsup 9414 | . 2 ⊢ (𝜑 → ((𝐶 ∈ 𝐴 ∧ ∀𝑦 ∈ 𝐵 ¬ 𝐶𝑅𝑦 ∧ ∀𝑦 ∈ 𝐴 (𝑦𝑅𝐶 → ∃𝑧 ∈ 𝐵 𝑦𝑅𝑧)) → sup(𝐵, 𝐴, 𝑅) = 𝐶)) |
| 9 | 1, 3, 6, 8 | mp3and 1466 | 1 ⊢ (𝜑 → sup(𝐵, 𝐴, 𝑅) = 𝐶) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ∀wral 3045 ∃wrex 3054 class class class wbr 5110 Or wor 5548 supcsup 9398 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-ral 3046 df-rex 3055 df-rmo 3356 df-reu 3357 df-rab 3409 df-v 3452 df-dif 3920 df-un 3922 df-ss 3934 df-nul 4300 df-if 4492 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-br 5111 df-po 5549 df-so 5550 df-iota 6467 df-riota 7347 df-sup 9400 |
| This theorem is referenced by: supmax 9426 supiso 9434 dfgcd2 16523 esumpcvgval 34075 esum2d 34090 mblfinlem3 37660 mblfinlem4 37661 ismblfin 37662 itg2addnclem 37672 radcnvrat 44310 |
| Copyright terms: Public domain | W3C validator |