Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > eqsupd | Structured version Visualization version GIF version |
Description: Sufficient condition for an element to be equal to the supremum. (Contributed by Mario Carneiro, 21-Apr-2015.) |
Ref | Expression |
---|---|
supmo.1 | ⊢ (𝜑 → 𝑅 Or 𝐴) |
eqsupd.2 | ⊢ (𝜑 → 𝐶 ∈ 𝐴) |
eqsupd.3 | ⊢ ((𝜑 ∧ 𝑦 ∈ 𝐵) → ¬ 𝐶𝑅𝑦) |
eqsupd.4 | ⊢ ((𝜑 ∧ (𝑦 ∈ 𝐴 ∧ 𝑦𝑅𝐶)) → ∃𝑧 ∈ 𝐵 𝑦𝑅𝑧) |
Ref | Expression |
---|---|
eqsupd | ⊢ (𝜑 → sup(𝐵, 𝐴, 𝑅) = 𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqsupd.2 | . 2 ⊢ (𝜑 → 𝐶 ∈ 𝐴) | |
2 | eqsupd.3 | . . 3 ⊢ ((𝜑 ∧ 𝑦 ∈ 𝐵) → ¬ 𝐶𝑅𝑦) | |
3 | 2 | ralrimiva 3105 | . 2 ⊢ (𝜑 → ∀𝑦 ∈ 𝐵 ¬ 𝐶𝑅𝑦) |
4 | eqsupd.4 | . . . 4 ⊢ ((𝜑 ∧ (𝑦 ∈ 𝐴 ∧ 𝑦𝑅𝐶)) → ∃𝑧 ∈ 𝐵 𝑦𝑅𝑧) | |
5 | 4 | expr 460 | . . 3 ⊢ ((𝜑 ∧ 𝑦 ∈ 𝐴) → (𝑦𝑅𝐶 → ∃𝑧 ∈ 𝐵 𝑦𝑅𝑧)) |
6 | 5 | ralrimiva 3105 | . 2 ⊢ (𝜑 → ∀𝑦 ∈ 𝐴 (𝑦𝑅𝐶 → ∃𝑧 ∈ 𝐵 𝑦𝑅𝑧)) |
7 | supmo.1 | . . 3 ⊢ (𝜑 → 𝑅 Or 𝐴) | |
8 | 7 | eqsup 9072 | . 2 ⊢ (𝜑 → ((𝐶 ∈ 𝐴 ∧ ∀𝑦 ∈ 𝐵 ¬ 𝐶𝑅𝑦 ∧ ∀𝑦 ∈ 𝐴 (𝑦𝑅𝐶 → ∃𝑧 ∈ 𝐵 𝑦𝑅𝑧)) → sup(𝐵, 𝐴, 𝑅) = 𝐶)) |
9 | 1, 3, 6, 8 | mp3and 1466 | 1 ⊢ (𝜑 → sup(𝐵, 𝐴, 𝑅) = 𝐶) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 399 = wceq 1543 ∈ wcel 2110 ∀wral 3061 ∃wrex 3062 class class class wbr 5053 Or wor 5467 supcsup 9056 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1803 ax-4 1817 ax-5 1918 ax-6 1976 ax-7 2016 ax-8 2112 ax-9 2120 ax-10 2141 ax-11 2158 ax-12 2175 ax-ext 2708 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 848 df-3or 1090 df-3an 1091 df-tru 1546 df-fal 1556 df-ex 1788 df-nf 1792 df-sb 2071 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2886 df-ne 2941 df-ral 3066 df-rex 3067 df-reu 3068 df-rmo 3069 df-rab 3070 df-v 3410 df-dif 3869 df-un 3871 df-in 3873 df-ss 3883 df-nul 4238 df-if 4440 df-sn 4542 df-pr 4544 df-op 4548 df-uni 4820 df-br 5054 df-po 5468 df-so 5469 df-iota 6338 df-riota 7170 df-sup 9058 |
This theorem is referenced by: supmax 9083 supiso 9091 dfgcd2 16106 esumpcvgval 31758 esum2d 31773 mblfinlem3 35553 mblfinlem4 35554 ismblfin 35555 itg2addnclem 35565 radcnvrat 41605 |
Copyright terms: Public domain | W3C validator |