| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > eqsupd | Structured version Visualization version GIF version | ||
| Description: Sufficient condition for an element to be equal to the supremum. (Contributed by Mario Carneiro, 21-Apr-2015.) |
| Ref | Expression |
|---|---|
| supmo.1 | ⊢ (𝜑 → 𝑅 Or 𝐴) |
| eqsupd.2 | ⊢ (𝜑 → 𝐶 ∈ 𝐴) |
| eqsupd.3 | ⊢ ((𝜑 ∧ 𝑦 ∈ 𝐵) → ¬ 𝐶𝑅𝑦) |
| eqsupd.4 | ⊢ ((𝜑 ∧ (𝑦 ∈ 𝐴 ∧ 𝑦𝑅𝐶)) → ∃𝑧 ∈ 𝐵 𝑦𝑅𝑧) |
| Ref | Expression |
|---|---|
| eqsupd | ⊢ (𝜑 → sup(𝐵, 𝐴, 𝑅) = 𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqsupd.2 | . 2 ⊢ (𝜑 → 𝐶 ∈ 𝐴) | |
| 2 | eqsupd.3 | . . 3 ⊢ ((𝜑 ∧ 𝑦 ∈ 𝐵) → ¬ 𝐶𝑅𝑦) | |
| 3 | 2 | ralrimiva 3124 | . 2 ⊢ (𝜑 → ∀𝑦 ∈ 𝐵 ¬ 𝐶𝑅𝑦) |
| 4 | eqsupd.4 | . . . 4 ⊢ ((𝜑 ∧ (𝑦 ∈ 𝐴 ∧ 𝑦𝑅𝐶)) → ∃𝑧 ∈ 𝐵 𝑦𝑅𝑧) | |
| 5 | 4 | expr 456 | . . 3 ⊢ ((𝜑 ∧ 𝑦 ∈ 𝐴) → (𝑦𝑅𝐶 → ∃𝑧 ∈ 𝐵 𝑦𝑅𝑧)) |
| 6 | 5 | ralrimiva 3124 | . 2 ⊢ (𝜑 → ∀𝑦 ∈ 𝐴 (𝑦𝑅𝐶 → ∃𝑧 ∈ 𝐵 𝑦𝑅𝑧)) |
| 7 | supmo.1 | . . 3 ⊢ (𝜑 → 𝑅 Or 𝐴) | |
| 8 | 7 | eqsup 9340 | . 2 ⊢ (𝜑 → ((𝐶 ∈ 𝐴 ∧ ∀𝑦 ∈ 𝐵 ¬ 𝐶𝑅𝑦 ∧ ∀𝑦 ∈ 𝐴 (𝑦𝑅𝐶 → ∃𝑧 ∈ 𝐵 𝑦𝑅𝑧)) → sup(𝐵, 𝐴, 𝑅) = 𝐶)) |
| 9 | 1, 3, 6, 8 | mp3and 1466 | 1 ⊢ (𝜑 → sup(𝐵, 𝐴, 𝑅) = 𝐶) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2111 ∀wral 3047 ∃wrex 3056 class class class wbr 5089 Or wor 5521 supcsup 9324 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-dif 3900 df-un 3902 df-ss 3914 df-nul 4281 df-if 4473 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-br 5090 df-po 5522 df-so 5523 df-iota 6437 df-riota 7303 df-sup 9326 |
| This theorem is referenced by: supmax 9352 supiso 9360 dfgcd2 16457 esumpcvgval 34091 esum2d 34106 mblfinlem3 37709 mblfinlem4 37710 ismblfin 37711 itg2addnclem 37721 radcnvrat 44417 |
| Copyright terms: Public domain | W3C validator |