MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  eqsupd Structured version   Visualization version   GIF version

Theorem eqsupd 9415
Description: Sufficient condition for an element to be equal to the supremum. (Contributed by Mario Carneiro, 21-Apr-2015.)
Hypotheses
Ref Expression
supmo.1 (𝜑𝑅 Or 𝐴)
eqsupd.2 (𝜑𝐶𝐴)
eqsupd.3 ((𝜑𝑦𝐵) → ¬ 𝐶𝑅𝑦)
eqsupd.4 ((𝜑 ∧ (𝑦𝐴𝑦𝑅𝐶)) → ∃𝑧𝐵 𝑦𝑅𝑧)
Assertion
Ref Expression
eqsupd (𝜑 → sup(𝐵, 𝐴, 𝑅) = 𝐶)
Distinct variable groups:   𝑦,𝑧,𝐴   𝑦,𝑅,𝑧   𝑦,𝐵,𝑧   𝑦,𝐶   𝜑,𝑦
Allowed substitution hints:   𝜑(𝑧)   𝐶(𝑧)

Proof of Theorem eqsupd
StepHypRef Expression
1 eqsupd.2 . 2 (𝜑𝐶𝐴)
2 eqsupd.3 . . 3 ((𝜑𝑦𝐵) → ¬ 𝐶𝑅𝑦)
32ralrimiva 3126 . 2 (𝜑 → ∀𝑦𝐵 ¬ 𝐶𝑅𝑦)
4 eqsupd.4 . . . 4 ((𝜑 ∧ (𝑦𝐴𝑦𝑅𝐶)) → ∃𝑧𝐵 𝑦𝑅𝑧)
54expr 456 . . 3 ((𝜑𝑦𝐴) → (𝑦𝑅𝐶 → ∃𝑧𝐵 𝑦𝑅𝑧))
65ralrimiva 3126 . 2 (𝜑 → ∀𝑦𝐴 (𝑦𝑅𝐶 → ∃𝑧𝐵 𝑦𝑅𝑧))
7 supmo.1 . . 3 (𝜑𝑅 Or 𝐴)
87eqsup 9414 . 2 (𝜑 → ((𝐶𝐴 ∧ ∀𝑦𝐵 ¬ 𝐶𝑅𝑦 ∧ ∀𝑦𝐴 (𝑦𝑅𝐶 → ∃𝑧𝐵 𝑦𝑅𝑧)) → sup(𝐵, 𝐴, 𝑅) = 𝐶))
91, 3, 6, 8mp3and 1466 1 (𝜑 → sup(𝐵, 𝐴, 𝑅) = 𝐶)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395   = wceq 1540  wcel 2109  wral 3045  wrex 3054   class class class wbr 5110   Or wor 5548  supcsup 9398
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-dif 3920  df-un 3922  df-ss 3934  df-nul 4300  df-if 4492  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-br 5111  df-po 5549  df-so 5550  df-iota 6467  df-riota 7347  df-sup 9400
This theorem is referenced by:  supmax  9426  supiso  9434  dfgcd2  16523  esumpcvgval  34075  esum2d  34090  mblfinlem3  37660  mblfinlem4  37661  ismblfin  37662  itg2addnclem  37672  radcnvrat  44310
  Copyright terms: Public domain W3C validator