Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > eqsupd | Structured version Visualization version GIF version |
Description: Sufficient condition for an element to be equal to the supremum. (Contributed by Mario Carneiro, 21-Apr-2015.) |
Ref | Expression |
---|---|
supmo.1 | ⊢ (𝜑 → 𝑅 Or 𝐴) |
eqsupd.2 | ⊢ (𝜑 → 𝐶 ∈ 𝐴) |
eqsupd.3 | ⊢ ((𝜑 ∧ 𝑦 ∈ 𝐵) → ¬ 𝐶𝑅𝑦) |
eqsupd.4 | ⊢ ((𝜑 ∧ (𝑦 ∈ 𝐴 ∧ 𝑦𝑅𝐶)) → ∃𝑧 ∈ 𝐵 𝑦𝑅𝑧) |
Ref | Expression |
---|---|
eqsupd | ⊢ (𝜑 → sup(𝐵, 𝐴, 𝑅) = 𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqsupd.2 | . 2 ⊢ (𝜑 → 𝐶 ∈ 𝐴) | |
2 | eqsupd.3 | . . 3 ⊢ ((𝜑 ∧ 𝑦 ∈ 𝐵) → ¬ 𝐶𝑅𝑦) | |
3 | 2 | ralrimiva 3139 | . 2 ⊢ (𝜑 → ∀𝑦 ∈ 𝐵 ¬ 𝐶𝑅𝑦) |
4 | eqsupd.4 | . . . 4 ⊢ ((𝜑 ∧ (𝑦 ∈ 𝐴 ∧ 𝑦𝑅𝐶)) → ∃𝑧 ∈ 𝐵 𝑦𝑅𝑧) | |
5 | 4 | expr 457 | . . 3 ⊢ ((𝜑 ∧ 𝑦 ∈ 𝐴) → (𝑦𝑅𝐶 → ∃𝑧 ∈ 𝐵 𝑦𝑅𝑧)) |
6 | 5 | ralrimiva 3139 | . 2 ⊢ (𝜑 → ∀𝑦 ∈ 𝐴 (𝑦𝑅𝐶 → ∃𝑧 ∈ 𝐵 𝑦𝑅𝑧)) |
7 | supmo.1 | . . 3 ⊢ (𝜑 → 𝑅 Or 𝐴) | |
8 | 7 | eqsup 9291 | . 2 ⊢ (𝜑 → ((𝐶 ∈ 𝐴 ∧ ∀𝑦 ∈ 𝐵 ¬ 𝐶𝑅𝑦 ∧ ∀𝑦 ∈ 𝐴 (𝑦𝑅𝐶 → ∃𝑧 ∈ 𝐵 𝑦𝑅𝑧)) → sup(𝐵, 𝐴, 𝑅) = 𝐶)) |
9 | 1, 3, 6, 8 | mp3and 1463 | 1 ⊢ (𝜑 → sup(𝐵, 𝐴, 𝑅) = 𝐶) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 396 = wceq 1540 ∈ wcel 2105 ∀wral 3061 ∃wrex 3070 class class class wbr 5086 Or wor 5519 supcsup 9275 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2707 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2886 df-ne 2941 df-ral 3062 df-rex 3071 df-rmo 3349 df-reu 3350 df-rab 3404 df-v 3442 df-dif 3899 df-un 3901 df-in 3903 df-ss 3913 df-nul 4267 df-if 4471 df-sn 4571 df-pr 4573 df-op 4577 df-uni 4850 df-br 5087 df-po 5520 df-so 5521 df-iota 6417 df-riota 7273 df-sup 9277 |
This theorem is referenced by: supmax 9302 supiso 9310 dfgcd2 16330 esumpcvgval 32182 esum2d 32197 mblfinlem3 35893 mblfinlem4 35894 ismblfin 35895 itg2addnclem 35905 radcnvrat 42171 |
Copyright terms: Public domain | W3C validator |