Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  segcon2 Structured version   Visualization version   GIF version

Theorem segcon2 34403
Description: Generalization of axsegcon 27293. This time, we generate an endpoint for a segment on the ray 𝑄𝐴 congruent to 𝐵𝐶 and starting at 𝑄, as opposed to axsegcon 27293, where the segment starts at 𝐴 (Contributed by Scott Fenton, 14-Oct-2013.) Remove unneeded inequality. (Revised by Scott Fenton, 15-Oct-2013.)
Assertion
Ref Expression
segcon2 ((𝑁 ∈ ℕ ∧ (𝑄 ∈ (𝔼‘𝑁) ∧ 𝐴 ∈ (𝔼‘𝑁)) ∧ (𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁))) → ∃𝑥 ∈ (𝔼‘𝑁)((𝐴 Btwn ⟨𝑄, 𝑥⟩ ∨ 𝑥 Btwn ⟨𝑄, 𝐴⟩) ∧ ⟨𝑄, 𝑥⟩Cgr⟨𝐵, 𝐶⟩))
Distinct variable groups:   𝑥,𝑄   𝑥,𝑁   𝑥,𝐴   𝑥,𝐵   𝑥,𝐶

Proof of Theorem segcon2
Dummy variable 𝑎 is distinct from all other variables.
StepHypRef Expression
1 breq1 5082 . . . . 5 (𝐴 = 𝑄 → (𝐴 Btwn ⟨𝑄, 𝑥⟩ ↔ 𝑄 Btwn ⟨𝑄, 𝑥⟩))
21orbi1d 914 . . . 4 (𝐴 = 𝑄 → ((𝐴 Btwn ⟨𝑄, 𝑥⟩ ∨ 𝑥 Btwn ⟨𝑄, 𝐴⟩) ↔ (𝑄 Btwn ⟨𝑄, 𝑥⟩ ∨ 𝑥 Btwn ⟨𝑄, 𝐴⟩)))
32anbi1d 630 . . 3 (𝐴 = 𝑄 → (((𝐴 Btwn ⟨𝑄, 𝑥⟩ ∨ 𝑥 Btwn ⟨𝑄, 𝐴⟩) ∧ ⟨𝑄, 𝑥⟩Cgr⟨𝐵, 𝐶⟩) ↔ ((𝑄 Btwn ⟨𝑄, 𝑥⟩ ∨ 𝑥 Btwn ⟨𝑄, 𝐴⟩) ∧ ⟨𝑄, 𝑥⟩Cgr⟨𝐵, 𝐶⟩)))
43rexbidv 3228 . 2 (𝐴 = 𝑄 → (∃𝑥 ∈ (𝔼‘𝑁)((𝐴 Btwn ⟨𝑄, 𝑥⟩ ∨ 𝑥 Btwn ⟨𝑄, 𝐴⟩) ∧ ⟨𝑄, 𝑥⟩Cgr⟨𝐵, 𝐶⟩) ↔ ∃𝑥 ∈ (𝔼‘𝑁)((𝑄 Btwn ⟨𝑄, 𝑥⟩ ∨ 𝑥 Btwn ⟨𝑄, 𝐴⟩) ∧ ⟨𝑄, 𝑥⟩Cgr⟨𝐵, 𝐶⟩)))
5 simp1 1135 . . . . 5 ((𝑁 ∈ ℕ ∧ (𝑄 ∈ (𝔼‘𝑁) ∧ 𝐴 ∈ (𝔼‘𝑁)) ∧ (𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁))) → 𝑁 ∈ ℕ)
6 simp2 1136 . . . . . 6 ((𝑁 ∈ ℕ ∧ (𝑄 ∈ (𝔼‘𝑁) ∧ 𝐴 ∈ (𝔼‘𝑁)) ∧ (𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁))) → (𝑄 ∈ (𝔼‘𝑁) ∧ 𝐴 ∈ (𝔼‘𝑁)))
76ancomd 462 . . . . 5 ((𝑁 ∈ ℕ ∧ (𝑄 ∈ (𝔼‘𝑁) ∧ 𝐴 ∈ (𝔼‘𝑁)) ∧ (𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁))) → (𝐴 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁)))
8 axsegcon 27293 . . . . 5 ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁)) ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁))) → ∃𝑎 ∈ (𝔼‘𝑁)(𝑄 Btwn ⟨𝐴, 𝑎⟩ ∧ ⟨𝑄, 𝑎⟩Cgr⟨𝐴, 𝑄⟩))
95, 7, 7, 8syl3anc 1370 . . . 4 ((𝑁 ∈ ℕ ∧ (𝑄 ∈ (𝔼‘𝑁) ∧ 𝐴 ∈ (𝔼‘𝑁)) ∧ (𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁))) → ∃𝑎 ∈ (𝔼‘𝑁)(𝑄 Btwn ⟨𝐴, 𝑎⟩ ∧ ⟨𝑄, 𝑎⟩Cgr⟨𝐴, 𝑄⟩))
109adantr 481 . . 3 (((𝑁 ∈ ℕ ∧ (𝑄 ∈ (𝔼‘𝑁) ∧ 𝐴 ∈ (𝔼‘𝑁)) ∧ (𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁))) ∧ 𝐴𝑄) → ∃𝑎 ∈ (𝔼‘𝑁)(𝑄 Btwn ⟨𝐴, 𝑎⟩ ∧ ⟨𝑄, 𝑎⟩Cgr⟨𝐴, 𝑄⟩))
11 simpl1 1190 . . . . . . . . 9 (((𝑁 ∈ ℕ ∧ (𝑄 ∈ (𝔼‘𝑁) ∧ 𝐴 ∈ (𝔼‘𝑁)) ∧ (𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁))) ∧ 𝑎 ∈ (𝔼‘𝑁)) → 𝑁 ∈ ℕ)
12 simpr 485 . . . . . . . . 9 (((𝑁 ∈ ℕ ∧ (𝑄 ∈ (𝔼‘𝑁) ∧ 𝐴 ∈ (𝔼‘𝑁)) ∧ (𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁))) ∧ 𝑎 ∈ (𝔼‘𝑁)) → 𝑎 ∈ (𝔼‘𝑁))
13 simpl2l 1225 . . . . . . . . 9 (((𝑁 ∈ ℕ ∧ (𝑄 ∈ (𝔼‘𝑁) ∧ 𝐴 ∈ (𝔼‘𝑁)) ∧ (𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁))) ∧ 𝑎 ∈ (𝔼‘𝑁)) → 𝑄 ∈ (𝔼‘𝑁))
14 simpl3 1192 . . . . . . . . 9 (((𝑁 ∈ ℕ ∧ (𝑄 ∈ (𝔼‘𝑁) ∧ 𝐴 ∈ (𝔼‘𝑁)) ∧ (𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁))) ∧ 𝑎 ∈ (𝔼‘𝑁)) → (𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)))
15 axsegcon 27293 . . . . . . . . 9 ((𝑁 ∈ ℕ ∧ (𝑎 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁)) ∧ (𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁))) → ∃𝑥 ∈ (𝔼‘𝑁)(𝑄 Btwn ⟨𝑎, 𝑥⟩ ∧ ⟨𝑄, 𝑥⟩Cgr⟨𝐵, 𝐶⟩))
1611, 12, 13, 14, 15syl121anc 1374 . . . . . . . 8 (((𝑁 ∈ ℕ ∧ (𝑄 ∈ (𝔼‘𝑁) ∧ 𝐴 ∈ (𝔼‘𝑁)) ∧ (𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁))) ∧ 𝑎 ∈ (𝔼‘𝑁)) → ∃𝑥 ∈ (𝔼‘𝑁)(𝑄 Btwn ⟨𝑎, 𝑥⟩ ∧ ⟨𝑄, 𝑥⟩Cgr⟨𝐵, 𝐶⟩))
1716adantr 481 . . . . . . 7 ((((𝑁 ∈ ℕ ∧ (𝑄 ∈ (𝔼‘𝑁) ∧ 𝐴 ∈ (𝔼‘𝑁)) ∧ (𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁))) ∧ 𝑎 ∈ (𝔼‘𝑁)) ∧ (𝐴𝑄 ∧ (𝑄 Btwn ⟨𝐴, 𝑎⟩ ∧ ⟨𝑄, 𝑎⟩Cgr⟨𝐴, 𝑄⟩))) → ∃𝑥 ∈ (𝔼‘𝑁)(𝑄 Btwn ⟨𝑎, 𝑥⟩ ∧ ⟨𝑄, 𝑥⟩Cgr⟨𝐵, 𝐶⟩))
18 anass 469 . . . . . . . . . 10 ((((𝑁 ∈ ℕ ∧ (𝑄 ∈ (𝔼‘𝑁) ∧ 𝐴 ∈ (𝔼‘𝑁)) ∧ (𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁))) ∧ 𝑎 ∈ (𝔼‘𝑁)) ∧ 𝑥 ∈ (𝔼‘𝑁)) ↔ ((𝑁 ∈ ℕ ∧ (𝑄 ∈ (𝔼‘𝑁) ∧ 𝐴 ∈ (𝔼‘𝑁)) ∧ (𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁))) ∧ (𝑎 ∈ (𝔼‘𝑁) ∧ 𝑥 ∈ (𝔼‘𝑁))))
19 df-3an 1088 . . . . . . . . . . . . 13 ((𝐴𝑄 ∧ (𝑄 Btwn ⟨𝐴, 𝑎⟩ ∧ ⟨𝑄, 𝑎⟩Cgr⟨𝐴, 𝑄⟩) ∧ 𝑄 Btwn ⟨𝑎, 𝑥⟩) ↔ ((𝐴𝑄 ∧ (𝑄 Btwn ⟨𝐴, 𝑎⟩ ∧ ⟨𝑄, 𝑎⟩Cgr⟨𝐴, 𝑄⟩)) ∧ 𝑄 Btwn ⟨𝑎, 𝑥⟩))
20 simpr1 1193 . . . . . . . . . . . . . . . 16 ((((𝑁 ∈ ℕ ∧ (𝑄 ∈ (𝔼‘𝑁) ∧ 𝐴 ∈ (𝔼‘𝑁)) ∧ (𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁))) ∧ (𝑎 ∈ (𝔼‘𝑁) ∧ 𝑥 ∈ (𝔼‘𝑁))) ∧ (𝐴𝑄 ∧ (𝑄 Btwn ⟨𝐴, 𝑎⟩ ∧ ⟨𝑄, 𝑎⟩Cgr⟨𝐴, 𝑄⟩) ∧ 𝑄 Btwn ⟨𝑎, 𝑥⟩)) → 𝐴𝑄)
21 simpr2r 1232 . . . . . . . . . . . . . . . . . 18 ((((𝑁 ∈ ℕ ∧ (𝑄 ∈ (𝔼‘𝑁) ∧ 𝐴 ∈ (𝔼‘𝑁)) ∧ (𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁))) ∧ (𝑎 ∈ (𝔼‘𝑁) ∧ 𝑥 ∈ (𝔼‘𝑁))) ∧ (𝐴𝑄 ∧ (𝑄 Btwn ⟨𝐴, 𝑎⟩ ∧ ⟨𝑄, 𝑎⟩Cgr⟨𝐴, 𝑄⟩) ∧ 𝑄 Btwn ⟨𝑎, 𝑥⟩)) → ⟨𝑄, 𝑎⟩Cgr⟨𝐴, 𝑄⟩)
22 simpl1 1190 . . . . . . . . . . . . . . . . . . . 20 (((𝑁 ∈ ℕ ∧ (𝑄 ∈ (𝔼‘𝑁) ∧ 𝐴 ∈ (𝔼‘𝑁)) ∧ (𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁))) ∧ (𝑎 ∈ (𝔼‘𝑁) ∧ 𝑥 ∈ (𝔼‘𝑁))) → 𝑁 ∈ ℕ)
23 simpl2l 1225 . . . . . . . . . . . . . . . . . . . 20 (((𝑁 ∈ ℕ ∧ (𝑄 ∈ (𝔼‘𝑁) ∧ 𝐴 ∈ (𝔼‘𝑁)) ∧ (𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁))) ∧ (𝑎 ∈ (𝔼‘𝑁) ∧ 𝑥 ∈ (𝔼‘𝑁))) → 𝑄 ∈ (𝔼‘𝑁))
24 simprl 768 . . . . . . . . . . . . . . . . . . . 20 (((𝑁 ∈ ℕ ∧ (𝑄 ∈ (𝔼‘𝑁) ∧ 𝐴 ∈ (𝔼‘𝑁)) ∧ (𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁))) ∧ (𝑎 ∈ (𝔼‘𝑁) ∧ 𝑥 ∈ (𝔼‘𝑁))) → 𝑎 ∈ (𝔼‘𝑁))
25 simpl2r 1226 . . . . . . . . . . . . . . . . . . . 20 (((𝑁 ∈ ℕ ∧ (𝑄 ∈ (𝔼‘𝑁) ∧ 𝐴 ∈ (𝔼‘𝑁)) ∧ (𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁))) ∧ (𝑎 ∈ (𝔼‘𝑁) ∧ 𝑥 ∈ (𝔼‘𝑁))) → 𝐴 ∈ (𝔼‘𝑁))
26 cgrdegen 34302 . . . . . . . . . . . . . . . . . . . 20 ((𝑁 ∈ ℕ ∧ (𝑄 ∈ (𝔼‘𝑁) ∧ 𝑎 ∈ (𝔼‘𝑁)) ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁))) → (⟨𝑄, 𝑎⟩Cgr⟨𝐴, 𝑄⟩ → (𝑄 = 𝑎𝐴 = 𝑄)))
2722, 23, 24, 25, 23, 26syl122anc 1378 . . . . . . . . . . . . . . . . . . 19 (((𝑁 ∈ ℕ ∧ (𝑄 ∈ (𝔼‘𝑁) ∧ 𝐴 ∈ (𝔼‘𝑁)) ∧ (𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁))) ∧ (𝑎 ∈ (𝔼‘𝑁) ∧ 𝑥 ∈ (𝔼‘𝑁))) → (⟨𝑄, 𝑎⟩Cgr⟨𝐴, 𝑄⟩ → (𝑄 = 𝑎𝐴 = 𝑄)))
2827adantr 481 . . . . . . . . . . . . . . . . . 18 ((((𝑁 ∈ ℕ ∧ (𝑄 ∈ (𝔼‘𝑁) ∧ 𝐴 ∈ (𝔼‘𝑁)) ∧ (𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁))) ∧ (𝑎 ∈ (𝔼‘𝑁) ∧ 𝑥 ∈ (𝔼‘𝑁))) ∧ (𝐴𝑄 ∧ (𝑄 Btwn ⟨𝐴, 𝑎⟩ ∧ ⟨𝑄, 𝑎⟩Cgr⟨𝐴, 𝑄⟩) ∧ 𝑄 Btwn ⟨𝑎, 𝑥⟩)) → (⟨𝑄, 𝑎⟩Cgr⟨𝐴, 𝑄⟩ → (𝑄 = 𝑎𝐴 = 𝑄)))
2921, 28mpd 15 . . . . . . . . . . . . . . . . 17 ((((𝑁 ∈ ℕ ∧ (𝑄 ∈ (𝔼‘𝑁) ∧ 𝐴 ∈ (𝔼‘𝑁)) ∧ (𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁))) ∧ (𝑎 ∈ (𝔼‘𝑁) ∧ 𝑥 ∈ (𝔼‘𝑁))) ∧ (𝐴𝑄 ∧ (𝑄 Btwn ⟨𝐴, 𝑎⟩ ∧ ⟨𝑄, 𝑎⟩Cgr⟨𝐴, 𝑄⟩) ∧ 𝑄 Btwn ⟨𝑎, 𝑥⟩)) → (𝑄 = 𝑎𝐴 = 𝑄))
3029necon3bid 2990 . . . . . . . . . . . . . . . 16 ((((𝑁 ∈ ℕ ∧ (𝑄 ∈ (𝔼‘𝑁) ∧ 𝐴 ∈ (𝔼‘𝑁)) ∧ (𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁))) ∧ (𝑎 ∈ (𝔼‘𝑁) ∧ 𝑥 ∈ (𝔼‘𝑁))) ∧ (𝐴𝑄 ∧ (𝑄 Btwn ⟨𝐴, 𝑎⟩ ∧ ⟨𝑄, 𝑎⟩Cgr⟨𝐴, 𝑄⟩) ∧ 𝑄 Btwn ⟨𝑎, 𝑥⟩)) → (𝑄𝑎𝐴𝑄))
3120, 30mpbird 256 . . . . . . . . . . . . . . 15 ((((𝑁 ∈ ℕ ∧ (𝑄 ∈ (𝔼‘𝑁) ∧ 𝐴 ∈ (𝔼‘𝑁)) ∧ (𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁))) ∧ (𝑎 ∈ (𝔼‘𝑁) ∧ 𝑥 ∈ (𝔼‘𝑁))) ∧ (𝐴𝑄 ∧ (𝑄 Btwn ⟨𝐴, 𝑎⟩ ∧ ⟨𝑄, 𝑎⟩Cgr⟨𝐴, 𝑄⟩) ∧ 𝑄 Btwn ⟨𝑎, 𝑥⟩)) → 𝑄𝑎)
3231necomd 3001 . . . . . . . . . . . . . 14 ((((𝑁 ∈ ℕ ∧ (𝑄 ∈ (𝔼‘𝑁) ∧ 𝐴 ∈ (𝔼‘𝑁)) ∧ (𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁))) ∧ (𝑎 ∈ (𝔼‘𝑁) ∧ 𝑥 ∈ (𝔼‘𝑁))) ∧ (𝐴𝑄 ∧ (𝑄 Btwn ⟨𝐴, 𝑎⟩ ∧ ⟨𝑄, 𝑎⟩Cgr⟨𝐴, 𝑄⟩) ∧ 𝑄 Btwn ⟨𝑎, 𝑥⟩)) → 𝑎𝑄)
33 simpr2l 1231 . . . . . . . . . . . . . . 15 ((((𝑁 ∈ ℕ ∧ (𝑄 ∈ (𝔼‘𝑁) ∧ 𝐴 ∈ (𝔼‘𝑁)) ∧ (𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁))) ∧ (𝑎 ∈ (𝔼‘𝑁) ∧ 𝑥 ∈ (𝔼‘𝑁))) ∧ (𝐴𝑄 ∧ (𝑄 Btwn ⟨𝐴, 𝑎⟩ ∧ ⟨𝑄, 𝑎⟩Cgr⟨𝐴, 𝑄⟩) ∧ 𝑄 Btwn ⟨𝑎, 𝑥⟩)) → 𝑄 Btwn ⟨𝐴, 𝑎⟩)
3422, 23, 25, 24, 33btwncomand 34313 . . . . . . . . . . . . . 14 ((((𝑁 ∈ ℕ ∧ (𝑄 ∈ (𝔼‘𝑁) ∧ 𝐴 ∈ (𝔼‘𝑁)) ∧ (𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁))) ∧ (𝑎 ∈ (𝔼‘𝑁) ∧ 𝑥 ∈ (𝔼‘𝑁))) ∧ (𝐴𝑄 ∧ (𝑄 Btwn ⟨𝐴, 𝑎⟩ ∧ ⟨𝑄, 𝑎⟩Cgr⟨𝐴, 𝑄⟩) ∧ 𝑄 Btwn ⟨𝑎, 𝑥⟩)) → 𝑄 Btwn ⟨𝑎, 𝐴⟩)
35 simpr3 1195 . . . . . . . . . . . . . 14 ((((𝑁 ∈ ℕ ∧ (𝑄 ∈ (𝔼‘𝑁) ∧ 𝐴 ∈ (𝔼‘𝑁)) ∧ (𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁))) ∧ (𝑎 ∈ (𝔼‘𝑁) ∧ 𝑥 ∈ (𝔼‘𝑁))) ∧ (𝐴𝑄 ∧ (𝑄 Btwn ⟨𝐴, 𝑎⟩ ∧ ⟨𝑄, 𝑎⟩Cgr⟨𝐴, 𝑄⟩) ∧ 𝑄 Btwn ⟨𝑎, 𝑥⟩)) → 𝑄 Btwn ⟨𝑎, 𝑥⟩)
36 simprr 770 . . . . . . . . . . . . . . . 16 (((𝑁 ∈ ℕ ∧ (𝑄 ∈ (𝔼‘𝑁) ∧ 𝐴 ∈ (𝔼‘𝑁)) ∧ (𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁))) ∧ (𝑎 ∈ (𝔼‘𝑁) ∧ 𝑥 ∈ (𝔼‘𝑁))) → 𝑥 ∈ (𝔼‘𝑁))
37 btwnconn2 34400 . . . . . . . . . . . . . . . 16 ((𝑁 ∈ ℕ ∧ (𝑎 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁)) ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝑥 ∈ (𝔼‘𝑁))) → ((𝑎𝑄𝑄 Btwn ⟨𝑎, 𝐴⟩ ∧ 𝑄 Btwn ⟨𝑎, 𝑥⟩) → (𝐴 Btwn ⟨𝑄, 𝑥⟩ ∨ 𝑥 Btwn ⟨𝑄, 𝐴⟩)))
3822, 24, 23, 25, 36, 37syl122anc 1378 . . . . . . . . . . . . . . 15 (((𝑁 ∈ ℕ ∧ (𝑄 ∈ (𝔼‘𝑁) ∧ 𝐴 ∈ (𝔼‘𝑁)) ∧ (𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁))) ∧ (𝑎 ∈ (𝔼‘𝑁) ∧ 𝑥 ∈ (𝔼‘𝑁))) → ((𝑎𝑄𝑄 Btwn ⟨𝑎, 𝐴⟩ ∧ 𝑄 Btwn ⟨𝑎, 𝑥⟩) → (𝐴 Btwn ⟨𝑄, 𝑥⟩ ∨ 𝑥 Btwn ⟨𝑄, 𝐴⟩)))
3938adantr 481 . . . . . . . . . . . . . 14 ((((𝑁 ∈ ℕ ∧ (𝑄 ∈ (𝔼‘𝑁) ∧ 𝐴 ∈ (𝔼‘𝑁)) ∧ (𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁))) ∧ (𝑎 ∈ (𝔼‘𝑁) ∧ 𝑥 ∈ (𝔼‘𝑁))) ∧ (𝐴𝑄 ∧ (𝑄 Btwn ⟨𝐴, 𝑎⟩ ∧ ⟨𝑄, 𝑎⟩Cgr⟨𝐴, 𝑄⟩) ∧ 𝑄 Btwn ⟨𝑎, 𝑥⟩)) → ((𝑎𝑄𝑄 Btwn ⟨𝑎, 𝐴⟩ ∧ 𝑄 Btwn ⟨𝑎, 𝑥⟩) → (𝐴 Btwn ⟨𝑄, 𝑥⟩ ∨ 𝑥 Btwn ⟨𝑄, 𝐴⟩)))
4032, 34, 35, 39mp3and 1463 . . . . . . . . . . . . 13 ((((𝑁 ∈ ℕ ∧ (𝑄 ∈ (𝔼‘𝑁) ∧ 𝐴 ∈ (𝔼‘𝑁)) ∧ (𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁))) ∧ (𝑎 ∈ (𝔼‘𝑁) ∧ 𝑥 ∈ (𝔼‘𝑁))) ∧ (𝐴𝑄 ∧ (𝑄 Btwn ⟨𝐴, 𝑎⟩ ∧ ⟨𝑄, 𝑎⟩Cgr⟨𝐴, 𝑄⟩) ∧ 𝑄 Btwn ⟨𝑎, 𝑥⟩)) → (𝐴 Btwn ⟨𝑄, 𝑥⟩ ∨ 𝑥 Btwn ⟨𝑄, 𝐴⟩))
4119, 40sylan2br 595 . . . . . . . . . . . 12 ((((𝑁 ∈ ℕ ∧ (𝑄 ∈ (𝔼‘𝑁) ∧ 𝐴 ∈ (𝔼‘𝑁)) ∧ (𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁))) ∧ (𝑎 ∈ (𝔼‘𝑁) ∧ 𝑥 ∈ (𝔼‘𝑁))) ∧ ((𝐴𝑄 ∧ (𝑄 Btwn ⟨𝐴, 𝑎⟩ ∧ ⟨𝑄, 𝑎⟩Cgr⟨𝐴, 𝑄⟩)) ∧ 𝑄 Btwn ⟨𝑎, 𝑥⟩)) → (𝐴 Btwn ⟨𝑄, 𝑥⟩ ∨ 𝑥 Btwn ⟨𝑄, 𝐴⟩))
4241expr 457 . . . . . . . . . . 11 ((((𝑁 ∈ ℕ ∧ (𝑄 ∈ (𝔼‘𝑁) ∧ 𝐴 ∈ (𝔼‘𝑁)) ∧ (𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁))) ∧ (𝑎 ∈ (𝔼‘𝑁) ∧ 𝑥 ∈ (𝔼‘𝑁))) ∧ (𝐴𝑄 ∧ (𝑄 Btwn ⟨𝐴, 𝑎⟩ ∧ ⟨𝑄, 𝑎⟩Cgr⟨𝐴, 𝑄⟩))) → (𝑄 Btwn ⟨𝑎, 𝑥⟩ → (𝐴 Btwn ⟨𝑄, 𝑥⟩ ∨ 𝑥 Btwn ⟨𝑄, 𝐴⟩)))
4342anim1d 611 . . . . . . . . . 10 ((((𝑁 ∈ ℕ ∧ (𝑄 ∈ (𝔼‘𝑁) ∧ 𝐴 ∈ (𝔼‘𝑁)) ∧ (𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁))) ∧ (𝑎 ∈ (𝔼‘𝑁) ∧ 𝑥 ∈ (𝔼‘𝑁))) ∧ (𝐴𝑄 ∧ (𝑄 Btwn ⟨𝐴, 𝑎⟩ ∧ ⟨𝑄, 𝑎⟩Cgr⟨𝐴, 𝑄⟩))) → ((𝑄 Btwn ⟨𝑎, 𝑥⟩ ∧ ⟨𝑄, 𝑥⟩Cgr⟨𝐵, 𝐶⟩) → ((𝐴 Btwn ⟨𝑄, 𝑥⟩ ∨ 𝑥 Btwn ⟨𝑄, 𝐴⟩) ∧ ⟨𝑄, 𝑥⟩Cgr⟨𝐵, 𝐶⟩)))
4418, 43sylanb 581 . . . . . . . . 9 (((((𝑁 ∈ ℕ ∧ (𝑄 ∈ (𝔼‘𝑁) ∧ 𝐴 ∈ (𝔼‘𝑁)) ∧ (𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁))) ∧ 𝑎 ∈ (𝔼‘𝑁)) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ (𝐴𝑄 ∧ (𝑄 Btwn ⟨𝐴, 𝑎⟩ ∧ ⟨𝑄, 𝑎⟩Cgr⟨𝐴, 𝑄⟩))) → ((𝑄 Btwn ⟨𝑎, 𝑥⟩ ∧ ⟨𝑄, 𝑥⟩Cgr⟨𝐵, 𝐶⟩) → ((𝐴 Btwn ⟨𝑄, 𝑥⟩ ∨ 𝑥 Btwn ⟨𝑄, 𝐴⟩) ∧ ⟨𝑄, 𝑥⟩Cgr⟨𝐵, 𝐶⟩)))
4544an32s 649 . . . . . . . 8 (((((𝑁 ∈ ℕ ∧ (𝑄 ∈ (𝔼‘𝑁) ∧ 𝐴 ∈ (𝔼‘𝑁)) ∧ (𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁))) ∧ 𝑎 ∈ (𝔼‘𝑁)) ∧ (𝐴𝑄 ∧ (𝑄 Btwn ⟨𝐴, 𝑎⟩ ∧ ⟨𝑄, 𝑎⟩Cgr⟨𝐴, 𝑄⟩))) ∧ 𝑥 ∈ (𝔼‘𝑁)) → ((𝑄 Btwn ⟨𝑎, 𝑥⟩ ∧ ⟨𝑄, 𝑥⟩Cgr⟨𝐵, 𝐶⟩) → ((𝐴 Btwn ⟨𝑄, 𝑥⟩ ∨ 𝑥 Btwn ⟨𝑄, 𝐴⟩) ∧ ⟨𝑄, 𝑥⟩Cgr⟨𝐵, 𝐶⟩)))
4645reximdva 3205 . . . . . . 7 ((((𝑁 ∈ ℕ ∧ (𝑄 ∈ (𝔼‘𝑁) ∧ 𝐴 ∈ (𝔼‘𝑁)) ∧ (𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁))) ∧ 𝑎 ∈ (𝔼‘𝑁)) ∧ (𝐴𝑄 ∧ (𝑄 Btwn ⟨𝐴, 𝑎⟩ ∧ ⟨𝑄, 𝑎⟩Cgr⟨𝐴, 𝑄⟩))) → (∃𝑥 ∈ (𝔼‘𝑁)(𝑄 Btwn ⟨𝑎, 𝑥⟩ ∧ ⟨𝑄, 𝑥⟩Cgr⟨𝐵, 𝐶⟩) → ∃𝑥 ∈ (𝔼‘𝑁)((𝐴 Btwn ⟨𝑄, 𝑥⟩ ∨ 𝑥 Btwn ⟨𝑄, 𝐴⟩) ∧ ⟨𝑄, 𝑥⟩Cgr⟨𝐵, 𝐶⟩)))
4717, 46mpd 15 . . . . . 6 ((((𝑁 ∈ ℕ ∧ (𝑄 ∈ (𝔼‘𝑁) ∧ 𝐴 ∈ (𝔼‘𝑁)) ∧ (𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁))) ∧ 𝑎 ∈ (𝔼‘𝑁)) ∧ (𝐴𝑄 ∧ (𝑄 Btwn ⟨𝐴, 𝑎⟩ ∧ ⟨𝑄, 𝑎⟩Cgr⟨𝐴, 𝑄⟩))) → ∃𝑥 ∈ (𝔼‘𝑁)((𝐴 Btwn ⟨𝑄, 𝑥⟩ ∨ 𝑥 Btwn ⟨𝑄, 𝐴⟩) ∧ ⟨𝑄, 𝑥⟩Cgr⟨𝐵, 𝐶⟩))
4847expr 457 . . . . 5 ((((𝑁 ∈ ℕ ∧ (𝑄 ∈ (𝔼‘𝑁) ∧ 𝐴 ∈ (𝔼‘𝑁)) ∧ (𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁))) ∧ 𝑎 ∈ (𝔼‘𝑁)) ∧ 𝐴𝑄) → ((𝑄 Btwn ⟨𝐴, 𝑎⟩ ∧ ⟨𝑄, 𝑎⟩Cgr⟨𝐴, 𝑄⟩) → ∃𝑥 ∈ (𝔼‘𝑁)((𝐴 Btwn ⟨𝑄, 𝑥⟩ ∨ 𝑥 Btwn ⟨𝑄, 𝐴⟩) ∧ ⟨𝑄, 𝑥⟩Cgr⟨𝐵, 𝐶⟩)))
4948an32s 649 . . . 4 ((((𝑁 ∈ ℕ ∧ (𝑄 ∈ (𝔼‘𝑁) ∧ 𝐴 ∈ (𝔼‘𝑁)) ∧ (𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁))) ∧ 𝐴𝑄) ∧ 𝑎 ∈ (𝔼‘𝑁)) → ((𝑄 Btwn ⟨𝐴, 𝑎⟩ ∧ ⟨𝑄, 𝑎⟩Cgr⟨𝐴, 𝑄⟩) → ∃𝑥 ∈ (𝔼‘𝑁)((𝐴 Btwn ⟨𝑄, 𝑥⟩ ∨ 𝑥 Btwn ⟨𝑄, 𝐴⟩) ∧ ⟨𝑄, 𝑥⟩Cgr⟨𝐵, 𝐶⟩)))
5049rexlimdva 3215 . . 3 (((𝑁 ∈ ℕ ∧ (𝑄 ∈ (𝔼‘𝑁) ∧ 𝐴 ∈ (𝔼‘𝑁)) ∧ (𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁))) ∧ 𝐴𝑄) → (∃𝑎 ∈ (𝔼‘𝑁)(𝑄 Btwn ⟨𝐴, 𝑎⟩ ∧ ⟨𝑄, 𝑎⟩Cgr⟨𝐴, 𝑄⟩) → ∃𝑥 ∈ (𝔼‘𝑁)((𝐴 Btwn ⟨𝑄, 𝑥⟩ ∨ 𝑥 Btwn ⟨𝑄, 𝐴⟩) ∧ ⟨𝑄, 𝑥⟩Cgr⟨𝐵, 𝐶⟩)))
5110, 50mpd 15 . 2 (((𝑁 ∈ ℕ ∧ (𝑄 ∈ (𝔼‘𝑁) ∧ 𝐴 ∈ (𝔼‘𝑁)) ∧ (𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁))) ∧ 𝐴𝑄) → ∃𝑥 ∈ (𝔼‘𝑁)((𝐴 Btwn ⟨𝑄, 𝑥⟩ ∨ 𝑥 Btwn ⟨𝑄, 𝐴⟩) ∧ ⟨𝑄, 𝑥⟩Cgr⟨𝐵, 𝐶⟩))
52 simp2l 1198 . . . 4 ((𝑁 ∈ ℕ ∧ (𝑄 ∈ (𝔼‘𝑁) ∧ 𝐴 ∈ (𝔼‘𝑁)) ∧ (𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁))) → 𝑄 ∈ (𝔼‘𝑁))
53 simp3 1137 . . . 4 ((𝑁 ∈ ℕ ∧ (𝑄 ∈ (𝔼‘𝑁) ∧ 𝐴 ∈ (𝔼‘𝑁)) ∧ (𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁))) → (𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)))
54 axsegcon 27293 . . . 4 ((𝑁 ∈ ℕ ∧ (𝑄 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁)) ∧ (𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁))) → ∃𝑥 ∈ (𝔼‘𝑁)(𝑄 Btwn ⟨𝑄, 𝑥⟩ ∧ ⟨𝑄, 𝑥⟩Cgr⟨𝐵, 𝐶⟩))
555, 52, 52, 53, 54syl121anc 1374 . . 3 ((𝑁 ∈ ℕ ∧ (𝑄 ∈ (𝔼‘𝑁) ∧ 𝐴 ∈ (𝔼‘𝑁)) ∧ (𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁))) → ∃𝑥 ∈ (𝔼‘𝑁)(𝑄 Btwn ⟨𝑄, 𝑥⟩ ∧ ⟨𝑄, 𝑥⟩Cgr⟨𝐵, 𝐶⟩))
56 orc 864 . . . . 5 (𝑄 Btwn ⟨𝑄, 𝑥⟩ → (𝑄 Btwn ⟨𝑄, 𝑥⟩ ∨ 𝑥 Btwn ⟨𝑄, 𝐴⟩))
5756anim1i 615 . . . 4 ((𝑄 Btwn ⟨𝑄, 𝑥⟩ ∧ ⟨𝑄, 𝑥⟩Cgr⟨𝐵, 𝐶⟩) → ((𝑄 Btwn ⟨𝑄, 𝑥⟩ ∨ 𝑥 Btwn ⟨𝑄, 𝐴⟩) ∧ ⟨𝑄, 𝑥⟩Cgr⟨𝐵, 𝐶⟩))
5857reximi 3177 . . 3 (∃𝑥 ∈ (𝔼‘𝑁)(𝑄 Btwn ⟨𝑄, 𝑥⟩ ∧ ⟨𝑄, 𝑥⟩Cgr⟨𝐵, 𝐶⟩) → ∃𝑥 ∈ (𝔼‘𝑁)((𝑄 Btwn ⟨𝑄, 𝑥⟩ ∨ 𝑥 Btwn ⟨𝑄, 𝐴⟩) ∧ ⟨𝑄, 𝑥⟩Cgr⟨𝐵, 𝐶⟩))
5955, 58syl 17 . 2 ((𝑁 ∈ ℕ ∧ (𝑄 ∈ (𝔼‘𝑁) ∧ 𝐴 ∈ (𝔼‘𝑁)) ∧ (𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁))) → ∃𝑥 ∈ (𝔼‘𝑁)((𝑄 Btwn ⟨𝑄, 𝑥⟩ ∨ 𝑥 Btwn ⟨𝑄, 𝐴⟩) ∧ ⟨𝑄, 𝑥⟩Cgr⟨𝐵, 𝐶⟩))
604, 51, 59pm2.61ne 3032 1 ((𝑁 ∈ ℕ ∧ (𝑄 ∈ (𝔼‘𝑁) ∧ 𝐴 ∈ (𝔼‘𝑁)) ∧ (𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁))) → ∃𝑥 ∈ (𝔼‘𝑁)((𝐴 Btwn ⟨𝑄, 𝑥⟩ ∨ 𝑥 Btwn ⟨𝑄, 𝐴⟩) ∧ ⟨𝑄, 𝑥⟩Cgr⟨𝐵, 𝐶⟩))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396  wo 844  w3a 1086   = wceq 1542  wcel 2110  wne 2945  wrex 3067  cop 4573   class class class wbr 5079  cfv 6432  cn 11973  𝔼cee 27254   Btwn cbtwn 27255  Cgrccgr 27256
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1802  ax-4 1816  ax-5 1917  ax-6 1975  ax-7 2015  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-ext 2711  ax-rep 5214  ax-sep 5227  ax-nul 5234  ax-pow 5292  ax-pr 5356  ax-un 7582  ax-inf2 9377  ax-cnex 10928  ax-resscn 10929  ax-1cn 10930  ax-icn 10931  ax-addcl 10932  ax-addrcl 10933  ax-mulcl 10934  ax-mulrcl 10935  ax-mulcom 10936  ax-addass 10937  ax-mulass 10938  ax-distr 10939  ax-i2m1 10940  ax-1ne0 10941  ax-1rid 10942  ax-rnegex 10943  ax-rrecex 10944  ax-cnre 10945  ax-pre-lttri 10946  ax-pre-lttrn 10947  ax-pre-ltadd 10948  ax-pre-mulgt0 10949  ax-pre-sup 10950
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1545  df-fal 1555  df-ex 1787  df-nf 1791  df-sb 2072  df-mo 2542  df-eu 2571  df-clab 2718  df-cleq 2732  df-clel 2818  df-nfc 2891  df-ne 2946  df-nel 3052  df-ral 3071  df-rex 3072  df-reu 3073  df-rmo 3074  df-rab 3075  df-v 3433  df-sbc 3721  df-csb 3838  df-dif 3895  df-un 3897  df-in 3899  df-ss 3909  df-pss 3911  df-nul 4263  df-if 4466  df-pw 4541  df-sn 4568  df-pr 4570  df-op 4574  df-uni 4846  df-int 4886  df-iun 4932  df-br 5080  df-opab 5142  df-mpt 5163  df-tr 5197  df-id 5490  df-eprel 5496  df-po 5504  df-so 5505  df-fr 5545  df-se 5546  df-we 5547  df-xp 5596  df-rel 5597  df-cnv 5598  df-co 5599  df-dm 5600  df-rn 5601  df-res 5602  df-ima 5603  df-pred 6201  df-ord 6268  df-on 6269  df-lim 6270  df-suc 6271  df-iota 6390  df-fun 6434  df-fn 6435  df-f 6436  df-f1 6437  df-fo 6438  df-f1o 6439  df-fv 6440  df-isom 6441  df-riota 7228  df-ov 7274  df-oprab 7275  df-mpo 7276  df-om 7707  df-1st 7824  df-2nd 7825  df-frecs 8088  df-wrecs 8119  df-recs 8193  df-rdg 8232  df-1o 8288  df-er 8481  df-map 8600  df-en 8717  df-dom 8718  df-sdom 8719  df-fin 8720  df-sup 9179  df-oi 9247  df-card 9698  df-pnf 11012  df-mnf 11013  df-xr 11014  df-ltxr 11015  df-le 11016  df-sub 11207  df-neg 11208  df-div 11633  df-nn 11974  df-2 12036  df-3 12037  df-n0 12234  df-z 12320  df-uz 12582  df-rp 12730  df-ico 13084  df-icc 13085  df-fz 13239  df-fzo 13382  df-seq 13720  df-exp 13781  df-hash 14043  df-cj 14808  df-re 14809  df-im 14810  df-sqrt 14944  df-abs 14945  df-clim 15195  df-sum 15396  df-ee 27257  df-btwn 27258  df-cgr 27259  df-ofs 34281  df-colinear 34337  df-ifs 34338  df-cgr3 34339  df-fs 34340
This theorem is referenced by:  seglelin  34414  outsideofeu  34429
  Copyright terms: Public domain W3C validator