Mathbox for Scott Fenton < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  segcon2 Structured version   Visualization version   GIF version

Theorem segcon2 32801
 Description: Generalization of axsegcon 26276. This time, we generate an endpoint for a segment on the ray 𝑄𝐴 congruent to 𝐵𝐶 and starting at 𝑄, as opposed to axsegcon 26276, where the segment starts at 𝐴 (Contributed by Scott Fenton, 14-Oct-2013.) Remove unneeded inequality. (Revised by Scott Fenton, 15-Oct-2013.)
Assertion
Ref Expression
segcon2 ((𝑁 ∈ ℕ ∧ (𝑄 ∈ (𝔼‘𝑁) ∧ 𝐴 ∈ (𝔼‘𝑁)) ∧ (𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁))) → ∃𝑥 ∈ (𝔼‘𝑁)((𝐴 Btwn ⟨𝑄, 𝑥⟩ ∨ 𝑥 Btwn ⟨𝑄, 𝐴⟩) ∧ ⟨𝑄, 𝑥⟩Cgr⟨𝐵, 𝐶⟩))
Distinct variable groups:   𝑥,𝑄   𝑥,𝑁   𝑥,𝐴   𝑥,𝐵   𝑥,𝐶

Proof of Theorem segcon2
Dummy variable 𝑎 is distinct from all other variables.
StepHypRef Expression
1 breq1 4889 . . . . 5 (𝐴 = 𝑄 → (𝐴 Btwn ⟨𝑄, 𝑥⟩ ↔ 𝑄 Btwn ⟨𝑄, 𝑥⟩))
21orbi1d 903 . . . 4 (𝐴 = 𝑄 → ((𝐴 Btwn ⟨𝑄, 𝑥⟩ ∨ 𝑥 Btwn ⟨𝑄, 𝐴⟩) ↔ (𝑄 Btwn ⟨𝑄, 𝑥⟩ ∨ 𝑥 Btwn ⟨𝑄, 𝐴⟩)))
32anbi1d 623 . . 3 (𝐴 = 𝑄 → (((𝐴 Btwn ⟨𝑄, 𝑥⟩ ∨ 𝑥 Btwn ⟨𝑄, 𝐴⟩) ∧ ⟨𝑄, 𝑥⟩Cgr⟨𝐵, 𝐶⟩) ↔ ((𝑄 Btwn ⟨𝑄, 𝑥⟩ ∨ 𝑥 Btwn ⟨𝑄, 𝐴⟩) ∧ ⟨𝑄, 𝑥⟩Cgr⟨𝐵, 𝐶⟩)))
43rexbidv 3237 . 2 (𝐴 = 𝑄 → (∃𝑥 ∈ (𝔼‘𝑁)((𝐴 Btwn ⟨𝑄, 𝑥⟩ ∨ 𝑥 Btwn ⟨𝑄, 𝐴⟩) ∧ ⟨𝑄, 𝑥⟩Cgr⟨𝐵, 𝐶⟩) ↔ ∃𝑥 ∈ (𝔼‘𝑁)((𝑄 Btwn ⟨𝑄, 𝑥⟩ ∨ 𝑥 Btwn ⟨𝑄, 𝐴⟩) ∧ ⟨𝑄, 𝑥⟩Cgr⟨𝐵, 𝐶⟩)))
5 simp1 1127 . . . . 5 ((𝑁 ∈ ℕ ∧ (𝑄 ∈ (𝔼‘𝑁) ∧ 𝐴 ∈ (𝔼‘𝑁)) ∧ (𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁))) → 𝑁 ∈ ℕ)
6 simp2 1128 . . . . . 6 ((𝑁 ∈ ℕ ∧ (𝑄 ∈ (𝔼‘𝑁) ∧ 𝐴 ∈ (𝔼‘𝑁)) ∧ (𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁))) → (𝑄 ∈ (𝔼‘𝑁) ∧ 𝐴 ∈ (𝔼‘𝑁)))
76ancomd 455 . . . . 5 ((𝑁 ∈ ℕ ∧ (𝑄 ∈ (𝔼‘𝑁) ∧ 𝐴 ∈ (𝔼‘𝑁)) ∧ (𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁))) → (𝐴 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁)))
8 axsegcon 26276 . . . . 5 ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁)) ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁))) → ∃𝑎 ∈ (𝔼‘𝑁)(𝑄 Btwn ⟨𝐴, 𝑎⟩ ∧ ⟨𝑄, 𝑎⟩Cgr⟨𝐴, 𝑄⟩))
95, 7, 7, 8syl3anc 1439 . . . 4 ((𝑁 ∈ ℕ ∧ (𝑄 ∈ (𝔼‘𝑁) ∧ 𝐴 ∈ (𝔼‘𝑁)) ∧ (𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁))) → ∃𝑎 ∈ (𝔼‘𝑁)(𝑄 Btwn ⟨𝐴, 𝑎⟩ ∧ ⟨𝑄, 𝑎⟩Cgr⟨𝐴, 𝑄⟩))
109adantr 474 . . 3 (((𝑁 ∈ ℕ ∧ (𝑄 ∈ (𝔼‘𝑁) ∧ 𝐴 ∈ (𝔼‘𝑁)) ∧ (𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁))) ∧ 𝐴𝑄) → ∃𝑎 ∈ (𝔼‘𝑁)(𝑄 Btwn ⟨𝐴, 𝑎⟩ ∧ ⟨𝑄, 𝑎⟩Cgr⟨𝐴, 𝑄⟩))
11 simpl1 1199 . . . . . . . . 9 (((𝑁 ∈ ℕ ∧ (𝑄 ∈ (𝔼‘𝑁) ∧ 𝐴 ∈ (𝔼‘𝑁)) ∧ (𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁))) ∧ 𝑎 ∈ (𝔼‘𝑁)) → 𝑁 ∈ ℕ)
12 simpr 479 . . . . . . . . 9 (((𝑁 ∈ ℕ ∧ (𝑄 ∈ (𝔼‘𝑁) ∧ 𝐴 ∈ (𝔼‘𝑁)) ∧ (𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁))) ∧ 𝑎 ∈ (𝔼‘𝑁)) → 𝑎 ∈ (𝔼‘𝑁))
13 simpl2l 1254 . . . . . . . . 9 (((𝑁 ∈ ℕ ∧ (𝑄 ∈ (𝔼‘𝑁) ∧ 𝐴 ∈ (𝔼‘𝑁)) ∧ (𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁))) ∧ 𝑎 ∈ (𝔼‘𝑁)) → 𝑄 ∈ (𝔼‘𝑁))
14 simpl3 1203 . . . . . . . . 9 (((𝑁 ∈ ℕ ∧ (𝑄 ∈ (𝔼‘𝑁) ∧ 𝐴 ∈ (𝔼‘𝑁)) ∧ (𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁))) ∧ 𝑎 ∈ (𝔼‘𝑁)) → (𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)))
15 axsegcon 26276 . . . . . . . . 9 ((𝑁 ∈ ℕ ∧ (𝑎 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁)) ∧ (𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁))) → ∃𝑥 ∈ (𝔼‘𝑁)(𝑄 Btwn ⟨𝑎, 𝑥⟩ ∧ ⟨𝑄, 𝑥⟩Cgr⟨𝐵, 𝐶⟩))
1611, 12, 13, 14, 15syl121anc 1443 . . . . . . . 8 (((𝑁 ∈ ℕ ∧ (𝑄 ∈ (𝔼‘𝑁) ∧ 𝐴 ∈ (𝔼‘𝑁)) ∧ (𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁))) ∧ 𝑎 ∈ (𝔼‘𝑁)) → ∃𝑥 ∈ (𝔼‘𝑁)(𝑄 Btwn ⟨𝑎, 𝑥⟩ ∧ ⟨𝑄, 𝑥⟩Cgr⟨𝐵, 𝐶⟩))
1716adantr 474 . . . . . . 7 ((((𝑁 ∈ ℕ ∧ (𝑄 ∈ (𝔼‘𝑁) ∧ 𝐴 ∈ (𝔼‘𝑁)) ∧ (𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁))) ∧ 𝑎 ∈ (𝔼‘𝑁)) ∧ (𝐴𝑄 ∧ (𝑄 Btwn ⟨𝐴, 𝑎⟩ ∧ ⟨𝑄, 𝑎⟩Cgr⟨𝐴, 𝑄⟩))) → ∃𝑥 ∈ (𝔼‘𝑁)(𝑄 Btwn ⟨𝑎, 𝑥⟩ ∧ ⟨𝑄, 𝑥⟩Cgr⟨𝐵, 𝐶⟩))
18 anass 462 . . . . . . . . . 10 ((((𝑁 ∈ ℕ ∧ (𝑄 ∈ (𝔼‘𝑁) ∧ 𝐴 ∈ (𝔼‘𝑁)) ∧ (𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁))) ∧ 𝑎 ∈ (𝔼‘𝑁)) ∧ 𝑥 ∈ (𝔼‘𝑁)) ↔ ((𝑁 ∈ ℕ ∧ (𝑄 ∈ (𝔼‘𝑁) ∧ 𝐴 ∈ (𝔼‘𝑁)) ∧ (𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁))) ∧ (𝑎 ∈ (𝔼‘𝑁) ∧ 𝑥 ∈ (𝔼‘𝑁))))
19 df-3an 1073 . . . . . . . . . . . . 13 ((𝐴𝑄 ∧ (𝑄 Btwn ⟨𝐴, 𝑎⟩ ∧ ⟨𝑄, 𝑎⟩Cgr⟨𝐴, 𝑄⟩) ∧ 𝑄 Btwn ⟨𝑎, 𝑥⟩) ↔ ((𝐴𝑄 ∧ (𝑄 Btwn ⟨𝐴, 𝑎⟩ ∧ ⟨𝑄, 𝑎⟩Cgr⟨𝐴, 𝑄⟩)) ∧ 𝑄 Btwn ⟨𝑎, 𝑥⟩))
20 simpr1 1205 . . . . . . . . . . . . . . . 16 ((((𝑁 ∈ ℕ ∧ (𝑄 ∈ (𝔼‘𝑁) ∧ 𝐴 ∈ (𝔼‘𝑁)) ∧ (𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁))) ∧ (𝑎 ∈ (𝔼‘𝑁) ∧ 𝑥 ∈ (𝔼‘𝑁))) ∧ (𝐴𝑄 ∧ (𝑄 Btwn ⟨𝐴, 𝑎⟩ ∧ ⟨𝑄, 𝑎⟩Cgr⟨𝐴, 𝑄⟩) ∧ 𝑄 Btwn ⟨𝑎, 𝑥⟩)) → 𝐴𝑄)
21 simpr2r 1268 . . . . . . . . . . . . . . . . . 18 ((((𝑁 ∈ ℕ ∧ (𝑄 ∈ (𝔼‘𝑁) ∧ 𝐴 ∈ (𝔼‘𝑁)) ∧ (𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁))) ∧ (𝑎 ∈ (𝔼‘𝑁) ∧ 𝑥 ∈ (𝔼‘𝑁))) ∧ (𝐴𝑄 ∧ (𝑄 Btwn ⟨𝐴, 𝑎⟩ ∧ ⟨𝑄, 𝑎⟩Cgr⟨𝐴, 𝑄⟩) ∧ 𝑄 Btwn ⟨𝑎, 𝑥⟩)) → ⟨𝑄, 𝑎⟩Cgr⟨𝐴, 𝑄⟩)
22 simpl1 1199 . . . . . . . . . . . . . . . . . . . 20 (((𝑁 ∈ ℕ ∧ (𝑄 ∈ (𝔼‘𝑁) ∧ 𝐴 ∈ (𝔼‘𝑁)) ∧ (𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁))) ∧ (𝑎 ∈ (𝔼‘𝑁) ∧ 𝑥 ∈ (𝔼‘𝑁))) → 𝑁 ∈ ℕ)
23 simpl2l 1254 . . . . . . . . . . . . . . . . . . . 20 (((𝑁 ∈ ℕ ∧ (𝑄 ∈ (𝔼‘𝑁) ∧ 𝐴 ∈ (𝔼‘𝑁)) ∧ (𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁))) ∧ (𝑎 ∈ (𝔼‘𝑁) ∧ 𝑥 ∈ (𝔼‘𝑁))) → 𝑄 ∈ (𝔼‘𝑁))
24 simprl 761 . . . . . . . . . . . . . . . . . . . 20 (((𝑁 ∈ ℕ ∧ (𝑄 ∈ (𝔼‘𝑁) ∧ 𝐴 ∈ (𝔼‘𝑁)) ∧ (𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁))) ∧ (𝑎 ∈ (𝔼‘𝑁) ∧ 𝑥 ∈ (𝔼‘𝑁))) → 𝑎 ∈ (𝔼‘𝑁))
25 simpl2r 1256 . . . . . . . . . . . . . . . . . . . 20 (((𝑁 ∈ ℕ ∧ (𝑄 ∈ (𝔼‘𝑁) ∧ 𝐴 ∈ (𝔼‘𝑁)) ∧ (𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁))) ∧ (𝑎 ∈ (𝔼‘𝑁) ∧ 𝑥 ∈ (𝔼‘𝑁))) → 𝐴 ∈ (𝔼‘𝑁))
26 cgrdegen 32700 . . . . . . . . . . . . . . . . . . . 20 ((𝑁 ∈ ℕ ∧ (𝑄 ∈ (𝔼‘𝑁) ∧ 𝑎 ∈ (𝔼‘𝑁)) ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁))) → (⟨𝑄, 𝑎⟩Cgr⟨𝐴, 𝑄⟩ → (𝑄 = 𝑎𝐴 = 𝑄)))
2722, 23, 24, 25, 23, 26syl122anc 1447 . . . . . . . . . . . . . . . . . . 19 (((𝑁 ∈ ℕ ∧ (𝑄 ∈ (𝔼‘𝑁) ∧ 𝐴 ∈ (𝔼‘𝑁)) ∧ (𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁))) ∧ (𝑎 ∈ (𝔼‘𝑁) ∧ 𝑥 ∈ (𝔼‘𝑁))) → (⟨𝑄, 𝑎⟩Cgr⟨𝐴, 𝑄⟩ → (𝑄 = 𝑎𝐴 = 𝑄)))
2827adantr 474 . . . . . . . . . . . . . . . . . 18 ((((𝑁 ∈ ℕ ∧ (𝑄 ∈ (𝔼‘𝑁) ∧ 𝐴 ∈ (𝔼‘𝑁)) ∧ (𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁))) ∧ (𝑎 ∈ (𝔼‘𝑁) ∧ 𝑥 ∈ (𝔼‘𝑁))) ∧ (𝐴𝑄 ∧ (𝑄 Btwn ⟨𝐴, 𝑎⟩ ∧ ⟨𝑄, 𝑎⟩Cgr⟨𝐴, 𝑄⟩) ∧ 𝑄 Btwn ⟨𝑎, 𝑥⟩)) → (⟨𝑄, 𝑎⟩Cgr⟨𝐴, 𝑄⟩ → (𝑄 = 𝑎𝐴 = 𝑄)))
2921, 28mpd 15 . . . . . . . . . . . . . . . . 17 ((((𝑁 ∈ ℕ ∧ (𝑄 ∈ (𝔼‘𝑁) ∧ 𝐴 ∈ (𝔼‘𝑁)) ∧ (𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁))) ∧ (𝑎 ∈ (𝔼‘𝑁) ∧ 𝑥 ∈ (𝔼‘𝑁))) ∧ (𝐴𝑄 ∧ (𝑄 Btwn ⟨𝐴, 𝑎⟩ ∧ ⟨𝑄, 𝑎⟩Cgr⟨𝐴, 𝑄⟩) ∧ 𝑄 Btwn ⟨𝑎, 𝑥⟩)) → (𝑄 = 𝑎𝐴 = 𝑄))
3029necon3bid 3013 . . . . . . . . . . . . . . . 16 ((((𝑁 ∈ ℕ ∧ (𝑄 ∈ (𝔼‘𝑁) ∧ 𝐴 ∈ (𝔼‘𝑁)) ∧ (𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁))) ∧ (𝑎 ∈ (𝔼‘𝑁) ∧ 𝑥 ∈ (𝔼‘𝑁))) ∧ (𝐴𝑄 ∧ (𝑄 Btwn ⟨𝐴, 𝑎⟩ ∧ ⟨𝑄, 𝑎⟩Cgr⟨𝐴, 𝑄⟩) ∧ 𝑄 Btwn ⟨𝑎, 𝑥⟩)) → (𝑄𝑎𝐴𝑄))
3120, 30mpbird 249 . . . . . . . . . . . . . . 15 ((((𝑁 ∈ ℕ ∧ (𝑄 ∈ (𝔼‘𝑁) ∧ 𝐴 ∈ (𝔼‘𝑁)) ∧ (𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁))) ∧ (𝑎 ∈ (𝔼‘𝑁) ∧ 𝑥 ∈ (𝔼‘𝑁))) ∧ (𝐴𝑄 ∧ (𝑄 Btwn ⟨𝐴, 𝑎⟩ ∧ ⟨𝑄, 𝑎⟩Cgr⟨𝐴, 𝑄⟩) ∧ 𝑄 Btwn ⟨𝑎, 𝑥⟩)) → 𝑄𝑎)
3231necomd 3024 . . . . . . . . . . . . . 14 ((((𝑁 ∈ ℕ ∧ (𝑄 ∈ (𝔼‘𝑁) ∧ 𝐴 ∈ (𝔼‘𝑁)) ∧ (𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁))) ∧ (𝑎 ∈ (𝔼‘𝑁) ∧ 𝑥 ∈ (𝔼‘𝑁))) ∧ (𝐴𝑄 ∧ (𝑄 Btwn ⟨𝐴, 𝑎⟩ ∧ ⟨𝑄, 𝑎⟩Cgr⟨𝐴, 𝑄⟩) ∧ 𝑄 Btwn ⟨𝑎, 𝑥⟩)) → 𝑎𝑄)
33 simpr2l 1266 . . . . . . . . . . . . . . 15 ((((𝑁 ∈ ℕ ∧ (𝑄 ∈ (𝔼‘𝑁) ∧ 𝐴 ∈ (𝔼‘𝑁)) ∧ (𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁))) ∧ (𝑎 ∈ (𝔼‘𝑁) ∧ 𝑥 ∈ (𝔼‘𝑁))) ∧ (𝐴𝑄 ∧ (𝑄 Btwn ⟨𝐴, 𝑎⟩ ∧ ⟨𝑄, 𝑎⟩Cgr⟨𝐴, 𝑄⟩) ∧ 𝑄 Btwn ⟨𝑎, 𝑥⟩)) → 𝑄 Btwn ⟨𝐴, 𝑎⟩)
3422, 23, 25, 24, 33btwncomand 32711 . . . . . . . . . . . . . 14 ((((𝑁 ∈ ℕ ∧ (𝑄 ∈ (𝔼‘𝑁) ∧ 𝐴 ∈ (𝔼‘𝑁)) ∧ (𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁))) ∧ (𝑎 ∈ (𝔼‘𝑁) ∧ 𝑥 ∈ (𝔼‘𝑁))) ∧ (𝐴𝑄 ∧ (𝑄 Btwn ⟨𝐴, 𝑎⟩ ∧ ⟨𝑄, 𝑎⟩Cgr⟨𝐴, 𝑄⟩) ∧ 𝑄 Btwn ⟨𝑎, 𝑥⟩)) → 𝑄 Btwn ⟨𝑎, 𝐴⟩)
35 simpr3 1209 . . . . . . . . . . . . . 14 ((((𝑁 ∈ ℕ ∧ (𝑄 ∈ (𝔼‘𝑁) ∧ 𝐴 ∈ (𝔼‘𝑁)) ∧ (𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁))) ∧ (𝑎 ∈ (𝔼‘𝑁) ∧ 𝑥 ∈ (𝔼‘𝑁))) ∧ (𝐴𝑄 ∧ (𝑄 Btwn ⟨𝐴, 𝑎⟩ ∧ ⟨𝑄, 𝑎⟩Cgr⟨𝐴, 𝑄⟩) ∧ 𝑄 Btwn ⟨𝑎, 𝑥⟩)) → 𝑄 Btwn ⟨𝑎, 𝑥⟩)
36 simprr 763 . . . . . . . . . . . . . . . 16 (((𝑁 ∈ ℕ ∧ (𝑄 ∈ (𝔼‘𝑁) ∧ 𝐴 ∈ (𝔼‘𝑁)) ∧ (𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁))) ∧ (𝑎 ∈ (𝔼‘𝑁) ∧ 𝑥 ∈ (𝔼‘𝑁))) → 𝑥 ∈ (𝔼‘𝑁))
37 btwnconn2 32798 . . . . . . . . . . . . . . . 16 ((𝑁 ∈ ℕ ∧ (𝑎 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁)) ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝑥 ∈ (𝔼‘𝑁))) → ((𝑎𝑄𝑄 Btwn ⟨𝑎, 𝐴⟩ ∧ 𝑄 Btwn ⟨𝑎, 𝑥⟩) → (𝐴 Btwn ⟨𝑄, 𝑥⟩ ∨ 𝑥 Btwn ⟨𝑄, 𝐴⟩)))
3822, 24, 23, 25, 36, 37syl122anc 1447 . . . . . . . . . . . . . . 15 (((𝑁 ∈ ℕ ∧ (𝑄 ∈ (𝔼‘𝑁) ∧ 𝐴 ∈ (𝔼‘𝑁)) ∧ (𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁))) ∧ (𝑎 ∈ (𝔼‘𝑁) ∧ 𝑥 ∈ (𝔼‘𝑁))) → ((𝑎𝑄𝑄 Btwn ⟨𝑎, 𝐴⟩ ∧ 𝑄 Btwn ⟨𝑎, 𝑥⟩) → (𝐴 Btwn ⟨𝑄, 𝑥⟩ ∨ 𝑥 Btwn ⟨𝑄, 𝐴⟩)))
3938adantr 474 . . . . . . . . . . . . . 14 ((((𝑁 ∈ ℕ ∧ (𝑄 ∈ (𝔼‘𝑁) ∧ 𝐴 ∈ (𝔼‘𝑁)) ∧ (𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁))) ∧ (𝑎 ∈ (𝔼‘𝑁) ∧ 𝑥 ∈ (𝔼‘𝑁))) ∧ (𝐴𝑄 ∧ (𝑄 Btwn ⟨𝐴, 𝑎⟩ ∧ ⟨𝑄, 𝑎⟩Cgr⟨𝐴, 𝑄⟩) ∧ 𝑄 Btwn ⟨𝑎, 𝑥⟩)) → ((𝑎𝑄𝑄 Btwn ⟨𝑎, 𝐴⟩ ∧ 𝑄 Btwn ⟨𝑎, 𝑥⟩) → (𝐴 Btwn ⟨𝑄, 𝑥⟩ ∨ 𝑥 Btwn ⟨𝑄, 𝐴⟩)))
4032, 34, 35, 39mp3and 1537 . . . . . . . . . . . . 13 ((((𝑁 ∈ ℕ ∧ (𝑄 ∈ (𝔼‘𝑁) ∧ 𝐴 ∈ (𝔼‘𝑁)) ∧ (𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁))) ∧ (𝑎 ∈ (𝔼‘𝑁) ∧ 𝑥 ∈ (𝔼‘𝑁))) ∧ (𝐴𝑄 ∧ (𝑄 Btwn ⟨𝐴, 𝑎⟩ ∧ ⟨𝑄, 𝑎⟩Cgr⟨𝐴, 𝑄⟩) ∧ 𝑄 Btwn ⟨𝑎, 𝑥⟩)) → (𝐴 Btwn ⟨𝑄, 𝑥⟩ ∨ 𝑥 Btwn ⟨𝑄, 𝐴⟩))
4119, 40sylan2br 588 . . . . . . . . . . . 12 ((((𝑁 ∈ ℕ ∧ (𝑄 ∈ (𝔼‘𝑁) ∧ 𝐴 ∈ (𝔼‘𝑁)) ∧ (𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁))) ∧ (𝑎 ∈ (𝔼‘𝑁) ∧ 𝑥 ∈ (𝔼‘𝑁))) ∧ ((𝐴𝑄 ∧ (𝑄 Btwn ⟨𝐴, 𝑎⟩ ∧ ⟨𝑄, 𝑎⟩Cgr⟨𝐴, 𝑄⟩)) ∧ 𝑄 Btwn ⟨𝑎, 𝑥⟩)) → (𝐴 Btwn ⟨𝑄, 𝑥⟩ ∨ 𝑥 Btwn ⟨𝑄, 𝐴⟩))
4241expr 450 . . . . . . . . . . 11 ((((𝑁 ∈ ℕ ∧ (𝑄 ∈ (𝔼‘𝑁) ∧ 𝐴 ∈ (𝔼‘𝑁)) ∧ (𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁))) ∧ (𝑎 ∈ (𝔼‘𝑁) ∧ 𝑥 ∈ (𝔼‘𝑁))) ∧ (𝐴𝑄 ∧ (𝑄 Btwn ⟨𝐴, 𝑎⟩ ∧ ⟨𝑄, 𝑎⟩Cgr⟨𝐴, 𝑄⟩))) → (𝑄 Btwn ⟨𝑎, 𝑥⟩ → (𝐴 Btwn ⟨𝑄, 𝑥⟩ ∨ 𝑥 Btwn ⟨𝑄, 𝐴⟩)))
4342anim1d 604 . . . . . . . . . 10 ((((𝑁 ∈ ℕ ∧ (𝑄 ∈ (𝔼‘𝑁) ∧ 𝐴 ∈ (𝔼‘𝑁)) ∧ (𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁))) ∧ (𝑎 ∈ (𝔼‘𝑁) ∧ 𝑥 ∈ (𝔼‘𝑁))) ∧ (𝐴𝑄 ∧ (𝑄 Btwn ⟨𝐴, 𝑎⟩ ∧ ⟨𝑄, 𝑎⟩Cgr⟨𝐴, 𝑄⟩))) → ((𝑄 Btwn ⟨𝑎, 𝑥⟩ ∧ ⟨𝑄, 𝑥⟩Cgr⟨𝐵, 𝐶⟩) → ((𝐴 Btwn ⟨𝑄, 𝑥⟩ ∨ 𝑥 Btwn ⟨𝑄, 𝐴⟩) ∧ ⟨𝑄, 𝑥⟩Cgr⟨𝐵, 𝐶⟩)))
4418, 43sylanb 576 . . . . . . . . 9 (((((𝑁 ∈ ℕ ∧ (𝑄 ∈ (𝔼‘𝑁) ∧ 𝐴 ∈ (𝔼‘𝑁)) ∧ (𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁))) ∧ 𝑎 ∈ (𝔼‘𝑁)) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ (𝐴𝑄 ∧ (𝑄 Btwn ⟨𝐴, 𝑎⟩ ∧ ⟨𝑄, 𝑎⟩Cgr⟨𝐴, 𝑄⟩))) → ((𝑄 Btwn ⟨𝑎, 𝑥⟩ ∧ ⟨𝑄, 𝑥⟩Cgr⟨𝐵, 𝐶⟩) → ((𝐴 Btwn ⟨𝑄, 𝑥⟩ ∨ 𝑥 Btwn ⟨𝑄, 𝐴⟩) ∧ ⟨𝑄, 𝑥⟩Cgr⟨𝐵, 𝐶⟩)))
4544an32s 642 . . . . . . . 8 (((((𝑁 ∈ ℕ ∧ (𝑄 ∈ (𝔼‘𝑁) ∧ 𝐴 ∈ (𝔼‘𝑁)) ∧ (𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁))) ∧ 𝑎 ∈ (𝔼‘𝑁)) ∧ (𝐴𝑄 ∧ (𝑄 Btwn ⟨𝐴, 𝑎⟩ ∧ ⟨𝑄, 𝑎⟩Cgr⟨𝐴, 𝑄⟩))) ∧ 𝑥 ∈ (𝔼‘𝑁)) → ((𝑄 Btwn ⟨𝑎, 𝑥⟩ ∧ ⟨𝑄, 𝑥⟩Cgr⟨𝐵, 𝐶⟩) → ((𝐴 Btwn ⟨𝑄, 𝑥⟩ ∨ 𝑥 Btwn ⟨𝑄, 𝐴⟩) ∧ ⟨𝑄, 𝑥⟩Cgr⟨𝐵, 𝐶⟩)))
4645reximdva 3198 . . . . . . 7 ((((𝑁 ∈ ℕ ∧ (𝑄 ∈ (𝔼‘𝑁) ∧ 𝐴 ∈ (𝔼‘𝑁)) ∧ (𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁))) ∧ 𝑎 ∈ (𝔼‘𝑁)) ∧ (𝐴𝑄 ∧ (𝑄 Btwn ⟨𝐴, 𝑎⟩ ∧ ⟨𝑄, 𝑎⟩Cgr⟨𝐴, 𝑄⟩))) → (∃𝑥 ∈ (𝔼‘𝑁)(𝑄 Btwn ⟨𝑎, 𝑥⟩ ∧ ⟨𝑄, 𝑥⟩Cgr⟨𝐵, 𝐶⟩) → ∃𝑥 ∈ (𝔼‘𝑁)((𝐴 Btwn ⟨𝑄, 𝑥⟩ ∨ 𝑥 Btwn ⟨𝑄, 𝐴⟩) ∧ ⟨𝑄, 𝑥⟩Cgr⟨𝐵, 𝐶⟩)))
4717, 46mpd 15 . . . . . 6 ((((𝑁 ∈ ℕ ∧ (𝑄 ∈ (𝔼‘𝑁) ∧ 𝐴 ∈ (𝔼‘𝑁)) ∧ (𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁))) ∧ 𝑎 ∈ (𝔼‘𝑁)) ∧ (𝐴𝑄 ∧ (𝑄 Btwn ⟨𝐴, 𝑎⟩ ∧ ⟨𝑄, 𝑎⟩Cgr⟨𝐴, 𝑄⟩))) → ∃𝑥 ∈ (𝔼‘𝑁)((𝐴 Btwn ⟨𝑄, 𝑥⟩ ∨ 𝑥 Btwn ⟨𝑄, 𝐴⟩) ∧ ⟨𝑄, 𝑥⟩Cgr⟨𝐵, 𝐶⟩))
4847expr 450 . . . . 5 ((((𝑁 ∈ ℕ ∧ (𝑄 ∈ (𝔼‘𝑁) ∧ 𝐴 ∈ (𝔼‘𝑁)) ∧ (𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁))) ∧ 𝑎 ∈ (𝔼‘𝑁)) ∧ 𝐴𝑄) → ((𝑄 Btwn ⟨𝐴, 𝑎⟩ ∧ ⟨𝑄, 𝑎⟩Cgr⟨𝐴, 𝑄⟩) → ∃𝑥 ∈ (𝔼‘𝑁)((𝐴 Btwn ⟨𝑄, 𝑥⟩ ∨ 𝑥 Btwn ⟨𝑄, 𝐴⟩) ∧ ⟨𝑄, 𝑥⟩Cgr⟨𝐵, 𝐶⟩)))
4948an32s 642 . . . 4 ((((𝑁 ∈ ℕ ∧ (𝑄 ∈ (𝔼‘𝑁) ∧ 𝐴 ∈ (𝔼‘𝑁)) ∧ (𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁))) ∧ 𝐴𝑄) ∧ 𝑎 ∈ (𝔼‘𝑁)) → ((𝑄 Btwn ⟨𝐴, 𝑎⟩ ∧ ⟨𝑄, 𝑎⟩Cgr⟨𝐴, 𝑄⟩) → ∃𝑥 ∈ (𝔼‘𝑁)((𝐴 Btwn ⟨𝑄, 𝑥⟩ ∨ 𝑥 Btwn ⟨𝑄, 𝐴⟩) ∧ ⟨𝑄, 𝑥⟩Cgr⟨𝐵, 𝐶⟩)))
5049rexlimdva 3213 . . 3 (((𝑁 ∈ ℕ ∧ (𝑄 ∈ (𝔼‘𝑁) ∧ 𝐴 ∈ (𝔼‘𝑁)) ∧ (𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁))) ∧ 𝐴𝑄) → (∃𝑎 ∈ (𝔼‘𝑁)(𝑄 Btwn ⟨𝐴, 𝑎⟩ ∧ ⟨𝑄, 𝑎⟩Cgr⟨𝐴, 𝑄⟩) → ∃𝑥 ∈ (𝔼‘𝑁)((𝐴 Btwn ⟨𝑄, 𝑥⟩ ∨ 𝑥 Btwn ⟨𝑄, 𝐴⟩) ∧ ⟨𝑄, 𝑥⟩Cgr⟨𝐵, 𝐶⟩)))
5110, 50mpd 15 . 2 (((𝑁 ∈ ℕ ∧ (𝑄 ∈ (𝔼‘𝑁) ∧ 𝐴 ∈ (𝔼‘𝑁)) ∧ (𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁))) ∧ 𝐴𝑄) → ∃𝑥 ∈ (𝔼‘𝑁)((𝐴 Btwn ⟨𝑄, 𝑥⟩ ∨ 𝑥 Btwn ⟨𝑄, 𝐴⟩) ∧ ⟨𝑄, 𝑥⟩Cgr⟨𝐵, 𝐶⟩))
52 simp2l 1213 . . . 4 ((𝑁 ∈ ℕ ∧ (𝑄 ∈ (𝔼‘𝑁) ∧ 𝐴 ∈ (𝔼‘𝑁)) ∧ (𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁))) → 𝑄 ∈ (𝔼‘𝑁))
53 simp3 1129 . . . 4 ((𝑁 ∈ ℕ ∧ (𝑄 ∈ (𝔼‘𝑁) ∧ 𝐴 ∈ (𝔼‘𝑁)) ∧ (𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁))) → (𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)))
54 axsegcon 26276 . . . 4 ((𝑁 ∈ ℕ ∧ (𝑄 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁)) ∧ (𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁))) → ∃𝑥 ∈ (𝔼‘𝑁)(𝑄 Btwn ⟨𝑄, 𝑥⟩ ∧ ⟨𝑄, 𝑥⟩Cgr⟨𝐵, 𝐶⟩))
555, 52, 52, 53, 54syl121anc 1443 . . 3 ((𝑁 ∈ ℕ ∧ (𝑄 ∈ (𝔼‘𝑁) ∧ 𝐴 ∈ (𝔼‘𝑁)) ∧ (𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁))) → ∃𝑥 ∈ (𝔼‘𝑁)(𝑄 Btwn ⟨𝑄, 𝑥⟩ ∧ ⟨𝑄, 𝑥⟩Cgr⟨𝐵, 𝐶⟩))
56 orc 856 . . . . 5 (𝑄 Btwn ⟨𝑄, 𝑥⟩ → (𝑄 Btwn ⟨𝑄, 𝑥⟩ ∨ 𝑥 Btwn ⟨𝑄, 𝐴⟩))
5756anim1i 608 . . . 4 ((𝑄 Btwn ⟨𝑄, 𝑥⟩ ∧ ⟨𝑄, 𝑥⟩Cgr⟨𝐵, 𝐶⟩) → ((𝑄 Btwn ⟨𝑄, 𝑥⟩ ∨ 𝑥 Btwn ⟨𝑄, 𝐴⟩) ∧ ⟨𝑄, 𝑥⟩Cgr⟨𝐵, 𝐶⟩))
5857reximi 3192 . . 3 (∃𝑥 ∈ (𝔼‘𝑁)(𝑄 Btwn ⟨𝑄, 𝑥⟩ ∧ ⟨𝑄, 𝑥⟩Cgr⟨𝐵, 𝐶⟩) → ∃𝑥 ∈ (𝔼‘𝑁)((𝑄 Btwn ⟨𝑄, 𝑥⟩ ∨ 𝑥 Btwn ⟨𝑄, 𝐴⟩) ∧ ⟨𝑄, 𝑥⟩Cgr⟨𝐵, 𝐶⟩))
5955, 58syl 17 . 2 ((𝑁 ∈ ℕ ∧ (𝑄 ∈ (𝔼‘𝑁) ∧ 𝐴 ∈ (𝔼‘𝑁)) ∧ (𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁))) → ∃𝑥 ∈ (𝔼‘𝑁)((𝑄 Btwn ⟨𝑄, 𝑥⟩ ∨ 𝑥 Btwn ⟨𝑄, 𝐴⟩) ∧ ⟨𝑄, 𝑥⟩Cgr⟨𝐵, 𝐶⟩))
604, 51, 59pm2.61ne 3055 1 ((𝑁 ∈ ℕ ∧ (𝑄 ∈ (𝔼‘𝑁) ∧ 𝐴 ∈ (𝔼‘𝑁)) ∧ (𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁))) → ∃𝑥 ∈ (𝔼‘𝑁)((𝐴 Btwn ⟨𝑄, 𝑥⟩ ∨ 𝑥 Btwn ⟨𝑄, 𝐴⟩) ∧ ⟨𝑄, 𝑥⟩Cgr⟨𝐵, 𝐶⟩))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 198   ∧ wa 386   ∨ wo 836   ∧ w3a 1071   = wceq 1601   ∈ wcel 2107   ≠ wne 2969  ∃wrex 3091  ⟨cop 4404   class class class wbr 4886  ‘cfv 6135  ℕcn 11374  𝔼cee 26237   Btwn cbtwn 26238  Cgrccgr 26239 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1839  ax-4 1853  ax-5 1953  ax-6 2021  ax-7 2055  ax-8 2109  ax-9 2116  ax-10 2135  ax-11 2150  ax-12 2163  ax-13 2334  ax-ext 2754  ax-rep 5006  ax-sep 5017  ax-nul 5025  ax-pow 5077  ax-pr 5138  ax-un 7226  ax-inf2 8835  ax-cnex 10328  ax-resscn 10329  ax-1cn 10330  ax-icn 10331  ax-addcl 10332  ax-addrcl 10333  ax-mulcl 10334  ax-mulrcl 10335  ax-mulcom 10336  ax-addass 10337  ax-mulass 10338  ax-distr 10339  ax-i2m1 10340  ax-1ne0 10341  ax-1rid 10342  ax-rnegex 10343  ax-rrecex 10344  ax-cnre 10345  ax-pre-lttri 10346  ax-pre-lttrn 10347  ax-pre-ltadd 10348  ax-pre-mulgt0 10349  ax-pre-sup 10350 This theorem depends on definitions:  df-bi 199  df-an 387  df-or 837  df-3or 1072  df-3an 1073  df-tru 1605  df-fal 1615  df-ex 1824  df-nf 1828  df-sb 2012  df-mo 2551  df-eu 2587  df-clab 2764  df-cleq 2770  df-clel 2774  df-nfc 2921  df-ne 2970  df-nel 3076  df-ral 3095  df-rex 3096  df-reu 3097  df-rmo 3098  df-rab 3099  df-v 3400  df-sbc 3653  df-csb 3752  df-dif 3795  df-un 3797  df-in 3799  df-ss 3806  df-pss 3808  df-nul 4142  df-if 4308  df-pw 4381  df-sn 4399  df-pr 4401  df-tp 4403  df-op 4405  df-uni 4672  df-int 4711  df-iun 4755  df-br 4887  df-opab 4949  df-mpt 4966  df-tr 4988  df-id 5261  df-eprel 5266  df-po 5274  df-so 5275  df-fr 5314  df-se 5315  df-we 5316  df-xp 5361  df-rel 5362  df-cnv 5363  df-co 5364  df-dm 5365  df-rn 5366  df-res 5367  df-ima 5368  df-pred 5933  df-ord 5979  df-on 5980  df-lim 5981  df-suc 5982  df-iota 6099  df-fun 6137  df-fn 6138  df-f 6139  df-f1 6140  df-fo 6141  df-f1o 6142  df-fv 6143  df-isom 6144  df-riota 6883  df-ov 6925  df-oprab 6926  df-mpt2 6927  df-om 7344  df-1st 7445  df-2nd 7446  df-wrecs 7689  df-recs 7751  df-rdg 7789  df-1o 7843  df-oadd 7847  df-er 8026  df-map 8142  df-en 8242  df-dom 8243  df-sdom 8244  df-fin 8245  df-sup 8636  df-oi 8704  df-card 9098  df-pnf 10413  df-mnf 10414  df-xr 10415  df-ltxr 10416  df-le 10417  df-sub 10608  df-neg 10609  df-div 11033  df-nn 11375  df-2 11438  df-3 11439  df-n0 11643  df-z 11729  df-uz 11993  df-rp 12138  df-ico 12493  df-icc 12494  df-fz 12644  df-fzo 12785  df-seq 13120  df-exp 13179  df-hash 13436  df-cj 14246  df-re 14247  df-im 14248  df-sqrt 14382  df-abs 14383  df-clim 14627  df-sum 14825  df-ee 26240  df-btwn 26241  df-cgr 26242  df-ofs 32679  df-colinear 32735  df-ifs 32736  df-cgr3 32737  df-fs 32738 This theorem is referenced by:  seglelin  32812  outsideofeu  32827
 Copyright terms: Public domain W3C validator