Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  segcon2 Structured version   Visualization version   GIF version

Theorem segcon2 33591
Description: Generalization of axsegcon 26717. This time, we generate an endpoint for a segment on the ray 𝑄𝐴 congruent to 𝐵𝐶 and starting at 𝑄, as opposed to axsegcon 26717, where the segment starts at 𝐴 (Contributed by Scott Fenton, 14-Oct-2013.) Remove unneeded inequality. (Revised by Scott Fenton, 15-Oct-2013.)
Assertion
Ref Expression
segcon2 ((𝑁 ∈ ℕ ∧ (𝑄 ∈ (𝔼‘𝑁) ∧ 𝐴 ∈ (𝔼‘𝑁)) ∧ (𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁))) → ∃𝑥 ∈ (𝔼‘𝑁)((𝐴 Btwn ⟨𝑄, 𝑥⟩ ∨ 𝑥 Btwn ⟨𝑄, 𝐴⟩) ∧ ⟨𝑄, 𝑥⟩Cgr⟨𝐵, 𝐶⟩))
Distinct variable groups:   𝑥,𝑄   𝑥,𝑁   𝑥,𝐴   𝑥,𝐵   𝑥,𝐶

Proof of Theorem segcon2
Dummy variable 𝑎 is distinct from all other variables.
StepHypRef Expression
1 breq1 5055 . . . . 5 (𝐴 = 𝑄 → (𝐴 Btwn ⟨𝑄, 𝑥⟩ ↔ 𝑄 Btwn ⟨𝑄, 𝑥⟩))
21orbi1d 914 . . . 4 (𝐴 = 𝑄 → ((𝐴 Btwn ⟨𝑄, 𝑥⟩ ∨ 𝑥 Btwn ⟨𝑄, 𝐴⟩) ↔ (𝑄 Btwn ⟨𝑄, 𝑥⟩ ∨ 𝑥 Btwn ⟨𝑄, 𝐴⟩)))
32anbi1d 632 . . 3 (𝐴 = 𝑄 → (((𝐴 Btwn ⟨𝑄, 𝑥⟩ ∨ 𝑥 Btwn ⟨𝑄, 𝐴⟩) ∧ ⟨𝑄, 𝑥⟩Cgr⟨𝐵, 𝐶⟩) ↔ ((𝑄 Btwn ⟨𝑄, 𝑥⟩ ∨ 𝑥 Btwn ⟨𝑄, 𝐴⟩) ∧ ⟨𝑄, 𝑥⟩Cgr⟨𝐵, 𝐶⟩)))
43rexbidv 3290 . 2 (𝐴 = 𝑄 → (∃𝑥 ∈ (𝔼‘𝑁)((𝐴 Btwn ⟨𝑄, 𝑥⟩ ∨ 𝑥 Btwn ⟨𝑄, 𝐴⟩) ∧ ⟨𝑄, 𝑥⟩Cgr⟨𝐵, 𝐶⟩) ↔ ∃𝑥 ∈ (𝔼‘𝑁)((𝑄 Btwn ⟨𝑄, 𝑥⟩ ∨ 𝑥 Btwn ⟨𝑄, 𝐴⟩) ∧ ⟨𝑄, 𝑥⟩Cgr⟨𝐵, 𝐶⟩)))
5 simp1 1133 . . . . 5 ((𝑁 ∈ ℕ ∧ (𝑄 ∈ (𝔼‘𝑁) ∧ 𝐴 ∈ (𝔼‘𝑁)) ∧ (𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁))) → 𝑁 ∈ ℕ)
6 simp2 1134 . . . . . 6 ((𝑁 ∈ ℕ ∧ (𝑄 ∈ (𝔼‘𝑁) ∧ 𝐴 ∈ (𝔼‘𝑁)) ∧ (𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁))) → (𝑄 ∈ (𝔼‘𝑁) ∧ 𝐴 ∈ (𝔼‘𝑁)))
76ancomd 465 . . . . 5 ((𝑁 ∈ ℕ ∧ (𝑄 ∈ (𝔼‘𝑁) ∧ 𝐴 ∈ (𝔼‘𝑁)) ∧ (𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁))) → (𝐴 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁)))
8 axsegcon 26717 . . . . 5 ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁)) ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁))) → ∃𝑎 ∈ (𝔼‘𝑁)(𝑄 Btwn ⟨𝐴, 𝑎⟩ ∧ ⟨𝑄, 𝑎⟩Cgr⟨𝐴, 𝑄⟩))
95, 7, 7, 8syl3anc 1368 . . . 4 ((𝑁 ∈ ℕ ∧ (𝑄 ∈ (𝔼‘𝑁) ∧ 𝐴 ∈ (𝔼‘𝑁)) ∧ (𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁))) → ∃𝑎 ∈ (𝔼‘𝑁)(𝑄 Btwn ⟨𝐴, 𝑎⟩ ∧ ⟨𝑄, 𝑎⟩Cgr⟨𝐴, 𝑄⟩))
109adantr 484 . . 3 (((𝑁 ∈ ℕ ∧ (𝑄 ∈ (𝔼‘𝑁) ∧ 𝐴 ∈ (𝔼‘𝑁)) ∧ (𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁))) ∧ 𝐴𝑄) → ∃𝑎 ∈ (𝔼‘𝑁)(𝑄 Btwn ⟨𝐴, 𝑎⟩ ∧ ⟨𝑄, 𝑎⟩Cgr⟨𝐴, 𝑄⟩))
11 simpl1 1188 . . . . . . . . 9 (((𝑁 ∈ ℕ ∧ (𝑄 ∈ (𝔼‘𝑁) ∧ 𝐴 ∈ (𝔼‘𝑁)) ∧ (𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁))) ∧ 𝑎 ∈ (𝔼‘𝑁)) → 𝑁 ∈ ℕ)
12 simpr 488 . . . . . . . . 9 (((𝑁 ∈ ℕ ∧ (𝑄 ∈ (𝔼‘𝑁) ∧ 𝐴 ∈ (𝔼‘𝑁)) ∧ (𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁))) ∧ 𝑎 ∈ (𝔼‘𝑁)) → 𝑎 ∈ (𝔼‘𝑁))
13 simpl2l 1223 . . . . . . . . 9 (((𝑁 ∈ ℕ ∧ (𝑄 ∈ (𝔼‘𝑁) ∧ 𝐴 ∈ (𝔼‘𝑁)) ∧ (𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁))) ∧ 𝑎 ∈ (𝔼‘𝑁)) → 𝑄 ∈ (𝔼‘𝑁))
14 simpl3 1190 . . . . . . . . 9 (((𝑁 ∈ ℕ ∧ (𝑄 ∈ (𝔼‘𝑁) ∧ 𝐴 ∈ (𝔼‘𝑁)) ∧ (𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁))) ∧ 𝑎 ∈ (𝔼‘𝑁)) → (𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)))
15 axsegcon 26717 . . . . . . . . 9 ((𝑁 ∈ ℕ ∧ (𝑎 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁)) ∧ (𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁))) → ∃𝑥 ∈ (𝔼‘𝑁)(𝑄 Btwn ⟨𝑎, 𝑥⟩ ∧ ⟨𝑄, 𝑥⟩Cgr⟨𝐵, 𝐶⟩))
1611, 12, 13, 14, 15syl121anc 1372 . . . . . . . 8 (((𝑁 ∈ ℕ ∧ (𝑄 ∈ (𝔼‘𝑁) ∧ 𝐴 ∈ (𝔼‘𝑁)) ∧ (𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁))) ∧ 𝑎 ∈ (𝔼‘𝑁)) → ∃𝑥 ∈ (𝔼‘𝑁)(𝑄 Btwn ⟨𝑎, 𝑥⟩ ∧ ⟨𝑄, 𝑥⟩Cgr⟨𝐵, 𝐶⟩))
1716adantr 484 . . . . . . 7 ((((𝑁 ∈ ℕ ∧ (𝑄 ∈ (𝔼‘𝑁) ∧ 𝐴 ∈ (𝔼‘𝑁)) ∧ (𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁))) ∧ 𝑎 ∈ (𝔼‘𝑁)) ∧ (𝐴𝑄 ∧ (𝑄 Btwn ⟨𝐴, 𝑎⟩ ∧ ⟨𝑄, 𝑎⟩Cgr⟨𝐴, 𝑄⟩))) → ∃𝑥 ∈ (𝔼‘𝑁)(𝑄 Btwn ⟨𝑎, 𝑥⟩ ∧ ⟨𝑄, 𝑥⟩Cgr⟨𝐵, 𝐶⟩))
18 anass 472 . . . . . . . . . 10 ((((𝑁 ∈ ℕ ∧ (𝑄 ∈ (𝔼‘𝑁) ∧ 𝐴 ∈ (𝔼‘𝑁)) ∧ (𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁))) ∧ 𝑎 ∈ (𝔼‘𝑁)) ∧ 𝑥 ∈ (𝔼‘𝑁)) ↔ ((𝑁 ∈ ℕ ∧ (𝑄 ∈ (𝔼‘𝑁) ∧ 𝐴 ∈ (𝔼‘𝑁)) ∧ (𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁))) ∧ (𝑎 ∈ (𝔼‘𝑁) ∧ 𝑥 ∈ (𝔼‘𝑁))))
19 df-3an 1086 . . . . . . . . . . . . 13 ((𝐴𝑄 ∧ (𝑄 Btwn ⟨𝐴, 𝑎⟩ ∧ ⟨𝑄, 𝑎⟩Cgr⟨𝐴, 𝑄⟩) ∧ 𝑄 Btwn ⟨𝑎, 𝑥⟩) ↔ ((𝐴𝑄 ∧ (𝑄 Btwn ⟨𝐴, 𝑎⟩ ∧ ⟨𝑄, 𝑎⟩Cgr⟨𝐴, 𝑄⟩)) ∧ 𝑄 Btwn ⟨𝑎, 𝑥⟩))
20 simpr1 1191 . . . . . . . . . . . . . . . 16 ((((𝑁 ∈ ℕ ∧ (𝑄 ∈ (𝔼‘𝑁) ∧ 𝐴 ∈ (𝔼‘𝑁)) ∧ (𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁))) ∧ (𝑎 ∈ (𝔼‘𝑁) ∧ 𝑥 ∈ (𝔼‘𝑁))) ∧ (𝐴𝑄 ∧ (𝑄 Btwn ⟨𝐴, 𝑎⟩ ∧ ⟨𝑄, 𝑎⟩Cgr⟨𝐴, 𝑄⟩) ∧ 𝑄 Btwn ⟨𝑎, 𝑥⟩)) → 𝐴𝑄)
21 simpr2r 1230 . . . . . . . . . . . . . . . . . 18 ((((𝑁 ∈ ℕ ∧ (𝑄 ∈ (𝔼‘𝑁) ∧ 𝐴 ∈ (𝔼‘𝑁)) ∧ (𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁))) ∧ (𝑎 ∈ (𝔼‘𝑁) ∧ 𝑥 ∈ (𝔼‘𝑁))) ∧ (𝐴𝑄 ∧ (𝑄 Btwn ⟨𝐴, 𝑎⟩ ∧ ⟨𝑄, 𝑎⟩Cgr⟨𝐴, 𝑄⟩) ∧ 𝑄 Btwn ⟨𝑎, 𝑥⟩)) → ⟨𝑄, 𝑎⟩Cgr⟨𝐴, 𝑄⟩)
22 simpl1 1188 . . . . . . . . . . . . . . . . . . . 20 (((𝑁 ∈ ℕ ∧ (𝑄 ∈ (𝔼‘𝑁) ∧ 𝐴 ∈ (𝔼‘𝑁)) ∧ (𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁))) ∧ (𝑎 ∈ (𝔼‘𝑁) ∧ 𝑥 ∈ (𝔼‘𝑁))) → 𝑁 ∈ ℕ)
23 simpl2l 1223 . . . . . . . . . . . . . . . . . . . 20 (((𝑁 ∈ ℕ ∧ (𝑄 ∈ (𝔼‘𝑁) ∧ 𝐴 ∈ (𝔼‘𝑁)) ∧ (𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁))) ∧ (𝑎 ∈ (𝔼‘𝑁) ∧ 𝑥 ∈ (𝔼‘𝑁))) → 𝑄 ∈ (𝔼‘𝑁))
24 simprl 770 . . . . . . . . . . . . . . . . . . . 20 (((𝑁 ∈ ℕ ∧ (𝑄 ∈ (𝔼‘𝑁) ∧ 𝐴 ∈ (𝔼‘𝑁)) ∧ (𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁))) ∧ (𝑎 ∈ (𝔼‘𝑁) ∧ 𝑥 ∈ (𝔼‘𝑁))) → 𝑎 ∈ (𝔼‘𝑁))
25 simpl2r 1224 . . . . . . . . . . . . . . . . . . . 20 (((𝑁 ∈ ℕ ∧ (𝑄 ∈ (𝔼‘𝑁) ∧ 𝐴 ∈ (𝔼‘𝑁)) ∧ (𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁))) ∧ (𝑎 ∈ (𝔼‘𝑁) ∧ 𝑥 ∈ (𝔼‘𝑁))) → 𝐴 ∈ (𝔼‘𝑁))
26 cgrdegen 33490 . . . . . . . . . . . . . . . . . . . 20 ((𝑁 ∈ ℕ ∧ (𝑄 ∈ (𝔼‘𝑁) ∧ 𝑎 ∈ (𝔼‘𝑁)) ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁))) → (⟨𝑄, 𝑎⟩Cgr⟨𝐴, 𝑄⟩ → (𝑄 = 𝑎𝐴 = 𝑄)))
2722, 23, 24, 25, 23, 26syl122anc 1376 . . . . . . . . . . . . . . . . . . 19 (((𝑁 ∈ ℕ ∧ (𝑄 ∈ (𝔼‘𝑁) ∧ 𝐴 ∈ (𝔼‘𝑁)) ∧ (𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁))) ∧ (𝑎 ∈ (𝔼‘𝑁) ∧ 𝑥 ∈ (𝔼‘𝑁))) → (⟨𝑄, 𝑎⟩Cgr⟨𝐴, 𝑄⟩ → (𝑄 = 𝑎𝐴 = 𝑄)))
2827adantr 484 . . . . . . . . . . . . . . . . . 18 ((((𝑁 ∈ ℕ ∧ (𝑄 ∈ (𝔼‘𝑁) ∧ 𝐴 ∈ (𝔼‘𝑁)) ∧ (𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁))) ∧ (𝑎 ∈ (𝔼‘𝑁) ∧ 𝑥 ∈ (𝔼‘𝑁))) ∧ (𝐴𝑄 ∧ (𝑄 Btwn ⟨𝐴, 𝑎⟩ ∧ ⟨𝑄, 𝑎⟩Cgr⟨𝐴, 𝑄⟩) ∧ 𝑄 Btwn ⟨𝑎, 𝑥⟩)) → (⟨𝑄, 𝑎⟩Cgr⟨𝐴, 𝑄⟩ → (𝑄 = 𝑎𝐴 = 𝑄)))
2921, 28mpd 15 . . . . . . . . . . . . . . . . 17 ((((𝑁 ∈ ℕ ∧ (𝑄 ∈ (𝔼‘𝑁) ∧ 𝐴 ∈ (𝔼‘𝑁)) ∧ (𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁))) ∧ (𝑎 ∈ (𝔼‘𝑁) ∧ 𝑥 ∈ (𝔼‘𝑁))) ∧ (𝐴𝑄 ∧ (𝑄 Btwn ⟨𝐴, 𝑎⟩ ∧ ⟨𝑄, 𝑎⟩Cgr⟨𝐴, 𝑄⟩) ∧ 𝑄 Btwn ⟨𝑎, 𝑥⟩)) → (𝑄 = 𝑎𝐴 = 𝑄))
3029necon3bid 3058 . . . . . . . . . . . . . . . 16 ((((𝑁 ∈ ℕ ∧ (𝑄 ∈ (𝔼‘𝑁) ∧ 𝐴 ∈ (𝔼‘𝑁)) ∧ (𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁))) ∧ (𝑎 ∈ (𝔼‘𝑁) ∧ 𝑥 ∈ (𝔼‘𝑁))) ∧ (𝐴𝑄 ∧ (𝑄 Btwn ⟨𝐴, 𝑎⟩ ∧ ⟨𝑄, 𝑎⟩Cgr⟨𝐴, 𝑄⟩) ∧ 𝑄 Btwn ⟨𝑎, 𝑥⟩)) → (𝑄𝑎𝐴𝑄))
3120, 30mpbird 260 . . . . . . . . . . . . . . 15 ((((𝑁 ∈ ℕ ∧ (𝑄 ∈ (𝔼‘𝑁) ∧ 𝐴 ∈ (𝔼‘𝑁)) ∧ (𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁))) ∧ (𝑎 ∈ (𝔼‘𝑁) ∧ 𝑥 ∈ (𝔼‘𝑁))) ∧ (𝐴𝑄 ∧ (𝑄 Btwn ⟨𝐴, 𝑎⟩ ∧ ⟨𝑄, 𝑎⟩Cgr⟨𝐴, 𝑄⟩) ∧ 𝑄 Btwn ⟨𝑎, 𝑥⟩)) → 𝑄𝑎)
3231necomd 3069 . . . . . . . . . . . . . 14 ((((𝑁 ∈ ℕ ∧ (𝑄 ∈ (𝔼‘𝑁) ∧ 𝐴 ∈ (𝔼‘𝑁)) ∧ (𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁))) ∧ (𝑎 ∈ (𝔼‘𝑁) ∧ 𝑥 ∈ (𝔼‘𝑁))) ∧ (𝐴𝑄 ∧ (𝑄 Btwn ⟨𝐴, 𝑎⟩ ∧ ⟨𝑄, 𝑎⟩Cgr⟨𝐴, 𝑄⟩) ∧ 𝑄 Btwn ⟨𝑎, 𝑥⟩)) → 𝑎𝑄)
33 simpr2l 1229 . . . . . . . . . . . . . . 15 ((((𝑁 ∈ ℕ ∧ (𝑄 ∈ (𝔼‘𝑁) ∧ 𝐴 ∈ (𝔼‘𝑁)) ∧ (𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁))) ∧ (𝑎 ∈ (𝔼‘𝑁) ∧ 𝑥 ∈ (𝔼‘𝑁))) ∧ (𝐴𝑄 ∧ (𝑄 Btwn ⟨𝐴, 𝑎⟩ ∧ ⟨𝑄, 𝑎⟩Cgr⟨𝐴, 𝑄⟩) ∧ 𝑄 Btwn ⟨𝑎, 𝑥⟩)) → 𝑄 Btwn ⟨𝐴, 𝑎⟩)
3422, 23, 25, 24, 33btwncomand 33501 . . . . . . . . . . . . . 14 ((((𝑁 ∈ ℕ ∧ (𝑄 ∈ (𝔼‘𝑁) ∧ 𝐴 ∈ (𝔼‘𝑁)) ∧ (𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁))) ∧ (𝑎 ∈ (𝔼‘𝑁) ∧ 𝑥 ∈ (𝔼‘𝑁))) ∧ (𝐴𝑄 ∧ (𝑄 Btwn ⟨𝐴, 𝑎⟩ ∧ ⟨𝑄, 𝑎⟩Cgr⟨𝐴, 𝑄⟩) ∧ 𝑄 Btwn ⟨𝑎, 𝑥⟩)) → 𝑄 Btwn ⟨𝑎, 𝐴⟩)
35 simpr3 1193 . . . . . . . . . . . . . 14 ((((𝑁 ∈ ℕ ∧ (𝑄 ∈ (𝔼‘𝑁) ∧ 𝐴 ∈ (𝔼‘𝑁)) ∧ (𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁))) ∧ (𝑎 ∈ (𝔼‘𝑁) ∧ 𝑥 ∈ (𝔼‘𝑁))) ∧ (𝐴𝑄 ∧ (𝑄 Btwn ⟨𝐴, 𝑎⟩ ∧ ⟨𝑄, 𝑎⟩Cgr⟨𝐴, 𝑄⟩) ∧ 𝑄 Btwn ⟨𝑎, 𝑥⟩)) → 𝑄 Btwn ⟨𝑎, 𝑥⟩)
36 simprr 772 . . . . . . . . . . . . . . . 16 (((𝑁 ∈ ℕ ∧ (𝑄 ∈ (𝔼‘𝑁) ∧ 𝐴 ∈ (𝔼‘𝑁)) ∧ (𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁))) ∧ (𝑎 ∈ (𝔼‘𝑁) ∧ 𝑥 ∈ (𝔼‘𝑁))) → 𝑥 ∈ (𝔼‘𝑁))
37 btwnconn2 33588 . . . . . . . . . . . . . . . 16 ((𝑁 ∈ ℕ ∧ (𝑎 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁)) ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝑥 ∈ (𝔼‘𝑁))) → ((𝑎𝑄𝑄 Btwn ⟨𝑎, 𝐴⟩ ∧ 𝑄 Btwn ⟨𝑎, 𝑥⟩) → (𝐴 Btwn ⟨𝑄, 𝑥⟩ ∨ 𝑥 Btwn ⟨𝑄, 𝐴⟩)))
3822, 24, 23, 25, 36, 37syl122anc 1376 . . . . . . . . . . . . . . 15 (((𝑁 ∈ ℕ ∧ (𝑄 ∈ (𝔼‘𝑁) ∧ 𝐴 ∈ (𝔼‘𝑁)) ∧ (𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁))) ∧ (𝑎 ∈ (𝔼‘𝑁) ∧ 𝑥 ∈ (𝔼‘𝑁))) → ((𝑎𝑄𝑄 Btwn ⟨𝑎, 𝐴⟩ ∧ 𝑄 Btwn ⟨𝑎, 𝑥⟩) → (𝐴 Btwn ⟨𝑄, 𝑥⟩ ∨ 𝑥 Btwn ⟨𝑄, 𝐴⟩)))
3938adantr 484 . . . . . . . . . . . . . 14 ((((𝑁 ∈ ℕ ∧ (𝑄 ∈ (𝔼‘𝑁) ∧ 𝐴 ∈ (𝔼‘𝑁)) ∧ (𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁))) ∧ (𝑎 ∈ (𝔼‘𝑁) ∧ 𝑥 ∈ (𝔼‘𝑁))) ∧ (𝐴𝑄 ∧ (𝑄 Btwn ⟨𝐴, 𝑎⟩ ∧ ⟨𝑄, 𝑎⟩Cgr⟨𝐴, 𝑄⟩) ∧ 𝑄 Btwn ⟨𝑎, 𝑥⟩)) → ((𝑎𝑄𝑄 Btwn ⟨𝑎, 𝐴⟩ ∧ 𝑄 Btwn ⟨𝑎, 𝑥⟩) → (𝐴 Btwn ⟨𝑄, 𝑥⟩ ∨ 𝑥 Btwn ⟨𝑄, 𝐴⟩)))
4032, 34, 35, 39mp3and 1461 . . . . . . . . . . . . 13 ((((𝑁 ∈ ℕ ∧ (𝑄 ∈ (𝔼‘𝑁) ∧ 𝐴 ∈ (𝔼‘𝑁)) ∧ (𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁))) ∧ (𝑎 ∈ (𝔼‘𝑁) ∧ 𝑥 ∈ (𝔼‘𝑁))) ∧ (𝐴𝑄 ∧ (𝑄 Btwn ⟨𝐴, 𝑎⟩ ∧ ⟨𝑄, 𝑎⟩Cgr⟨𝐴, 𝑄⟩) ∧ 𝑄 Btwn ⟨𝑎, 𝑥⟩)) → (𝐴 Btwn ⟨𝑄, 𝑥⟩ ∨ 𝑥 Btwn ⟨𝑄, 𝐴⟩))
4119, 40sylan2br 597 . . . . . . . . . . . 12 ((((𝑁 ∈ ℕ ∧ (𝑄 ∈ (𝔼‘𝑁) ∧ 𝐴 ∈ (𝔼‘𝑁)) ∧ (𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁))) ∧ (𝑎 ∈ (𝔼‘𝑁) ∧ 𝑥 ∈ (𝔼‘𝑁))) ∧ ((𝐴𝑄 ∧ (𝑄 Btwn ⟨𝐴, 𝑎⟩ ∧ ⟨𝑄, 𝑎⟩Cgr⟨𝐴, 𝑄⟩)) ∧ 𝑄 Btwn ⟨𝑎, 𝑥⟩)) → (𝐴 Btwn ⟨𝑄, 𝑥⟩ ∨ 𝑥 Btwn ⟨𝑄, 𝐴⟩))
4241expr 460 . . . . . . . . . . 11 ((((𝑁 ∈ ℕ ∧ (𝑄 ∈ (𝔼‘𝑁) ∧ 𝐴 ∈ (𝔼‘𝑁)) ∧ (𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁))) ∧ (𝑎 ∈ (𝔼‘𝑁) ∧ 𝑥 ∈ (𝔼‘𝑁))) ∧ (𝐴𝑄 ∧ (𝑄 Btwn ⟨𝐴, 𝑎⟩ ∧ ⟨𝑄, 𝑎⟩Cgr⟨𝐴, 𝑄⟩))) → (𝑄 Btwn ⟨𝑎, 𝑥⟩ → (𝐴 Btwn ⟨𝑄, 𝑥⟩ ∨ 𝑥 Btwn ⟨𝑄, 𝐴⟩)))
4342anim1d 613 . . . . . . . . . 10 ((((𝑁 ∈ ℕ ∧ (𝑄 ∈ (𝔼‘𝑁) ∧ 𝐴 ∈ (𝔼‘𝑁)) ∧ (𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁))) ∧ (𝑎 ∈ (𝔼‘𝑁) ∧ 𝑥 ∈ (𝔼‘𝑁))) ∧ (𝐴𝑄 ∧ (𝑄 Btwn ⟨𝐴, 𝑎⟩ ∧ ⟨𝑄, 𝑎⟩Cgr⟨𝐴, 𝑄⟩))) → ((𝑄 Btwn ⟨𝑎, 𝑥⟩ ∧ ⟨𝑄, 𝑥⟩Cgr⟨𝐵, 𝐶⟩) → ((𝐴 Btwn ⟨𝑄, 𝑥⟩ ∨ 𝑥 Btwn ⟨𝑄, 𝐴⟩) ∧ ⟨𝑄, 𝑥⟩Cgr⟨𝐵, 𝐶⟩)))
4418, 43sylanb 584 . . . . . . . . 9 (((((𝑁 ∈ ℕ ∧ (𝑄 ∈ (𝔼‘𝑁) ∧ 𝐴 ∈ (𝔼‘𝑁)) ∧ (𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁))) ∧ 𝑎 ∈ (𝔼‘𝑁)) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ (𝐴𝑄 ∧ (𝑄 Btwn ⟨𝐴, 𝑎⟩ ∧ ⟨𝑄, 𝑎⟩Cgr⟨𝐴, 𝑄⟩))) → ((𝑄 Btwn ⟨𝑎, 𝑥⟩ ∧ ⟨𝑄, 𝑥⟩Cgr⟨𝐵, 𝐶⟩) → ((𝐴 Btwn ⟨𝑄, 𝑥⟩ ∨ 𝑥 Btwn ⟨𝑄, 𝐴⟩) ∧ ⟨𝑄, 𝑥⟩Cgr⟨𝐵, 𝐶⟩)))
4544an32s 651 . . . . . . . 8 (((((𝑁 ∈ ℕ ∧ (𝑄 ∈ (𝔼‘𝑁) ∧ 𝐴 ∈ (𝔼‘𝑁)) ∧ (𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁))) ∧ 𝑎 ∈ (𝔼‘𝑁)) ∧ (𝐴𝑄 ∧ (𝑄 Btwn ⟨𝐴, 𝑎⟩ ∧ ⟨𝑄, 𝑎⟩Cgr⟨𝐴, 𝑄⟩))) ∧ 𝑥 ∈ (𝔼‘𝑁)) → ((𝑄 Btwn ⟨𝑎, 𝑥⟩ ∧ ⟨𝑄, 𝑥⟩Cgr⟨𝐵, 𝐶⟩) → ((𝐴 Btwn ⟨𝑄, 𝑥⟩ ∨ 𝑥 Btwn ⟨𝑄, 𝐴⟩) ∧ ⟨𝑄, 𝑥⟩Cgr⟨𝐵, 𝐶⟩)))
4645reximdva 3267 . . . . . . 7 ((((𝑁 ∈ ℕ ∧ (𝑄 ∈ (𝔼‘𝑁) ∧ 𝐴 ∈ (𝔼‘𝑁)) ∧ (𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁))) ∧ 𝑎 ∈ (𝔼‘𝑁)) ∧ (𝐴𝑄 ∧ (𝑄 Btwn ⟨𝐴, 𝑎⟩ ∧ ⟨𝑄, 𝑎⟩Cgr⟨𝐴, 𝑄⟩))) → (∃𝑥 ∈ (𝔼‘𝑁)(𝑄 Btwn ⟨𝑎, 𝑥⟩ ∧ ⟨𝑄, 𝑥⟩Cgr⟨𝐵, 𝐶⟩) → ∃𝑥 ∈ (𝔼‘𝑁)((𝐴 Btwn ⟨𝑄, 𝑥⟩ ∨ 𝑥 Btwn ⟨𝑄, 𝐴⟩) ∧ ⟨𝑄, 𝑥⟩Cgr⟨𝐵, 𝐶⟩)))
4717, 46mpd 15 . . . . . 6 ((((𝑁 ∈ ℕ ∧ (𝑄 ∈ (𝔼‘𝑁) ∧ 𝐴 ∈ (𝔼‘𝑁)) ∧ (𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁))) ∧ 𝑎 ∈ (𝔼‘𝑁)) ∧ (𝐴𝑄 ∧ (𝑄 Btwn ⟨𝐴, 𝑎⟩ ∧ ⟨𝑄, 𝑎⟩Cgr⟨𝐴, 𝑄⟩))) → ∃𝑥 ∈ (𝔼‘𝑁)((𝐴 Btwn ⟨𝑄, 𝑥⟩ ∨ 𝑥 Btwn ⟨𝑄, 𝐴⟩) ∧ ⟨𝑄, 𝑥⟩Cgr⟨𝐵, 𝐶⟩))
4847expr 460 . . . . 5 ((((𝑁 ∈ ℕ ∧ (𝑄 ∈ (𝔼‘𝑁) ∧ 𝐴 ∈ (𝔼‘𝑁)) ∧ (𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁))) ∧ 𝑎 ∈ (𝔼‘𝑁)) ∧ 𝐴𝑄) → ((𝑄 Btwn ⟨𝐴, 𝑎⟩ ∧ ⟨𝑄, 𝑎⟩Cgr⟨𝐴, 𝑄⟩) → ∃𝑥 ∈ (𝔼‘𝑁)((𝐴 Btwn ⟨𝑄, 𝑥⟩ ∨ 𝑥 Btwn ⟨𝑄, 𝐴⟩) ∧ ⟨𝑄, 𝑥⟩Cgr⟨𝐵, 𝐶⟩)))
4948an32s 651 . . . 4 ((((𝑁 ∈ ℕ ∧ (𝑄 ∈ (𝔼‘𝑁) ∧ 𝐴 ∈ (𝔼‘𝑁)) ∧ (𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁))) ∧ 𝐴𝑄) ∧ 𝑎 ∈ (𝔼‘𝑁)) → ((𝑄 Btwn ⟨𝐴, 𝑎⟩ ∧ ⟨𝑄, 𝑎⟩Cgr⟨𝐴, 𝑄⟩) → ∃𝑥 ∈ (𝔼‘𝑁)((𝐴 Btwn ⟨𝑄, 𝑥⟩ ∨ 𝑥 Btwn ⟨𝑄, 𝐴⟩) ∧ ⟨𝑄, 𝑥⟩Cgr⟨𝐵, 𝐶⟩)))
5049rexlimdva 3277 . . 3 (((𝑁 ∈ ℕ ∧ (𝑄 ∈ (𝔼‘𝑁) ∧ 𝐴 ∈ (𝔼‘𝑁)) ∧ (𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁))) ∧ 𝐴𝑄) → (∃𝑎 ∈ (𝔼‘𝑁)(𝑄 Btwn ⟨𝐴, 𝑎⟩ ∧ ⟨𝑄, 𝑎⟩Cgr⟨𝐴, 𝑄⟩) → ∃𝑥 ∈ (𝔼‘𝑁)((𝐴 Btwn ⟨𝑄, 𝑥⟩ ∨ 𝑥 Btwn ⟨𝑄, 𝐴⟩) ∧ ⟨𝑄, 𝑥⟩Cgr⟨𝐵, 𝐶⟩)))
5110, 50mpd 15 . 2 (((𝑁 ∈ ℕ ∧ (𝑄 ∈ (𝔼‘𝑁) ∧ 𝐴 ∈ (𝔼‘𝑁)) ∧ (𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁))) ∧ 𝐴𝑄) → ∃𝑥 ∈ (𝔼‘𝑁)((𝐴 Btwn ⟨𝑄, 𝑥⟩ ∨ 𝑥 Btwn ⟨𝑄, 𝐴⟩) ∧ ⟨𝑄, 𝑥⟩Cgr⟨𝐵, 𝐶⟩))
52 simp2l 1196 . . . 4 ((𝑁 ∈ ℕ ∧ (𝑄 ∈ (𝔼‘𝑁) ∧ 𝐴 ∈ (𝔼‘𝑁)) ∧ (𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁))) → 𝑄 ∈ (𝔼‘𝑁))
53 simp3 1135 . . . 4 ((𝑁 ∈ ℕ ∧ (𝑄 ∈ (𝔼‘𝑁) ∧ 𝐴 ∈ (𝔼‘𝑁)) ∧ (𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁))) → (𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)))
54 axsegcon 26717 . . . 4 ((𝑁 ∈ ℕ ∧ (𝑄 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁)) ∧ (𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁))) → ∃𝑥 ∈ (𝔼‘𝑁)(𝑄 Btwn ⟨𝑄, 𝑥⟩ ∧ ⟨𝑄, 𝑥⟩Cgr⟨𝐵, 𝐶⟩))
555, 52, 52, 53, 54syl121anc 1372 . . 3 ((𝑁 ∈ ℕ ∧ (𝑄 ∈ (𝔼‘𝑁) ∧ 𝐴 ∈ (𝔼‘𝑁)) ∧ (𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁))) → ∃𝑥 ∈ (𝔼‘𝑁)(𝑄 Btwn ⟨𝑄, 𝑥⟩ ∧ ⟨𝑄, 𝑥⟩Cgr⟨𝐵, 𝐶⟩))
56 orc 864 . . . . 5 (𝑄 Btwn ⟨𝑄, 𝑥⟩ → (𝑄 Btwn ⟨𝑄, 𝑥⟩ ∨ 𝑥 Btwn ⟨𝑄, 𝐴⟩))
5756anim1i 617 . . . 4 ((𝑄 Btwn ⟨𝑄, 𝑥⟩ ∧ ⟨𝑄, 𝑥⟩Cgr⟨𝐵, 𝐶⟩) → ((𝑄 Btwn ⟨𝑄, 𝑥⟩ ∨ 𝑥 Btwn ⟨𝑄, 𝐴⟩) ∧ ⟨𝑄, 𝑥⟩Cgr⟨𝐵, 𝐶⟩))
5857reximi 3238 . . 3 (∃𝑥 ∈ (𝔼‘𝑁)(𝑄 Btwn ⟨𝑄, 𝑥⟩ ∧ ⟨𝑄, 𝑥⟩Cgr⟨𝐵, 𝐶⟩) → ∃𝑥 ∈ (𝔼‘𝑁)((𝑄 Btwn ⟨𝑄, 𝑥⟩ ∨ 𝑥 Btwn ⟨𝑄, 𝐴⟩) ∧ ⟨𝑄, 𝑥⟩Cgr⟨𝐵, 𝐶⟩))
5955, 58syl 17 . 2 ((𝑁 ∈ ℕ ∧ (𝑄 ∈ (𝔼‘𝑁) ∧ 𝐴 ∈ (𝔼‘𝑁)) ∧ (𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁))) → ∃𝑥 ∈ (𝔼‘𝑁)((𝑄 Btwn ⟨𝑄, 𝑥⟩ ∨ 𝑥 Btwn ⟨𝑄, 𝐴⟩) ∧ ⟨𝑄, 𝑥⟩Cgr⟨𝐵, 𝐶⟩))
604, 51, 59pm2.61ne 3099 1 ((𝑁 ∈ ℕ ∧ (𝑄 ∈ (𝔼‘𝑁) ∧ 𝐴 ∈ (𝔼‘𝑁)) ∧ (𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁))) → ∃𝑥 ∈ (𝔼‘𝑁)((𝐴 Btwn ⟨𝑄, 𝑥⟩ ∨ 𝑥 Btwn ⟨𝑄, 𝐴⟩) ∧ ⟨𝑄, 𝑥⟩Cgr⟨𝐵, 𝐶⟩))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399  wo 844  w3a 1084   = wceq 1538  wcel 2115  wne 3014  wrex 3134  cop 4555   class class class wbr 5052  cfv 6343  cn 11630  𝔼cee 26678   Btwn cbtwn 26679  Cgrccgr 26680
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1912  ax-6 1971  ax-7 2016  ax-8 2117  ax-9 2125  ax-10 2146  ax-11 2162  ax-12 2179  ax-ext 2796  ax-rep 5176  ax-sep 5189  ax-nul 5196  ax-pow 5253  ax-pr 5317  ax-un 7451  ax-inf2 9095  ax-cnex 10585  ax-resscn 10586  ax-1cn 10587  ax-icn 10588  ax-addcl 10589  ax-addrcl 10590  ax-mulcl 10591  ax-mulrcl 10592  ax-mulcom 10593  ax-addass 10594  ax-mulass 10595  ax-distr 10596  ax-i2m1 10597  ax-1ne0 10598  ax-1rid 10599  ax-rnegex 10600  ax-rrecex 10601  ax-cnre 10602  ax-pre-lttri 10603  ax-pre-lttrn 10604  ax-pre-ltadd 10605  ax-pre-mulgt0 10606  ax-pre-sup 10607
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-fal 1551  df-ex 1782  df-nf 1786  df-sb 2071  df-mo 2624  df-eu 2655  df-clab 2803  df-cleq 2817  df-clel 2896  df-nfc 2964  df-ne 3015  df-nel 3119  df-ral 3138  df-rex 3139  df-reu 3140  df-rmo 3141  df-rab 3142  df-v 3482  df-sbc 3759  df-csb 3867  df-dif 3922  df-un 3924  df-in 3926  df-ss 3936  df-pss 3938  df-nul 4276  df-if 4450  df-pw 4523  df-sn 4550  df-pr 4552  df-tp 4554  df-op 4556  df-uni 4825  df-int 4863  df-iun 4907  df-br 5053  df-opab 5115  df-mpt 5133  df-tr 5159  df-id 5447  df-eprel 5452  df-po 5461  df-so 5462  df-fr 5501  df-se 5502  df-we 5503  df-xp 5548  df-rel 5549  df-cnv 5550  df-co 5551  df-dm 5552  df-rn 5553  df-res 5554  df-ima 5555  df-pred 6135  df-ord 6181  df-on 6182  df-lim 6183  df-suc 6184  df-iota 6302  df-fun 6345  df-fn 6346  df-f 6347  df-f1 6348  df-fo 6349  df-f1o 6350  df-fv 6351  df-isom 6352  df-riota 7103  df-ov 7148  df-oprab 7149  df-mpo 7150  df-om 7571  df-1st 7679  df-2nd 7680  df-wrecs 7937  df-recs 7998  df-rdg 8036  df-1o 8092  df-oadd 8096  df-er 8279  df-map 8398  df-en 8500  df-dom 8501  df-sdom 8502  df-fin 8503  df-sup 8897  df-oi 8965  df-card 9359  df-pnf 10669  df-mnf 10670  df-xr 10671  df-ltxr 10672  df-le 10673  df-sub 10864  df-neg 10865  df-div 11290  df-nn 11631  df-2 11693  df-3 11694  df-n0 11891  df-z 11975  df-uz 12237  df-rp 12383  df-ico 12737  df-icc 12738  df-fz 12891  df-fzo 13034  df-seq 13370  df-exp 13431  df-hash 13692  df-cj 14454  df-re 14455  df-im 14456  df-sqrt 14590  df-abs 14591  df-clim 14841  df-sum 15039  df-ee 26681  df-btwn 26682  df-cgr 26683  df-ofs 33469  df-colinear 33525  df-ifs 33526  df-cgr3 33527  df-fs 33528
This theorem is referenced by:  seglelin  33602  outsideofeu  33617
  Copyright terms: Public domain W3C validator