MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nn0gsumfz Structured version   Visualization version   GIF version

Theorem nn0gsumfz 19898
Description: Replacing a finitely supported function over the nonnegative integers by a function over a finite set of sequential integers in a finite group sum. (Contributed by AV, 9-Oct-2019.)
Hypotheses
Ref Expression
nn0gsumfz.b 𝐵 = (Base‘𝐺)
nn0gsumfz.0 0 = (0g𝐺)
nn0gsumfz.g (𝜑𝐺 ∈ CMnd)
nn0gsumfz.f (𝜑𝐹 ∈ (𝐵m0))
nn0gsumfz.y (𝜑𝐹 finSupp 0 )
Assertion
Ref Expression
nn0gsumfz (𝜑 → ∃𝑠 ∈ ℕ0𝑓 ∈ (𝐵m (0...𝑠))(𝑓 = (𝐹 ↾ (0...𝑠)) ∧ ∀𝑥 ∈ ℕ0 (𝑠 < 𝑥 → (𝐹𝑥) = 0 ) ∧ (𝐺 Σg 𝐹) = (𝐺 Σg 𝑓)))
Distinct variable groups:   𝐵,𝑓   𝑓,𝐹,𝑠,𝑥   𝑓,𝐺   0 ,𝑓,𝑠,𝑥   𝜑,𝑓,𝑠
Allowed substitution hints:   𝜑(𝑥)   𝐵(𝑥,𝑠)   𝐺(𝑥,𝑠)

Proof of Theorem nn0gsumfz
StepHypRef Expression
1 nn0gsumfz.f . . . 4 (𝜑𝐹 ∈ (𝐵m0))
2 nn0gsumfz.0 . . . . 5 0 = (0g𝐺)
32fvexi 6854 . . . 4 0 ∈ V
41, 3jctir 520 . . 3 (𝜑 → (𝐹 ∈ (𝐵m0) ∧ 0 ∈ V))
5 nn0gsumfz.y . . 3 (𝜑𝐹 finSupp 0 )
6 fsuppmapnn0ub 13936 . . 3 ((𝐹 ∈ (𝐵m0) ∧ 0 ∈ V) → (𝐹 finSupp 0 → ∃𝑠 ∈ ℕ0𝑥 ∈ ℕ0 (𝑠 < 𝑥 → (𝐹𝑥) = 0 )))
74, 5, 6sylc 65 . 2 (𝜑 → ∃𝑠 ∈ ℕ0𝑥 ∈ ℕ0 (𝑠 < 𝑥 → (𝐹𝑥) = 0 ))
8 eqidd 2730 . . . . 5 (((𝜑𝑠 ∈ ℕ0) ∧ ∀𝑥 ∈ ℕ0 (𝑠 < 𝑥 → (𝐹𝑥) = 0 )) → (𝐹 ↾ (0...𝑠)) = (𝐹 ↾ (0...𝑠)))
9 simpr 484 . . . . 5 (((𝜑𝑠 ∈ ℕ0) ∧ ∀𝑥 ∈ ℕ0 (𝑠 < 𝑥 → (𝐹𝑥) = 0 )) → ∀𝑥 ∈ ℕ0 (𝑠 < 𝑥 → (𝐹𝑥) = 0 ))
10 nn0gsumfz.b . . . . . . 7 𝐵 = (Base‘𝐺)
11 nn0gsumfz.g . . . . . . . 8 (𝜑𝐺 ∈ CMnd)
1211adantr 480 . . . . . . 7 ((𝜑𝑠 ∈ ℕ0) → 𝐺 ∈ CMnd)
131adantr 480 . . . . . . 7 ((𝜑𝑠 ∈ ℕ0) → 𝐹 ∈ (𝐵m0))
14 simpr 484 . . . . . . 7 ((𝜑𝑠 ∈ ℕ0) → 𝑠 ∈ ℕ0)
15 eqid 2729 . . . . . . 7 (𝐹 ↾ (0...𝑠)) = (𝐹 ↾ (0...𝑠))
1610, 2, 12, 13, 14, 15fsfnn0gsumfsffz 19897 . . . . . 6 ((𝜑𝑠 ∈ ℕ0) → (∀𝑥 ∈ ℕ0 (𝑠 < 𝑥 → (𝐹𝑥) = 0 ) → (𝐺 Σg 𝐹) = (𝐺 Σg (𝐹 ↾ (0...𝑠)))))
1716imp 406 . . . . 5 (((𝜑𝑠 ∈ ℕ0) ∧ ∀𝑥 ∈ ℕ0 (𝑠 < 𝑥 → (𝐹𝑥) = 0 )) → (𝐺 Σg 𝐹) = (𝐺 Σg (𝐹 ↾ (0...𝑠))))
1813adantr 480 . . . . . . 7 (((𝜑𝑠 ∈ ℕ0) ∧ ∀𝑥 ∈ ℕ0 (𝑠 < 𝑥 → (𝐹𝑥) = 0 )) → 𝐹 ∈ (𝐵m0))
19 fz0ssnn0 13559 . . . . . . 7 (0...𝑠) ⊆ ℕ0
20 elmapssres 8817 . . . . . . 7 ((𝐹 ∈ (𝐵m0) ∧ (0...𝑠) ⊆ ℕ0) → (𝐹 ↾ (0...𝑠)) ∈ (𝐵m (0...𝑠)))
2118, 19, 20sylancl 586 . . . . . 6 (((𝜑𝑠 ∈ ℕ0) ∧ ∀𝑥 ∈ ℕ0 (𝑠 < 𝑥 → (𝐹𝑥) = 0 )) → (𝐹 ↾ (0...𝑠)) ∈ (𝐵m (0...𝑠)))
22 eqeq1 2733 . . . . . . . 8 (𝑓 = (𝐹 ↾ (0...𝑠)) → (𝑓 = (𝐹 ↾ (0...𝑠)) ↔ (𝐹 ↾ (0...𝑠)) = (𝐹 ↾ (0...𝑠))))
23 oveq2 7377 . . . . . . . . 9 (𝑓 = (𝐹 ↾ (0...𝑠)) → (𝐺 Σg 𝑓) = (𝐺 Σg (𝐹 ↾ (0...𝑠))))
2423eqeq2d 2740 . . . . . . . 8 (𝑓 = (𝐹 ↾ (0...𝑠)) → ((𝐺 Σg 𝐹) = (𝐺 Σg 𝑓) ↔ (𝐺 Σg 𝐹) = (𝐺 Σg (𝐹 ↾ (0...𝑠)))))
2522, 243anbi13d 1440 . . . . . . 7 (𝑓 = (𝐹 ↾ (0...𝑠)) → ((𝑓 = (𝐹 ↾ (0...𝑠)) ∧ ∀𝑥 ∈ ℕ0 (𝑠 < 𝑥 → (𝐹𝑥) = 0 ) ∧ (𝐺 Σg 𝐹) = (𝐺 Σg 𝑓)) ↔ ((𝐹 ↾ (0...𝑠)) = (𝐹 ↾ (0...𝑠)) ∧ ∀𝑥 ∈ ℕ0 (𝑠 < 𝑥 → (𝐹𝑥) = 0 ) ∧ (𝐺 Σg 𝐹) = (𝐺 Σg (𝐹 ↾ (0...𝑠))))))
2625adantl 481 . . . . . 6 ((((𝜑𝑠 ∈ ℕ0) ∧ ∀𝑥 ∈ ℕ0 (𝑠 < 𝑥 → (𝐹𝑥) = 0 )) ∧ 𝑓 = (𝐹 ↾ (0...𝑠))) → ((𝑓 = (𝐹 ↾ (0...𝑠)) ∧ ∀𝑥 ∈ ℕ0 (𝑠 < 𝑥 → (𝐹𝑥) = 0 ) ∧ (𝐺 Σg 𝐹) = (𝐺 Σg 𝑓)) ↔ ((𝐹 ↾ (0...𝑠)) = (𝐹 ↾ (0...𝑠)) ∧ ∀𝑥 ∈ ℕ0 (𝑠 < 𝑥 → (𝐹𝑥) = 0 ) ∧ (𝐺 Σg 𝐹) = (𝐺 Σg (𝐹 ↾ (0...𝑠))))))
2721, 26rspcedv 3578 . . . . 5 (((𝜑𝑠 ∈ ℕ0) ∧ ∀𝑥 ∈ ℕ0 (𝑠 < 𝑥 → (𝐹𝑥) = 0 )) → (((𝐹 ↾ (0...𝑠)) = (𝐹 ↾ (0...𝑠)) ∧ ∀𝑥 ∈ ℕ0 (𝑠 < 𝑥 → (𝐹𝑥) = 0 ) ∧ (𝐺 Σg 𝐹) = (𝐺 Σg (𝐹 ↾ (0...𝑠)))) → ∃𝑓 ∈ (𝐵m (0...𝑠))(𝑓 = (𝐹 ↾ (0...𝑠)) ∧ ∀𝑥 ∈ ℕ0 (𝑠 < 𝑥 → (𝐹𝑥) = 0 ) ∧ (𝐺 Σg 𝐹) = (𝐺 Σg 𝑓))))
288, 9, 17, 27mp3and 1466 . . . 4 (((𝜑𝑠 ∈ ℕ0) ∧ ∀𝑥 ∈ ℕ0 (𝑠 < 𝑥 → (𝐹𝑥) = 0 )) → ∃𝑓 ∈ (𝐵m (0...𝑠))(𝑓 = (𝐹 ↾ (0...𝑠)) ∧ ∀𝑥 ∈ ℕ0 (𝑠 < 𝑥 → (𝐹𝑥) = 0 ) ∧ (𝐺 Σg 𝐹) = (𝐺 Σg 𝑓)))
2928ex 412 . . 3 ((𝜑𝑠 ∈ ℕ0) → (∀𝑥 ∈ ℕ0 (𝑠 < 𝑥 → (𝐹𝑥) = 0 ) → ∃𝑓 ∈ (𝐵m (0...𝑠))(𝑓 = (𝐹 ↾ (0...𝑠)) ∧ ∀𝑥 ∈ ℕ0 (𝑠 < 𝑥 → (𝐹𝑥) = 0 ) ∧ (𝐺 Σg 𝐹) = (𝐺 Σg 𝑓))))
3029reximdva 3146 . 2 (𝜑 → (∃𝑠 ∈ ℕ0𝑥 ∈ ℕ0 (𝑠 < 𝑥 → (𝐹𝑥) = 0 ) → ∃𝑠 ∈ ℕ0𝑓 ∈ (𝐵m (0...𝑠))(𝑓 = (𝐹 ↾ (0...𝑠)) ∧ ∀𝑥 ∈ ℕ0 (𝑠 < 𝑥 → (𝐹𝑥) = 0 ) ∧ (𝐺 Σg 𝐹) = (𝐺 Σg 𝑓))))
317, 30mpd 15 1 (𝜑 → ∃𝑠 ∈ ℕ0𝑓 ∈ (𝐵m (0...𝑠))(𝑓 = (𝐹 ↾ (0...𝑠)) ∧ ∀𝑥 ∈ ℕ0 (𝑠 < 𝑥 → (𝐹𝑥) = 0 ) ∧ (𝐺 Σg 𝐹) = (𝐺 Σg 𝑓)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  wral 3044  wrex 3053  Vcvv 3444  wss 3911   class class class wbr 5102  cres 5633  cfv 6499  (class class class)co 7369  m cmap 8776   finSupp cfsupp 9288  0cc0 11044   < clt 11184  0cn0 12418  ...cfz 13444  Basecbs 17155  0gc0g 17378   Σg cgsu 17379  CMndccmn 19694
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5229  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691  ax-cnex 11100  ax-resscn 11101  ax-1cn 11102  ax-icn 11103  ax-addcl 11104  ax-addrcl 11105  ax-mulcl 11106  ax-mulrcl 11107  ax-mulcom 11108  ax-addass 11109  ax-mulass 11110  ax-distr 11111  ax-i2m1 11112  ax-1ne0 11113  ax-1rid 11114  ax-rnegex 11115  ax-rrecex 11116  ax-cnre 11117  ax-pre-lttri 11118  ax-pre-lttrn 11119  ax-pre-ltadd 11120  ax-pre-mulgt0 11121
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3351  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3931  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-int 4907  df-iun 4953  df-br 5103  df-opab 5165  df-mpt 5184  df-tr 5210  df-id 5526  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5584  df-se 5585  df-we 5586  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-pred 6262  df-ord 6323  df-on 6324  df-lim 6325  df-suc 6326  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-isom 6508  df-riota 7326  df-ov 7372  df-oprab 7373  df-mpo 7374  df-om 7823  df-1st 7947  df-2nd 7948  df-supp 8117  df-frecs 8237  df-wrecs 8268  df-recs 8317  df-rdg 8355  df-1o 8411  df-er 8648  df-map 8778  df-en 8896  df-dom 8897  df-sdom 8898  df-fin 8899  df-fsupp 9289  df-oi 9439  df-card 9868  df-pnf 11186  df-mnf 11187  df-xr 11188  df-ltxr 11189  df-le 11190  df-sub 11383  df-neg 11384  df-nn 12163  df-n0 12419  df-z 12506  df-uz 12770  df-fz 13445  df-fzo 13592  df-seq 13943  df-hash 14272  df-0g 17380  df-gsum 17381  df-mgm 18549  df-sgrp 18628  df-mnd 18644  df-cntz 19231  df-cmn 19696
This theorem is referenced by:  nn0gsumfz0  19899
  Copyright terms: Public domain W3C validator