MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nn0gsumfz Structured version   Visualization version   GIF version

Theorem nn0gsumfz 19106
Description: Replacing a finitely supported function over the nonnegative integers by a function over a finite set of sequential integers in a finite group sum. (Contributed by AV, 9-Oct-2019.)
Hypotheses
Ref Expression
nn0gsumfz.b 𝐵 = (Base‘𝐺)
nn0gsumfz.0 0 = (0g𝐺)
nn0gsumfz.g (𝜑𝐺 ∈ CMnd)
nn0gsumfz.f (𝜑𝐹 ∈ (𝐵m0))
nn0gsumfz.y (𝜑𝐹 finSupp 0 )
Assertion
Ref Expression
nn0gsumfz (𝜑 → ∃𝑠 ∈ ℕ0𝑓 ∈ (𝐵m (0...𝑠))(𝑓 = (𝐹 ↾ (0...𝑠)) ∧ ∀𝑥 ∈ ℕ0 (𝑠 < 𝑥 → (𝐹𝑥) = 0 ) ∧ (𝐺 Σg 𝐹) = (𝐺 Σg 𝑓)))
Distinct variable groups:   𝐵,𝑓   𝑓,𝐹,𝑠,𝑥   𝑓,𝐺   0 ,𝑓,𝑠,𝑥   𝜑,𝑓,𝑠
Allowed substitution hints:   𝜑(𝑥)   𝐵(𝑥,𝑠)   𝐺(𝑥,𝑠)

Proof of Theorem nn0gsumfz
StepHypRef Expression
1 nn0gsumfz.f . . . 4 (𝜑𝐹 ∈ (𝐵m0))
2 nn0gsumfz.0 . . . . 5 0 = (0g𝐺)
32fvexi 6686 . . . 4 0 ∈ V
41, 3jctir 523 . . 3 (𝜑 → (𝐹 ∈ (𝐵m0) ∧ 0 ∈ V))
5 nn0gsumfz.y . . 3 (𝜑𝐹 finSupp 0 )
6 fsuppmapnn0ub 13366 . . 3 ((𝐹 ∈ (𝐵m0) ∧ 0 ∈ V) → (𝐹 finSupp 0 → ∃𝑠 ∈ ℕ0𝑥 ∈ ℕ0 (𝑠 < 𝑥 → (𝐹𝑥) = 0 )))
74, 5, 6sylc 65 . 2 (𝜑 → ∃𝑠 ∈ ℕ0𝑥 ∈ ℕ0 (𝑠 < 𝑥 → (𝐹𝑥) = 0 ))
8 eqidd 2824 . . . . 5 (((𝜑𝑠 ∈ ℕ0) ∧ ∀𝑥 ∈ ℕ0 (𝑠 < 𝑥 → (𝐹𝑥) = 0 )) → (𝐹 ↾ (0...𝑠)) = (𝐹 ↾ (0...𝑠)))
9 simpr 487 . . . . 5 (((𝜑𝑠 ∈ ℕ0) ∧ ∀𝑥 ∈ ℕ0 (𝑠 < 𝑥 → (𝐹𝑥) = 0 )) → ∀𝑥 ∈ ℕ0 (𝑠 < 𝑥 → (𝐹𝑥) = 0 ))
10 nn0gsumfz.b . . . . . . 7 𝐵 = (Base‘𝐺)
11 nn0gsumfz.g . . . . . . . 8 (𝜑𝐺 ∈ CMnd)
1211adantr 483 . . . . . . 7 ((𝜑𝑠 ∈ ℕ0) → 𝐺 ∈ CMnd)
131adantr 483 . . . . . . 7 ((𝜑𝑠 ∈ ℕ0) → 𝐹 ∈ (𝐵m0))
14 simpr 487 . . . . . . 7 ((𝜑𝑠 ∈ ℕ0) → 𝑠 ∈ ℕ0)
15 eqid 2823 . . . . . . 7 (𝐹 ↾ (0...𝑠)) = (𝐹 ↾ (0...𝑠))
1610, 2, 12, 13, 14, 15fsfnn0gsumfsffz 19105 . . . . . 6 ((𝜑𝑠 ∈ ℕ0) → (∀𝑥 ∈ ℕ0 (𝑠 < 𝑥 → (𝐹𝑥) = 0 ) → (𝐺 Σg 𝐹) = (𝐺 Σg (𝐹 ↾ (0...𝑠)))))
1716imp 409 . . . . 5 (((𝜑𝑠 ∈ ℕ0) ∧ ∀𝑥 ∈ ℕ0 (𝑠 < 𝑥 → (𝐹𝑥) = 0 )) → (𝐺 Σg 𝐹) = (𝐺 Σg (𝐹 ↾ (0...𝑠))))
1813adantr 483 . . . . . . 7 (((𝜑𝑠 ∈ ℕ0) ∧ ∀𝑥 ∈ ℕ0 (𝑠 < 𝑥 → (𝐹𝑥) = 0 )) → 𝐹 ∈ (𝐵m0))
19 fz0ssnn0 13005 . . . . . . 7 (0...𝑠) ⊆ ℕ0
20 elmapssres 8433 . . . . . . 7 ((𝐹 ∈ (𝐵m0) ∧ (0...𝑠) ⊆ ℕ0) → (𝐹 ↾ (0...𝑠)) ∈ (𝐵m (0...𝑠)))
2118, 19, 20sylancl 588 . . . . . 6 (((𝜑𝑠 ∈ ℕ0) ∧ ∀𝑥 ∈ ℕ0 (𝑠 < 𝑥 → (𝐹𝑥) = 0 )) → (𝐹 ↾ (0...𝑠)) ∈ (𝐵m (0...𝑠)))
22 eqeq1 2827 . . . . . . . 8 (𝑓 = (𝐹 ↾ (0...𝑠)) → (𝑓 = (𝐹 ↾ (0...𝑠)) ↔ (𝐹 ↾ (0...𝑠)) = (𝐹 ↾ (0...𝑠))))
23 oveq2 7166 . . . . . . . . 9 (𝑓 = (𝐹 ↾ (0...𝑠)) → (𝐺 Σg 𝑓) = (𝐺 Σg (𝐹 ↾ (0...𝑠))))
2423eqeq2d 2834 . . . . . . . 8 (𝑓 = (𝐹 ↾ (0...𝑠)) → ((𝐺 Σg 𝐹) = (𝐺 Σg 𝑓) ↔ (𝐺 Σg 𝐹) = (𝐺 Σg (𝐹 ↾ (0...𝑠)))))
2522, 243anbi13d 1434 . . . . . . 7 (𝑓 = (𝐹 ↾ (0...𝑠)) → ((𝑓 = (𝐹 ↾ (0...𝑠)) ∧ ∀𝑥 ∈ ℕ0 (𝑠 < 𝑥 → (𝐹𝑥) = 0 ) ∧ (𝐺 Σg 𝐹) = (𝐺 Σg 𝑓)) ↔ ((𝐹 ↾ (0...𝑠)) = (𝐹 ↾ (0...𝑠)) ∧ ∀𝑥 ∈ ℕ0 (𝑠 < 𝑥 → (𝐹𝑥) = 0 ) ∧ (𝐺 Σg 𝐹) = (𝐺 Σg (𝐹 ↾ (0...𝑠))))))
2625adantl 484 . . . . . 6 ((((𝜑𝑠 ∈ ℕ0) ∧ ∀𝑥 ∈ ℕ0 (𝑠 < 𝑥 → (𝐹𝑥) = 0 )) ∧ 𝑓 = (𝐹 ↾ (0...𝑠))) → ((𝑓 = (𝐹 ↾ (0...𝑠)) ∧ ∀𝑥 ∈ ℕ0 (𝑠 < 𝑥 → (𝐹𝑥) = 0 ) ∧ (𝐺 Σg 𝐹) = (𝐺 Σg 𝑓)) ↔ ((𝐹 ↾ (0...𝑠)) = (𝐹 ↾ (0...𝑠)) ∧ ∀𝑥 ∈ ℕ0 (𝑠 < 𝑥 → (𝐹𝑥) = 0 ) ∧ (𝐺 Σg 𝐹) = (𝐺 Σg (𝐹 ↾ (0...𝑠))))))
2721, 26rspcedv 3618 . . . . 5 (((𝜑𝑠 ∈ ℕ0) ∧ ∀𝑥 ∈ ℕ0 (𝑠 < 𝑥 → (𝐹𝑥) = 0 )) → (((𝐹 ↾ (0...𝑠)) = (𝐹 ↾ (0...𝑠)) ∧ ∀𝑥 ∈ ℕ0 (𝑠 < 𝑥 → (𝐹𝑥) = 0 ) ∧ (𝐺 Σg 𝐹) = (𝐺 Σg (𝐹 ↾ (0...𝑠)))) → ∃𝑓 ∈ (𝐵m (0...𝑠))(𝑓 = (𝐹 ↾ (0...𝑠)) ∧ ∀𝑥 ∈ ℕ0 (𝑠 < 𝑥 → (𝐹𝑥) = 0 ) ∧ (𝐺 Σg 𝐹) = (𝐺 Σg 𝑓))))
288, 9, 17, 27mp3and 1460 . . . 4 (((𝜑𝑠 ∈ ℕ0) ∧ ∀𝑥 ∈ ℕ0 (𝑠 < 𝑥 → (𝐹𝑥) = 0 )) → ∃𝑓 ∈ (𝐵m (0...𝑠))(𝑓 = (𝐹 ↾ (0...𝑠)) ∧ ∀𝑥 ∈ ℕ0 (𝑠 < 𝑥 → (𝐹𝑥) = 0 ) ∧ (𝐺 Σg 𝐹) = (𝐺 Σg 𝑓)))
2928ex 415 . . 3 ((𝜑𝑠 ∈ ℕ0) → (∀𝑥 ∈ ℕ0 (𝑠 < 𝑥 → (𝐹𝑥) = 0 ) → ∃𝑓 ∈ (𝐵m (0...𝑠))(𝑓 = (𝐹 ↾ (0...𝑠)) ∧ ∀𝑥 ∈ ℕ0 (𝑠 < 𝑥 → (𝐹𝑥) = 0 ) ∧ (𝐺 Σg 𝐹) = (𝐺 Σg 𝑓))))
3029reximdva 3276 . 2 (𝜑 → (∃𝑠 ∈ ℕ0𝑥 ∈ ℕ0 (𝑠 < 𝑥 → (𝐹𝑥) = 0 ) → ∃𝑠 ∈ ℕ0𝑓 ∈ (𝐵m (0...𝑠))(𝑓 = (𝐹 ↾ (0...𝑠)) ∧ ∀𝑥 ∈ ℕ0 (𝑠 < 𝑥 → (𝐹𝑥) = 0 ) ∧ (𝐺 Σg 𝐹) = (𝐺 Σg 𝑓))))
317, 30mpd 15 1 (𝜑 → ∃𝑠 ∈ ℕ0𝑓 ∈ (𝐵m (0...𝑠))(𝑓 = (𝐹 ↾ (0...𝑠)) ∧ ∀𝑥 ∈ ℕ0 (𝑠 < 𝑥 → (𝐹𝑥) = 0 ) ∧ (𝐺 Σg 𝐹) = (𝐺 Σg 𝑓)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398  w3a 1083   = wceq 1537  wcel 2114  wral 3140  wrex 3141  Vcvv 3496  wss 3938   class class class wbr 5068  cres 5559  cfv 6357  (class class class)co 7158  m cmap 8408   finSupp cfsupp 8835  0cc0 10539   < clt 10677  0cn0 11900  ...cfz 12895  Basecbs 16485  0gc0g 16715   Σg cgsu 16716  CMndccmn 18908
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2795  ax-rep 5192  ax-sep 5205  ax-nul 5212  ax-pow 5268  ax-pr 5332  ax-un 7463  ax-cnex 10595  ax-resscn 10596  ax-1cn 10597  ax-icn 10598  ax-addcl 10599  ax-addrcl 10600  ax-mulcl 10601  ax-mulrcl 10602  ax-mulcom 10603  ax-addass 10604  ax-mulass 10605  ax-distr 10606  ax-i2m1 10607  ax-1ne0 10608  ax-1rid 10609  ax-rnegex 10610  ax-rrecex 10611  ax-cnre 10612  ax-pre-lttri 10613  ax-pre-lttrn 10614  ax-pre-ltadd 10615  ax-pre-mulgt0 10616
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2802  df-cleq 2816  df-clel 2895  df-nfc 2965  df-ne 3019  df-nel 3126  df-ral 3145  df-rex 3146  df-reu 3147  df-rmo 3148  df-rab 3149  df-v 3498  df-sbc 3775  df-csb 3886  df-dif 3941  df-un 3943  df-in 3945  df-ss 3954  df-pss 3956  df-nul 4294  df-if 4470  df-pw 4543  df-sn 4570  df-pr 4572  df-tp 4574  df-op 4576  df-uni 4841  df-int 4879  df-iun 4923  df-br 5069  df-opab 5131  df-mpt 5149  df-tr 5175  df-id 5462  df-eprel 5467  df-po 5476  df-so 5477  df-fr 5516  df-se 5517  df-we 5518  df-xp 5563  df-rel 5564  df-cnv 5565  df-co 5566  df-dm 5567  df-rn 5568  df-res 5569  df-ima 5570  df-pred 6150  df-ord 6196  df-on 6197  df-lim 6198  df-suc 6199  df-iota 6316  df-fun 6359  df-fn 6360  df-f 6361  df-f1 6362  df-fo 6363  df-f1o 6364  df-fv 6365  df-isom 6366  df-riota 7116  df-ov 7161  df-oprab 7162  df-mpo 7163  df-om 7583  df-1st 7691  df-2nd 7692  df-supp 7833  df-wrecs 7949  df-recs 8010  df-rdg 8048  df-1o 8104  df-oadd 8108  df-er 8291  df-map 8410  df-en 8512  df-dom 8513  df-sdom 8514  df-fin 8515  df-fsupp 8836  df-oi 8976  df-card 9370  df-pnf 10679  df-mnf 10680  df-xr 10681  df-ltxr 10682  df-le 10683  df-sub 10874  df-neg 10875  df-nn 11641  df-n0 11901  df-z 11985  df-uz 12247  df-fz 12896  df-fzo 13037  df-seq 13373  df-hash 13694  df-0g 16717  df-gsum 16718  df-mgm 17854  df-sgrp 17903  df-mnd 17914  df-cntz 18449  df-cmn 18910
This theorem is referenced by:  nn0gsumfz0  19107
  Copyright terms: Public domain W3C validator