MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nn0gsumfz Structured version   Visualization version   GIF version

Theorem nn0gsumfz 19914
Description: Replacing a finitely supported function over the nonnegative integers by a function over a finite set of sequential integers in a finite group sum. (Contributed by AV, 9-Oct-2019.)
Hypotheses
Ref Expression
nn0gsumfz.b 𝐵 = (Base‘𝐺)
nn0gsumfz.0 0 = (0g𝐺)
nn0gsumfz.g (𝜑𝐺 ∈ CMnd)
nn0gsumfz.f (𝜑𝐹 ∈ (𝐵m0))
nn0gsumfz.y (𝜑𝐹 finSupp 0 )
Assertion
Ref Expression
nn0gsumfz (𝜑 → ∃𝑠 ∈ ℕ0𝑓 ∈ (𝐵m (0...𝑠))(𝑓 = (𝐹 ↾ (0...𝑠)) ∧ ∀𝑥 ∈ ℕ0 (𝑠 < 𝑥 → (𝐹𝑥) = 0 ) ∧ (𝐺 Σg 𝐹) = (𝐺 Σg 𝑓)))
Distinct variable groups:   𝐵,𝑓   𝑓,𝐹,𝑠,𝑥   𝑓,𝐺   0 ,𝑓,𝑠,𝑥   𝜑,𝑓,𝑠
Allowed substitution hints:   𝜑(𝑥)   𝐵(𝑥,𝑠)   𝐺(𝑥,𝑠)

Proof of Theorem nn0gsumfz
StepHypRef Expression
1 nn0gsumfz.f . . . 4 (𝜑𝐹 ∈ (𝐵m0))
2 nn0gsumfz.0 . . . . 5 0 = (0g𝐺)
32fvexi 6872 . . . 4 0 ∈ V
41, 3jctir 520 . . 3 (𝜑 → (𝐹 ∈ (𝐵m0) ∧ 0 ∈ V))
5 nn0gsumfz.y . . 3 (𝜑𝐹 finSupp 0 )
6 fsuppmapnn0ub 13960 . . 3 ((𝐹 ∈ (𝐵m0) ∧ 0 ∈ V) → (𝐹 finSupp 0 → ∃𝑠 ∈ ℕ0𝑥 ∈ ℕ0 (𝑠 < 𝑥 → (𝐹𝑥) = 0 )))
74, 5, 6sylc 65 . 2 (𝜑 → ∃𝑠 ∈ ℕ0𝑥 ∈ ℕ0 (𝑠 < 𝑥 → (𝐹𝑥) = 0 ))
8 eqidd 2730 . . . . 5 (((𝜑𝑠 ∈ ℕ0) ∧ ∀𝑥 ∈ ℕ0 (𝑠 < 𝑥 → (𝐹𝑥) = 0 )) → (𝐹 ↾ (0...𝑠)) = (𝐹 ↾ (0...𝑠)))
9 simpr 484 . . . . 5 (((𝜑𝑠 ∈ ℕ0) ∧ ∀𝑥 ∈ ℕ0 (𝑠 < 𝑥 → (𝐹𝑥) = 0 )) → ∀𝑥 ∈ ℕ0 (𝑠 < 𝑥 → (𝐹𝑥) = 0 ))
10 nn0gsumfz.b . . . . . . 7 𝐵 = (Base‘𝐺)
11 nn0gsumfz.g . . . . . . . 8 (𝜑𝐺 ∈ CMnd)
1211adantr 480 . . . . . . 7 ((𝜑𝑠 ∈ ℕ0) → 𝐺 ∈ CMnd)
131adantr 480 . . . . . . 7 ((𝜑𝑠 ∈ ℕ0) → 𝐹 ∈ (𝐵m0))
14 simpr 484 . . . . . . 7 ((𝜑𝑠 ∈ ℕ0) → 𝑠 ∈ ℕ0)
15 eqid 2729 . . . . . . 7 (𝐹 ↾ (0...𝑠)) = (𝐹 ↾ (0...𝑠))
1610, 2, 12, 13, 14, 15fsfnn0gsumfsffz 19913 . . . . . 6 ((𝜑𝑠 ∈ ℕ0) → (∀𝑥 ∈ ℕ0 (𝑠 < 𝑥 → (𝐹𝑥) = 0 ) → (𝐺 Σg 𝐹) = (𝐺 Σg (𝐹 ↾ (0...𝑠)))))
1716imp 406 . . . . 5 (((𝜑𝑠 ∈ ℕ0) ∧ ∀𝑥 ∈ ℕ0 (𝑠 < 𝑥 → (𝐹𝑥) = 0 )) → (𝐺 Σg 𝐹) = (𝐺 Σg (𝐹 ↾ (0...𝑠))))
1813adantr 480 . . . . . . 7 (((𝜑𝑠 ∈ ℕ0) ∧ ∀𝑥 ∈ ℕ0 (𝑠 < 𝑥 → (𝐹𝑥) = 0 )) → 𝐹 ∈ (𝐵m0))
19 fz0ssnn0 13583 . . . . . . 7 (0...𝑠) ⊆ ℕ0
20 elmapssres 8840 . . . . . . 7 ((𝐹 ∈ (𝐵m0) ∧ (0...𝑠) ⊆ ℕ0) → (𝐹 ↾ (0...𝑠)) ∈ (𝐵m (0...𝑠)))
2118, 19, 20sylancl 586 . . . . . 6 (((𝜑𝑠 ∈ ℕ0) ∧ ∀𝑥 ∈ ℕ0 (𝑠 < 𝑥 → (𝐹𝑥) = 0 )) → (𝐹 ↾ (0...𝑠)) ∈ (𝐵m (0...𝑠)))
22 eqeq1 2733 . . . . . . . 8 (𝑓 = (𝐹 ↾ (0...𝑠)) → (𝑓 = (𝐹 ↾ (0...𝑠)) ↔ (𝐹 ↾ (0...𝑠)) = (𝐹 ↾ (0...𝑠))))
23 oveq2 7395 . . . . . . . . 9 (𝑓 = (𝐹 ↾ (0...𝑠)) → (𝐺 Σg 𝑓) = (𝐺 Σg (𝐹 ↾ (0...𝑠))))
2423eqeq2d 2740 . . . . . . . 8 (𝑓 = (𝐹 ↾ (0...𝑠)) → ((𝐺 Σg 𝐹) = (𝐺 Σg 𝑓) ↔ (𝐺 Σg 𝐹) = (𝐺 Σg (𝐹 ↾ (0...𝑠)))))
2522, 243anbi13d 1440 . . . . . . 7 (𝑓 = (𝐹 ↾ (0...𝑠)) → ((𝑓 = (𝐹 ↾ (0...𝑠)) ∧ ∀𝑥 ∈ ℕ0 (𝑠 < 𝑥 → (𝐹𝑥) = 0 ) ∧ (𝐺 Σg 𝐹) = (𝐺 Σg 𝑓)) ↔ ((𝐹 ↾ (0...𝑠)) = (𝐹 ↾ (0...𝑠)) ∧ ∀𝑥 ∈ ℕ0 (𝑠 < 𝑥 → (𝐹𝑥) = 0 ) ∧ (𝐺 Σg 𝐹) = (𝐺 Σg (𝐹 ↾ (0...𝑠))))))
2625adantl 481 . . . . . 6 ((((𝜑𝑠 ∈ ℕ0) ∧ ∀𝑥 ∈ ℕ0 (𝑠 < 𝑥 → (𝐹𝑥) = 0 )) ∧ 𝑓 = (𝐹 ↾ (0...𝑠))) → ((𝑓 = (𝐹 ↾ (0...𝑠)) ∧ ∀𝑥 ∈ ℕ0 (𝑠 < 𝑥 → (𝐹𝑥) = 0 ) ∧ (𝐺 Σg 𝐹) = (𝐺 Σg 𝑓)) ↔ ((𝐹 ↾ (0...𝑠)) = (𝐹 ↾ (0...𝑠)) ∧ ∀𝑥 ∈ ℕ0 (𝑠 < 𝑥 → (𝐹𝑥) = 0 ) ∧ (𝐺 Σg 𝐹) = (𝐺 Σg (𝐹 ↾ (0...𝑠))))))
2721, 26rspcedv 3581 . . . . 5 (((𝜑𝑠 ∈ ℕ0) ∧ ∀𝑥 ∈ ℕ0 (𝑠 < 𝑥 → (𝐹𝑥) = 0 )) → (((𝐹 ↾ (0...𝑠)) = (𝐹 ↾ (0...𝑠)) ∧ ∀𝑥 ∈ ℕ0 (𝑠 < 𝑥 → (𝐹𝑥) = 0 ) ∧ (𝐺 Σg 𝐹) = (𝐺 Σg (𝐹 ↾ (0...𝑠)))) → ∃𝑓 ∈ (𝐵m (0...𝑠))(𝑓 = (𝐹 ↾ (0...𝑠)) ∧ ∀𝑥 ∈ ℕ0 (𝑠 < 𝑥 → (𝐹𝑥) = 0 ) ∧ (𝐺 Σg 𝐹) = (𝐺 Σg 𝑓))))
288, 9, 17, 27mp3and 1466 . . . 4 (((𝜑𝑠 ∈ ℕ0) ∧ ∀𝑥 ∈ ℕ0 (𝑠 < 𝑥 → (𝐹𝑥) = 0 )) → ∃𝑓 ∈ (𝐵m (0...𝑠))(𝑓 = (𝐹 ↾ (0...𝑠)) ∧ ∀𝑥 ∈ ℕ0 (𝑠 < 𝑥 → (𝐹𝑥) = 0 ) ∧ (𝐺 Σg 𝐹) = (𝐺 Σg 𝑓)))
2928ex 412 . . 3 ((𝜑𝑠 ∈ ℕ0) → (∀𝑥 ∈ ℕ0 (𝑠 < 𝑥 → (𝐹𝑥) = 0 ) → ∃𝑓 ∈ (𝐵m (0...𝑠))(𝑓 = (𝐹 ↾ (0...𝑠)) ∧ ∀𝑥 ∈ ℕ0 (𝑠 < 𝑥 → (𝐹𝑥) = 0 ) ∧ (𝐺 Σg 𝐹) = (𝐺 Σg 𝑓))))
3029reximdva 3146 . 2 (𝜑 → (∃𝑠 ∈ ℕ0𝑥 ∈ ℕ0 (𝑠 < 𝑥 → (𝐹𝑥) = 0 ) → ∃𝑠 ∈ ℕ0𝑓 ∈ (𝐵m (0...𝑠))(𝑓 = (𝐹 ↾ (0...𝑠)) ∧ ∀𝑥 ∈ ℕ0 (𝑠 < 𝑥 → (𝐹𝑥) = 0 ) ∧ (𝐺 Σg 𝐹) = (𝐺 Σg 𝑓))))
317, 30mpd 15 1 (𝜑 → ∃𝑠 ∈ ℕ0𝑓 ∈ (𝐵m (0...𝑠))(𝑓 = (𝐹 ↾ (0...𝑠)) ∧ ∀𝑥 ∈ ℕ0 (𝑠 < 𝑥 → (𝐹𝑥) = 0 ) ∧ (𝐺 Σg 𝐹) = (𝐺 Σg 𝑓)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  wral 3044  wrex 3053  Vcvv 3447  wss 3914   class class class wbr 5107  cres 5640  cfv 6511  (class class class)co 7387  m cmap 8799   finSupp cfsupp 9312  0cc0 11068   < clt 11208  0cn0 12442  ...cfz 13468  Basecbs 17179  0gc0g 17402   Σg cgsu 17403  CMndccmn 19710
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-cnex 11124  ax-resscn 11125  ax-1cn 11126  ax-icn 11127  ax-addcl 11128  ax-addrcl 11129  ax-mulcl 11130  ax-mulrcl 11131  ax-mulcom 11132  ax-addass 11133  ax-mulass 11134  ax-distr 11135  ax-i2m1 11136  ax-1ne0 11137  ax-1rid 11138  ax-rnegex 11139  ax-rrecex 11140  ax-cnre 11141  ax-pre-lttri 11142  ax-pre-lttrn 11143  ax-pre-ltadd 11144  ax-pre-mulgt0 11145
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3354  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-int 4911  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-se 5592  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-isom 6520  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-om 7843  df-1st 7968  df-2nd 7969  df-supp 8140  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-1o 8434  df-er 8671  df-map 8801  df-en 8919  df-dom 8920  df-sdom 8921  df-fin 8922  df-fsupp 9313  df-oi 9463  df-card 9892  df-pnf 11210  df-mnf 11211  df-xr 11212  df-ltxr 11213  df-le 11214  df-sub 11407  df-neg 11408  df-nn 12187  df-n0 12443  df-z 12530  df-uz 12794  df-fz 13469  df-fzo 13616  df-seq 13967  df-hash 14296  df-0g 17404  df-gsum 17405  df-mgm 18567  df-sgrp 18646  df-mnd 18662  df-cntz 19249  df-cmn 19712
This theorem is referenced by:  nn0gsumfz0  19915
  Copyright terms: Public domain W3C validator