Step | Hyp | Ref
| Expression |
1 | | eqid 2732 |
. . . . 5
β’
(Baseβπ) =
(Baseβπ) |
2 | | eqid 2732 |
. . . . 5
β’
(Scalarβπ) =
(Scalarβπ) |
3 | | eqid 2732 |
. . . . 5
β’
(0gβ(Scalarβπ)) =
(0gβ(Scalarβπ)) |
4 | | eqid 2732 |
. . . . 5
β’
(1rβ(Scalarβπ)) =
(1rβ(Scalarβπ)) |
5 | | eqeq1 2736 |
. . . . . . 7
β’ (π = π¦ β (π = (0gβπ) β π¦ = (0gβπ))) |
6 | 5 | ifbid 4550 |
. . . . . 6
β’ (π = π¦ β if(π = (0gβπ), (1rβ(Scalarβπ)),
(0gβ(Scalarβπ))) = if(π¦ = (0gβπ), (1rβ(Scalarβπ)),
(0gβ(Scalarβπ)))) |
7 | 6 | cbvmptv 5260 |
. . . . 5
β’ (π β π β¦ if(π = (0gβπ), (1rβ(Scalarβπ)),
(0gβ(Scalarβπ)))) = (π¦ β π β¦ if(π¦ = (0gβπ), (1rβ(Scalarβπ)),
(0gβ(Scalarβπ)))) |
8 | 1, 2, 3, 4, 7 | mptcfsupp 47009 |
. . . 4
β’ ((π β LMod β§ π β π«
(Baseβπ) β§
(0gβπ)
β π) β (π β π β¦ if(π = (0gβπ), (1rβ(Scalarβπ)),
(0gβ(Scalarβπ)))) finSupp
(0gβ(Scalarβπ))) |
9 | 8 | 3adant1r 1177 |
. . 3
β’ (((π β LMod β§ 1 <
(β―β(Baseβ(Scalarβπ)))) β§ π β π« (Baseβπ) β§
(0gβπ)
β π) β (π β π β¦ if(π = (0gβπ), (1rβ(Scalarβπ)),
(0gβ(Scalarβπ)))) finSupp
(0gβ(Scalarβπ))) |
10 | | simp1l 1197 |
. . . 4
β’ (((π β LMod β§ 1 <
(β―β(Baseβ(Scalarβπ)))) β§ π β π« (Baseβπ) β§
(0gβπ)
β π) β π β LMod) |
11 | | simp2 1137 |
. . . 4
β’ (((π β LMod β§ 1 <
(β―β(Baseβ(Scalarβπ)))) β§ π β π« (Baseβπ) β§
(0gβπ)
β π) β π β π«
(Baseβπ)) |
12 | | eqid 2732 |
. . . . 5
β’
(0gβπ) = (0gβπ) |
13 | | eqid 2732 |
. . . . 5
β’ (π β π β¦ if(π = (0gβπ), (1rβ(Scalarβπ)),
(0gβ(Scalarβπ)))) = (π β π β¦ if(π = (0gβπ), (1rβ(Scalarβπ)),
(0gβ(Scalarβπ)))) |
14 | 1, 2, 3, 4, 12, 13 | linc0scn0 47057 |
. . . 4
β’ ((π β LMod β§ π β π«
(Baseβπ)) β
((π β π β¦ if(π = (0gβπ), (1rβ(Scalarβπ)),
(0gβ(Scalarβπ))))( linC βπ)π) = (0gβπ)) |
15 | 10, 11, 14 | syl2anc 584 |
. . 3
β’ (((π β LMod β§ 1 <
(β―β(Baseβ(Scalarβπ)))) β§ π β π« (Baseβπ) β§
(0gβπ)
β π) β ((π β π β¦ if(π = (0gβπ), (1rβ(Scalarβπ)),
(0gβ(Scalarβπ))))( linC βπ)π) = (0gβπ)) |
16 | | simp3 1138 |
. . . 4
β’ (((π β LMod β§ 1 <
(β―β(Baseβ(Scalarβπ)))) β§ π β π« (Baseβπ) β§
(0gβπ)
β π) β
(0gβπ)
β π) |
17 | | fveq2 6888 |
. . . . . 6
β’ (π₯ = (0gβπ) β ((π β π β¦ if(π = (0gβπ), (1rβ(Scalarβπ)),
(0gβ(Scalarβπ))))βπ₯) = ((π β π β¦ if(π = (0gβπ), (1rβ(Scalarβπ)),
(0gβ(Scalarβπ))))β(0gβπ))) |
18 | 17 | neeq1d 3000 |
. . . . 5
β’ (π₯ = (0gβπ) β (((π β π β¦ if(π = (0gβπ), (1rβ(Scalarβπ)),
(0gβ(Scalarβπ))))βπ₯) β
(0gβ(Scalarβπ)) β ((π β π β¦ if(π = (0gβπ), (1rβ(Scalarβπ)),
(0gβ(Scalarβπ))))β(0gβπ)) β
(0gβ(Scalarβπ)))) |
19 | 18 | adantl 482 |
. . . 4
β’ ((((π β LMod β§ 1 <
(β―β(Baseβ(Scalarβπ)))) β§ π β π« (Baseβπ) β§
(0gβπ)
β π) β§ π₯ = (0gβπ)) β (((π β π β¦ if(π = (0gβπ), (1rβ(Scalarβπ)),
(0gβ(Scalarβπ))))βπ₯) β
(0gβ(Scalarβπ)) β ((π β π β¦ if(π = (0gβπ), (1rβ(Scalarβπ)),
(0gβ(Scalarβπ))))β(0gβπ)) β
(0gβ(Scalarβπ)))) |
20 | | iftrue 4533 |
. . . . . 6
β’ (π = (0gβπ) β if(π = (0gβπ), (1rβ(Scalarβπ)),
(0gβ(Scalarβπ))) =
(1rβ(Scalarβπ))) |
21 | | fvexd 6903 |
. . . . . 6
β’ (((π β LMod β§ 1 <
(β―β(Baseβ(Scalarβπ)))) β§ π β π« (Baseβπ) β§
(0gβπ)
β π) β
(1rβ(Scalarβπ)) β V) |
22 | 13, 20, 16, 21 | fvmptd3 7018 |
. . . . 5
β’ (((π β LMod β§ 1 <
(β―β(Baseβ(Scalarβπ)))) β§ π β π« (Baseβπ) β§
(0gβπ)
β π) β ((π β π β¦ if(π = (0gβπ), (1rβ(Scalarβπ)),
(0gβ(Scalarβπ))))β(0gβπ)) =
(1rβ(Scalarβπ))) |
23 | 2 | lmodring 20471 |
. . . . . . . 8
β’ (π β LMod β
(Scalarβπ) β
Ring) |
24 | 23 | anim1i 615 |
. . . . . . 7
β’ ((π β LMod β§ 1 <
(β―β(Baseβ(Scalarβπ)))) β ((Scalarβπ) β Ring β§ 1 <
(β―β(Baseβ(Scalarβπ))))) |
25 | 24 | 3ad2ant1 1133 |
. . . . . 6
β’ (((π β LMod β§ 1 <
(β―β(Baseβ(Scalarβπ)))) β§ π β π« (Baseβπ) β§
(0gβπ)
β π) β
((Scalarβπ) β
Ring β§ 1 < (β―β(Baseβ(Scalarβπ))))) |
26 | | eqid 2732 |
. . . . . . 7
β’
(Baseβ(Scalarβπ)) = (Baseβ(Scalarβπ)) |
27 | 26, 4, 3 | ring1ne0 20104 |
. . . . . 6
β’
(((Scalarβπ)
β Ring β§ 1 < (β―β(Baseβ(Scalarβπ)))) β
(1rβ(Scalarβπ)) β
(0gβ(Scalarβπ))) |
28 | 25, 27 | syl 17 |
. . . . 5
β’ (((π β LMod β§ 1 <
(β―β(Baseβ(Scalarβπ)))) β§ π β π« (Baseβπ) β§
(0gβπ)
β π) β
(1rβ(Scalarβπ)) β
(0gβ(Scalarβπ))) |
29 | 22, 28 | eqnetrd 3008 |
. . . 4
β’ (((π β LMod β§ 1 <
(β―β(Baseβ(Scalarβπ)))) β§ π β π« (Baseβπ) β§
(0gβπ)
β π) β ((π β π β¦ if(π = (0gβπ), (1rβ(Scalarβπ)),
(0gβ(Scalarβπ))))β(0gβπ)) β
(0gβ(Scalarβπ))) |
30 | 16, 19, 29 | rspcedvd 3614 |
. . 3
β’ (((π β LMod β§ 1 <
(β―β(Baseβ(Scalarβπ)))) β§ π β π« (Baseβπ) β§
(0gβπ)
β π) β
βπ₯ β π ((π β π β¦ if(π = (0gβπ), (1rβ(Scalarβπ)),
(0gβ(Scalarβπ))))βπ₯) β
(0gβ(Scalarβπ))) |
31 | 2, 26, 4 | lmod1cl 20491 |
. . . . . . . . . 10
β’ (π β LMod β
(1rβ(Scalarβπ)) β (Baseβ(Scalarβπ))) |
32 | 2, 26, 3 | lmod0cl 20490 |
. . . . . . . . . 10
β’ (π β LMod β
(0gβ(Scalarβπ)) β (Baseβ(Scalarβπ))) |
33 | 31, 32 | ifcld 4573 |
. . . . . . . . 9
β’ (π β LMod β if(π = (0gβπ),
(1rβ(Scalarβπ)), (0gβ(Scalarβπ))) β
(Baseβ(Scalarβπ))) |
34 | 33 | adantr 481 |
. . . . . . . 8
β’ ((π β LMod β§ 1 <
(β―β(Baseβ(Scalarβπ)))) β if(π = (0gβπ), (1rβ(Scalarβπ)),
(0gβ(Scalarβπ))) β (Baseβ(Scalarβπ))) |
35 | 34 | 3ad2ant1 1133 |
. . . . . . 7
β’ (((π β LMod β§ 1 <
(β―β(Baseβ(Scalarβπ)))) β§ π β π« (Baseβπ) β§
(0gβπ)
β π) β if(π = (0gβπ),
(1rβ(Scalarβπ)), (0gβ(Scalarβπ))) β
(Baseβ(Scalarβπ))) |
36 | 35 | adantr 481 |
. . . . . 6
β’ ((((π β LMod β§ 1 <
(β―β(Baseβ(Scalarβπ)))) β§ π β π« (Baseβπ) β§
(0gβπ)
β π) β§ π β π) β if(π = (0gβπ), (1rβ(Scalarβπ)),
(0gβ(Scalarβπ))) β (Baseβ(Scalarβπ))) |
37 | 36 | fmpttd 7111 |
. . . . 5
β’ (((π β LMod β§ 1 <
(β―β(Baseβ(Scalarβπ)))) β§ π β π« (Baseβπ) β§
(0gβπ)
β π) β (π β π β¦ if(π = (0gβπ), (1rβ(Scalarβπ)),
(0gβ(Scalarβπ)))):πβΆ(Baseβ(Scalarβπ))) |
38 | | fvexd 6903 |
. . . . . 6
β’ (((π β LMod β§ 1 <
(β―β(Baseβ(Scalarβπ)))) β§ π β π« (Baseβπ) β§
(0gβπ)
β π) β
(Baseβ(Scalarβπ)) β V) |
39 | 38, 11 | elmapd 8830 |
. . . . 5
β’ (((π β LMod β§ 1 <
(β―β(Baseβ(Scalarβπ)))) β§ π β π« (Baseβπ) β§
(0gβπ)
β π) β ((π β π β¦ if(π = (0gβπ), (1rβ(Scalarβπ)),
(0gβ(Scalarβπ)))) β ((Baseβ(Scalarβπ)) βm π) β (π β π β¦ if(π = (0gβπ), (1rβ(Scalarβπ)),
(0gβ(Scalarβπ)))):πβΆ(Baseβ(Scalarβπ)))) |
40 | 37, 39 | mpbird 256 |
. . . 4
β’ (((π β LMod β§ 1 <
(β―β(Baseβ(Scalarβπ)))) β§ π β π« (Baseβπ) β§
(0gβπ)
β π) β (π β π β¦ if(π = (0gβπ), (1rβ(Scalarβπ)),
(0gβ(Scalarβπ)))) β ((Baseβ(Scalarβπ)) βm π)) |
41 | | breq1 5150 |
. . . . . 6
β’ (π = (π β π β¦ if(π = (0gβπ), (1rβ(Scalarβπ)),
(0gβ(Scalarβπ)))) β (π finSupp
(0gβ(Scalarβπ)) β (π β π β¦ if(π = (0gβπ), (1rβ(Scalarβπ)),
(0gβ(Scalarβπ)))) finSupp
(0gβ(Scalarβπ)))) |
42 | | oveq1 7412 |
. . . . . . 7
β’ (π = (π β π β¦ if(π = (0gβπ), (1rβ(Scalarβπ)),
(0gβ(Scalarβπ)))) β (π( linC βπ)π) = ((π β π β¦ if(π = (0gβπ), (1rβ(Scalarβπ)),
(0gβ(Scalarβπ))))( linC βπ)π)) |
43 | 42 | eqeq1d 2734 |
. . . . . 6
β’ (π = (π β π β¦ if(π = (0gβπ), (1rβ(Scalarβπ)),
(0gβ(Scalarβπ)))) β ((π( linC βπ)π) = (0gβπ) β ((π β π β¦ if(π = (0gβπ), (1rβ(Scalarβπ)),
(0gβ(Scalarβπ))))( linC βπ)π) = (0gβπ))) |
44 | | fveq1 6887 |
. . . . . . . 8
β’ (π = (π β π β¦ if(π = (0gβπ), (1rβ(Scalarβπ)),
(0gβ(Scalarβπ)))) β (πβπ₯) = ((π β π β¦ if(π = (0gβπ), (1rβ(Scalarβπ)),
(0gβ(Scalarβπ))))βπ₯)) |
45 | 44 | neeq1d 3000 |
. . . . . . 7
β’ (π = (π β π β¦ if(π = (0gβπ), (1rβ(Scalarβπ)),
(0gβ(Scalarβπ)))) β ((πβπ₯) β
(0gβ(Scalarβπ)) β ((π β π β¦ if(π = (0gβπ), (1rβ(Scalarβπ)),
(0gβ(Scalarβπ))))βπ₯) β
(0gβ(Scalarβπ)))) |
46 | 45 | rexbidv 3178 |
. . . . . 6
β’ (π = (π β π β¦ if(π = (0gβπ), (1rβ(Scalarβπ)),
(0gβ(Scalarβπ)))) β (βπ₯ β π (πβπ₯) β
(0gβ(Scalarβπ)) β βπ₯ β π ((π β π β¦ if(π = (0gβπ), (1rβ(Scalarβπ)),
(0gβ(Scalarβπ))))βπ₯) β
(0gβ(Scalarβπ)))) |
47 | 41, 43, 46 | 3anbi123d 1436 |
. . . . 5
β’ (π = (π β π β¦ if(π = (0gβπ), (1rβ(Scalarβπ)),
(0gβ(Scalarβπ)))) β ((π finSupp
(0gβ(Scalarβπ)) β§ (π( linC βπ)π) = (0gβπ) β§ βπ₯ β π (πβπ₯) β
(0gβ(Scalarβπ))) β ((π β π β¦ if(π = (0gβπ), (1rβ(Scalarβπ)),
(0gβ(Scalarβπ)))) finSupp
(0gβ(Scalarβπ)) β§ ((π β π β¦ if(π = (0gβπ), (1rβ(Scalarβπ)),
(0gβ(Scalarβπ))))( linC βπ)π) = (0gβπ) β§ βπ₯ β π ((π β π β¦ if(π = (0gβπ), (1rβ(Scalarβπ)),
(0gβ(Scalarβπ))))βπ₯) β
(0gβ(Scalarβπ))))) |
48 | 47 | adantl 482 |
. . . 4
β’ ((((π β LMod β§ 1 <
(β―β(Baseβ(Scalarβπ)))) β§ π β π« (Baseβπ) β§
(0gβπ)
β π) β§ π = (π β π β¦ if(π = (0gβπ), (1rβ(Scalarβπ)),
(0gβ(Scalarβπ))))) β ((π finSupp
(0gβ(Scalarβπ)) β§ (π( linC βπ)π) = (0gβπ) β§ βπ₯ β π (πβπ₯) β
(0gβ(Scalarβπ))) β ((π β π β¦ if(π = (0gβπ), (1rβ(Scalarβπ)),
(0gβ(Scalarβπ)))) finSupp
(0gβ(Scalarβπ)) β§ ((π β π β¦ if(π = (0gβπ), (1rβ(Scalarβπ)),
(0gβ(Scalarβπ))))( linC βπ)π) = (0gβπ) β§ βπ₯ β π ((π β π β¦ if(π = (0gβπ), (1rβ(Scalarβπ)),
(0gβ(Scalarβπ))))βπ₯) β
(0gβ(Scalarβπ))))) |
49 | 40, 48 | rspcedv 3605 |
. . 3
β’ (((π β LMod β§ 1 <
(β―β(Baseβ(Scalarβπ)))) β§ π β π« (Baseβπ) β§
(0gβπ)
β π) β (((π β π β¦ if(π = (0gβπ), (1rβ(Scalarβπ)),
(0gβ(Scalarβπ)))) finSupp
(0gβ(Scalarβπ)) β§ ((π β π β¦ if(π = (0gβπ), (1rβ(Scalarβπ)),
(0gβ(Scalarβπ))))( linC βπ)π) = (0gβπ) β§ βπ₯ β π ((π β π β¦ if(π = (0gβπ), (1rβ(Scalarβπ)),
(0gβ(Scalarβπ))))βπ₯) β
(0gβ(Scalarβπ))) β βπ β ((Baseβ(Scalarβπ)) βm π)(π finSupp
(0gβ(Scalarβπ)) β§ (π( linC βπ)π) = (0gβπ) β§ βπ₯ β π (πβπ₯) β
(0gβ(Scalarβπ))))) |
50 | 9, 15, 30, 49 | mp3and 1464 |
. 2
β’ (((π β LMod β§ 1 <
(β―β(Baseβ(Scalarβπ)))) β§ π β π« (Baseβπ) β§
(0gβπ)
β π) β
βπ β
((Baseβ(Scalarβπ)) βm π)(π finSupp
(0gβ(Scalarβπ)) β§ (π( linC βπ)π) = (0gβπ) β§ βπ₯ β π (πβπ₯) β
(0gβ(Scalarβπ)))) |
51 | 1, 12, 2, 26, 3 | islindeps 47087 |
. . 3
β’ ((π β LMod β§ π β π«
(Baseβπ)) β
(π linDepS π β βπ β
((Baseβ(Scalarβπ)) βm π)(π finSupp
(0gβ(Scalarβπ)) β§ (π( linC βπ)π) = (0gβπ) β§ βπ₯ β π (πβπ₯) β
(0gβ(Scalarβπ))))) |
52 | 10, 11, 51 | syl2anc 584 |
. 2
β’ (((π β LMod β§ 1 <
(β―β(Baseβ(Scalarβπ)))) β§ π β π« (Baseβπ) β§
(0gβπ)
β π) β (π linDepS π β βπ β ((Baseβ(Scalarβπ)) βm π)(π finSupp
(0gβ(Scalarβπ)) β§ (π( linC βπ)π) = (0gβπ) β§ βπ₯ β π (πβπ₯) β
(0gβ(Scalarβπ))))) |
53 | 50, 52 | mpbird 256 |
1
β’ (((π β LMod β§ 1 <
(β―β(Baseβ(Scalarβπ)))) β§ π β π« (Baseβπ) β§
(0gβπ)
β π) β π linDepS π) |