Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  el0ldep Structured version   Visualization version   GIF version

Theorem el0ldep 43828
Description: A set containing the zero element of a module is always linearly dependent, if the underlying ring has at least two elements. (Contributed by AV, 13-Apr-2019.) (Revised by AV, 27-Apr-2019.) (Proof shortened by AV, 30-Jul-2019.)
Assertion
Ref Expression
el0ldep (((𝑀 ∈ LMod ∧ 1 < (♯‘(Base‘(Scalar‘𝑀)))) ∧ 𝑆 ∈ 𝒫 (Base‘𝑀) ∧ (0g𝑀) ∈ 𝑆) → 𝑆 linDepS 𝑀)

Proof of Theorem el0ldep
Dummy variables 𝑓 𝑠 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2772 . . . . 5 (Base‘𝑀) = (Base‘𝑀)
2 eqid 2772 . . . . 5 (Scalar‘𝑀) = (Scalar‘𝑀)
3 eqid 2772 . . . . 5 (0g‘(Scalar‘𝑀)) = (0g‘(Scalar‘𝑀))
4 eqid 2772 . . . . 5 (1r‘(Scalar‘𝑀)) = (1r‘(Scalar‘𝑀))
5 eqeq1 2776 . . . . . . 7 (𝑠 = 𝑦 → (𝑠 = (0g𝑀) ↔ 𝑦 = (0g𝑀)))
65ifbid 4366 . . . . . 6 (𝑠 = 𝑦 → if(𝑠 = (0g𝑀), (1r‘(Scalar‘𝑀)), (0g‘(Scalar‘𝑀))) = if(𝑦 = (0g𝑀), (1r‘(Scalar‘𝑀)), (0g‘(Scalar‘𝑀))))
76cbvmptv 5022 . . . . 5 (𝑠𝑆 ↦ if(𝑠 = (0g𝑀), (1r‘(Scalar‘𝑀)), (0g‘(Scalar‘𝑀)))) = (𝑦𝑆 ↦ if(𝑦 = (0g𝑀), (1r‘(Scalar‘𝑀)), (0g‘(Scalar‘𝑀))))
81, 2, 3, 4, 7mptcfsupp 43734 . . . 4 ((𝑀 ∈ LMod ∧ 𝑆 ∈ 𝒫 (Base‘𝑀) ∧ (0g𝑀) ∈ 𝑆) → (𝑠𝑆 ↦ if(𝑠 = (0g𝑀), (1r‘(Scalar‘𝑀)), (0g‘(Scalar‘𝑀)))) finSupp (0g‘(Scalar‘𝑀)))
983adant1r 1157 . . 3 (((𝑀 ∈ LMod ∧ 1 < (♯‘(Base‘(Scalar‘𝑀)))) ∧ 𝑆 ∈ 𝒫 (Base‘𝑀) ∧ (0g𝑀) ∈ 𝑆) → (𝑠𝑆 ↦ if(𝑠 = (0g𝑀), (1r‘(Scalar‘𝑀)), (0g‘(Scalar‘𝑀)))) finSupp (0g‘(Scalar‘𝑀)))
10 simp1l 1177 . . . 4 (((𝑀 ∈ LMod ∧ 1 < (♯‘(Base‘(Scalar‘𝑀)))) ∧ 𝑆 ∈ 𝒫 (Base‘𝑀) ∧ (0g𝑀) ∈ 𝑆) → 𝑀 ∈ LMod)
11 simp2 1117 . . . 4 (((𝑀 ∈ LMod ∧ 1 < (♯‘(Base‘(Scalar‘𝑀)))) ∧ 𝑆 ∈ 𝒫 (Base‘𝑀) ∧ (0g𝑀) ∈ 𝑆) → 𝑆 ∈ 𝒫 (Base‘𝑀))
12 eqid 2772 . . . . 5 (0g𝑀) = (0g𝑀)
13 eqid 2772 . . . . 5 (𝑠𝑆 ↦ if(𝑠 = (0g𝑀), (1r‘(Scalar‘𝑀)), (0g‘(Scalar‘𝑀)))) = (𝑠𝑆 ↦ if(𝑠 = (0g𝑀), (1r‘(Scalar‘𝑀)), (0g‘(Scalar‘𝑀))))
141, 2, 3, 4, 12, 13linc0scn0 43785 . . . 4 ((𝑀 ∈ LMod ∧ 𝑆 ∈ 𝒫 (Base‘𝑀)) → ((𝑠𝑆 ↦ if(𝑠 = (0g𝑀), (1r‘(Scalar‘𝑀)), (0g‘(Scalar‘𝑀))))( linC ‘𝑀)𝑆) = (0g𝑀))
1510, 11, 14syl2anc 576 . . 3 (((𝑀 ∈ LMod ∧ 1 < (♯‘(Base‘(Scalar‘𝑀)))) ∧ 𝑆 ∈ 𝒫 (Base‘𝑀) ∧ (0g𝑀) ∈ 𝑆) → ((𝑠𝑆 ↦ if(𝑠 = (0g𝑀), (1r‘(Scalar‘𝑀)), (0g‘(Scalar‘𝑀))))( linC ‘𝑀)𝑆) = (0g𝑀))
16 simp3 1118 . . . 4 (((𝑀 ∈ LMod ∧ 1 < (♯‘(Base‘(Scalar‘𝑀)))) ∧ 𝑆 ∈ 𝒫 (Base‘𝑀) ∧ (0g𝑀) ∈ 𝑆) → (0g𝑀) ∈ 𝑆)
17 fveq2 6493 . . . . . 6 (𝑥 = (0g𝑀) → ((𝑠𝑆 ↦ if(𝑠 = (0g𝑀), (1r‘(Scalar‘𝑀)), (0g‘(Scalar‘𝑀))))‘𝑥) = ((𝑠𝑆 ↦ if(𝑠 = (0g𝑀), (1r‘(Scalar‘𝑀)), (0g‘(Scalar‘𝑀))))‘(0g𝑀)))
1817neeq1d 3020 . . . . 5 (𝑥 = (0g𝑀) → (((𝑠𝑆 ↦ if(𝑠 = (0g𝑀), (1r‘(Scalar‘𝑀)), (0g‘(Scalar‘𝑀))))‘𝑥) ≠ (0g‘(Scalar‘𝑀)) ↔ ((𝑠𝑆 ↦ if(𝑠 = (0g𝑀), (1r‘(Scalar‘𝑀)), (0g‘(Scalar‘𝑀))))‘(0g𝑀)) ≠ (0g‘(Scalar‘𝑀))))
1918adantl 474 . . . 4 ((((𝑀 ∈ LMod ∧ 1 < (♯‘(Base‘(Scalar‘𝑀)))) ∧ 𝑆 ∈ 𝒫 (Base‘𝑀) ∧ (0g𝑀) ∈ 𝑆) ∧ 𝑥 = (0g𝑀)) → (((𝑠𝑆 ↦ if(𝑠 = (0g𝑀), (1r‘(Scalar‘𝑀)), (0g‘(Scalar‘𝑀))))‘𝑥) ≠ (0g‘(Scalar‘𝑀)) ↔ ((𝑠𝑆 ↦ if(𝑠 = (0g𝑀), (1r‘(Scalar‘𝑀)), (0g‘(Scalar‘𝑀))))‘(0g𝑀)) ≠ (0g‘(Scalar‘𝑀))))
20 iftrue 4350 . . . . . 6 (𝑠 = (0g𝑀) → if(𝑠 = (0g𝑀), (1r‘(Scalar‘𝑀)), (0g‘(Scalar‘𝑀))) = (1r‘(Scalar‘𝑀)))
21 fvexd 6508 . . . . . 6 (((𝑀 ∈ LMod ∧ 1 < (♯‘(Base‘(Scalar‘𝑀)))) ∧ 𝑆 ∈ 𝒫 (Base‘𝑀) ∧ (0g𝑀) ∈ 𝑆) → (1r‘(Scalar‘𝑀)) ∈ V)
2213, 20, 16, 21fvmptd3 6611 . . . . 5 (((𝑀 ∈ LMod ∧ 1 < (♯‘(Base‘(Scalar‘𝑀)))) ∧ 𝑆 ∈ 𝒫 (Base‘𝑀) ∧ (0g𝑀) ∈ 𝑆) → ((𝑠𝑆 ↦ if(𝑠 = (0g𝑀), (1r‘(Scalar‘𝑀)), (0g‘(Scalar‘𝑀))))‘(0g𝑀)) = (1r‘(Scalar‘𝑀)))
232lmodring 19354 . . . . . . . 8 (𝑀 ∈ LMod → (Scalar‘𝑀) ∈ Ring)
2423anim1i 605 . . . . . . 7 ((𝑀 ∈ LMod ∧ 1 < (♯‘(Base‘(Scalar‘𝑀)))) → ((Scalar‘𝑀) ∈ Ring ∧ 1 < (♯‘(Base‘(Scalar‘𝑀)))))
25243ad2ant1 1113 . . . . . 6 (((𝑀 ∈ LMod ∧ 1 < (♯‘(Base‘(Scalar‘𝑀)))) ∧ 𝑆 ∈ 𝒫 (Base‘𝑀) ∧ (0g𝑀) ∈ 𝑆) → ((Scalar‘𝑀) ∈ Ring ∧ 1 < (♯‘(Base‘(Scalar‘𝑀)))))
26 eqid 2772 . . . . . . 7 (Base‘(Scalar‘𝑀)) = (Base‘(Scalar‘𝑀))
2726, 4, 3ring1ne0 19054 . . . . . 6 (((Scalar‘𝑀) ∈ Ring ∧ 1 < (♯‘(Base‘(Scalar‘𝑀)))) → (1r‘(Scalar‘𝑀)) ≠ (0g‘(Scalar‘𝑀)))
2825, 27syl 17 . . . . 5 (((𝑀 ∈ LMod ∧ 1 < (♯‘(Base‘(Scalar‘𝑀)))) ∧ 𝑆 ∈ 𝒫 (Base‘𝑀) ∧ (0g𝑀) ∈ 𝑆) → (1r‘(Scalar‘𝑀)) ≠ (0g‘(Scalar‘𝑀)))
2922, 28eqnetrd 3028 . . . 4 (((𝑀 ∈ LMod ∧ 1 < (♯‘(Base‘(Scalar‘𝑀)))) ∧ 𝑆 ∈ 𝒫 (Base‘𝑀) ∧ (0g𝑀) ∈ 𝑆) → ((𝑠𝑆 ↦ if(𝑠 = (0g𝑀), (1r‘(Scalar‘𝑀)), (0g‘(Scalar‘𝑀))))‘(0g𝑀)) ≠ (0g‘(Scalar‘𝑀)))
3016, 19, 29rspcedvd 3536 . . 3 (((𝑀 ∈ LMod ∧ 1 < (♯‘(Base‘(Scalar‘𝑀)))) ∧ 𝑆 ∈ 𝒫 (Base‘𝑀) ∧ (0g𝑀) ∈ 𝑆) → ∃𝑥𝑆 ((𝑠𝑆 ↦ if(𝑠 = (0g𝑀), (1r‘(Scalar‘𝑀)), (0g‘(Scalar‘𝑀))))‘𝑥) ≠ (0g‘(Scalar‘𝑀)))
312, 26, 4lmod1cl 19373 . . . . . . . . . 10 (𝑀 ∈ LMod → (1r‘(Scalar‘𝑀)) ∈ (Base‘(Scalar‘𝑀)))
322, 26, 3lmod0cl 19372 . . . . . . . . . 10 (𝑀 ∈ LMod → (0g‘(Scalar‘𝑀)) ∈ (Base‘(Scalar‘𝑀)))
3331, 32ifcld 4389 . . . . . . . . 9 (𝑀 ∈ LMod → if(𝑠 = (0g𝑀), (1r‘(Scalar‘𝑀)), (0g‘(Scalar‘𝑀))) ∈ (Base‘(Scalar‘𝑀)))
3433adantr 473 . . . . . . . 8 ((𝑀 ∈ LMod ∧ 1 < (♯‘(Base‘(Scalar‘𝑀)))) → if(𝑠 = (0g𝑀), (1r‘(Scalar‘𝑀)), (0g‘(Scalar‘𝑀))) ∈ (Base‘(Scalar‘𝑀)))
35343ad2ant1 1113 . . . . . . 7 (((𝑀 ∈ LMod ∧ 1 < (♯‘(Base‘(Scalar‘𝑀)))) ∧ 𝑆 ∈ 𝒫 (Base‘𝑀) ∧ (0g𝑀) ∈ 𝑆) → if(𝑠 = (0g𝑀), (1r‘(Scalar‘𝑀)), (0g‘(Scalar‘𝑀))) ∈ (Base‘(Scalar‘𝑀)))
3635adantr 473 . . . . . 6 ((((𝑀 ∈ LMod ∧ 1 < (♯‘(Base‘(Scalar‘𝑀)))) ∧ 𝑆 ∈ 𝒫 (Base‘𝑀) ∧ (0g𝑀) ∈ 𝑆) ∧ 𝑠𝑆) → if(𝑠 = (0g𝑀), (1r‘(Scalar‘𝑀)), (0g‘(Scalar‘𝑀))) ∈ (Base‘(Scalar‘𝑀)))
3736fmpttd 6696 . . . . 5 (((𝑀 ∈ LMod ∧ 1 < (♯‘(Base‘(Scalar‘𝑀)))) ∧ 𝑆 ∈ 𝒫 (Base‘𝑀) ∧ (0g𝑀) ∈ 𝑆) → (𝑠𝑆 ↦ if(𝑠 = (0g𝑀), (1r‘(Scalar‘𝑀)), (0g‘(Scalar‘𝑀)))):𝑆⟶(Base‘(Scalar‘𝑀)))
38 fvexd 6508 . . . . . 6 (((𝑀 ∈ LMod ∧ 1 < (♯‘(Base‘(Scalar‘𝑀)))) ∧ 𝑆 ∈ 𝒫 (Base‘𝑀) ∧ (0g𝑀) ∈ 𝑆) → (Base‘(Scalar‘𝑀)) ∈ V)
3938, 11elmapd 8212 . . . . 5 (((𝑀 ∈ LMod ∧ 1 < (♯‘(Base‘(Scalar‘𝑀)))) ∧ 𝑆 ∈ 𝒫 (Base‘𝑀) ∧ (0g𝑀) ∈ 𝑆) → ((𝑠𝑆 ↦ if(𝑠 = (0g𝑀), (1r‘(Scalar‘𝑀)), (0g‘(Scalar‘𝑀)))) ∈ ((Base‘(Scalar‘𝑀)) ↑𝑚 𝑆) ↔ (𝑠𝑆 ↦ if(𝑠 = (0g𝑀), (1r‘(Scalar‘𝑀)), (0g‘(Scalar‘𝑀)))):𝑆⟶(Base‘(Scalar‘𝑀))))
4037, 39mpbird 249 . . . 4 (((𝑀 ∈ LMod ∧ 1 < (♯‘(Base‘(Scalar‘𝑀)))) ∧ 𝑆 ∈ 𝒫 (Base‘𝑀) ∧ (0g𝑀) ∈ 𝑆) → (𝑠𝑆 ↦ if(𝑠 = (0g𝑀), (1r‘(Scalar‘𝑀)), (0g‘(Scalar‘𝑀)))) ∈ ((Base‘(Scalar‘𝑀)) ↑𝑚 𝑆))
41 breq1 4926 . . . . . 6 (𝑓 = (𝑠𝑆 ↦ if(𝑠 = (0g𝑀), (1r‘(Scalar‘𝑀)), (0g‘(Scalar‘𝑀)))) → (𝑓 finSupp (0g‘(Scalar‘𝑀)) ↔ (𝑠𝑆 ↦ if(𝑠 = (0g𝑀), (1r‘(Scalar‘𝑀)), (0g‘(Scalar‘𝑀)))) finSupp (0g‘(Scalar‘𝑀))))
42 oveq1 6977 . . . . . . 7 (𝑓 = (𝑠𝑆 ↦ if(𝑠 = (0g𝑀), (1r‘(Scalar‘𝑀)), (0g‘(Scalar‘𝑀)))) → (𝑓( linC ‘𝑀)𝑆) = ((𝑠𝑆 ↦ if(𝑠 = (0g𝑀), (1r‘(Scalar‘𝑀)), (0g‘(Scalar‘𝑀))))( linC ‘𝑀)𝑆))
4342eqeq1d 2774 . . . . . 6 (𝑓 = (𝑠𝑆 ↦ if(𝑠 = (0g𝑀), (1r‘(Scalar‘𝑀)), (0g‘(Scalar‘𝑀)))) → ((𝑓( linC ‘𝑀)𝑆) = (0g𝑀) ↔ ((𝑠𝑆 ↦ if(𝑠 = (0g𝑀), (1r‘(Scalar‘𝑀)), (0g‘(Scalar‘𝑀))))( linC ‘𝑀)𝑆) = (0g𝑀)))
44 fveq1 6492 . . . . . . . 8 (𝑓 = (𝑠𝑆 ↦ if(𝑠 = (0g𝑀), (1r‘(Scalar‘𝑀)), (0g‘(Scalar‘𝑀)))) → (𝑓𝑥) = ((𝑠𝑆 ↦ if(𝑠 = (0g𝑀), (1r‘(Scalar‘𝑀)), (0g‘(Scalar‘𝑀))))‘𝑥))
4544neeq1d 3020 . . . . . . 7 (𝑓 = (𝑠𝑆 ↦ if(𝑠 = (0g𝑀), (1r‘(Scalar‘𝑀)), (0g‘(Scalar‘𝑀)))) → ((𝑓𝑥) ≠ (0g‘(Scalar‘𝑀)) ↔ ((𝑠𝑆 ↦ if(𝑠 = (0g𝑀), (1r‘(Scalar‘𝑀)), (0g‘(Scalar‘𝑀))))‘𝑥) ≠ (0g‘(Scalar‘𝑀))))
4645rexbidv 3236 . . . . . 6 (𝑓 = (𝑠𝑆 ↦ if(𝑠 = (0g𝑀), (1r‘(Scalar‘𝑀)), (0g‘(Scalar‘𝑀)))) → (∃𝑥𝑆 (𝑓𝑥) ≠ (0g‘(Scalar‘𝑀)) ↔ ∃𝑥𝑆 ((𝑠𝑆 ↦ if(𝑠 = (0g𝑀), (1r‘(Scalar‘𝑀)), (0g‘(Scalar‘𝑀))))‘𝑥) ≠ (0g‘(Scalar‘𝑀))))
4741, 43, 463anbi123d 1415 . . . . 5 (𝑓 = (𝑠𝑆 ↦ if(𝑠 = (0g𝑀), (1r‘(Scalar‘𝑀)), (0g‘(Scalar‘𝑀)))) → ((𝑓 finSupp (0g‘(Scalar‘𝑀)) ∧ (𝑓( linC ‘𝑀)𝑆) = (0g𝑀) ∧ ∃𝑥𝑆 (𝑓𝑥) ≠ (0g‘(Scalar‘𝑀))) ↔ ((𝑠𝑆 ↦ if(𝑠 = (0g𝑀), (1r‘(Scalar‘𝑀)), (0g‘(Scalar‘𝑀)))) finSupp (0g‘(Scalar‘𝑀)) ∧ ((𝑠𝑆 ↦ if(𝑠 = (0g𝑀), (1r‘(Scalar‘𝑀)), (0g‘(Scalar‘𝑀))))( linC ‘𝑀)𝑆) = (0g𝑀) ∧ ∃𝑥𝑆 ((𝑠𝑆 ↦ if(𝑠 = (0g𝑀), (1r‘(Scalar‘𝑀)), (0g‘(Scalar‘𝑀))))‘𝑥) ≠ (0g‘(Scalar‘𝑀)))))
4847adantl 474 . . . 4 ((((𝑀 ∈ LMod ∧ 1 < (♯‘(Base‘(Scalar‘𝑀)))) ∧ 𝑆 ∈ 𝒫 (Base‘𝑀) ∧ (0g𝑀) ∈ 𝑆) ∧ 𝑓 = (𝑠𝑆 ↦ if(𝑠 = (0g𝑀), (1r‘(Scalar‘𝑀)), (0g‘(Scalar‘𝑀))))) → ((𝑓 finSupp (0g‘(Scalar‘𝑀)) ∧ (𝑓( linC ‘𝑀)𝑆) = (0g𝑀) ∧ ∃𝑥𝑆 (𝑓𝑥) ≠ (0g‘(Scalar‘𝑀))) ↔ ((𝑠𝑆 ↦ if(𝑠 = (0g𝑀), (1r‘(Scalar‘𝑀)), (0g‘(Scalar‘𝑀)))) finSupp (0g‘(Scalar‘𝑀)) ∧ ((𝑠𝑆 ↦ if(𝑠 = (0g𝑀), (1r‘(Scalar‘𝑀)), (0g‘(Scalar‘𝑀))))( linC ‘𝑀)𝑆) = (0g𝑀) ∧ ∃𝑥𝑆 ((𝑠𝑆 ↦ if(𝑠 = (0g𝑀), (1r‘(Scalar‘𝑀)), (0g‘(Scalar‘𝑀))))‘𝑥) ≠ (0g‘(Scalar‘𝑀)))))
4940, 48rspcedv 3533 . . 3 (((𝑀 ∈ LMod ∧ 1 < (♯‘(Base‘(Scalar‘𝑀)))) ∧ 𝑆 ∈ 𝒫 (Base‘𝑀) ∧ (0g𝑀) ∈ 𝑆) → (((𝑠𝑆 ↦ if(𝑠 = (0g𝑀), (1r‘(Scalar‘𝑀)), (0g‘(Scalar‘𝑀)))) finSupp (0g‘(Scalar‘𝑀)) ∧ ((𝑠𝑆 ↦ if(𝑠 = (0g𝑀), (1r‘(Scalar‘𝑀)), (0g‘(Scalar‘𝑀))))( linC ‘𝑀)𝑆) = (0g𝑀) ∧ ∃𝑥𝑆 ((𝑠𝑆 ↦ if(𝑠 = (0g𝑀), (1r‘(Scalar‘𝑀)), (0g‘(Scalar‘𝑀))))‘𝑥) ≠ (0g‘(Scalar‘𝑀))) → ∃𝑓 ∈ ((Base‘(Scalar‘𝑀)) ↑𝑚 𝑆)(𝑓 finSupp (0g‘(Scalar‘𝑀)) ∧ (𝑓( linC ‘𝑀)𝑆) = (0g𝑀) ∧ ∃𝑥𝑆 (𝑓𝑥) ≠ (0g‘(Scalar‘𝑀)))))
509, 15, 30, 49mp3and 1443 . 2 (((𝑀 ∈ LMod ∧ 1 < (♯‘(Base‘(Scalar‘𝑀)))) ∧ 𝑆 ∈ 𝒫 (Base‘𝑀) ∧ (0g𝑀) ∈ 𝑆) → ∃𝑓 ∈ ((Base‘(Scalar‘𝑀)) ↑𝑚 𝑆)(𝑓 finSupp (0g‘(Scalar‘𝑀)) ∧ (𝑓( linC ‘𝑀)𝑆) = (0g𝑀) ∧ ∃𝑥𝑆 (𝑓𝑥) ≠ (0g‘(Scalar‘𝑀))))
511, 12, 2, 26, 3islindeps 43815 . . 3 ((𝑀 ∈ LMod ∧ 𝑆 ∈ 𝒫 (Base‘𝑀)) → (𝑆 linDepS 𝑀 ↔ ∃𝑓 ∈ ((Base‘(Scalar‘𝑀)) ↑𝑚 𝑆)(𝑓 finSupp (0g‘(Scalar‘𝑀)) ∧ (𝑓( linC ‘𝑀)𝑆) = (0g𝑀) ∧ ∃𝑥𝑆 (𝑓𝑥) ≠ (0g‘(Scalar‘𝑀)))))
5210, 11, 51syl2anc 576 . 2 (((𝑀 ∈ LMod ∧ 1 < (♯‘(Base‘(Scalar‘𝑀)))) ∧ 𝑆 ∈ 𝒫 (Base‘𝑀) ∧ (0g𝑀) ∈ 𝑆) → (𝑆 linDepS 𝑀 ↔ ∃𝑓 ∈ ((Base‘(Scalar‘𝑀)) ↑𝑚 𝑆)(𝑓 finSupp (0g‘(Scalar‘𝑀)) ∧ (𝑓( linC ‘𝑀)𝑆) = (0g𝑀) ∧ ∃𝑥𝑆 (𝑓𝑥) ≠ (0g‘(Scalar‘𝑀)))))
5350, 52mpbird 249 1 (((𝑀 ∈ LMod ∧ 1 < (♯‘(Base‘(Scalar‘𝑀)))) ∧ 𝑆 ∈ 𝒫 (Base‘𝑀) ∧ (0g𝑀) ∈ 𝑆) → 𝑆 linDepS 𝑀)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 198  wa 387  w3a 1068   = wceq 1507  wcel 2048  wne 2961  wrex 3083  Vcvv 3409  ifcif 4344  𝒫 cpw 4416   class class class wbr 4923  cmpt 5002  wf 6178  cfv 6182  (class class class)co 6970  𝑚 cmap 8198   finSupp cfsupp 8620  1c1 10328   < clt 10466  chash 13498  Basecbs 16329  Scalarcsca 16414  0gc0g 16559  1rcur 18964  Ringcrg 19010  LModclmod 19346   linC clinc 43766   linDepS clindeps 43803
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1758  ax-4 1772  ax-5 1869  ax-6 1928  ax-7 1964  ax-8 2050  ax-9 2057  ax-10 2077  ax-11 2091  ax-12 2104  ax-13 2299  ax-ext 2745  ax-rep 5043  ax-sep 5054  ax-nul 5061  ax-pow 5113  ax-pr 5180  ax-un 7273  ax-cnex 10383  ax-resscn 10384  ax-1cn 10385  ax-icn 10386  ax-addcl 10387  ax-addrcl 10388  ax-mulcl 10389  ax-mulrcl 10390  ax-mulcom 10391  ax-addass 10392  ax-mulass 10393  ax-distr 10394  ax-i2m1 10395  ax-1ne0 10396  ax-1rid 10397  ax-rnegex 10398  ax-rrecex 10399  ax-cnre 10400  ax-pre-lttri 10401  ax-pre-lttrn 10402  ax-pre-ltadd 10403  ax-pre-mulgt0 10404
This theorem depends on definitions:  df-bi 199  df-an 388  df-or 834  df-3or 1069  df-3an 1070  df-tru 1510  df-ex 1743  df-nf 1747  df-sb 2014  df-mo 2544  df-eu 2580  df-clab 2754  df-cleq 2765  df-clel 2840  df-nfc 2912  df-ne 2962  df-nel 3068  df-ral 3087  df-rex 3088  df-reu 3089  df-rmo 3090  df-rab 3091  df-v 3411  df-sbc 3678  df-csb 3783  df-dif 3828  df-un 3830  df-in 3832  df-ss 3839  df-pss 3841  df-nul 4174  df-if 4345  df-pw 4418  df-sn 4436  df-pr 4438  df-tp 4440  df-op 4442  df-uni 4707  df-int 4744  df-iun 4788  df-br 4924  df-opab 4986  df-mpt 5003  df-tr 5025  df-id 5305  df-eprel 5310  df-po 5319  df-so 5320  df-fr 5359  df-we 5361  df-xp 5406  df-rel 5407  df-cnv 5408  df-co 5409  df-dm 5410  df-rn 5411  df-res 5412  df-ima 5413  df-pred 5980  df-ord 6026  df-on 6027  df-lim 6028  df-suc 6029  df-iota 6146  df-fun 6184  df-fn 6185  df-f 6186  df-f1 6187  df-fo 6188  df-f1o 6189  df-fv 6190  df-riota 6931  df-ov 6973  df-oprab 6974  df-mpo 6975  df-om 7391  df-1st 7494  df-2nd 7495  df-supp 7627  df-wrecs 7743  df-recs 7805  df-rdg 7843  df-1o 7897  df-er 8081  df-map 8200  df-en 8299  df-dom 8300  df-sdom 8301  df-fin 8302  df-fsupp 8621  df-card 9154  df-pnf 10468  df-mnf 10469  df-xr 10470  df-ltxr 10471  df-le 10472  df-sub 10664  df-neg 10665  df-nn 11432  df-2 11496  df-n0 11701  df-xnn0 11773  df-z 11787  df-uz 12052  df-fz 12702  df-seq 13178  df-hash 13499  df-ndx 16332  df-slot 16333  df-base 16335  df-sets 16336  df-plusg 16424  df-0g 16561  df-gsum 16562  df-mgm 17700  df-sgrp 17742  df-mnd 17753  df-grp 17884  df-minusg 17885  df-mgp 18953  df-ur 18965  df-ring 19012  df-lmod 19348  df-linc 43768  df-lininds 43804  df-lindeps 43806
This theorem is referenced by:  el0ldepsnzr  43829
  Copyright terms: Public domain W3C validator