Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  el0ldep Structured version   Visualization version   GIF version

Theorem el0ldep 45807
Description: A set containing the zero element of a module is always linearly dependent, if the underlying ring has at least two elements. (Contributed by AV, 13-Apr-2019.) (Revised by AV, 27-Apr-2019.) (Proof shortened by AV, 30-Jul-2019.)
Assertion
Ref Expression
el0ldep (((𝑀 ∈ LMod ∧ 1 < (♯‘(Base‘(Scalar‘𝑀)))) ∧ 𝑆 ∈ 𝒫 (Base‘𝑀) ∧ (0g𝑀) ∈ 𝑆) → 𝑆 linDepS 𝑀)

Proof of Theorem el0ldep
Dummy variables 𝑓 𝑠 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2738 . . . . 5 (Base‘𝑀) = (Base‘𝑀)
2 eqid 2738 . . . . 5 (Scalar‘𝑀) = (Scalar‘𝑀)
3 eqid 2738 . . . . 5 (0g‘(Scalar‘𝑀)) = (0g‘(Scalar‘𝑀))
4 eqid 2738 . . . . 5 (1r‘(Scalar‘𝑀)) = (1r‘(Scalar‘𝑀))
5 eqeq1 2742 . . . . . . 7 (𝑠 = 𝑦 → (𝑠 = (0g𝑀) ↔ 𝑦 = (0g𝑀)))
65ifbid 4482 . . . . . 6 (𝑠 = 𝑦 → if(𝑠 = (0g𝑀), (1r‘(Scalar‘𝑀)), (0g‘(Scalar‘𝑀))) = if(𝑦 = (0g𝑀), (1r‘(Scalar‘𝑀)), (0g‘(Scalar‘𝑀))))
76cbvmptv 5187 . . . . 5 (𝑠𝑆 ↦ if(𝑠 = (0g𝑀), (1r‘(Scalar‘𝑀)), (0g‘(Scalar‘𝑀)))) = (𝑦𝑆 ↦ if(𝑦 = (0g𝑀), (1r‘(Scalar‘𝑀)), (0g‘(Scalar‘𝑀))))
81, 2, 3, 4, 7mptcfsupp 45716 . . . 4 ((𝑀 ∈ LMod ∧ 𝑆 ∈ 𝒫 (Base‘𝑀) ∧ (0g𝑀) ∈ 𝑆) → (𝑠𝑆 ↦ if(𝑠 = (0g𝑀), (1r‘(Scalar‘𝑀)), (0g‘(Scalar‘𝑀)))) finSupp (0g‘(Scalar‘𝑀)))
983adant1r 1176 . . 3 (((𝑀 ∈ LMod ∧ 1 < (♯‘(Base‘(Scalar‘𝑀)))) ∧ 𝑆 ∈ 𝒫 (Base‘𝑀) ∧ (0g𝑀) ∈ 𝑆) → (𝑠𝑆 ↦ if(𝑠 = (0g𝑀), (1r‘(Scalar‘𝑀)), (0g‘(Scalar‘𝑀)))) finSupp (0g‘(Scalar‘𝑀)))
10 simp1l 1196 . . . 4 (((𝑀 ∈ LMod ∧ 1 < (♯‘(Base‘(Scalar‘𝑀)))) ∧ 𝑆 ∈ 𝒫 (Base‘𝑀) ∧ (0g𝑀) ∈ 𝑆) → 𝑀 ∈ LMod)
11 simp2 1136 . . . 4 (((𝑀 ∈ LMod ∧ 1 < (♯‘(Base‘(Scalar‘𝑀)))) ∧ 𝑆 ∈ 𝒫 (Base‘𝑀) ∧ (0g𝑀) ∈ 𝑆) → 𝑆 ∈ 𝒫 (Base‘𝑀))
12 eqid 2738 . . . . 5 (0g𝑀) = (0g𝑀)
13 eqid 2738 . . . . 5 (𝑠𝑆 ↦ if(𝑠 = (0g𝑀), (1r‘(Scalar‘𝑀)), (0g‘(Scalar‘𝑀)))) = (𝑠𝑆 ↦ if(𝑠 = (0g𝑀), (1r‘(Scalar‘𝑀)), (0g‘(Scalar‘𝑀))))
141, 2, 3, 4, 12, 13linc0scn0 45764 . . . 4 ((𝑀 ∈ LMod ∧ 𝑆 ∈ 𝒫 (Base‘𝑀)) → ((𝑠𝑆 ↦ if(𝑠 = (0g𝑀), (1r‘(Scalar‘𝑀)), (0g‘(Scalar‘𝑀))))( linC ‘𝑀)𝑆) = (0g𝑀))
1510, 11, 14syl2anc 584 . . 3 (((𝑀 ∈ LMod ∧ 1 < (♯‘(Base‘(Scalar‘𝑀)))) ∧ 𝑆 ∈ 𝒫 (Base‘𝑀) ∧ (0g𝑀) ∈ 𝑆) → ((𝑠𝑆 ↦ if(𝑠 = (0g𝑀), (1r‘(Scalar‘𝑀)), (0g‘(Scalar‘𝑀))))( linC ‘𝑀)𝑆) = (0g𝑀))
16 simp3 1137 . . . 4 (((𝑀 ∈ LMod ∧ 1 < (♯‘(Base‘(Scalar‘𝑀)))) ∧ 𝑆 ∈ 𝒫 (Base‘𝑀) ∧ (0g𝑀) ∈ 𝑆) → (0g𝑀) ∈ 𝑆)
17 fveq2 6774 . . . . . 6 (𝑥 = (0g𝑀) → ((𝑠𝑆 ↦ if(𝑠 = (0g𝑀), (1r‘(Scalar‘𝑀)), (0g‘(Scalar‘𝑀))))‘𝑥) = ((𝑠𝑆 ↦ if(𝑠 = (0g𝑀), (1r‘(Scalar‘𝑀)), (0g‘(Scalar‘𝑀))))‘(0g𝑀)))
1817neeq1d 3003 . . . . 5 (𝑥 = (0g𝑀) → (((𝑠𝑆 ↦ if(𝑠 = (0g𝑀), (1r‘(Scalar‘𝑀)), (0g‘(Scalar‘𝑀))))‘𝑥) ≠ (0g‘(Scalar‘𝑀)) ↔ ((𝑠𝑆 ↦ if(𝑠 = (0g𝑀), (1r‘(Scalar‘𝑀)), (0g‘(Scalar‘𝑀))))‘(0g𝑀)) ≠ (0g‘(Scalar‘𝑀))))
1918adantl 482 . . . 4 ((((𝑀 ∈ LMod ∧ 1 < (♯‘(Base‘(Scalar‘𝑀)))) ∧ 𝑆 ∈ 𝒫 (Base‘𝑀) ∧ (0g𝑀) ∈ 𝑆) ∧ 𝑥 = (0g𝑀)) → (((𝑠𝑆 ↦ if(𝑠 = (0g𝑀), (1r‘(Scalar‘𝑀)), (0g‘(Scalar‘𝑀))))‘𝑥) ≠ (0g‘(Scalar‘𝑀)) ↔ ((𝑠𝑆 ↦ if(𝑠 = (0g𝑀), (1r‘(Scalar‘𝑀)), (0g‘(Scalar‘𝑀))))‘(0g𝑀)) ≠ (0g‘(Scalar‘𝑀))))
20 iftrue 4465 . . . . . 6 (𝑠 = (0g𝑀) → if(𝑠 = (0g𝑀), (1r‘(Scalar‘𝑀)), (0g‘(Scalar‘𝑀))) = (1r‘(Scalar‘𝑀)))
21 fvexd 6789 . . . . . 6 (((𝑀 ∈ LMod ∧ 1 < (♯‘(Base‘(Scalar‘𝑀)))) ∧ 𝑆 ∈ 𝒫 (Base‘𝑀) ∧ (0g𝑀) ∈ 𝑆) → (1r‘(Scalar‘𝑀)) ∈ V)
2213, 20, 16, 21fvmptd3 6898 . . . . 5 (((𝑀 ∈ LMod ∧ 1 < (♯‘(Base‘(Scalar‘𝑀)))) ∧ 𝑆 ∈ 𝒫 (Base‘𝑀) ∧ (0g𝑀) ∈ 𝑆) → ((𝑠𝑆 ↦ if(𝑠 = (0g𝑀), (1r‘(Scalar‘𝑀)), (0g‘(Scalar‘𝑀))))‘(0g𝑀)) = (1r‘(Scalar‘𝑀)))
232lmodring 20131 . . . . . . . 8 (𝑀 ∈ LMod → (Scalar‘𝑀) ∈ Ring)
2423anim1i 615 . . . . . . 7 ((𝑀 ∈ LMod ∧ 1 < (♯‘(Base‘(Scalar‘𝑀)))) → ((Scalar‘𝑀) ∈ Ring ∧ 1 < (♯‘(Base‘(Scalar‘𝑀)))))
25243ad2ant1 1132 . . . . . 6 (((𝑀 ∈ LMod ∧ 1 < (♯‘(Base‘(Scalar‘𝑀)))) ∧ 𝑆 ∈ 𝒫 (Base‘𝑀) ∧ (0g𝑀) ∈ 𝑆) → ((Scalar‘𝑀) ∈ Ring ∧ 1 < (♯‘(Base‘(Scalar‘𝑀)))))
26 eqid 2738 . . . . . . 7 (Base‘(Scalar‘𝑀)) = (Base‘(Scalar‘𝑀))
2726, 4, 3ring1ne0 19830 . . . . . 6 (((Scalar‘𝑀) ∈ Ring ∧ 1 < (♯‘(Base‘(Scalar‘𝑀)))) → (1r‘(Scalar‘𝑀)) ≠ (0g‘(Scalar‘𝑀)))
2825, 27syl 17 . . . . 5 (((𝑀 ∈ LMod ∧ 1 < (♯‘(Base‘(Scalar‘𝑀)))) ∧ 𝑆 ∈ 𝒫 (Base‘𝑀) ∧ (0g𝑀) ∈ 𝑆) → (1r‘(Scalar‘𝑀)) ≠ (0g‘(Scalar‘𝑀)))
2922, 28eqnetrd 3011 . . . 4 (((𝑀 ∈ LMod ∧ 1 < (♯‘(Base‘(Scalar‘𝑀)))) ∧ 𝑆 ∈ 𝒫 (Base‘𝑀) ∧ (0g𝑀) ∈ 𝑆) → ((𝑠𝑆 ↦ if(𝑠 = (0g𝑀), (1r‘(Scalar‘𝑀)), (0g‘(Scalar‘𝑀))))‘(0g𝑀)) ≠ (0g‘(Scalar‘𝑀)))
3016, 19, 29rspcedvd 3563 . . 3 (((𝑀 ∈ LMod ∧ 1 < (♯‘(Base‘(Scalar‘𝑀)))) ∧ 𝑆 ∈ 𝒫 (Base‘𝑀) ∧ (0g𝑀) ∈ 𝑆) → ∃𝑥𝑆 ((𝑠𝑆 ↦ if(𝑠 = (0g𝑀), (1r‘(Scalar‘𝑀)), (0g‘(Scalar‘𝑀))))‘𝑥) ≠ (0g‘(Scalar‘𝑀)))
312, 26, 4lmod1cl 20150 . . . . . . . . . 10 (𝑀 ∈ LMod → (1r‘(Scalar‘𝑀)) ∈ (Base‘(Scalar‘𝑀)))
322, 26, 3lmod0cl 20149 . . . . . . . . . 10 (𝑀 ∈ LMod → (0g‘(Scalar‘𝑀)) ∈ (Base‘(Scalar‘𝑀)))
3331, 32ifcld 4505 . . . . . . . . 9 (𝑀 ∈ LMod → if(𝑠 = (0g𝑀), (1r‘(Scalar‘𝑀)), (0g‘(Scalar‘𝑀))) ∈ (Base‘(Scalar‘𝑀)))
3433adantr 481 . . . . . . . 8 ((𝑀 ∈ LMod ∧ 1 < (♯‘(Base‘(Scalar‘𝑀)))) → if(𝑠 = (0g𝑀), (1r‘(Scalar‘𝑀)), (0g‘(Scalar‘𝑀))) ∈ (Base‘(Scalar‘𝑀)))
35343ad2ant1 1132 . . . . . . 7 (((𝑀 ∈ LMod ∧ 1 < (♯‘(Base‘(Scalar‘𝑀)))) ∧ 𝑆 ∈ 𝒫 (Base‘𝑀) ∧ (0g𝑀) ∈ 𝑆) → if(𝑠 = (0g𝑀), (1r‘(Scalar‘𝑀)), (0g‘(Scalar‘𝑀))) ∈ (Base‘(Scalar‘𝑀)))
3635adantr 481 . . . . . 6 ((((𝑀 ∈ LMod ∧ 1 < (♯‘(Base‘(Scalar‘𝑀)))) ∧ 𝑆 ∈ 𝒫 (Base‘𝑀) ∧ (0g𝑀) ∈ 𝑆) ∧ 𝑠𝑆) → if(𝑠 = (0g𝑀), (1r‘(Scalar‘𝑀)), (0g‘(Scalar‘𝑀))) ∈ (Base‘(Scalar‘𝑀)))
3736fmpttd 6989 . . . . 5 (((𝑀 ∈ LMod ∧ 1 < (♯‘(Base‘(Scalar‘𝑀)))) ∧ 𝑆 ∈ 𝒫 (Base‘𝑀) ∧ (0g𝑀) ∈ 𝑆) → (𝑠𝑆 ↦ if(𝑠 = (0g𝑀), (1r‘(Scalar‘𝑀)), (0g‘(Scalar‘𝑀)))):𝑆⟶(Base‘(Scalar‘𝑀)))
38 fvexd 6789 . . . . . 6 (((𝑀 ∈ LMod ∧ 1 < (♯‘(Base‘(Scalar‘𝑀)))) ∧ 𝑆 ∈ 𝒫 (Base‘𝑀) ∧ (0g𝑀) ∈ 𝑆) → (Base‘(Scalar‘𝑀)) ∈ V)
3938, 11elmapd 8629 . . . . 5 (((𝑀 ∈ LMod ∧ 1 < (♯‘(Base‘(Scalar‘𝑀)))) ∧ 𝑆 ∈ 𝒫 (Base‘𝑀) ∧ (0g𝑀) ∈ 𝑆) → ((𝑠𝑆 ↦ if(𝑠 = (0g𝑀), (1r‘(Scalar‘𝑀)), (0g‘(Scalar‘𝑀)))) ∈ ((Base‘(Scalar‘𝑀)) ↑m 𝑆) ↔ (𝑠𝑆 ↦ if(𝑠 = (0g𝑀), (1r‘(Scalar‘𝑀)), (0g‘(Scalar‘𝑀)))):𝑆⟶(Base‘(Scalar‘𝑀))))
4037, 39mpbird 256 . . . 4 (((𝑀 ∈ LMod ∧ 1 < (♯‘(Base‘(Scalar‘𝑀)))) ∧ 𝑆 ∈ 𝒫 (Base‘𝑀) ∧ (0g𝑀) ∈ 𝑆) → (𝑠𝑆 ↦ if(𝑠 = (0g𝑀), (1r‘(Scalar‘𝑀)), (0g‘(Scalar‘𝑀)))) ∈ ((Base‘(Scalar‘𝑀)) ↑m 𝑆))
41 breq1 5077 . . . . . 6 (𝑓 = (𝑠𝑆 ↦ if(𝑠 = (0g𝑀), (1r‘(Scalar‘𝑀)), (0g‘(Scalar‘𝑀)))) → (𝑓 finSupp (0g‘(Scalar‘𝑀)) ↔ (𝑠𝑆 ↦ if(𝑠 = (0g𝑀), (1r‘(Scalar‘𝑀)), (0g‘(Scalar‘𝑀)))) finSupp (0g‘(Scalar‘𝑀))))
42 oveq1 7282 . . . . . . 7 (𝑓 = (𝑠𝑆 ↦ if(𝑠 = (0g𝑀), (1r‘(Scalar‘𝑀)), (0g‘(Scalar‘𝑀)))) → (𝑓( linC ‘𝑀)𝑆) = ((𝑠𝑆 ↦ if(𝑠 = (0g𝑀), (1r‘(Scalar‘𝑀)), (0g‘(Scalar‘𝑀))))( linC ‘𝑀)𝑆))
4342eqeq1d 2740 . . . . . 6 (𝑓 = (𝑠𝑆 ↦ if(𝑠 = (0g𝑀), (1r‘(Scalar‘𝑀)), (0g‘(Scalar‘𝑀)))) → ((𝑓( linC ‘𝑀)𝑆) = (0g𝑀) ↔ ((𝑠𝑆 ↦ if(𝑠 = (0g𝑀), (1r‘(Scalar‘𝑀)), (0g‘(Scalar‘𝑀))))( linC ‘𝑀)𝑆) = (0g𝑀)))
44 fveq1 6773 . . . . . . . 8 (𝑓 = (𝑠𝑆 ↦ if(𝑠 = (0g𝑀), (1r‘(Scalar‘𝑀)), (0g‘(Scalar‘𝑀)))) → (𝑓𝑥) = ((𝑠𝑆 ↦ if(𝑠 = (0g𝑀), (1r‘(Scalar‘𝑀)), (0g‘(Scalar‘𝑀))))‘𝑥))
4544neeq1d 3003 . . . . . . 7 (𝑓 = (𝑠𝑆 ↦ if(𝑠 = (0g𝑀), (1r‘(Scalar‘𝑀)), (0g‘(Scalar‘𝑀)))) → ((𝑓𝑥) ≠ (0g‘(Scalar‘𝑀)) ↔ ((𝑠𝑆 ↦ if(𝑠 = (0g𝑀), (1r‘(Scalar‘𝑀)), (0g‘(Scalar‘𝑀))))‘𝑥) ≠ (0g‘(Scalar‘𝑀))))
4645rexbidv 3226 . . . . . 6 (𝑓 = (𝑠𝑆 ↦ if(𝑠 = (0g𝑀), (1r‘(Scalar‘𝑀)), (0g‘(Scalar‘𝑀)))) → (∃𝑥𝑆 (𝑓𝑥) ≠ (0g‘(Scalar‘𝑀)) ↔ ∃𝑥𝑆 ((𝑠𝑆 ↦ if(𝑠 = (0g𝑀), (1r‘(Scalar‘𝑀)), (0g‘(Scalar‘𝑀))))‘𝑥) ≠ (0g‘(Scalar‘𝑀))))
4741, 43, 463anbi123d 1435 . . . . 5 (𝑓 = (𝑠𝑆 ↦ if(𝑠 = (0g𝑀), (1r‘(Scalar‘𝑀)), (0g‘(Scalar‘𝑀)))) → ((𝑓 finSupp (0g‘(Scalar‘𝑀)) ∧ (𝑓( linC ‘𝑀)𝑆) = (0g𝑀) ∧ ∃𝑥𝑆 (𝑓𝑥) ≠ (0g‘(Scalar‘𝑀))) ↔ ((𝑠𝑆 ↦ if(𝑠 = (0g𝑀), (1r‘(Scalar‘𝑀)), (0g‘(Scalar‘𝑀)))) finSupp (0g‘(Scalar‘𝑀)) ∧ ((𝑠𝑆 ↦ if(𝑠 = (0g𝑀), (1r‘(Scalar‘𝑀)), (0g‘(Scalar‘𝑀))))( linC ‘𝑀)𝑆) = (0g𝑀) ∧ ∃𝑥𝑆 ((𝑠𝑆 ↦ if(𝑠 = (0g𝑀), (1r‘(Scalar‘𝑀)), (0g‘(Scalar‘𝑀))))‘𝑥) ≠ (0g‘(Scalar‘𝑀)))))
4847adantl 482 . . . 4 ((((𝑀 ∈ LMod ∧ 1 < (♯‘(Base‘(Scalar‘𝑀)))) ∧ 𝑆 ∈ 𝒫 (Base‘𝑀) ∧ (0g𝑀) ∈ 𝑆) ∧ 𝑓 = (𝑠𝑆 ↦ if(𝑠 = (0g𝑀), (1r‘(Scalar‘𝑀)), (0g‘(Scalar‘𝑀))))) → ((𝑓 finSupp (0g‘(Scalar‘𝑀)) ∧ (𝑓( linC ‘𝑀)𝑆) = (0g𝑀) ∧ ∃𝑥𝑆 (𝑓𝑥) ≠ (0g‘(Scalar‘𝑀))) ↔ ((𝑠𝑆 ↦ if(𝑠 = (0g𝑀), (1r‘(Scalar‘𝑀)), (0g‘(Scalar‘𝑀)))) finSupp (0g‘(Scalar‘𝑀)) ∧ ((𝑠𝑆 ↦ if(𝑠 = (0g𝑀), (1r‘(Scalar‘𝑀)), (0g‘(Scalar‘𝑀))))( linC ‘𝑀)𝑆) = (0g𝑀) ∧ ∃𝑥𝑆 ((𝑠𝑆 ↦ if(𝑠 = (0g𝑀), (1r‘(Scalar‘𝑀)), (0g‘(Scalar‘𝑀))))‘𝑥) ≠ (0g‘(Scalar‘𝑀)))))
4940, 48rspcedv 3554 . . 3 (((𝑀 ∈ LMod ∧ 1 < (♯‘(Base‘(Scalar‘𝑀)))) ∧ 𝑆 ∈ 𝒫 (Base‘𝑀) ∧ (0g𝑀) ∈ 𝑆) → (((𝑠𝑆 ↦ if(𝑠 = (0g𝑀), (1r‘(Scalar‘𝑀)), (0g‘(Scalar‘𝑀)))) finSupp (0g‘(Scalar‘𝑀)) ∧ ((𝑠𝑆 ↦ if(𝑠 = (0g𝑀), (1r‘(Scalar‘𝑀)), (0g‘(Scalar‘𝑀))))( linC ‘𝑀)𝑆) = (0g𝑀) ∧ ∃𝑥𝑆 ((𝑠𝑆 ↦ if(𝑠 = (0g𝑀), (1r‘(Scalar‘𝑀)), (0g‘(Scalar‘𝑀))))‘𝑥) ≠ (0g‘(Scalar‘𝑀))) → ∃𝑓 ∈ ((Base‘(Scalar‘𝑀)) ↑m 𝑆)(𝑓 finSupp (0g‘(Scalar‘𝑀)) ∧ (𝑓( linC ‘𝑀)𝑆) = (0g𝑀) ∧ ∃𝑥𝑆 (𝑓𝑥) ≠ (0g‘(Scalar‘𝑀)))))
509, 15, 30, 49mp3and 1463 . 2 (((𝑀 ∈ LMod ∧ 1 < (♯‘(Base‘(Scalar‘𝑀)))) ∧ 𝑆 ∈ 𝒫 (Base‘𝑀) ∧ (0g𝑀) ∈ 𝑆) → ∃𝑓 ∈ ((Base‘(Scalar‘𝑀)) ↑m 𝑆)(𝑓 finSupp (0g‘(Scalar‘𝑀)) ∧ (𝑓( linC ‘𝑀)𝑆) = (0g𝑀) ∧ ∃𝑥𝑆 (𝑓𝑥) ≠ (0g‘(Scalar‘𝑀))))
511, 12, 2, 26, 3islindeps 45794 . . 3 ((𝑀 ∈ LMod ∧ 𝑆 ∈ 𝒫 (Base‘𝑀)) → (𝑆 linDepS 𝑀 ↔ ∃𝑓 ∈ ((Base‘(Scalar‘𝑀)) ↑m 𝑆)(𝑓 finSupp (0g‘(Scalar‘𝑀)) ∧ (𝑓( linC ‘𝑀)𝑆) = (0g𝑀) ∧ ∃𝑥𝑆 (𝑓𝑥) ≠ (0g‘(Scalar‘𝑀)))))
5210, 11, 51syl2anc 584 . 2 (((𝑀 ∈ LMod ∧ 1 < (♯‘(Base‘(Scalar‘𝑀)))) ∧ 𝑆 ∈ 𝒫 (Base‘𝑀) ∧ (0g𝑀) ∈ 𝑆) → (𝑆 linDepS 𝑀 ↔ ∃𝑓 ∈ ((Base‘(Scalar‘𝑀)) ↑m 𝑆)(𝑓 finSupp (0g‘(Scalar‘𝑀)) ∧ (𝑓( linC ‘𝑀)𝑆) = (0g𝑀) ∧ ∃𝑥𝑆 (𝑓𝑥) ≠ (0g‘(Scalar‘𝑀)))))
5350, 52mpbird 256 1 (((𝑀 ∈ LMod ∧ 1 < (♯‘(Base‘(Scalar‘𝑀)))) ∧ 𝑆 ∈ 𝒫 (Base‘𝑀) ∧ (0g𝑀) ∈ 𝑆) → 𝑆 linDepS 𝑀)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396  w3a 1086   = wceq 1539  wcel 2106  wne 2943  wrex 3065  Vcvv 3432  ifcif 4459  𝒫 cpw 4533   class class class wbr 5074  cmpt 5157  wf 6429  cfv 6433  (class class class)co 7275  m cmap 8615   finSupp cfsupp 9128  1c1 10872   < clt 11009  chash 14044  Basecbs 16912  Scalarcsca 16965  0gc0g 17150  1rcur 19737  Ringcrg 19783  LModclmod 20123   linC clinc 45745   linDepS clindeps 45782
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-cnex 10927  ax-resscn 10928  ax-1cn 10929  ax-icn 10930  ax-addcl 10931  ax-addrcl 10932  ax-mulcl 10933  ax-mulrcl 10934  ax-mulcom 10935  ax-addass 10936  ax-mulass 10937  ax-distr 10938  ax-i2m1 10939  ax-1ne0 10940  ax-1rid 10941  ax-rnegex 10942  ax-rrecex 10943  ax-cnre 10944  ax-pre-lttri 10945  ax-pre-lttrn 10946  ax-pre-ltadd 10947  ax-pre-mulgt0 10948
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-rmo 3071  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-int 4880  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-om 7713  df-1st 7831  df-2nd 7832  df-supp 7978  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-1o 8297  df-er 8498  df-map 8617  df-en 8734  df-dom 8735  df-sdom 8736  df-fin 8737  df-fsupp 9129  df-card 9697  df-pnf 11011  df-mnf 11012  df-xr 11013  df-ltxr 11014  df-le 11015  df-sub 11207  df-neg 11208  df-nn 11974  df-2 12036  df-n0 12234  df-xnn0 12306  df-z 12320  df-uz 12583  df-fz 13240  df-seq 13722  df-hash 14045  df-sets 16865  df-slot 16883  df-ndx 16895  df-base 16913  df-plusg 16975  df-0g 17152  df-gsum 17153  df-mgm 18326  df-sgrp 18375  df-mnd 18386  df-grp 18580  df-minusg 18581  df-mgp 19721  df-ur 19738  df-ring 19785  df-lmod 20125  df-linc 45747  df-lininds 45783  df-lindeps 45785
This theorem is referenced by:  el0ldepsnzr  45808
  Copyright terms: Public domain W3C validator