Step | Hyp | Ref
| Expression |
1 | | eqid 2738 |
. . . . 5
⊢
(Base‘𝑀) =
(Base‘𝑀) |
2 | | eqid 2738 |
. . . . 5
⊢
(Scalar‘𝑀) =
(Scalar‘𝑀) |
3 | | eqid 2738 |
. . . . 5
⊢
(0g‘(Scalar‘𝑀)) =
(0g‘(Scalar‘𝑀)) |
4 | | eqid 2738 |
. . . . 5
⊢
(1r‘(Scalar‘𝑀)) =
(1r‘(Scalar‘𝑀)) |
5 | | eqeq1 2742 |
. . . . . . 7
⊢ (𝑠 = 𝑦 → (𝑠 = (0g‘𝑀) ↔ 𝑦 = (0g‘𝑀))) |
6 | 5 | ifbid 4482 |
. . . . . 6
⊢ (𝑠 = 𝑦 → if(𝑠 = (0g‘𝑀), (1r‘(Scalar‘𝑀)),
(0g‘(Scalar‘𝑀))) = if(𝑦 = (0g‘𝑀), (1r‘(Scalar‘𝑀)),
(0g‘(Scalar‘𝑀)))) |
7 | 6 | cbvmptv 5187 |
. . . . 5
⊢ (𝑠 ∈ 𝑆 ↦ if(𝑠 = (0g‘𝑀), (1r‘(Scalar‘𝑀)),
(0g‘(Scalar‘𝑀)))) = (𝑦 ∈ 𝑆 ↦ if(𝑦 = (0g‘𝑀), (1r‘(Scalar‘𝑀)),
(0g‘(Scalar‘𝑀)))) |
8 | 1, 2, 3, 4, 7 | mptcfsupp 45716 |
. . . 4
⊢ ((𝑀 ∈ LMod ∧ 𝑆 ∈ 𝒫
(Base‘𝑀) ∧
(0g‘𝑀)
∈ 𝑆) → (𝑠 ∈ 𝑆 ↦ if(𝑠 = (0g‘𝑀), (1r‘(Scalar‘𝑀)),
(0g‘(Scalar‘𝑀)))) finSupp
(0g‘(Scalar‘𝑀))) |
9 | 8 | 3adant1r 1176 |
. . 3
⊢ (((𝑀 ∈ LMod ∧ 1 <
(♯‘(Base‘(Scalar‘𝑀)))) ∧ 𝑆 ∈ 𝒫 (Base‘𝑀) ∧
(0g‘𝑀)
∈ 𝑆) → (𝑠 ∈ 𝑆 ↦ if(𝑠 = (0g‘𝑀), (1r‘(Scalar‘𝑀)),
(0g‘(Scalar‘𝑀)))) finSupp
(0g‘(Scalar‘𝑀))) |
10 | | simp1l 1196 |
. . . 4
⊢ (((𝑀 ∈ LMod ∧ 1 <
(♯‘(Base‘(Scalar‘𝑀)))) ∧ 𝑆 ∈ 𝒫 (Base‘𝑀) ∧
(0g‘𝑀)
∈ 𝑆) → 𝑀 ∈ LMod) |
11 | | simp2 1136 |
. . . 4
⊢ (((𝑀 ∈ LMod ∧ 1 <
(♯‘(Base‘(Scalar‘𝑀)))) ∧ 𝑆 ∈ 𝒫 (Base‘𝑀) ∧
(0g‘𝑀)
∈ 𝑆) → 𝑆 ∈ 𝒫
(Base‘𝑀)) |
12 | | eqid 2738 |
. . . . 5
⊢
(0g‘𝑀) = (0g‘𝑀) |
13 | | eqid 2738 |
. . . . 5
⊢ (𝑠 ∈ 𝑆 ↦ if(𝑠 = (0g‘𝑀), (1r‘(Scalar‘𝑀)),
(0g‘(Scalar‘𝑀)))) = (𝑠 ∈ 𝑆 ↦ if(𝑠 = (0g‘𝑀), (1r‘(Scalar‘𝑀)),
(0g‘(Scalar‘𝑀)))) |
14 | 1, 2, 3, 4, 12, 13 | linc0scn0 45764 |
. . . 4
⊢ ((𝑀 ∈ LMod ∧ 𝑆 ∈ 𝒫
(Base‘𝑀)) →
((𝑠 ∈ 𝑆 ↦ if(𝑠 = (0g‘𝑀), (1r‘(Scalar‘𝑀)),
(0g‘(Scalar‘𝑀))))( linC ‘𝑀)𝑆) = (0g‘𝑀)) |
15 | 10, 11, 14 | syl2anc 584 |
. . 3
⊢ (((𝑀 ∈ LMod ∧ 1 <
(♯‘(Base‘(Scalar‘𝑀)))) ∧ 𝑆 ∈ 𝒫 (Base‘𝑀) ∧
(0g‘𝑀)
∈ 𝑆) → ((𝑠 ∈ 𝑆 ↦ if(𝑠 = (0g‘𝑀), (1r‘(Scalar‘𝑀)),
(0g‘(Scalar‘𝑀))))( linC ‘𝑀)𝑆) = (0g‘𝑀)) |
16 | | simp3 1137 |
. . . 4
⊢ (((𝑀 ∈ LMod ∧ 1 <
(♯‘(Base‘(Scalar‘𝑀)))) ∧ 𝑆 ∈ 𝒫 (Base‘𝑀) ∧
(0g‘𝑀)
∈ 𝑆) →
(0g‘𝑀)
∈ 𝑆) |
17 | | fveq2 6774 |
. . . . . 6
⊢ (𝑥 = (0g‘𝑀) → ((𝑠 ∈ 𝑆 ↦ if(𝑠 = (0g‘𝑀), (1r‘(Scalar‘𝑀)),
(0g‘(Scalar‘𝑀))))‘𝑥) = ((𝑠 ∈ 𝑆 ↦ if(𝑠 = (0g‘𝑀), (1r‘(Scalar‘𝑀)),
(0g‘(Scalar‘𝑀))))‘(0g‘𝑀))) |
18 | 17 | neeq1d 3003 |
. . . . 5
⊢ (𝑥 = (0g‘𝑀) → (((𝑠 ∈ 𝑆 ↦ if(𝑠 = (0g‘𝑀), (1r‘(Scalar‘𝑀)),
(0g‘(Scalar‘𝑀))))‘𝑥) ≠
(0g‘(Scalar‘𝑀)) ↔ ((𝑠 ∈ 𝑆 ↦ if(𝑠 = (0g‘𝑀), (1r‘(Scalar‘𝑀)),
(0g‘(Scalar‘𝑀))))‘(0g‘𝑀)) ≠
(0g‘(Scalar‘𝑀)))) |
19 | 18 | adantl 482 |
. . . 4
⊢ ((((𝑀 ∈ LMod ∧ 1 <
(♯‘(Base‘(Scalar‘𝑀)))) ∧ 𝑆 ∈ 𝒫 (Base‘𝑀) ∧
(0g‘𝑀)
∈ 𝑆) ∧ 𝑥 = (0g‘𝑀)) → (((𝑠 ∈ 𝑆 ↦ if(𝑠 = (0g‘𝑀), (1r‘(Scalar‘𝑀)),
(0g‘(Scalar‘𝑀))))‘𝑥) ≠
(0g‘(Scalar‘𝑀)) ↔ ((𝑠 ∈ 𝑆 ↦ if(𝑠 = (0g‘𝑀), (1r‘(Scalar‘𝑀)),
(0g‘(Scalar‘𝑀))))‘(0g‘𝑀)) ≠
(0g‘(Scalar‘𝑀)))) |
20 | | iftrue 4465 |
. . . . . 6
⊢ (𝑠 = (0g‘𝑀) → if(𝑠 = (0g‘𝑀), (1r‘(Scalar‘𝑀)),
(0g‘(Scalar‘𝑀))) =
(1r‘(Scalar‘𝑀))) |
21 | | fvexd 6789 |
. . . . . 6
⊢ (((𝑀 ∈ LMod ∧ 1 <
(♯‘(Base‘(Scalar‘𝑀)))) ∧ 𝑆 ∈ 𝒫 (Base‘𝑀) ∧
(0g‘𝑀)
∈ 𝑆) →
(1r‘(Scalar‘𝑀)) ∈ V) |
22 | 13, 20, 16, 21 | fvmptd3 6898 |
. . . . 5
⊢ (((𝑀 ∈ LMod ∧ 1 <
(♯‘(Base‘(Scalar‘𝑀)))) ∧ 𝑆 ∈ 𝒫 (Base‘𝑀) ∧
(0g‘𝑀)
∈ 𝑆) → ((𝑠 ∈ 𝑆 ↦ if(𝑠 = (0g‘𝑀), (1r‘(Scalar‘𝑀)),
(0g‘(Scalar‘𝑀))))‘(0g‘𝑀)) =
(1r‘(Scalar‘𝑀))) |
23 | 2 | lmodring 20131 |
. . . . . . . 8
⊢ (𝑀 ∈ LMod →
(Scalar‘𝑀) ∈
Ring) |
24 | 23 | anim1i 615 |
. . . . . . 7
⊢ ((𝑀 ∈ LMod ∧ 1 <
(♯‘(Base‘(Scalar‘𝑀)))) → ((Scalar‘𝑀) ∈ Ring ∧ 1 <
(♯‘(Base‘(Scalar‘𝑀))))) |
25 | 24 | 3ad2ant1 1132 |
. . . . . 6
⊢ (((𝑀 ∈ LMod ∧ 1 <
(♯‘(Base‘(Scalar‘𝑀)))) ∧ 𝑆 ∈ 𝒫 (Base‘𝑀) ∧
(0g‘𝑀)
∈ 𝑆) →
((Scalar‘𝑀) ∈
Ring ∧ 1 < (♯‘(Base‘(Scalar‘𝑀))))) |
26 | | eqid 2738 |
. . . . . . 7
⊢
(Base‘(Scalar‘𝑀)) = (Base‘(Scalar‘𝑀)) |
27 | 26, 4, 3 | ring1ne0 19830 |
. . . . . 6
⊢
(((Scalar‘𝑀)
∈ Ring ∧ 1 < (♯‘(Base‘(Scalar‘𝑀)))) →
(1r‘(Scalar‘𝑀)) ≠
(0g‘(Scalar‘𝑀))) |
28 | 25, 27 | syl 17 |
. . . . 5
⊢ (((𝑀 ∈ LMod ∧ 1 <
(♯‘(Base‘(Scalar‘𝑀)))) ∧ 𝑆 ∈ 𝒫 (Base‘𝑀) ∧
(0g‘𝑀)
∈ 𝑆) →
(1r‘(Scalar‘𝑀)) ≠
(0g‘(Scalar‘𝑀))) |
29 | 22, 28 | eqnetrd 3011 |
. . . 4
⊢ (((𝑀 ∈ LMod ∧ 1 <
(♯‘(Base‘(Scalar‘𝑀)))) ∧ 𝑆 ∈ 𝒫 (Base‘𝑀) ∧
(0g‘𝑀)
∈ 𝑆) → ((𝑠 ∈ 𝑆 ↦ if(𝑠 = (0g‘𝑀), (1r‘(Scalar‘𝑀)),
(0g‘(Scalar‘𝑀))))‘(0g‘𝑀)) ≠
(0g‘(Scalar‘𝑀))) |
30 | 16, 19, 29 | rspcedvd 3563 |
. . 3
⊢ (((𝑀 ∈ LMod ∧ 1 <
(♯‘(Base‘(Scalar‘𝑀)))) ∧ 𝑆 ∈ 𝒫 (Base‘𝑀) ∧
(0g‘𝑀)
∈ 𝑆) →
∃𝑥 ∈ 𝑆 ((𝑠 ∈ 𝑆 ↦ if(𝑠 = (0g‘𝑀), (1r‘(Scalar‘𝑀)),
(0g‘(Scalar‘𝑀))))‘𝑥) ≠
(0g‘(Scalar‘𝑀))) |
31 | 2, 26, 4 | lmod1cl 20150 |
. . . . . . . . . 10
⊢ (𝑀 ∈ LMod →
(1r‘(Scalar‘𝑀)) ∈ (Base‘(Scalar‘𝑀))) |
32 | 2, 26, 3 | lmod0cl 20149 |
. . . . . . . . . 10
⊢ (𝑀 ∈ LMod →
(0g‘(Scalar‘𝑀)) ∈ (Base‘(Scalar‘𝑀))) |
33 | 31, 32 | ifcld 4505 |
. . . . . . . . 9
⊢ (𝑀 ∈ LMod → if(𝑠 = (0g‘𝑀),
(1r‘(Scalar‘𝑀)), (0g‘(Scalar‘𝑀))) ∈
(Base‘(Scalar‘𝑀))) |
34 | 33 | adantr 481 |
. . . . . . . 8
⊢ ((𝑀 ∈ LMod ∧ 1 <
(♯‘(Base‘(Scalar‘𝑀)))) → if(𝑠 = (0g‘𝑀), (1r‘(Scalar‘𝑀)),
(0g‘(Scalar‘𝑀))) ∈ (Base‘(Scalar‘𝑀))) |
35 | 34 | 3ad2ant1 1132 |
. . . . . . 7
⊢ (((𝑀 ∈ LMod ∧ 1 <
(♯‘(Base‘(Scalar‘𝑀)))) ∧ 𝑆 ∈ 𝒫 (Base‘𝑀) ∧
(0g‘𝑀)
∈ 𝑆) → if(𝑠 = (0g‘𝑀),
(1r‘(Scalar‘𝑀)), (0g‘(Scalar‘𝑀))) ∈
(Base‘(Scalar‘𝑀))) |
36 | 35 | adantr 481 |
. . . . . 6
⊢ ((((𝑀 ∈ LMod ∧ 1 <
(♯‘(Base‘(Scalar‘𝑀)))) ∧ 𝑆 ∈ 𝒫 (Base‘𝑀) ∧
(0g‘𝑀)
∈ 𝑆) ∧ 𝑠 ∈ 𝑆) → if(𝑠 = (0g‘𝑀), (1r‘(Scalar‘𝑀)),
(0g‘(Scalar‘𝑀))) ∈ (Base‘(Scalar‘𝑀))) |
37 | 36 | fmpttd 6989 |
. . . . 5
⊢ (((𝑀 ∈ LMod ∧ 1 <
(♯‘(Base‘(Scalar‘𝑀)))) ∧ 𝑆 ∈ 𝒫 (Base‘𝑀) ∧
(0g‘𝑀)
∈ 𝑆) → (𝑠 ∈ 𝑆 ↦ if(𝑠 = (0g‘𝑀), (1r‘(Scalar‘𝑀)),
(0g‘(Scalar‘𝑀)))):𝑆⟶(Base‘(Scalar‘𝑀))) |
38 | | fvexd 6789 |
. . . . . 6
⊢ (((𝑀 ∈ LMod ∧ 1 <
(♯‘(Base‘(Scalar‘𝑀)))) ∧ 𝑆 ∈ 𝒫 (Base‘𝑀) ∧
(0g‘𝑀)
∈ 𝑆) →
(Base‘(Scalar‘𝑀)) ∈ V) |
39 | 38, 11 | elmapd 8629 |
. . . . 5
⊢ (((𝑀 ∈ LMod ∧ 1 <
(♯‘(Base‘(Scalar‘𝑀)))) ∧ 𝑆 ∈ 𝒫 (Base‘𝑀) ∧
(0g‘𝑀)
∈ 𝑆) → ((𝑠 ∈ 𝑆 ↦ if(𝑠 = (0g‘𝑀), (1r‘(Scalar‘𝑀)),
(0g‘(Scalar‘𝑀)))) ∈ ((Base‘(Scalar‘𝑀)) ↑m 𝑆) ↔ (𝑠 ∈ 𝑆 ↦ if(𝑠 = (0g‘𝑀), (1r‘(Scalar‘𝑀)),
(0g‘(Scalar‘𝑀)))):𝑆⟶(Base‘(Scalar‘𝑀)))) |
40 | 37, 39 | mpbird 256 |
. . . 4
⊢ (((𝑀 ∈ LMod ∧ 1 <
(♯‘(Base‘(Scalar‘𝑀)))) ∧ 𝑆 ∈ 𝒫 (Base‘𝑀) ∧
(0g‘𝑀)
∈ 𝑆) → (𝑠 ∈ 𝑆 ↦ if(𝑠 = (0g‘𝑀), (1r‘(Scalar‘𝑀)),
(0g‘(Scalar‘𝑀)))) ∈ ((Base‘(Scalar‘𝑀)) ↑m 𝑆)) |
41 | | breq1 5077 |
. . . . . 6
⊢ (𝑓 = (𝑠 ∈ 𝑆 ↦ if(𝑠 = (0g‘𝑀), (1r‘(Scalar‘𝑀)),
(0g‘(Scalar‘𝑀)))) → (𝑓 finSupp
(0g‘(Scalar‘𝑀)) ↔ (𝑠 ∈ 𝑆 ↦ if(𝑠 = (0g‘𝑀), (1r‘(Scalar‘𝑀)),
(0g‘(Scalar‘𝑀)))) finSupp
(0g‘(Scalar‘𝑀)))) |
42 | | oveq1 7282 |
. . . . . . 7
⊢ (𝑓 = (𝑠 ∈ 𝑆 ↦ if(𝑠 = (0g‘𝑀), (1r‘(Scalar‘𝑀)),
(0g‘(Scalar‘𝑀)))) → (𝑓( linC ‘𝑀)𝑆) = ((𝑠 ∈ 𝑆 ↦ if(𝑠 = (0g‘𝑀), (1r‘(Scalar‘𝑀)),
(0g‘(Scalar‘𝑀))))( linC ‘𝑀)𝑆)) |
43 | 42 | eqeq1d 2740 |
. . . . . 6
⊢ (𝑓 = (𝑠 ∈ 𝑆 ↦ if(𝑠 = (0g‘𝑀), (1r‘(Scalar‘𝑀)),
(0g‘(Scalar‘𝑀)))) → ((𝑓( linC ‘𝑀)𝑆) = (0g‘𝑀) ↔ ((𝑠 ∈ 𝑆 ↦ if(𝑠 = (0g‘𝑀), (1r‘(Scalar‘𝑀)),
(0g‘(Scalar‘𝑀))))( linC ‘𝑀)𝑆) = (0g‘𝑀))) |
44 | | fveq1 6773 |
. . . . . . . 8
⊢ (𝑓 = (𝑠 ∈ 𝑆 ↦ if(𝑠 = (0g‘𝑀), (1r‘(Scalar‘𝑀)),
(0g‘(Scalar‘𝑀)))) → (𝑓‘𝑥) = ((𝑠 ∈ 𝑆 ↦ if(𝑠 = (0g‘𝑀), (1r‘(Scalar‘𝑀)),
(0g‘(Scalar‘𝑀))))‘𝑥)) |
45 | 44 | neeq1d 3003 |
. . . . . . 7
⊢ (𝑓 = (𝑠 ∈ 𝑆 ↦ if(𝑠 = (0g‘𝑀), (1r‘(Scalar‘𝑀)),
(0g‘(Scalar‘𝑀)))) → ((𝑓‘𝑥) ≠
(0g‘(Scalar‘𝑀)) ↔ ((𝑠 ∈ 𝑆 ↦ if(𝑠 = (0g‘𝑀), (1r‘(Scalar‘𝑀)),
(0g‘(Scalar‘𝑀))))‘𝑥) ≠
(0g‘(Scalar‘𝑀)))) |
46 | 45 | rexbidv 3226 |
. . . . . 6
⊢ (𝑓 = (𝑠 ∈ 𝑆 ↦ if(𝑠 = (0g‘𝑀), (1r‘(Scalar‘𝑀)),
(0g‘(Scalar‘𝑀)))) → (∃𝑥 ∈ 𝑆 (𝑓‘𝑥) ≠
(0g‘(Scalar‘𝑀)) ↔ ∃𝑥 ∈ 𝑆 ((𝑠 ∈ 𝑆 ↦ if(𝑠 = (0g‘𝑀), (1r‘(Scalar‘𝑀)),
(0g‘(Scalar‘𝑀))))‘𝑥) ≠
(0g‘(Scalar‘𝑀)))) |
47 | 41, 43, 46 | 3anbi123d 1435 |
. . . . 5
⊢ (𝑓 = (𝑠 ∈ 𝑆 ↦ if(𝑠 = (0g‘𝑀), (1r‘(Scalar‘𝑀)),
(0g‘(Scalar‘𝑀)))) → ((𝑓 finSupp
(0g‘(Scalar‘𝑀)) ∧ (𝑓( linC ‘𝑀)𝑆) = (0g‘𝑀) ∧ ∃𝑥 ∈ 𝑆 (𝑓‘𝑥) ≠
(0g‘(Scalar‘𝑀))) ↔ ((𝑠 ∈ 𝑆 ↦ if(𝑠 = (0g‘𝑀), (1r‘(Scalar‘𝑀)),
(0g‘(Scalar‘𝑀)))) finSupp
(0g‘(Scalar‘𝑀)) ∧ ((𝑠 ∈ 𝑆 ↦ if(𝑠 = (0g‘𝑀), (1r‘(Scalar‘𝑀)),
(0g‘(Scalar‘𝑀))))( linC ‘𝑀)𝑆) = (0g‘𝑀) ∧ ∃𝑥 ∈ 𝑆 ((𝑠 ∈ 𝑆 ↦ if(𝑠 = (0g‘𝑀), (1r‘(Scalar‘𝑀)),
(0g‘(Scalar‘𝑀))))‘𝑥) ≠
(0g‘(Scalar‘𝑀))))) |
48 | 47 | adantl 482 |
. . . 4
⊢ ((((𝑀 ∈ LMod ∧ 1 <
(♯‘(Base‘(Scalar‘𝑀)))) ∧ 𝑆 ∈ 𝒫 (Base‘𝑀) ∧
(0g‘𝑀)
∈ 𝑆) ∧ 𝑓 = (𝑠 ∈ 𝑆 ↦ if(𝑠 = (0g‘𝑀), (1r‘(Scalar‘𝑀)),
(0g‘(Scalar‘𝑀))))) → ((𝑓 finSupp
(0g‘(Scalar‘𝑀)) ∧ (𝑓( linC ‘𝑀)𝑆) = (0g‘𝑀) ∧ ∃𝑥 ∈ 𝑆 (𝑓‘𝑥) ≠
(0g‘(Scalar‘𝑀))) ↔ ((𝑠 ∈ 𝑆 ↦ if(𝑠 = (0g‘𝑀), (1r‘(Scalar‘𝑀)),
(0g‘(Scalar‘𝑀)))) finSupp
(0g‘(Scalar‘𝑀)) ∧ ((𝑠 ∈ 𝑆 ↦ if(𝑠 = (0g‘𝑀), (1r‘(Scalar‘𝑀)),
(0g‘(Scalar‘𝑀))))( linC ‘𝑀)𝑆) = (0g‘𝑀) ∧ ∃𝑥 ∈ 𝑆 ((𝑠 ∈ 𝑆 ↦ if(𝑠 = (0g‘𝑀), (1r‘(Scalar‘𝑀)),
(0g‘(Scalar‘𝑀))))‘𝑥) ≠
(0g‘(Scalar‘𝑀))))) |
49 | 40, 48 | rspcedv 3554 |
. . 3
⊢ (((𝑀 ∈ LMod ∧ 1 <
(♯‘(Base‘(Scalar‘𝑀)))) ∧ 𝑆 ∈ 𝒫 (Base‘𝑀) ∧
(0g‘𝑀)
∈ 𝑆) → (((𝑠 ∈ 𝑆 ↦ if(𝑠 = (0g‘𝑀), (1r‘(Scalar‘𝑀)),
(0g‘(Scalar‘𝑀)))) finSupp
(0g‘(Scalar‘𝑀)) ∧ ((𝑠 ∈ 𝑆 ↦ if(𝑠 = (0g‘𝑀), (1r‘(Scalar‘𝑀)),
(0g‘(Scalar‘𝑀))))( linC ‘𝑀)𝑆) = (0g‘𝑀) ∧ ∃𝑥 ∈ 𝑆 ((𝑠 ∈ 𝑆 ↦ if(𝑠 = (0g‘𝑀), (1r‘(Scalar‘𝑀)),
(0g‘(Scalar‘𝑀))))‘𝑥) ≠
(0g‘(Scalar‘𝑀))) → ∃𝑓 ∈ ((Base‘(Scalar‘𝑀)) ↑m 𝑆)(𝑓 finSupp
(0g‘(Scalar‘𝑀)) ∧ (𝑓( linC ‘𝑀)𝑆) = (0g‘𝑀) ∧ ∃𝑥 ∈ 𝑆 (𝑓‘𝑥) ≠
(0g‘(Scalar‘𝑀))))) |
50 | 9, 15, 30, 49 | mp3and 1463 |
. 2
⊢ (((𝑀 ∈ LMod ∧ 1 <
(♯‘(Base‘(Scalar‘𝑀)))) ∧ 𝑆 ∈ 𝒫 (Base‘𝑀) ∧
(0g‘𝑀)
∈ 𝑆) →
∃𝑓 ∈
((Base‘(Scalar‘𝑀)) ↑m 𝑆)(𝑓 finSupp
(0g‘(Scalar‘𝑀)) ∧ (𝑓( linC ‘𝑀)𝑆) = (0g‘𝑀) ∧ ∃𝑥 ∈ 𝑆 (𝑓‘𝑥) ≠
(0g‘(Scalar‘𝑀)))) |
51 | 1, 12, 2, 26, 3 | islindeps 45794 |
. . 3
⊢ ((𝑀 ∈ LMod ∧ 𝑆 ∈ 𝒫
(Base‘𝑀)) →
(𝑆 linDepS 𝑀 ↔ ∃𝑓 ∈
((Base‘(Scalar‘𝑀)) ↑m 𝑆)(𝑓 finSupp
(0g‘(Scalar‘𝑀)) ∧ (𝑓( linC ‘𝑀)𝑆) = (0g‘𝑀) ∧ ∃𝑥 ∈ 𝑆 (𝑓‘𝑥) ≠
(0g‘(Scalar‘𝑀))))) |
52 | 10, 11, 51 | syl2anc 584 |
. 2
⊢ (((𝑀 ∈ LMod ∧ 1 <
(♯‘(Base‘(Scalar‘𝑀)))) ∧ 𝑆 ∈ 𝒫 (Base‘𝑀) ∧
(0g‘𝑀)
∈ 𝑆) → (𝑆 linDepS 𝑀 ↔ ∃𝑓 ∈ ((Base‘(Scalar‘𝑀)) ↑m 𝑆)(𝑓 finSupp
(0g‘(Scalar‘𝑀)) ∧ (𝑓( linC ‘𝑀)𝑆) = (0g‘𝑀) ∧ ∃𝑥 ∈ 𝑆 (𝑓‘𝑥) ≠
(0g‘(Scalar‘𝑀))))) |
53 | 50, 52 | mpbird 256 |
1
⊢ (((𝑀 ∈ LMod ∧ 1 <
(♯‘(Base‘(Scalar‘𝑀)))) ∧ 𝑆 ∈ 𝒫 (Base‘𝑀) ∧
(0g‘𝑀)
∈ 𝑆) → 𝑆 linDepS 𝑀) |